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Abstract. We define a class of patterns generalizing the jumping emerg-
ing patterns which have been used successfully for classification problems
but which are often absent in complex or sparse databases and which are
often very specific. In supervised learning, the objects in a database are
classified a priori into one class called positive — a target class — and the
remaining classes, called negative. Each pattern, or set of attributes, has
support in the positive class and in the negative class, and the ratio of
these is the emergence of that pattern; the stimulating patterns are those
patterns a, such that for many closed patterns b, adding the attributes
of a to b reduces the support in the negative class much more than in
the positive class. We present methods for comparing and attributing
stimulation of closed patterns. We discuss the complexity of enumerat-
ing stimulating patterns. We discuss in particular the discovery of highly
stimulating patterns and the discovery of patterns which capture con-
trasts. We extract these two types of stimulating patterns from UCI
machine learning databases.

1 Introduction

We introduce stimulation, a new measure of interest in the classification of ob-
jects by their attributes. We suppose here that a dataset is a finite list of de-
scriptions of objects, where the description of each object corresponds to a list
of its binary attributes. A pattern denominates a set of binary attributes. The
extent of a pattern is the set of objects whose descriptions contain each attribute
in the pattern. The objects are classified and we aim to predict the classifica-
tion of a new object from its description. The support of a pattern in a class
is the cardinality of the extent of the pattern, restricted to the objects in that
class. The classification of a pattern is a function of its supports in the classes
of the classification. The stimulation of a pattern captures its influence on the
classification of other patterns.

When we consider whether a pattern favors a certain class, we refer to that
class as the positive class, and to the union of the remaining classes as negative.
If a pattern stimulates the classification of other patterns to be more positive,



by removing more (or relatively more) negative objects than positive objects
from the extent of other patterns, then this is a strong correlation between the
pattern and the positive class. Such a pattern stimulates a positive classification
not only alone, but when mixed with any other pattern, and we observe this
by considering the stimulation of a pattern on all other patterns. In addition
to patterns with a constant influence, patterns that have a variable influence
on the classification of other patterns are interesting too: they are useful for
adding a new dimension to an existing model. Our work found inspiration in
[14], which mines a dataset to find an attribute with very variable influence on a
set of mutually exclusive patterns pg ...p,, with the intention of explaining the
difference between these patterns.

The relationship between a pattern and the classification is an interesting
quantitative problem. Information gain measures the amount of information in
the class which is explained by a pattern, [4]. If the class and an attribute are
both continuous, the Gini index measures correlation between them, |8} Chapter
9]. When we focus on a positive class, the simple odds of a positive classification,
given a pattern, are called the emergence of that pattern [1]. Patterns with high
emergence are called emerging patterns (or EPs), they have found wide appli-
cation since their introduction in the data-mining community [2|. Mining EPs
produces a flood of rules, among which may be found some rules which are valu-
able for constructing a classification model or for explaining the classification in
a human-readable way. EPs yielded successful characterizations of biochemical
properties and medical data in [11]1]. EPs are used in top-performing classi-
fiers [3]10[18] and in commercial algorithms to find rules to explain separations
between groups [21]. Creating a dataset of chemical graphs and subgraphs is in it-
self an interesting problem; once the dataset is constructed, extracting emerging
patterns produces rules of interest to chemists [16]. We choose to use emergence
to measure the relationship between a pattern and the classification because the
notion is simple and powerful, and it maintains continuity with [14].

The influence of one pattern on another has been considered theoretically
in statistics. Conditional probability is able to analyze the correlation between
a pattern with the classification. Naive bayesian classification then makes the
assumption that the influence of each attribute on the pattern is independent of
which patterns have gone before. When we restrict our attention to the extent
of a pattern g, the correlation of the classification with a pattern p containing ¢
is called the odds ratio between p and q. It expresses the influence of the larger
pattern p on the classification of the subpattern ¢q. Mining the influence of a single
attribute on a set of patterns, or visa versa, has been carried out efficiently with
contrast sets [14]. Contrast sets are similar to EPs and are mined so as to explain
the difference between two classifications, They can detect a threshold or a fault.
They are useful for refining a model of the classification of other patterns.

