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Abstract

Based on the mathematical proof of the positivity of the dissipation due to anisotropic damage, different numerical

scheme to compute such a dissipation in concrete structures are proposed. The positivity of intrinsic dissipation for

the considered modular anisotropic damage model is first checked in the case of Willam non-proportional loading test,

then checked for different impact tests on concrete structures. Both the consequences of the modeling of the strain rate

effect in tension (from visco-damage) and of the damage deactivation (micro-cracks closure) for alternated loadings

are studied.
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1. Introduction

Damage mechanics is a powerful tool to handle micro-cracking and failure of quasi-brittle materials and struc-

tures. The corresponding constitutive models, even with induced anisotropy, are now most often implemented with

localization limiters, i.e. either in a nonlocal form [1, 2] or as visco-damage models [3, 4, 5] or both [6, 7]. This

allows to gain some numerical robustness as mesh independency of the converged finite element solution.

Numerical robustness is nevertheless still difficult to obtain when induced anisotropic damage is considered, i.e.

when the state of damage is represented by a tensorial variable. The modeling of damage anisotropy can be made by

use of microplanes models [8, 9, 10] or by use of a fourth [30, 31] or now more commonly of a second order damage

tensor [13, 14, 38, 16, 59, 17, 20, 21, 18, 23, 25, 26, 24]. The key point of a thermodynamics consistent modelling

is to ensure the positivity of the intrinsic dissipation and in particular the positivity of the dissipation due to damage

[39, 40, 27].

In case of isotropic (scalar) damage varable D, if Y stands for the (positive) thermodynamics force associated with

D, the dissipation due to damage writes Ḋ = YḊ so that one simply has to enforce Ḋ ≥ 0 from the damage evolution

law [28] in order to satisfy the positivity of the dissipation.

In case of anisotropic damage, two cases arise:

a) the damage evolution law is written in the framework of standard generalized materials [29], i.e. damage is

proportional to the tensorial (positive) thermodynamics force Y or to JJJ : Y with JJJ a positive definite fourth

order tensor [30, 31, 32, 33]. One has Ḋ = λ̇Y : JJJ : Y ≥ 0, if λ̇ stands for the (positive) damage multiplier.

The drawback of such a ”standard” modelling is the difficulty to conceptualize the anisotropy represented in the

different loading cases and the number of material parameters introduced as components Ji jkl.

b) a practical possibility for quasi-brittle materials is to consider damage but also its anisotropy gouverned by the

extensions [16, 34] setting for example the damage rate proportional to the positive part of the strain tensor.
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Such a modelling is non standard, the positivity of the dissipation is not guaranteed for any models and has to

be mathematically proven [35].

One considers here a modular anisotropic damage model, non standard (case b), for which the proof of the positiv-

ity of the dissipation can be mathematically given [36]. The proof, recalled in section 2.4, avoids the calculation of the

tensorial thermodynamics force Y associated with second order damage D. Using this feature, one proposes in present

work differents ways to determine within finite elements computations the dissipation for the considered anisotropic

damage model. As pointed out in [40], the quantification of the energy dissipated in the rupture of structures made of

quasi-brittle materials gives complementary information to the usual damage maps.

2. Thermodynamics of anisotropic damage

A state of micro-cracking at the Representative Volume Element (RVE) scale can be represented by a thermo-

dynamics state variable, namely the damage variable. For instance, in concrete-like materials the micro-cracks

are mainly orthogonal to the loading direction in tension and parallel to the load in compression. A second or-

der damage tensor is then often considered to be able to represent such an induced anisotropic damage pattern

[13, 14, 38, 16, 18, 19, 21, 22, 23, 25, 26]. The choice to use of a second order tensor for damage – D of com-

ponents Di j is made here. Such a choice is not a necessity (a fourth order tensor can be used for instance [30, 37])

but it has proven very helpful to solve the incompatibility with thermodynamics of the consideration of two damage

variables, one for tension and one for compression: damage represents the state of micro-cracking whatever the sign

of the loading so that only one damage variable represents the microcracking pattern [25].

Hydrostatic or mean damage is then

DH =
1

3
tr D (1)

In order to simplify further expressions, a specific integrity tensor H is defined [13, 14, 19, 22]

H = (111 − D)−1/2 (2)

where to take power α (here −1/2) of a symmetric tensor, one makes it first diagonal, one takes then the power α of

the diagonal components and one finally turns back the tensor obtained in the initial working basis.

2.1. State potential and state laws

Following [41, 36], the permanent strains are neglected and the free enthalpy density is written

ρψ⋆ =
1 + ν

2E
tr

[

HσDHσD
]

+
1 − 2ν

6E

(

〈trσ〉2+
1 − ηDH

+ 〈trσ〉2−

)

(3)

with E the Young modulus, ν the Poisson ratio, ρ the density, η the hydrostatic sensitivity parameter, and where

(.)D = (.) − 1
3

tr(.)111 stands for deviatoric part of a tensor, 〈.〉+ and 〈.〉− respectively for positive and negative parts of a

scalar, 〈x〉+ = max(x, 0) and 〈x〉− = min(x, 0).

The elasticity law derives from state potential (3),

ǫ = ρ
∂ψ⋆

∂σ
=

1 + ν

E

(

HσDH
)D
+

1 − 2ν

3E

(

〈trσ〉+

1 − ηDH

+ 〈trσ〉−

)

111 (4)

The thermodynamics force associated with damage D is

Y = ρ
∂ψ⋆

∂D
(5)

Its calculation is not an easy task (see the Appendix). Key-point of present work, one will avoid to have to calculate

such a derivative with respect to D: one will only use the simpler derivative with respect to tensor H, with the property

∂

∂H
tr

[

HσDHσD
]

= 2σDHσD (6)

2



which defines a symmetric second order tensor.

