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Abstract— It is well known that modeling with constraints
networks require a fair expertise. Thus tools able to automatically
generate such networks have gained a major interest. The major
contribution of this paper is to set a new framework based
on Inductive Logic Programming able to build a constraint
model from solutions and non-solutions of related problems.
The model is expressed in a middle-level modeling language.
On this particular relational learning problem, traditional top-
down search methods fall into blind search and bottom-up search
methods produce too expensive coverage tests. Recent works
in Inductive Logic Programming about phase transition and
crossing plateau shows that no general solution can face all
these difficulties. In this context, we have designed an algorithm
combining the major qualities of these two types of search
techniques. We present experimental results on some benchmarks
ranging from puzzles to scheduling problems.

I. INTRODUCTION

Constraint Programming (CP) is a very successful for-

malism to model and solve a wide range of decision prob-

lems, from arithmetic puzzles to timetabling and industrial

scheduling problems. However, it has been recognized by the

community [1] that modeling in CP requires expert knowledge

to be achieved successfully. A major problem encountered by

novice users is that they have a very limited knowledge on

how to choose the variables, how to find the constraints and

how to improve their model in order to make it efficient. In

this process, the activity of finding the constraints to be stated

is a crucial part and a lot of work has been spent on the

understanding [2] and automation [3] of modeling tasks.

The problem we address in this paper is the automatic

acquisition of a constraint model from examples and counter-

examples of related problems. To our best knowledge, learning

a constraint network has only been addressed by the system

CONACQ in [4] and subsequent papers [3], [5] with a version-

space algorithm. However, while efficient, a major limitation

of this approach is that the user has to provide the exact

set of variables as well as solutions and non-solutions for

her very problem. It is questionable that the user still wants

to build a model after having found some of its solutions.

In contrast, and from a cognitive point of view, it is more

likely that the user wants to model a new problem, having

on the shelf a set of examples and counter-examples only for

some related problems. To illustrate them, we can consider

that the user wants to model school timetabling problem,

only having solutions and non-solutions generated by hand

to some historical instances from the past few years. These

problems are almost the same but the number of teachers,

groups, rooms may be different. Despite the generalization

to an active learning framework [5], it is still required with

CONACQ to provide judgements on potential solutions of the

actual problem.

Some modeling languages like OPL [6], Essence’ [7] or

MiniZinc [8] provide an actual framework for modeling

constraint problems at middle-level of abstraction. The user

provides rules and parameters which are combined in a

rewriting process to generate a Constraint Satisfaction Problem

(CSP) adapted to the very problem to solve. Learning such a

specification from already solved problems (historical data)

would provide a model that could be reused in a new context

with different parameters. For example, after the generation

of the school timetabling problem, the model can be fed with

current parameter data like the number of classes, the number

of teachers, new available classrooms, etc.

In this paper, we present a way of acquiring such a con-

straint specification using Inductive Logic Programming (ILP).

The examples and counter-examples for the concept to be

learned are defined as interpretations in a logic language we

call the description language and the output CSP is expressed

by constraints in a constraint language. The specification is

expressed by first-order rules which associate to a set of

predicates in the description language (body of a rule) a set of

constraints of the constraint language (head of a rule). We do

not use directly a modeling language like Essence or Zinc to

stay closer to a rule system but the rules we learn are at the

same level of abstraction as the ones of intermediate modeling

languages like Essence’, Minizinc or OPL. In particular, they

allow the use of arithmetics and parameters and they can be

rewritten to generate constraint problems of different size. It

happens that finding such rules is a genuine challenge for ILP

techniques since the discovery process falls almost every time

into ILP pathological cases of blind plateau search at phase

transition [9].

The contributions of this paper are first setting the frame-

work of learning CSP specifications, then the choice of the

rule language and its rewriting into a CSP and the learning

algorithm which allows to guide search when traditional

methods fail. The learning algorithm is a slightly improved

version of the one presented in [19].

The paper is organized as follows. We first give an informal

overview of the framework (section II), introduce the rule

language (section III), then we present the learning framework

and give keys to understand and to implement our algorithm

and describe how rules can be rewritten in a CSP. We present

the results of different experimentations on classical constraint

problems like timetabling, job-shop scheduling and the clas-



Fig. 1. Constraint Problem Learning workflow

Fig. 2. (g1) wrong coloration, (g2) good coloration, (g3) to be colored

sical n-queens.