Mining the influence of all patterns on all attributes is inefficient in general;
techniques to reduce the EPs to a readable and meaningful set of patterns make
it efficient to study the influence of each EP on the rest [18|. In this text, we
organize pairs of patterns into groups which have been stimulated in the same



way, so that for each pair in a group, it becomes clear which parts of the patterns
are respounsible for their classification. In one experiment, we extract groups with
high and uniform stimulation. These patterns can explain why an object has
positive classification, for if EPs cover some of the attributes of an object, then
only the remaining attributes would oppose a positive classification. As predicted
in [12], these groups conservatively extend the EPs. In another experiment, we
extract groups with highly varying stimulation. These patterns are useful for
extending a classification model.

This paper is organized as follows. Section [2] outlines background concepts.
We define stimulation in section[3] We present an algorithm to extract the stim-
ulation measure and describe experiments in which this measure is of interest in
section[4]

2 Preliminaries

2.1 Notions of Formal Concept Analysis [6/5]

We use standard notions from Formal Concept Analysis (FCA): a formal context
denominates the triple (M, G, I) where the binary attributes M and objects G are
related by the dataset I C G x M. In FCA concepts are the inclusion-maximal
sets a C I of the form a = Ax B,A CG,B C M. A set of attributes is named
a pattern. The extent of an attribute m € M is {g € G : (9, m) € I}. The extent
of a pattern p, denoted ext(p), is the intersection of the extents of its attributes.
Likewise, the intent of an object g is the set of attributes m such that (g, m) € I,
and the intent of a set A C G of objects, denoted int(A) is the intersection of
the intents of its objects. For any two patterns a,b we write a < b and say a is
more specific than b just in case ext(a) C ext(b).

The function taking a pattern a to the intent of its extent, denoted @, is a
closure function on patterns: for any two patterns a,b, @ C b holds whenever
a C b and @ = a. The set @ is called closed. An elegant alternate notation [6] is
to write 2’ for both int(z) and ext(z) and «” for T. We denote by 0 the concept
that satisfies int(0) = M ; similarly, we denote by 1 the concept that satisfies
ext(1l) = G. For any two patterns a and b, a V b is a least upper bound — the
least (most specific) closed pattern ¢ such that a < ¢ and b < ¢. Likewise, a A b
is a greatest lower bound — the greatest (least specific) closed pattern ¢ below a
and b. Because ext(a A b) = ext(a) Next(b) and int(a V b) = int(a) N int(d), the
upper and lower bounds are unique, so the set of closed patterns inherits the
structure of a lattice from the Boolean algebra of subsets of G (or of M) with Vv
and A defined as above.

The lattice structure on the set of closed patterns can be recovered from a
single function, the upper covers. Defined on any lattice £, the upper covers is
the function from a € L to the set of its immediate successors (those b € £ such
that @ < b and there is no ¢ such that a < ¢ < b ). We represent a lattice £ by
storing only its domain, also denoted L, the extent and intent and upper covers
functions.
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Fig. 1. The attributes used to describe the molecules in table [I] are the presence or
absence of these subgraphs, each of which has 5 elements

Table 1. Polychlorinated byphenyl molecules. The first column is the molecule’s de-
scriptive name. The next four columns indicate the presence of attributes 0, 1, 2, 3, i.e.,
the existence of an isomorphic copy of the corresponding subgraph from figure[I] The
final column indicates which two molecules are most toxic.