The elasticity law coupled with anisotropic damage (4) can be inverted as

σ =
E

1 + ν

(

H−1
ǫH−1 −

(111 − D) : ǫ

3 − tr D
(111 − D)

)

+
E

3(1 − 2ν)

[
(1 − ηDH) 〈tr ǫ〉+ + 〈tr ǫ〉−

]

111 (7)

with then H−1 = (111−D)1/2. Note that the term in factor of shear modulus E/(1+ ν) = 2G is deviatoric (traceless), the

second term – in factor of bulk modulus K = E/3(1 − 2ν) – being purely hydrostatic. Previous equation can also be

expressed in terms of components as

σi j =
E

1 + ν

(

H−1
ik ǫkl H−1

l j −
(δkl − Dkl)ǫkl

3 − Dkk

(

δi j − Di j

)
)

+
E

3(1 − 2ν)

[
(1 − ηDH) 〈ǫkk〉+ + 〈ǫkk〉−

]

δi j (8)

If D = 0, equation (8) gives

σ =
E

1 + ν

(

ǫ −
tr ǫ

3
111

)

+
E

3(1 − 2ν)
tr ǫ 111 (9)

which is the classical elasticity law without damage.

The elasticity law (4) is the derivative with respect to stresses of the free enthalpy density (3). The Helmholtz

free energy ρψ is defined either as the Legendre transform ρψ(ǫ,D) = supσσσ
[

σ : ǫ − ρψ⋆(σσσ,D)
]

, or in an equivalent

manner as the primitive of elasticity law (8) rewritten in terms of strains and damage. This defines :

ρψ =
E

2(1 + ν)

(

tr
[

H−1
ǫH−1

ǫ

]

−
[(111 − D) : ǫ]2

3 − tr D

)

+
E

6(1 − 2ν)

[

(1 − ηDH)〈tr ǫ〉2+ + 〈tr ǫ〉
2
−

]

(10)

so that one classically has

σ = ρ
∂ψ

∂ǫ
Y = −ρ

∂ψ

∂D
(11)

2.2. Criterion functions

For concrete-like materials, the elasticity domain can advantageously be defined in terms of strains [34]. Let us

consider Mazars criterion function

fMazars = ε̂ − κ ε̂ =
√

〈ǫ〉+ : 〈ǫ〉+ =

√
∑

I

〈εI〉
2
+ (12)

where 〈.〉+ stands for the positive part of a tensor in terms of principal values [25], εI are the principal strains, 〈εI〉+
are the (positive) extensions. The elasticity domain corresponds to f < 0.

In the time independent case, damage growth occurs at the consistency condition f = 0 & ḟ = 0 and quasi-static

concrete behavior is modeled by an adequate choice of consolidation function κ, either function of the trace of damage

tensor (initial formulation [36]) or as a function of the active damage dact [43].

For dynamics and impact applications, the visco-damage framework is used [4] as it can represent the observed

strain rate effect on apparent ultimate stress. The criterion function will then in a equivalent manner be defined either

as

f = g(ε̂) − tr D (13)

in case of initial trace formulation, or as

f = g(ε̂) − dact (14)

in case of active damage formulation. In both cases, function g = κ−1 is the inverse of function κ.

Visco-damage framework states that the elasticity domain still corresponds to f < 0 but damage growth occurs at

f = Dv ≥ 0 (15)
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Dv is the viscous damage (it acts as the viscous stress in visco-plasticity). A visco-damage law has to be defined.

Following [7] a delay-damage law which bounds the damage rate can be used, expressed next either in terms of trace

rate or in terms of active damage rate

Dv = Dv

(

H(tr(ǫ)) tr Ḋ
)

or Dv = Dv

(

H(tr(ǫ)) ḋact

)

(16)

where Heaviside function of the trace of the strain tensor allows to model a material rate effect in tension and not in

compression (H(x) = 1 if x ≥ 0, H(x) = 0 else). In compression one will assume that the rate effect experimentally

observed is due to inertial effect that confine the sample tested [11, 12].

In both cases the same function Dv(x) is used [5],

Dv(x) = −
1

b
ln

(

Ḋ∞ − x

Ḋ∞

)

(17)

Ḋ∞ (equal to the invert of a characteristic time) and b are material parameters.

2.3. Active damage

The active damage is defined as the normed projection of the full damage tensor on the positive strain tensor 〈ǫ〉+

of components 〈ǫ〉+
i j

,

dact =
D : 〈ǫ〉+

maxI(εI)
=

Di j(〈ǫ〉
+)i j

maxI(εI)
(18)

To better understand this concept of active damage, we can illustrate it with a simple tension/compression test.

In such a particular case the tensors are diagonal but note that Eq. (18) handles general 3D cases with non diagonal

tensors. In a monotonic tension test performed in direction 1 we obtain the damage matrix

D =





D1 0 0

0 0 0

0 0 0




dact = D1 (in simple tension test) (19)

this allows to recovers dact = tr D as in the initial anisotropic damage model [41, 36].

In monotonic compression test performed in direction 1 we obtain

D =





0 0 0

0 D2 0

0 0 D2




dact = 2D2 (in simple compression test) (20)

dact = tr D is again recovered. But if we considered an alternate loading, for example a simple tension test in direction

1 follows by a simple compression test (still in direction 1), the damage state and the active damage become

D =





D1 0 0

0 D2 0

0 0 D2




dact = 2D2 (in the compression phase after damaging in tension) (21)

in this case dact , tr D showing that damage D1 due to tension is not active in compression anymore in alternate

loading. The same feature stands for D2 due to compression which becomes inactive in tension as then dact = D1 if

the sign of the loading path change one more time.

This concept is useful to deal properly with alternated loading [43, 44], as illustrated in Section 4.4.

2.4. Non standard damage evolution law and positivity of the dissipation

For standard generalized materials [29], the evolution laws for the internal variables are derived by generalized

normality. Good mathematical properties of the corresponding evolution potential, such as convexity with respect to

the thermodynamics forces, allows to naturally satisfy the positivity of the intrinsic dissipation Ḋ = σ : ǫ̇ −ρψ̇, which

allows then to naturally satisfy the second principle of thermodynamics.
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More modeling flexibility is obtained when the damage evolution law does not derive from an evolution potential.

For instance the non standard evolution laws

Ḋ = λ̇ 〈ǫ〉+α (with then Ḋ ≥ 0) (22)

of damage anisotropy governed by the positive part of the strain tensor (usually at a power α = 1 or 2) have shown

efficient to represent concrete micro-cracking pattern in different loading cases. The damage rate is gained as a positive

tensor, λ̇ is the (positive) damage multiplier determined either from the consistency conditions f = 0 & ḟ = 0 in time

independent modeling or from the viscosity law f = Dv in visco-damage modeling.