II. GENERAL PRESENTATION OF THE FRAMEWORK

In order to bridge the gap between constraint programming

modeling language and ILP, we use a rather complex frame-

work. In this section, we provide a quick overview of the

framework, as well as some justifications of our choices as

depicted in the workflow of Figure 1. To illustrate the concepts,

we use the very simple example of graph coloring.

First, examples and counter-examples are each defined

by a logical interpretation, which can be seen as a set

of ground literals. For the graph coloring example, two

graphs are depicted in Figure 2 one, called g1, with a

wrong coloration and one, called g2, with a good one. For

the first graph g1, its logical description is given by the

interpretation { nwc(g1), n(g1,a), n(g1,b), n(g1,c), n(g1,d),

adj(g1,a,b), adj(g1,a,d), adj(g1,b,c), adj(g1,b,d), adj(g1,c,d),

col(g1,a,blue), col(g1,b,green), col(g1,c,green), col(g1,d,red),

a 6= b, . . . , red 6= blue, . . . } where the predicate nwc stand

for non-well colored, n for node, adj for adjacent and col for

color. We assume that all the pointwise difference constraints

between constants (a 6= b, . . . ) are present in the description.

We can give a similar description of the well-colored graph

g2 using a predicate wc. Note that the examples and counter-

examples may range on different sets of variables. This gives

our framework an increased flexibility over the previous state-

of-the-art system CONACQ [4]. To be able to infer a CSP

from a problem, all variables and constants have types. The

rule we aim to learn for graph coloring is:

col(G, X, A) ∧ col(G, Y, B) ∧ adj(G, X, Y )→ A 6= B

This rule describe colorability of a graph independently of the

actual graph to be colored. We assume that each variable is

universally quantified. We can further use this rule to build a

CSP for coloring a specific graph, like the graph g3 of Figure

1. We assume that the user provides a description of the graph

she wants a coloration of, by giving a similar but incomplete

description of the graph: { wc(g3), n(g3,a), n(g3,b),

n(g3,c), n(g3,d), n(g3,e), col(g3,a,ColA), col(g3,b,ColB),

col(g3,c,ColC), col(g3,d,ColD), col(g3,e,ColE), adj(a,b),

adj(a,c), adj(a,e), adj(b,d), adj(b,e), adj(c,e), a 6= b, . . . , red

6= blue, . . . }. Then the left-hand side of the rule is matched

against the specification and all possible substitutions are

computed. For example, the substitution { G/g3, X/ColA,

Y/ColB } allows to set the constraint ColA 6= ColB of the

CSP by applying the substitution to the right-hand side of the

rule. By considering all possible substitutions allowed by the

variable types, we obtain the CSP defining the colorability of

g3.

Expressed as a clause, the above rule gives:

¬col(G, X, A) ∨ ¬col(G, Y, B) ∨ ¬adj(G, X, Y ) ∨A 6= B

A specification is composed of a conjunction of clauses like

this one. It happens that most ILP systems rather learn DNF

instead of CNF. Then we simply consider the negation of

the rules to be learned, and exchange examples and counter-

examples. The conjunction to be learned is as follows and

describes a wrong coloration:

col(G, X, A) ∧ col(G, Y, B) ∧ adj(G, X, Y ) ∧A = B

In theory, we could simply give this problem at this step to a

relational learning tool [13], [14], [20], [15], [16], [17] but in

practice, all of them fail because of a too large or unstructured

search space: either a top-down search falls into random

plateau search or a bottom-up search faces too expensive

coverage tests. To stay informal in this section, we can say that



our learning algorithm is based on a specific rule construction

in which the search space is top-down recursively divided into

zones. Each zone is then explored bottom up until a rule is

found. Then, following a separate-and-conquer technique, the

examples covered by the rules are discarded and the search

for a new rule is launched until all examples are covered.

III. MODELING LANGUAGE

Let V be a set of variables and D = (DX)X∈V their do-

mains. A constraint is a relation c on a subset of the variables.

We denote by var(c) the variables on which c is defined and

by sol(c) ⊆ Dvar(c) the set of tuples defining c. A CSP is

a triple (V,D, C) in which V and D are defined as above

and C is a set of constraints. A modeling language provides a

way to specify a CSP in an abstract manner. A lot of existing

modeling languages allow the use of high level variables like

sets, functions, arithmetic operators, universal and existential

quantifiers or arguments to parameterize their models [7], [10].

In practice, the parameters are usually provided in a separate

file and mixed with the model to produce a CSP. As described

previously, we aim at learning such an abstract model of the

target problem. However, even if we would like to learn a

specification in such languages, we think that dealing directly

with them is too hard due to their excess of expressivity. In

this paper, we propose to focus on a simpler language but still

allowing to express a large number of problems. We choose

a first-order logic language retaining the notion of parameter.