The molecule’s name attributes: toxicity
att. Olatt. 1|att. 2|att. 3
3,3’,4,4’-TetraCB 1 0 0 0

3,4,4’,5-TetraCB
3,344’ 5-PentaCB
3,3°.4,4’.5,5-HexaCB
2,3,3’,4,4’-PentaCB
2,3,4,4’ 5-PentaCB

1
1 most toxic
0
1
1
2,3’.4,4’ 5-PentaCB 1
1
1
0
0
0

most toxic

2’.3,4,4’,5-PentaCB
2,3,3°,4,4’,5-HexaCB
2,3,3’,4,4’,5-HexaCB
2,3°,4,4’,5,5-HexaCB
2,3,3’,4,4’,5,5-HeptaCB

o s s e
QOO O R OROOO -
= e e e e = O OO

Illustration. Figure[llshows four chemical graphs which we use as attributes. If
a molecule contains an isomorphic copy of one of these as an induced subgraph,
then we say that it contains that subgraph as an attribute. The figure lists all
graphs with 5 atoms which are present in at least two polychlorinated biphenyls
and not present in at least two polychlorinated biphenyl molecules (PCBs).
Table [1] displays (PCBs) and their subgraph attributes. These twelve PCBs are
of special concern and are regulated in international law for their toxicity. Two
of them are orders of magnitude more toxic than the others. Figure [2] displays
the lattice of concepts for this dataset, showing the intent of the concept as a
set in each circle. The edges in the diagram represent the upper covers.

2.2 Definition of Emergence[2]

Given a classification of the objects G into positive and negative classes Gy
and G1, the emergence of a pattern a compares the frequencies of a, where the
frequency of a pattern a within a class C' indicates the portion of the objects of
C that are in relation with a. If C' # (), define frequency(a,C) = Hg€ext(a):geCh|

{geCH
The emergence of a pattern is the defined as:
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Fig. 2. The lattice of concepts of table [1] showing each concept’s intent (as a set),
emergence (definition[TI) as a numerical value under the intent, and the stimulation set
(definition[4) as a multiset [32,...] to the side

Definition 1 (Emergence|2]). Given positive class Gy and negative class Gy,
for any pattern a C M, the emergence of a is

frequency(a, Go)

— emergence(a) = Frequency(a, G1) if frequency(a,G1) # 0

— emergence(a) = oo if frequency(a, G1) = 0 and frequency(a, Gg) # 0
— emergence(a) is not defined if frequency (a, G1) = 0 and frequency (a, Go) =0

If the role of the class Gy and its complement G; were reversed in the above
definition, the emergence of any pattern would become its inverse. We could
specify the emergence defined above to be the emergence into Gg, relative to
G1, denoted emergenceg, ¢,)(a). But for the sake of simplicity, we denote
emergenceq, ¢,)(a) as emergence(a), supposing that we have already directed
our attention towards Gy as the positive class.

If the emergence of a is oo, then « is called a jumping emerging pattern (JEP);
if the emergence of a is 0, then we call @ an anti-JEP. We will be careful to never
refer to the emergence of a pattern with empty extent, so that our definition of
emergence differs in no way from that of (|2], p.45).

Tllustration. Figure [2] displays the closed patterns @, {0}, {1}, {0,1}, {1, 3},
{0,1,2},{0,1, 3}, {0,1,2,3}. The frequency of each of these patterns among the

most toxic molecules can be observed from table [ to be, respectively, 2 % ;, %,
29, 0, 0 0, 0. The frequency of each of these patterns among the rest is: 10, 10
8 3 5

0 1—0, 167 16° 107 1—0 The emergence of each pattern is the ratio of its frequency
among the most-toxic molecules to its frequency among the rest. Figure[2]lshows
the emergence of each pattern in the circle, under pattern (the intent of the

concept).



3 Stimulation of a Pattern

3.1 Definition of Stimulation

We define the stimulation of a pattern a on b to be the ratio of the emergence
of a A b to the emergence of b.

Definition 2 (Stimulation). Let (a,b) be an ordered pair of patterns. If anb #
0, the stimulation of a on b, denoted stimulation(a,b), is defined to be:

emergence(aAb)
emergence(b)

(a,0)

stimulation(a, b) = oo if emergence(a A b) = 0o and emergence(b) < oo,

— stimulation(a, b) = 0 if emergence(a A b) = 0 and 0 < emergence(b),

— stimulation(a, b) = 1 if emergence(a A b) = emergence(b) = 0 or emergence
(a A 'b) = emergence(b) = cc.