The corresponding damage model is non standard so that one has to prove the positivity of the intrinsic dissipation

Ḋ. As only one internal variable is introduced it is expressed as Ḋ = Y : Ḋ. Such a proof has been given in [35, 36]

and part of it is the basis for the numerical computation of the dissipation proposed in next section. It uses the splitting

of the state potential (4) into a shear (deviatoric) contribution and a hydrostatic (spherical) one. It also uses the fact

that one does not need to express Y variable itself but only the contracted product Y : Ḋ which will later be recognized

as

Ḋ = Y : Ḋ =
1 + ν

E

(

σ
DHσD

)

: Ḣ +
1 − 2ν

6E
〈trσ〉2+

d

dt
g(DH) g(DH) =

1

1 − ηDH

(23)

with g a positive monotonic function of the hydrostatic damage DH =
1
3

tr D, so that
dg

dt
≥ 0. The right inside term of

Eq. (23) is therefore positive. It uses the fact that due to Ḋ ≥ 0 and definition H = (111 − D)−1/2 the tensor Ḣ is also a

positive tensor, so that if (σDHσD) is found positive its contracted product with tensor Ḣ ≥ 0 (the right inside term

of Eq. (23)) is positive, completing then the proof for positive dissipation Ḋ ≥ 0 for any loading, monotonic or not,

uniaxial or 3D, proportional or non proportional.

The positivity of tensor (σDHσD) is obtained from the positivity of its eigenvalues µI (corresponding eigenvectors

are denoted T
I
) solution of

(

σ
DHσD

)

T
I
= µITI

(no sum) (24)

or after left multiplication by positive symmetric tensor H and then by transposed eigenvector TT
I

TT
I

(

HσD
)2

T
I
= µIT

T
I

H T
I

(no sum) (25)

or

µI =
TT

I

(

HσD
)2

T
I

TT
I

H T
I

≥ 0 (no sum) (26)

Eigenvalues µI are ratios of positive scalars and are then positive, as announced.

3. Computation of the energy density dissipated by anisotropic damage

In the studied case of elasticity coupled with second order tensorial damage, the determination of the thermody-

namics force associated with damage needs the derivative of (111−D)−1/2 terms with respect to D. This can be handled

in a closed form (see Appendix) but leads to a quite complex expression for intrinsic dissipation Ḋ.

One prefers to recognize in the derivative of the state potential with respect to the time two terms: the rate at

constant damage of an elastic energy density and the intrinsic dissipation Ḋ,

ρψ̇⋆ = ρ
∂ψ⋆

∂σ
: σ̇ + ρ

∂ψ⋆

∂D
: Ḋ = ǫ : σ̇ + Y : Ḋ

︸︷︷︸

Ḋ

ρψ̇ = ρ
∂ψ

∂ǫ
: ǫ̇ + ρ

∂ψ

∂D
: Ḋ = σ : ǫ̇ − Y : Ḋ

︸︷︷︸

Ḋ

(27)

One can foresee then two ways to express the intrinsic dissipation :

• Directly, from the damage variable change as Ḋ = Y : Ḋ,

• Indirectly, as Ḋ = ρψ̇⋆ − ǫ : σ̇ = σ : ǫ̇ − ρψ̇.
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3.1. Expressions for the intrinsic dissipation

For the direct calculation, let us rewrite both the free enthalpy ρψ⋆ and the elasticity law by making appear function

g(DH) defined in Eq. (23),

ρψ⋆ =
1 + ν

2E
tr

[

HσDHσD
]

+
1 − 2ν

6E

(

g (DH) 〈trσ〉2+ + 〈trσ〉
2
−

)

(28)

ǫ = ρ
∂ψ⋆

∂σ
=

1 + ν

E

(

HσDH
)D
+

1 − 2ν

3E
(g (DH) 〈trσ〉+ + 〈trσ〉−)111 (29)

Take then the derivative of potential ρψ⋆ with respect to time,

ρ
dψ⋆

dt
=

[

1 + ν

E

(

HσDH
)D

: σ̇ +
1 + 2ν

3E
(g(DH)〈trσ〉+ + 〈trσ〉−) tr σ̇

]

+

[

1 + ν

E
(σDHσD) : Ḣ +

1 − 2ν

6E
〈trσ〉2+ :

d

dt
g(DH)

] (30)

which enables to identify first term of previous equation as (see Eq. (27))

1 + ν

E

(

HσDH
)D

: σ̇ +
1 + 2ν

3E
(g(DH)〈trσ〉+ + 〈trσ〉−) tr σ̇ = ρ

∂ψ⋆

∂σ
: σ̇ (31)

so that Ḋ is second term of Eq. (30). It is obtained as Eq. (23) which is the analytical expression for the intrinsic

dissipation by the direct method.

For the indirect method, one prefers to invert the elasticity law and to calculate the dissipation as

Ḋ = σ : ǫ̇ − ρψ̇ (32)

where the free energy ρψ given by Eq. (10) is the dual of free enthalpy ρψ⋆.

3.2. Choice of a discretization

The implementation in a finite element computer code requires a proper time discretization of the energy dissipated

by damage per unit of volume D =
∫

Y : Ḋ dt for the direct method and of D =
∫

(σ : ǫ̇ − ρψ̇) dt for the indirect

method. Over one time step ∆t = tn+1 − tn between times tn and tn+1, one sets

Dn+1 = Dn + ∆D (33)

For the direct method the increment of energy dissipated over a time step is:

∆D =

∫ tn+1

tn

Y : Ḋ dt. (34)

In the case of indirect method, one calculates the energy dissipatedDn+1 = D(tn+1) as

Dn+1 =

∫ ǫǫǫn

0

σ : dǫ

︸       ︷︷       ︸

we
n

+

∫ ǫǫǫn+1

ǫǫǫn

σ : dǫ −
[

ρψ(ǫ,D)
]n+1
0

︸          ︷︷          ︸

with ρψ(000,000)=0

(35)

where we =
∫ ǫǫǫ

0
σ : dǫ, we

n = we(ǫn) is set. Dn+1 is expressed as :

Dn+1 = we
n +

∫ ǫǫǫn+1

ǫǫǫn

σ : dǫ − ρψn+1 (36)

where ρψn+1 = ρψ(ǫn+1,Dn+1).