We have discarded features like functions commonly found

in human-targeted modeling languages but kept the crucial

ability to be able to generate CSP for a set of instances of the

problem.

A side contribution of this paper is to propose a rule-based

intermediate modeling language suited for Machine Learning

purpose. A Constraint Problem Specification (or CPS) in this

language consists in a set of rules describing when a constraint

should be posted in the CSP instance. Let T be a set of types.

Let V = (Vt)t∈T and (Constt)t∈T be respectively a set of

typed variables and constants. A term is either a variable

or a constant. Predicates also have types and are divided

into two disjoint sets PD and PC corresponding respectively

to the body and the head of a rule. Body predicates form

the description language. They are used to express examples

and counter-examples and to introduce the variables of the

rules. They also have mode declaration: each argument has a

mode describing if the argument is used as input or output.

Input mode is denoted by + while output mode is denoted

by −. For example, the predicate sum(X,Y,Z) with semantics

X + Y = Z and mode sum(+,+,-) defines the last argument

to be the computation of the sum of the two first ones. Head

predicates form the constraint language and are used to define

the constraints which hold when body predicates are true.

These predicates are precursors of constraints and will be

turned into constraints in the rewriting phase (see Figure 1 and

section V). An atom is an expression P (t1, . . . , tk), where P
is a k-ary predicate and t1, . . . , tk are terms.

The syntax of our rules is:

rule ::= ∀ variables : body → head

variables ::= vs ∈ TYPE | variables, variables

vs ::= VARIABLE | vs, vs

body ::= BODY_ATOM | body ∧ body

head ::= HEAD_ATOM | ¬HEAD_ATOM

| head ∨ head

Figure 3 presents some examples of problems specified

in our language. Due to the lack of space, the universal

quantification of the variables is omitted.

The first example corresponds to the well-known graph

coloring problem where two neighbors must have different

colors. The second one is a simplified school timetabling

problem where timetable(L, T, R, S) means that a lesson L
is taught by a teacher T in the room R at time slot S. The

first rule imposes two lessons not to be during the same time

slot if they are in the same room. The second rule ensures that

a teacher does not give two lessons during the same time slot.

Finally, the last example, used in experiments, is a simplified

job-shop problem where schedule(J, T, B, E, M) means that

a job J of type T is processed by machine M between the

time points B and E. The first rule specifies that the beginning

of a job must be before its end; the second one that two jobs

cannot be performed at the same time by the same machine;

the last one describes that some jobs must be done before

others according to their types (prev depicts the order on job

types).

In contrast with classical intermediate modeling languages,

the presence of disjunctions makes it more difficult to be un-

derstood by a human user. However, a model in this language

is supposed to be automatically compiled into a CSP and in the

simplified expressions, most disjunctions usually disappear.

IV. LEARNING PROCESS

The first step of our framework consists in learning a CPS

describing the target problem. In this section, we start by

presenting the Inductive Logic Programming framework and

its application to our learning problem. Then, we focus our

presentation on the main part: learning a rule. We explain

the different strategies we have considered and show results

obtained by the experiments.

A. Learning a CPS as an ILP problem

First, we present what the learning process needs as inputs.

If we refer to Figure 1, the learning phase needs a set

of solutions, for instance examples of correct timetable, a

set of non-solutions, like examples of incorrect timetables,

and background knowledge. This one contains a definition

of each constraint predicate given either in extension or by

Horn clauses. In addition, mode declarations are put into the

background knowledge.

The goal is to learn in our rule language a definition of

a CPS, denoted by CS, that correctly discriminates positive

(solutions) from negative examples (non-solutions). The dis-

criminative power of a rule is computed w.r.t. a covering



Graph coloring problem
n(X) ∧ n(Y ) ∧ col(X, A) ∧ col(Y, B) → A 6= B ∨ ¬adj(X, Y ) Simplified jobshop

schedule(J, T, B, E, M) → B < E
∧

Simplified school timetable schedule(J1, T1, B1, E1, M1) ∧ schedule(J2, T2, B2, E2, M2)
timetable(L1, T1, R1, S1) ∧ timetable(L2, T2, R2, S2) → J1 = J2 ∨ M1 6= M2 ∨ B1 > E2 ∨ E1 < B2