— stimulation(a, if 0 < emergence(a A b) < oo,

Since ext(a A b) C ext(b), the condition a A b # 0 implies b # 0. Consequently,
when a A b # 0, both emergence(a A b) and emergence(b) are defined. In par-
ticular, if b is a JEP (resp. an anti-JEP) then (a A b) is a JEP (resp. an anti-
JEP). If stimulation(a,b) is a finite fraction and we switch Gy and G, then
stimulation(a, b) becomes its own inverse.

Tlustration. In figure[2]the pattern {0,1} appears, so it is a closed pattern and
it is the intent of a concept. It has frequency % among the most toxic molecules
and frequency % among the rest. Its emergence is, then, % / 1—60. Its upper cover
{0} has frequency % among the most toxic molecules and frequency % among
the rest. Its emergence is 3/:5. The fact that ext({0}) \ ext({0,1}) contains a
single molecule — the molecule which does not have attribute 1 — is reflected in

stimulation({1},{0}) = % — %,

Factorization of stimulation. Stimulation allows us to factor “the odds of a and
b” into “the odds of a” and “the stimulation of b on a”; likewise, we can factor
the “stimulation of ag and a7 on b” into “the stimulation of ag on b’ and “the
stimulation of a; on (ap A b).” Stimulation thus transforms the interaction of
patterns into multiplication:

Proposition 3. stimulation(a,b) x stimulation(c, a A b) = stimulation(a A ¢, b)

Proof. The emergence of a Ab is the numerator in the first multiplicand and the
demoninator in second multiplicand. O

As a corollary: if a stimulates b to a degree > 1 and ¢ stimulates a Ab to a degree
> 1, then a A ¢ stimulates b to a degree > 1.

3.2 Stimulation Set

Reducing the domain of stimulation. Since the emergence of a pattern is de-
fined from its extent, the emergence of a set of attributes is the same as the



Fig. 3. a is not responsible for the change of emergence between b and a A b

emergence of its closure. Let a and b be patterns. As ext(a) = ext(a) and
ext(b) = ext(b), we have ext(a A b) = ext(a A b). Furthermore, by definition,
we have ext(a Ab) = ext(a A b). It results @Ab = a A b. In our case, this equality
implies that stimulation(a, b) is defined if stimulation(@, b) is defined. Moreover, if
stimulation(a, b) is defined, we have stimulation(a, b) = stimulation(a,b). Conse-
quently, the domain of the second argument of stimulation is naturally narrowed
to closed patterns, and to the concepts which have these closed patterns as in-
tents. The domain of the first argument could be left as patterns, but we choose
to restrict it as well to closed patterns, or their concepts.

The responsibility of a stimulation. We classify pairs of concepts {(b,¢) : b > ¢}
so that (b,¢) and (f, g) are in the same group if there exists any concept e such
that bAe = cand f A e = g. In this case, we say that e might be responsible
for the difference between b and c. So, while stimulation captures a change in
emergence, we want stimulation sets to classify stimulation(a,b) by the proper
argument a which is really responsible for the stimulation from b to ¢ = bAa. The
change in emergence from pattern b to pattern bAa can be attributed to different
patterns, and not only to a itself. Suppose there exists d € £ such that: d < a
and ext(d A b) = ext(a A b) (see Figure[3). Consequently d A b # 0 is equivalent
to a A b # 0, stimulation(d, b) is defined if stimulation(a, b) is defined. Moreover,
when stimulation(a, b) is defined we have stimulation(d, b) = stimulation(a, b).

We decide to attribute stimulation(a, b) to a if a is the smallest pattern d such
that ext(d A b) = ext(a A b). If there exists some d < a such that ext(d A b) =
ext(aAb), then we consider that the stimulation should be attributed to d rather
than to a. We write [f(a) : @ € U] for a multiset of values.