For these two methods, direct and indirect, two simple numerical schemes for the time discretization are compared

in Fig. 1: the rectangle rule and the trapezium rule.
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(a) Rectangle rule (b) Trapezium rule

Figure 1: Numerical schemes for the time discretization.

3.2.1. Schemes for computation with direct method

From Eq. (23) and by discretization with the rectangles method (upperscript DER for Direct Exact Rectangles),

one gets :

∆D = ∆DDER =
1 + ν

E
(σDHσD)n+1 : ∆H +

1 − 2ν

6E
〈trσn+1〉

2
+

(

g
(

Dn+1
H

)

− g
(

Dn
H

))

(37)

and with the trapezium rule (DET pour Direct Exact Trapezium):

∆D = ∆DDET =
1 + ν

E

(σDHσD)n+1 + (σDHσD)n

2
: ∆H

+
1 − 2ν

6E

〈trσn+1〉
2 + 〈trσn〉

2

2

(

g(Dn+1
H ) − g(Dn

H)
)

(38)

with

∆H = Hn+1 −Hn = (111 − Dn+1)−
1
2 − (111 − Dn)−

1
2 (39)

In both cases, a difference between nonlinear functions of damage D at time tn and time tn+1 appears. Numerically,

this operation may cause important round up errors and one will prefer to approach these differences by developments

at the first order in order to replace them by products and derivatives. For instance, the first order development for

g(Dn+1
H

) − g(Dn
H

) gives:

∆(g(DH)) = g(Dn+1
H ) − g(Dn

H) ≃ g′(Dn
H)∆DH =

η

(1 − ηDn
H

)2
(Dn+1

H − Dn
H) (40)

For tensor ∆H, one starts by expressing Hn+1 as a function of damage Dn and of damage increment ∆D :

Hn+1 = (111 − Dn+1)−
1
2 = (111 − Dn − ∆D)−

1
2

Hn+1 = (111 − Dn)−
1
4

[

111 − (111 − Dn)−
1
2∆D (111 − Dn)−

1
2

]− 1
2

(111 − Dn)−
1
4 (41)

Hn+1 ≃ (111 − Dn)−
1
4

[

111 +
1

2
(111 − Dn)−

1
2∆D (111 − Dn)−

1
2

]

(111 − Dn)−
1
4

One now substitutes the new expression of Hn+1 in ∆H:

∆H = Hn+1 −Hn ≃(111 − Dn)−
1
4

1

2
(111 − Dn)−

1
2∆D (111 − Dn)−

1
2 (111 − Dn)−

1
4

≃
1

2
(111 − Dn)−

3
4∆D (111 − Dn)−

3
4

(42)
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One finally gets two new expressions for the dissipation increment for the direct method. For the rectangle dis-

cretization (DAR for Direct Approached Rectangles):

∆D = ∆DDRA =
1 + ν

E
(σDHσD)n+1 :

[

1

2
(111 − Dn)−

3
4∆D (111 − Dn)−

3
4

]

+
1 − 2ν

6E
〈trσn+1〉

2
+

η

(1 − ηDn
H

)2
(Dn+1

H − Dn
H)

(43)

and for the trapezium one (DAT pour Direct Approached Trapezium) :

∆D = ∆DDT A =
1 + ν

E

(σDHσD)n+1 + (σDHσD)n

2
:

[

1

2
(111 − Dn)−

3
4∆D (111 − Dn)−

3
4

]

+
1 − 2ν

6E

〈trσn+1〉
2
+ + 〈trσn〉

2
+

2

η

(1 − ηDn
H

)2
(Dn+1

H − Dn
H)

(44)

3.2.2. Schemes for computation with indirect method

For the indirect method, the integral terms are also discretized by means of the rectangle and trapezium rules. This

leads to two additional expressions for the dissipated energy density:

• for the rectangle rule (IR for Indirect Rectangles) one gets:

Dn+1 = D
IR
n+1 = Dn + σn+1 : ∆ǫ − ρψ(ǫn+1,Dn+1) (45)

• for trapezium rule (IT pour Indiret Trapezium):

Dn+1 = D
IT
n+1 = Dn +

σn+1 + σn

2
: ∆ǫ − ρψ(ǫn+1,Dn+1) (46)

Table 1 summarizes the different methods and schemes and their designation.

Method Rectangle Trapezium

Direct: Exact DER DET

Direct: Approximate DAR DAT

Indirect IR IT

Table 1: Summary of designations for the different methods and schemes studied.

3.3. Temperature increase

The complete heat transfer equation reads in the general case [27] :

ρCṪ = k∇2T + σ : ǫ̇ p − AK : V̇K + T

[

∂σ

∂T
: ǫ̇e +

∂AK

∂T
: V̇K

]

(47)

where ∇2 is the Laplacian operator, C is the specific heat of the material, k is the thermal conductivity. The internal

thermodynamics variables are noted VK and the associated variables (or thermodynamics forces) AK . In studied case

of elasticity coupled with anisotropic damage without permanent strains (ǫ p = 0, ǫe = ǫ − ǫ p = ǫ), one has K = 1

and V1 = D is the only internal variable, associated with A1 = −Y. For low temperature changes (as it will be further

shown to be the case), the simplification of no thermo-mechanical coupling ∂σσσ
∂T

: ǫ̇ + ∂A1

∂T
: V̇1 = 0 can be made.

The heat transfer equation becomes then:

ρCṪ ≃ k∇2T + Y : Ḋ = k∇2T + Ḋ (48)

Furthermore, under adiabatic conditions – which are justified in fast dynamics and impact applications – the tempera-

ture rate Ṫ and increase from room temperature ∆T become

Ṫ ≃
Y : Ḋ

ρC
=
Ḋ

ρC
or ∆T ≃

D

ρC
(49)

The temperature increase is simply the energy density dissipated due to damage divided by material constant ρC.

8



4. Dissipated energy density evolution at RVE scale

The implementation in a Finite Element code of previous methods and schemes allows to compute first at the

Representative Volume Element (RVE) scale, therefore at every Gauss point of a structure, the intrinsic dissipation Ḋ

(as increment ∆D) and its evolutionD(t) (as Dn) which is the evolution of the energy dissipated by damage per unit

of volume. When there will be no risk of confusion (units precised for instance), the terminology ”dissipation” will

also stands for dissipated energy densityD.