Definition 4 (Stimulation set). Let a € L. The stimulation set of a, denoted
SS(a), is the multi-set which is a subset of [stimulation(a,b) : a Ab # 0] for
which stimulation(a, b) belongs to SS(a) just in case :

i) a £ b and

it) there is no d € L such that d > a and dANb=a Nb.

If b < a, we suppress stimulation(a, b) when printing SS(a), as in figure[2]



Tllustration. The stimulation sets shown in figure[2]are in brackets to the left and
right of the concepts in the lattice. Let us see why SS({0,1}) is empty. By the
first condition of definition[4] each pattern stimulates only concepts on the other
side of the diagram. Further, {0,1} can only stimulate concepts which are not
related to it by <. This leaves only {1,3}. But taking a = {0,1} and b = {1, 3},
let d = {0}. stimulation({0,1},{1,3}) = stimulation({0, 1}, {1, 3}), so by the
second condition in definition [4] {0,1} is not responsible for this stimulation
value. The edges and paths in figure 2| which can be attributed to changes off
the path itself are partitioned into SS(a). The following lemma shows that it is
always the case that {(a,b) : a < b} is almost-partitioned into the stimulation
sets. An edge will be present in two stimulation sets SS(a), SS(b) if both a and
b are minimal explanations responsible for that edge.

Lemma 5. For each b,c € L such that b < c, there is at least one a € L such
emergence(c)

Proof: bAc = ¢, s0 {a € L: aAb= c} is not empty. This set has at least

one minimal element a’. For each such minimal o', SS(a’) contains the desired

fraction. (]

Now we use the stimulation values to characterize which concepts consistently
stimulate other concepts. Let MS(a) be the minimal stimulation of a, i.e., the
minimal value in SS(a). We can bound MS(a A b) by M S(a) and MS(b):

Proposition 6. There is an injection from SS(a Ab) into SS(a) x SS(b) such
that when stimulation(a A b, ¢) — (rg,71), stimulation(a A b, ¢) > rg X r1.

Proof. If pog C p1 C po are closed patterns, and ext(a) N ext(pg) = ext(p1) and
ext(b) Next(p1) = ext(p2), then ext(b) Next(a) Next(py) = ext(pz). If a is not a
pattern of minimal intent such that ext(a) Next(py) = ext(p1), say, d C a and
ext(d) Next(pg) = ext(p1), then (ext(b) Next(d)) Next(pg) = ext(pz), so that
ext(b) Next(a) is not the minimal ¢ such that cNext(pg) = ext(pz). Likewise, if
b is not the pattern of minimal intent such that ext(b) Next(p;) = ext(p2), then
ext(b) Next(a) is not the minimal ¢ such that ¢ N ext(po) = ext(p2). O

Application of the lemma and proposition. Definition 4 prunes some emergence
ratios from the notion of stimulation. Lemma 5 shows that the pruning is
conservative, preserving the emergence ratios for any interval in the lattice.
Proposition 6 shows that if the minimal value in SS(a) is MS(a) and the
minimal value in SS(b) is MS(b), then the minimal value in SS(a U b) is
MS(aUb) > MS(a) x MS(b). Thus the set of patterns with uniform, high
stimulation is join-closed. We can then consider only the boundary of this set,
when searching for highly stimulating patterns.

In this section, we have defined a new measure of interaction for any ordered
pair of patterns which captures how emergence changes under additional infor-
mation or in a restricted situation. We have introduced the notion of the set
of stimulation values for which a pattern a is responsible. In the next section,



Algorithm 1. Enumerate SS(a) of all closed sets of objects a

Input: A Galois lattice £ with extent, upper covers; a classification of the
objects G = Gy U G into positive class G; and negative class Gy
Output: {SS(a) :a € L}
Let T order £ from the concept with the largest extent to the concept
with the least extent, so that a <7 b holds just in case the support of a in
Go U Gy is > the support of b in Gy U G.
Let L order £ (arbitrarily).
foreach b € L do
compute the support of ext(b) in both Gy and Gj.
foreach a € T do
if a = b then
write a < b.
compute the support of ext(b) Next(a) in both Gy and Gj.
if for each upper cover a’ of a:
b>d fails (else, save b > a) and
ext(b) Next(a’) = ext(b) Next(a) fails then
add stimulation(a, b), as a 4-tuple of supports, to SS(a).

we address the problem of calculating the stimulation sets, and we describe
experiments extracting stimulation sets which mostly contain large values and
stimulation sets which contain as widely varying a set of values as possible.