4.1. Anisotropic damage model – DYN and INI versions

Let us first recall the constitutive equations of the anisotropic delay-damage model used for concrete and which

belongs to second order damage framework of Section 2. The value η = 3 is set for the hydrostatic sensitivity

parameter [36].

• Elasticity

ǫ =
1 + ν

E

[

(111 − D)−1/2
σ

D(111 − D)−1/2
]D
+

1 − 2ν

3E

[

〈trσ〉+

1 − tr D
+ 〈trσ〉−

]

111 (50)

• Damage criterion

f = g(ε̂) − tr D g(ε̂) = aA

[

atan

(

ε̂

a

)

− atan

(
κ0

a

)]

(51)

where ε̂ is Mazars equivalent strain and where κ0 is the damage threshold and A and a are the damage parame-

ters.

• Visco-damage loading-unloading conditions,

f < 0 → elastic loading or unloading

f = Dv ≥ 0 → damage growth
(52)

• Induced damage anisotropy governed by the positive extensions,

Ḋ = λ̇ 〈ǫ〉+ 2 (53)

• The delay-damage evolution law (in terms of trace of damage tensor)

H(tr(ǫ)) tr Ḋ = Ḋ∞
[

1 − exp (−b (g (ε̂) − tr D))
]

(54)

from which is determined the damage multiplier λ̇. Delay-damage law (54) is derived from visco-damage law

(17), it bounds the damage rate to Ḋ∞ and deactivates the delay (or strain rate) effect for negative hydrostatic

strains. H(x) is Heaviside function.

When Dv = 0 (or either Ḋ∞ → ∞ or b → ∞), the damage multiplier is determined from consistency condition

f = 0 & ḟ = 0 instead of f = Dv and the time independent initial model of [41, 36] is recovered (version designated

next as INI).

The material parameters of the anisotropic delay-damage model for concrete are those of Table 2. Add ρ = 2400

kg·m−3, C = 880 J· kg−1/◦C for heat transfer.

Parameter Value

E 42 GPa

ν 0.2

κ0 5.10−5

A 5000

a 2.93 10−4

b 1

Ḋ∞ 50000 s−1

Table 2: Material parameters for modular damage anisotropic model.

9



4.2. Monotonic tension and monotonic compression

This set of parameters leads to the response of Figure 2(a) in stress-strain plane for uniaxial monotonic quasi-static

tension and compression. The delay-damage law considered with the viscosity parameters b and Ḋ∞ of Table 2 leads

to a sensitive strain rate effect for strain rates larger than 1 s−1 (Fig. 2(b)). Below 1 s−1, the stress-strain response in

tension is found quasi independent from the strain rate. Recall that due to Heaviside functionH(tr ǫ) in delay-damage

law there is no material strain rate at all in compression (such a strain rate effect is assumed to be due to inertial

confinement).
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(a) stress-strain response in quasi-static monotonic

tension and compression
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Figure 2: Uniaxial monotonic response in quasi-static and dynamics.

Figures 3 and 4 represent the evolution of the dissipation – in fact the dissipated energy density – in monotonic

tension and in monotonic compression. The computations are made on a single Gauss point cube element. The

different methods proposed are compared for two values of the strain increment (∆ε = 10−5 and ∆ε = 10−6) for both

loading cases.
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(b) ∆ǫ= 1.10−6

Figure 3: Evolution of dissipation at one Gauss point in tension .

As expected one observes that all the methods converge to the same result when the strain increment decreases,

which validates the implementations. In both monotonic tension and compression cases, the DET method (Direct

Exact Trapezium) is the one that presents the smallest difference between the total intrinsic dissipation at failure

(maximum principal damage equal to 1, plateau reached) with either the large or the small strain increments. This

method is the one retained for further structures analyses.

At failure, the energy dissipated by damage in tension is found 25 times lower than in compression (1000 J/m3 in

tension compared to 25000 J/m3 in compression).
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(b) ∆ǫ= 1.10−6

Figure 4: Evolution of dissipation at one Gauss point in compression .

4.3. Strain rate effect on intrinsic dissipation

Let us focus now on the effect of the strain rate in tension on the dissipation (Fig. 2(b)). The strain rate effect

introduced through the delay-damage law increases the apparent strength (or ultimate stress) in tension when the strain

rate increases. The model rupture strain (strain at vanishing stress due to principal damage equal to 1) also increases.

The intrinsic dissipation is therefore quite larger in dynamics tension than is quasi-static tension. The evolution of the

dissipation is plotted for different strain rates in Figure 5.
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Figure 5: Evolution of the energy density dissipated in tension

As for tensile strength, there is no substantial enhancement in the dissipation below the strain rate of 1 s−1. When

the strain rate increases, the dissipation evolution slows down (hence the denomination ”delay-damage”) but reaches

at failure a much larger value (plateau of Fig. 5). At ε̇=10 s−1, the dissipation at failure worths 3100 J/m3 and when it

worths 71000 J/m3 at 100 s−1. The energy dissipated is so multiplied by a factor of 3 at rate 10 s−1 (it versus a factor

of 2 for the strength computed at the same strain rate) and it is multiplied by factor 71 at 100.s−1 (versus factor 10 for

the strength at this strain rate).

The strain rate effect is more influent on the dissipation that on the peak stress. This phenomenon is also well

captured with mesoscopic approaches [42].
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4.4. Micro-cracks closure effect on dissipation under alternated loading – INI-dact and DYN-dact model versions

Under alternated loading, such as those encountered in seismic or in impact applications, the micro-cracks opened

in tension close in the compressive stages so that the stiffness is recovered [16, 59]. The anisotropic damage model

of Section 4.1 represents a partial stiffness recovery thanks to the partition of the hydrostatic part into a positive part

(affected by damage through parameter η = 3) and a negative one (not affected). To gain a complete stiffness recovery,

a recovery not only of the bulk modulus but also of the shear modulus, it is necessary to do the same operation on

the deviatoric part of the potential (to split this tensorial part into positive and negative parts and properly affect them

differently by tensorial damage D). This additional splitting makes the numerical scheme much more complex (special

positive parts have to be defined [14, 25]) for a relatively small difference on the result [60]. The choice to only keep

a partial stiffness recovery is made here.

Consolidation function κ(tr D) of Eq. (12) acts as isotropic hardening in metal plasticity and increases by too

much to yield stress in compression after a damaging stage in tension. To model correctly the behavior of concrete

under alternated loading, a possibility is to deactivate in the criterion function fMazars or in an equivalent manner in

f the damage due to tension when going to compression (i.e. to consider to corresponding micro-cracks as closed).

In that purpose, a new quantity called active damage, has been introduced and defined as Eq. (18). In an improved

delay-damage model [44] it replaces tr D term in criterion function f as

f = g(ε̂) − dact dact =
D : 〈ǫ〉+

maxI(εI)
(55)

For monotonic loading, dact is equal to tr D (see Section 2.3), so that there is no need to re-identify the model

material parameters (such as κ0, A and a) which remain those of Table 2.

The consequences of this first modification on the alternated stress-strain response are presented in Figure 6. This

is the case of a compression loading (up to failure, loading in direction 1) after a damaging tensile stage (the damage

due to tension reaches D1 = Dxx = 0.5 before unloading). The stress-strain response in monotonic compression is

reported as a reference curve not to cross for previously damaged material. T-C Initial criterion response corresponds

to Section 4.1 model in trace of damage, satisfactory T-C Modified criterion response corresponds to change of tr D

into active damage dact in criterion function f .
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Figure 6: Stress-strain response under an alternated loading tension-compression.

A non physical response is once more encountered due to tr D term but this time present in initial delay-damage

law (54). A too large overstress is obtained for the dot curve without damage deactivation of Fig. 7(a) where a

dynamics tension stage is considered after damaging compression up to D2 = D3 = 0.5.

So in order to build such a version DYN-dact of anisotropic damage model able to deal with alternated loading

in dynamics, the active damage concept also has to be used for delay-damage law, setting viscosity law as Dv =

Dv

(

H(tr(ǫ))ḋact

)

with Dv(x) function defined by Eq. (17), so that

H(tr(ǫ))ḋact = Ḋ∞
(

1 − exp (−b (g (ε̂) − dact))
)

(56)

with the fully satisfactory continuous black response ”With damage deactivation” of Fig. 7(a). The response for the

monotonic dynamics tension is reported as a reference in this figure, at the same strain rate in tension of 10 s−1. The
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dissipation evolution with respect to strain is given in Fig. 7(b) for the different modeling choices. Note that due to

the damaging stage in compression the (plateau) value for the dissipated energy density at rupture is larger than the

one obtained at the same strain rate in the reference monotonic tension case (see Fig. 5).
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Figure 7: Response under alternated loadings in dynamics.

Again when the delay-damage law is not introduced (Dv = 0), the version of the modular anisotropic damage

model obtained is a time independent one (active damage acting if criterion function f , Eq. (55), damage multiplier

determined from consistency condition f = 0 & ḟ = 0) and will be referred to as version INI-dact.

4.5. Dissipation in non proportional loading: example of Willam test

The schemes and numerical implementation for the calculation of dissipation D is incremental and 3D so that

non-proportional loading can be handled.

Let us perform classical (numerical) Willam test which submits a RVE to tension/shear with significant rotation

of the principal strain directions [45]. This test is now widely used to verify that no stress-strain discontinuities are

introduced by complex 3D constitutive damage models for concrete [46, 47, 48, 49, 23, 26, 50]. It consists in a two

stage applied loading: in a first stage, a simple tension loading is applied in direction z ≡ 3, bringing the material to

the onset of softening. In a second stage, the increments of the strain components εzz, εxx and εxz are prescribed in

the fixed proportions 1/ 1.5/ 1. This represents an increment of positive (tensile) strain for both principal directions,

accompanied by a rotation of principal axes.

The model response in terms of stresses is presented in Figure 8(a) and the dissipation evolution D(t) is plotted

in Figure 8(b). This illustrated the abilities to handle complex loading of both the anisotropic delay-active-damage

model and the proposed numerical schemes for the dissipation computation. This also illustrates in non-proportional

loading that the intrinsic dissipation Ḋ remains positive (asD increases).

5. First structural application – 3D dynamics tension test by spalling

The first 3D application example considered is the numerical simulation of a dynamics tensile test by spalling,

corresponding to the experimental test performed by Brara and Klepasczko [53]. This test consists in submitting a

concrete specimen to an incident compression wave created by the impact of a projectile on the measuring bar (Fig.

9).
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Figure 8: Willam test response with the anisotropic damage model.

Figure 9: Principle of a dynamics tensile test by spalling, after [53].

The compression stresses generated by the incident wave are not sufficient to bring the specimen to failure. The

reflection of this wave on the concrete specimen free face generates a tensile wave that breaks it into two parts. In this

experimental apparatus the concrete specimen diameter is 40 mm and its length 120 mm.

5.1. Modeling parameters

The numerical simulation is carried out with CEA Finite Element code Cast3M [54]. This code is based on a

Newmark implicit integration scheme with a correction due to material non-linearities [55]. In order to avoid numeri-

cal problem due to the damage model used, a specific treatment of the numerical control of rupture as in [36].

Only the specimen is mesh and the applied loading consists in prescribing a displacement history on one of the spec-

imen faces (called the impacted face in the following), corresponding to the integration of experimentally measured

velocity of this face. Using displacements for the applied load allows us to prevent convergence issues of the implicit

Newmark integration scheme used.

The mesh of the specimen is made up of 13632 prismatic elements (Fig. 10).

Figure 10: 3D mesh for computation of the dynamics tensile test.
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The concrete behavior is modeled with the modular anisotropic damage model presented in Sections 2, 4.1 and

4.4. The results of four different versions of the modular anisotropic damage model are compared:

• without (INI model versions) and with strain rate effect modeling (by means of delay-damage law, DYN model

versions),

• without and with damage deactivation (by means of active damage concept, INI-dact and DYN-dact model

versions).

The designation of the different versions are summarized in Table 3.

Model Designation

Initial INI

Initial with damage deactivation INI-dact

Dynamics without damage deactivation DYN

Dynamics with damage deactivation DYN-dact

Table 3: Different versions of the anisotropic damage model .

The influence on dissipated energy of the delay-damage – i.e. of strain rate effect – modeling and of micro-cracks

closure by damage deactivation are studied next. The material parameters used for these simulation are the ones given

in Table 2 (Ḋ∞ and b delay-damage parameters are considered only for DYN model versions).