4 Computing Stimulation

4.1 Calculation of the Stimulation Sets

A naive search through the lattice finds all pairs b > ¢, and assigns the ratio of
their emergence to some other pattern a, thus computing a matrix of stimulations
for a,b € L. See algorithm[I]for the pseudocode. For some uses of this stimulation
matrix, it may be possible to achieve that use without the naive time-complexity
factor |L|%.

Sound and complete. This algorithm computes SS(a) as in definition [4] The
first condition, that a £ b, is enforced by storing f(a) = {b : a < b}, which
can be computed from the set of f(a’) for which a’ is an upper cover of a, since
a < b holds just in case a = b or for some upper cover a’ of a we have a < a’
and a’ < y. The second condition is enforced by comparing the support of a A b
with the support of a’ A b for each upper cover a’ of a. If for no upper cover
a’ > a do we have a’ Ab = a Ab, then for no d > a do we have d Ab = a A b,
because the function a — ext(a) is monotonic, taking < to C, so the function
a — ext(a) Next(b) is monotonic, too. Thus, this algorithm searches all triples
(a,b,a A b) and assigns the value stimulation(a,b) to SS(a) just in case the two
conditions in definition [4] hold.



Table 2. For the PCB dataset in table[l] these concepts were consistently stimulating
(or anti-stimulating) and had no upper cover with the same stimulation

Intent stimulation at 10*® or 90*" percentile stimulation set
{1} stimulates > 1.1 SS{1} =[7/6]
{1,3} is anti-JEP SS({1,3}) = [0,0, ﬁ]
{0} stimulates < 1/1.2 S$5{0} = [3/4, 5]
{0,1,2} is anti-JEP 5S({0,1,2}) = [0,0, 1]

Complezity. The runtime of the algorithm as given is dominated by its obviously
nested loops, and is bounded by |£|* x sup, |upper cover(a)| x sup, ; |ext(a) N
ext(b)|, where sup,, | f(a)| = sup{f(a) : @ € L} denotes the maximum cardinality
of f(a) as a varies over L.

Lower complezity. Let L be a traversal of £, ascending from the concept with
minimal extent and stepping always from a closed pattern by to a new pattern b
such that ext(b)\ext(bo) is minimal; then we can check whether ext(b)Next(a’) #
ext(b) Next(a) by examining only elements of ext(b) \ ext(by), which reduces the
last factor in the runtime to sup{|(ext(b) \ ext(bo)) Next(a)| : b is an upper cover
of bg and a, b,by € L}.

4.2 Experiment

We implemented the algorithm introduced in the previous subsection. From the
archive of datasets stored at UCI (www.ics.uci.edu/~mlearn/)), we extracted
concept lattices using the Galicia suite of programs [20]; we subsequently ex-
tracted {SS(a) : a € L}. We found that whenever Galicia could extract a con-
cept lattice without overflowing memory, we were able to extract the stimulation:
during our experience, the factor of |[£]? in the runtime is not an order of mag-
nitude more prohibitive to computation than the decision to operate with a
concept lattice.

Our goal was to discover 1. highly stimulating sets that are not JEPs, and
2. to discover non-homogeneity. Drawbacks to a purely JEP-based classification
are discussed in [13]. For any dataset in which every rule ext(p) C G; has ex-
ceptions, there are no JEPs. For many datasets, there are a flood of JEPs. In
some fuzzy datasets such as census and satellite images (according to a study of
their second-order properties in [14]), emerging patterns fail to extract certain
important properties, and logically more flexible rules are desirable. However,
we chose to extract stimulating sets first in contexts where JEPs classify well, so
as to evaluate the “border” of new information which they add to the emerging
patterns.

If we discover the highly stimulating patterns in the PCB example, we get
the list in table[2] The value of stimulation(a,b) is co/oco when b is a JEP; the
stimulation is 0/0 when b is an anti-JEP. These values are reported as 1 in the
table above, but do not count against the designation of a pattern as highly
stimulating. Thus pattern {2} has SS({2}) = [0,0,1,1] and is called an anti-
JEP even though 1 occurs with frequency > 10% because these values are not



Table 3. For the dataset shuttle-landing-control, these are the patterns with greatest
extent which stimulated almost all other concepts, and which had no upper cover with
(roughly) the same average stimulation

Intent stimulation at 10** or 90*" percentile stimulation set
>3  {VISIBILITY:yes} [17122.353239.311220209 . . . 00707
< 1/00 {VISIBILITY:no} (06351699
> o0 {STABILITY:xstab,VISIBILITY:yes} 00?22
>2  {SIGN:pp,VISIBILITY :yes} [0°199.3210%12615%221 .. oc“]
> o0 {MAGNITUDE:OutOfRange, VISIBILITY :yes} [oc 4]
> oo {ERROR:XL,VISIBILITY:yes} 0o 139]
> oo {VISIBILITY:yes, ERROR:LX} 00139]
> 1.5 {SIGN:pp,VISIBILITY:yes,WIND:tail} [031337.3148350254163 0]
> 1.5 {VISIBILITY:yes, ERROR:MM} [091355460°881992240% 00"
> 1.5 {MAGNITUDE:Strong, VISIBILITY :yes} [01011391665264°37814561 . .. 00103
>1.1 {MAGNITUDE:Low,VISIBILITY:yes} (01311660 ... 00%]
> 1.1 {MAGNITUDE:Medium, VISIBILITY :yes} [0131166°70194.5 . .. 00%]
> 1.2 {VISIBILITY:yes, WIND:tail, ERROR:MM} [031982210124022471358. 31 32]
> o0 {VISIBILITY:yes,SIGN:nn, ERROR:MM} (130012
> 1.5 {MAGNITUDE:Low,VISIBILITY:yes, WIND:tail} [01189126422731105611075! 0034]
> 1.1 {MAGNITUDE:Strong,SIGN:pp,VISIBILITY yes} [0°1891264230411056'1148" 00?]

]

> 1.5 {MAGNITUDE:Medium, VISIBILITY :yes, WIND:tail}  [04189'26422731105611075 004

counted against 2 in determining that it is infinitely stimulating. Ignoring the
third line, we find the obvious classification that a PCB congener which is in the
list of 12 toxins of concern for international control is highly toxic if: it contains
attribute 1 but not attribute 2 or 3.

To test the algorithm in a “contrary” domain, we chose shuttle-landing-control
from the UCI Machine Learning datasets. This dataset is presented as a set of
15 JEPS. The dataset is a rule base, where each rule has one of two forms:
ext(a) C Go, which indicates that if pattern a obtains, then Gg: the shuttle
should be landed by a human; or or ext(a) C G, meaning that if a obtains,
then the shuttle should be landed by autopilot. We expected to recover these 15
rules as highly stimulating rules as stimulating patterns. In addition, we found
7 other rules and 16 highly stimulating patterns. Table [3] displays the first 17
of these patterns, those with the smallest intent and largest extent, ranked by
increasing intent and decreasing extent. The resulting 38 patterns are of interest
in guiding the classification problem, as they are not numerous, and the new
patterns behave as “fuzzy” JEPs.