5.2. Comparison between damage and dissipation maps

Damages maps (Fig. 11(a)) and dissipated energy density or dissipation maps (Fig. 11(b)) can be compared. The

most dissipative areas correspond in all cases to the localization and failure zone. For the time independent damage

models (no strain rate effect, INI and INI-dact model versions), the dissipation is localized in one or two rows of

elements (the computation is pathologically mesh dependent). The other examples with DYN and DYN-dact model

versions illustrate the role of delay-damage as a localization limiter. Nice feature, and as discussed in detail in [44],

the computations regularization is obtained in dynamics with the value of the material (delay-damage) parameters

identified for concrete from the real material strain rate effect (in other words it is not an unphysical viscosity put for

regularization purposes).

5.3. Part of energy dissipated by damage

The total energy dissipated by damage or total dissipation D =
∫

Ḋ(t)dV is obtained by spatial integration of the

dissipation density Ḋ over the whole mesh. This energy is compared to the injected energy Einj which corresponds to

the integration over time of the product of the prescribed velocity v by the resulting force F on the impacted face

Einj =

∫ t

0

F(t) v(t) dt (57)

The total injected energy is calculated as E∞
inj
= 3.49 J at the end of the computation. Figure 12 shows for the different

model versions the evolution at different times of the total dissipated energy. The ratio D/Einj (in percent) of the

energy injected that is dissipated by damage is plotted in Figure 13.
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(a) Damage maps (b) Intrinsic dissipation maps

Figure 11: Comparison between the different versions.
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Figure 12: Evolution of total energy dissipated (over the structure).
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Figure 13: Part of the injected energy which is dissipated by damage (ratio D/Einj , in percent).
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The evolutions superimpose perfectly for the different model versions until about 0.06 ms, i.e. until the time at

which the maximum loading compressive stress reaches the free face. After, the effects of the modeling choices are

clearly visible.

• The strain rate effect increases the value of the total energy dissipated by damage (up to almost 1.4 J with

delay-damage DYN model versions, Fig. 12).

• In both INI and DYN cases, without and with delay-damage, i.e. without and with strain rate effect modeling,

the damage deactivation leads to a decrease of the total dissipated energy, which is consistent with the fact that

the tensile strength is smaller in this last case (see Fig. 7(a) and 7(b) and associated comments).

• The part of energy dissipated by damage fluctuates between 8 and 40 % of the injected energy. The later the

failure occurs (the more distant of the free face), the larger the dissipated energy is.

• If one compares the total energy dissipated for the INI-dact model (D = 0.25 J) to the fracture energy per unit

area for concrete Gc, the values are of the same order of magnitude: with Gc = 81 J/m2 after [57] and for

our specimen of cross section S spec, the corresponding (total) fracture energy is S spec × Gc = 0.11 J. Values

which are found, due to dynamics effects, much lower than the 1.4 J obtained with delay-damage DYN model

versions.

In order to validate the results but also to help for the choice of a model, the computed energies dissipated should

be compared to experimental results. Unfortunately, in the tests used here [53] the energy dissipated by the dynamic

tensile tests was not measured. This kind of measure was made in [56] and a dynamic increase factor of 12.5 was

found for the higher loading rate (1685 GPa/s) which gives Gc = 1505 J/m2 in that case. However, in this kind of

indirect measurement of the dynamic fracture energy, the results have to be used with precaution due to the inertia

effects in dynamics that artificially increase the energy measured. That is why in this first numerical approach of the

dissipated energy computed with the anisotropic damage model we only focus on the order of magnitude of the results

obtained and on the the fact that the dissipated energy can be computed even in the complex case of loading induced

anisotropic damage.

6. Second structural application – Quasi-statics and dynamics Brazilian tests

Brazilian test or tensile test by splitting (Fig. 14(a)) consists in applying a compression force on lateral height

of a cylindric concrete specimen (or any material exhibiting tension/compression dissymmetry). This creates in the

middle of the specimen a tensile stress state that leads to the complete rupture of the specimen. To perform such a test

is a classical way to determine the tensile strength of concrete.

In quasi-statics, the compression force is usually applied by a cylindrical plate (Fig. 14(a)), while in dynamics the

loading corresponds to the impact of a projectile dropped off from a certain height (Fig. 14(b)).

6.1. Quasi-statics brazilian test

The mesh, made of 8000 cubic elements, and the boundary conditions are represented in Figure 15. The (x, y, z)

basis of Figure 15 is used for components plotting all along this example. The applied loading consists in a prescribed

vertical displacement (parallel to z-axis) identical for the upper edge points of the specimen. The modular anisotropic

damage model is used still with the material parameters of Table 2.

Figure 16(a) represents the damage map of component Dyy, that is mainly micro-cracks orthogonal to y-direction.

It exhibits strain and damage localization in a major tensile crack along the vertical loading axis as observed exper-

imentally. In Figure 16(b), the isovalues of Dzz – for micro-cracks mainly perpendicular to z-direction –show two

small zones damaged in compression (micro-cracks parallel to the load), at the top right under the loaded edge and at

the bottom along the support x = y = 0.

Figure 17 shows that the most dissipative areas correspond to the small zones damaged in compression (Figure

16(b)) and not to the middle zone (damaged in tension) which leads to the main crack and to failure. This is due to

the fact, as seen in Section 4, that in quasi-statics it requires 25 times more dissipated energy to reach the failure in
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(a) Quasi-statics Brazilian test ,after [51]. (b) Dynamics brazilian test on a drop weight tower.

Figure 14: Experimental set-up for a brazilian test.

Figure 15: 3D mesh for the quasi-static brazilian test simulation

compression than in tension. A small compression damage involves a high value for the dissipation which can be

larger than the total value for the dissipation needs to break the specimen in tension.

In the same Figure, the scale of temperature increase ∆T is reported (from Eq. 49). The maximum temperature

elevation computed only reaches 0.01◦C, which is so small that it can not be experimentally measured for comparison.