Non-homogeneity. Even in the small dataset of shuttle-landing-control, with four
multivariate attributes, one can find pairs of attributes (a, b) such that the matrix
{stimulation(a;, b;) : i < n4,j < np} exhibits contrast behavior (it is “twisted”).
In table[4] the values in each column are comparable, whereas the values in the
last column are very different. Whether STABILITY:stab or STABILITY:xstabis
more highly correlated with the positive classification also varies across columns.
Thus, in order to explain the effect of the attribute STABILITY on the classifica-
tion, one must discuss the attribute ERROR.

The runtime grows exponentially with even a trivial increase in the number
of objects and attributes, a typical feature of operations on lattices. Runtimes



Table 4. Two attributes from the dataset shuttle-landing-control, and their matrix of
emergences. If a is the attribute labeling the row and b is the attribute labeling the
column, then the first two rows of the table list the supports of {a,b} in positive and
negative classes, and the final two lines evaluate the emergence of the pattern {a,b}.

ERROR: XL ERROR:LX ERROR :MM ERROR: SS
STABILITY:stab (2025 /2279 ) (12025 /2120 ) ( 2025 / 848 ) ( 4293 / 901 )
STABILITY:xstab (640 /640) (640/640) (512/320) (1280/0)

STABILITY:stab 0.9 1 2.4 5
STABILITY:xstab 1 1 1.6 00

were calculated on a Dell Latitude D610: Pentium M, 800MHz, 1GB RAM. The
example of 12 PCBs had 4 binary attributes, 12 objects, 8 concepts, 4 highly-
stimulating concepts, and the highly stimulating concepts were extracted in < 1
second, producing a matrix {SS(a) : a € L} with size 458b. The example of
shuttle-landing-control had 16 binary attributes, 253 objects, 2040 concepts, of
which 38 were extracted as highly-stimulating concepts; the highly stimulating
concepts were extracted in 211 seconds, producing a matrix {SS(a) : a € L}
with size 1.98 Mb.

In conclusion, by testing the implemented algorithm on some small databases,
we were able to discover homogeneously and highly stimulating patterns, which
were a useful generalization of the jumping emerging patterns and yet were not
too numerous. On the other hand, we were able to discover non-homogeneous
interaction between attributes. The notion of stimulation captures some notions
already studied in the literature. We generalize this notion to the interaction
between any pair of patterns; the implementation allows for the extraction of
patterns with either contrast-discriminative capacity or high, homogeneous stim-
ulation, which should prove to be as useful as the contrast-discriminative pairs
of attributes and as measures of confidence in further applications.

5 Further Work and Conclusion

There are interesting theoretical directions for further work, as well. We can
discuss the stimulation of patterns on other patterns with respect to any concept-
evaluating or pattern-evaluating measure, not only emergence. A second direc-
tion for further theoretical expansion is to consider how a single variable affects
a pattern. If the variable a has attribute a; and a; is in the intent of a pattern
¢, then to evaluate the degree to which a; influences ¢, we must consider an
attribute ¢’ as close to ¢ as possible, and yet in which a; is replaced by another
value aj,j # i of the variable a. ¢ will be d U {a;} for some d > ¢ for which
a; & d. In this way, we can answer the question of how the attribute a; in the
intent of a pattern influences the pattern’s emergence.

We hope to apply the stimulating patterns practically as well. First, we will
study precisely the scalability of the algorithm to larger datasets. We will apply
stimulating patterns to datasets where “factor interplay” is high, and the effect



of any one attribute depends on other attributes. We plan experiments on larger
databases. We will explore applications to the presentation and compression of
emerging patterns, to classification, and to supervision of rule-finding algorithms.

In this article we have introduced the notion of stimulating patterns in the
context of formal concept analysis. Using the lattice-theoretic framework, we
have generalized some notions which are known to be valuable in data mining
to a new notion, the stimulation of a pattern. This notion has some attractive
theoretical properties. We have implemented an algorithm to compute stimula-
tion throughout a dataset, and we have extracted from the stimulation matrix
two types of information which are already of known interest in the data-mining
community.

Acknowledgement. we thank the regional council of Basse-Normandie for finan-
cial support (“programme emergence”).
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