6.2. Dynamics brazilian test

As already mentioned, the dynamics brazilian test is performed experimentally on a drop weight tower. The

C.E.A. ”ORION” drop tower enables to drop a 100 kg projectile from a given height h (max 8 m), which worths in the
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(a) Dyy damage map for an imposed displacement of

2.5 mm

(b) Dzz damage map for an imposed displacement of

2.5 mm

Figure 16: Quasi-static Brazilian test

Figure 17: Volumic intrinsic dissipation for a quasi-static brazilian test, cross section

simulation presented in this paper h = 11 cm and corresponds to an impact velocity of 1.47 m/s. The tested specimen

diameter is 16 cm and its length is 22 cm, which is exactly the projectile diameter, made of steel.

The simulation is carried out with C.E.A. explicit Finite Element code Europlexus [58] dedicated to dynamics and

impact applications. This computer code is able to handle the contact between two solids, one can then explicitly

model the impact of the projectile on the specimen. Although in the Newmark explicit scheme used there is no

convergence issues, we also used the numerical control of rupture in the integration of the anisotropic damage model

as in Cast3M.

The projectile is meshed with 900 prismatic elements and its behavior is supposed linear elastic. The material

parameters are the ones of steel, i.e. ρ = 7850 kg/m3, E = 210 GPa and ν =0.3. The 3D mesh of the specimen is made

of 17600 cubic elements (Figure 18). The damage model used for concrete is again the anisotropic delay-damage

model with the material parameters of Table 2. For both the projectile and the tested specimen the elements are fully

integrated (i.e. with 6 Gauss point for prismatic elements and 8 for the cubic ones). One authorizes sliding without

friction between the two solids. The time step is automatically adapted by the code to satisfy at each time step the

Courant condition [52].

As in quasi-statics, the ruin of the specimen is caused by a major traversing tensile crack parallel to the vertical

load direction z. The map of damage Dyy (representing mainly micro-cracks parallel to z-direction) is presented in

Figure 19. While in quasi-statics case the crack initiated from the center of the specimen, it can be seen that here, in

dynamics, the major crack is the result of the coalescence of two cracks initiated from the edges.
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Figure 18: 3D Mesh DYN

(a) t = 0.05 ms (b) t = 0.1 ms (c) t = 0.13 ms (d) t = 0.15 ms

Figure 19: Propagation of damage Dyy

When focusing on the intrinsic dissipation map (Fig. 20), one notices that the most dissipative areas are once again

the one loaded in compression. The maximum value for the energy dissipated by damage is found 4 times larger than

in quasi-statics.

If one compares the experimentally measured displacement of the projectile to the one obtained by computation

(Figure 21), one observes that the maximum (in absolute value) displacement is very well obtained but that the rebound

is experimentally slower that numerically. The energy dissipated in the computation is then of the correct order of

magnitude but it is too low by a factor of 3, feature which can be partly explained by the fact that the anisotropic

damage model used in this paper does not take into account the permanent strains and friction that can occur along

the cracks created. This may be important and represents an important source of energy dissipation. Furthermore in

that simulation the contact between the two solids is considered as a sliding without friction contact, which does not

correspond exactly to reality since the concrete right under the impact is crushed, which involves a non negligible

friction.

Conclusion

This paper presents, from a theoretical and a numerical point of vue, the computation of intrinsic dissipation due

to damage for an anisotropic 3D delay-damage model. Different methods and temporal discretizations are proposed in

order first to verify the analytical expressions established but also to choose the most efficient numerically. Simulations

on a single cubic elements allows to estimate the volumic intrinsic dissipation at failure, which worths 1000 J/m3 in
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Figure 20: Intrinsic dissipation for the dynamic Brazilian test
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Figure 21: Vertical displacement of the projectile: comparison between experiment and simulation.

tension and 25000 J/m3 in compression in quasi-static. The role of strain rate effect introduced through the delay-

damage law on the dissipation due to damage is very important from a strain rate of 100.s−1 since the dissipation at

failure is multiplied by 71 in that case. Comparison with experimental results, which has not be done yet, is crucial in

that case. This should bring the future work towards a better identification of the delay-damage law, and in particular,

the post-peak response in dynamics. Indeed, no experiments enable to identify directly the post-peak part of the

stress-strain response in dynamics, intrinsic dissipation would be an interesting alternative for identification.

We have also numerically checked that the model described here leads to a positive dissipation in the case of a non-

proportional loading ( the case proposed by Willam et al). Simulations on 3D structures, in quasi-statics and dynamics,

enable to check, once again, that dissipation remain positive at every Gauss points of the structure. Intrinsic dissipation

maps can be drawn in order to see the most dissipative areas. We can also estimate the total energy dissipated and

compare it to the injected energy.

The comparison with experimental results for a dynamic Brazilian test shows that the total energy dissipated is

too weak, which can be explained by the fact that no permanent strain are modeled and that the contact conditions are

non-realistic.
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Appendix – Calculation of (tensorial) thermodynamics force Y

The associated variable with damage Y is a second order tensor in present framework for anisotropic damage. It is derived from the free

enthalpy,

Y = ρ
∂ψ⋆

∂D
=

1 + ν

E
(σDHσD) :

∂H

∂D
+
η(1 − 2ν)

18E

〈trσ〉2+

(1 − ηDH)2
111

as
∂DH
∂D
= 1

3
111 and where ∂H

∂D
can be calculated as follows.

First from the definition for H,

H2 = (111 − D)−1 → H Ḣ + Ḣ H =
d

dt
[(111 − D)−1]

H Ḣ + Ḣ H = [H⊗111 + 111⊗H] : Ḣ

where tensorial product ⊗ for symmetric tensors a, b, means

(a⊗ b)i jkl =
1

2

(

aikb jl + ailb jk

)

(111 − D) (111 − D)−1 = 111 → −Ḋ (111 − D)−1 + (111 − D)
d

dt
[(111 − D)−1] = 0

or
d

dt
[(111 − D)−1] = H2 Ḋ H2
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One has AAA : Ḣ = [H2 ⊗H2] : Ḋ, rewritten Ai jklḢkl = H2
ip

ḊpqH2
q j

, with fourth order tensor AAA defined as

AAA = [H⊗111 + 111⊗H]

or Ai jkl =
1
2 (Hikδ jl + H jlδik + Hilδ jk + H jkδil). Finally

∂H

∂D
= AAA−1 : [H2 ⊗H2]

so that Yi j =
1+ν
E
σD

kp
Hpqσ

D
ql

A−1
klmn

H2
mi

H2
jn
+

η(1−2ν)
18E

〈trσ〉2+
(1−ηDH )2 δi j.

24