→ L1 = L2 ∨ R1 6= R2 ∨ S1 6= S2 ∧
∧ schedule(J1, T1, B1, E1, M1) ∧ schedule(J2, T2, B2, E2, M2)

timetable(L1, T1, R1, S1) ∧ timetable(L2, T2, R2, S2) → J1 = J2 ∨ E1 < B2 ∨ prev(T1, T2)
→ T1 6= T2 ∨ L1 = L2 ∨ S1 6= S2

N-queens problem
position(Q1, L1, C1) ∧ position(Q2, L2, C2) → Q1 = Q2 ∨ L1 6= L2

position(Q1, L1, C1) ∧ position(Q2, L2, C2) → Q1 = Q2 ∨ C1 6= C2

position(Q1, L1, C1) ∧ position(Q2, L2, C2) ∧ gap(L1, L2, I1) ∧ gap(C1, C2, I2)
→ Q1 = Q2 ∨ I1 6= I2

Fig. 3. Some CPS examples: all variables are universally quantified

relation: informally, a definition C covers an example e with

respect to a background knowledge B if e can be deduced from

B and C. On the other hand, an example is rejected when it is

not covered. The definition C is said to be complete if it covers

all positive examples and consistent if it rejects all negative

ones. To sum up, we can formalize our learning problem as

follow: given two sets of examples E+, E−, and a background

knowledge B, find a definition CS such that:

• ∀e+ ∈ E+ : e+ is covered by CS
• ∀e− ∈ E− : e− is rejected by CS

To illustrate the learning problem, we use the example of

school timetabling problem. Let us notice that on example in

the Figure 1, is usually composed of one or more tables (e.g.

for graph coloring, there are two tables : one for color and

another for adjacent). For timetabling, we only need one table

giving the features of each lesson. This table can be viewed

as the 4-ary relation timetable, the arguments of which are

the lesson name, the teacher, the room and the time slot. A

positive example of a simple timetable could be:

e+ : {timetable(CS,MrsBlue, s203, A),
timetable(Maths, MrsBrown, s106, C)
timetable(Biology,MrsWhite, s308, A),
timetable(Maths, MrsBrown, s106, B)}

whereas a negative example could be:

e− : {timetable(CS,MrsBlue, s203, A),
timetable(Maths, MrsBrown, s106, C)
timetable(Biology,MrsWhite, s203, A),
timetable(Maths, MrsBrown, s105, C)}

Note that the counter-example e− contains two errors. Back-

ground knowledge contains useful predicates like equalities to

compare lessons, teachers, rooms and time slots.

A set of rules defining a CPS is equivalent to a Conjunctive

Normal Form (CNF). However, the majority of existing ILP

systems handle Disjunctive Normal Form (DNF) or equivalent.

Passing from CNF to DNF is a simple operation (see [11],

section 3.4.3) consisting in searching a definition for the

negation of the target concept.

Considering the timetable example, the CNF corresponding

to the CPS from fig. 3 is:

∀ L1, L2 ∈ Lessons, T1, T2 ∈ Teachers, . . . :

¬timetable(L1, T1, R1, S1)∨¬timetable(L2, T2, R2, S2)

∨L1 = L2 ∨ R1 6= R2 ∨ S1 6= S2∧

∀ L1, L2, . . . :

¬timetable(L1, T1, R1, S1)∨¬timetable(L2, T2, R2, S2)

∨T1 6= T2 ∨ L1 = L2 ∨ S1 6= S2

The negation produces the DNF:

∃ L1, L2 ∈ Lessons, T1, T2 ∈ Teachers, . . . :

timetable(L1, T1, R1, S1) ∧ timetable(L2, T2, R2, S2)

∧L1 6= L2 ∧ R1 = R2 ∧ S1 = S2∨

∃ L1, L2, . . . :

timetable(L1, T1, R1, S1) ∧ timetable(L2, T2, R2, S2)

∧T1 = T2 ∧ L1 6= L2 ∧ S1 = S2

To learn this concept, the sets of positive and negative exam-

ples must be inverted. Positive examples become negative and

vice versa. In the sequel of this section, we only focus on

learning DNF.

B. Background in ILP

The state-of-the-art framework of ILP consists in learning

a definition composed of rules. Separate-and-conquer is a

heavily used family of algorithms in ILP (the interested reader

can refer to [12] for a complete state-of-the-art). The algorithm

iterates a single rule learning algorithm until positive examples

are correctly discriminated from all negative ones. Since we

use separate-and-conquer, this section only focuses on the

single rule learning step.

First, we introduce the search space of ILP. A search state

is represented by a conjunction of literals representing a rule

with respect to background knowledge. To evaluate the interest

of a state, we can consider different criteria such as the length

of the rule or its coverage score over positive and negative



examples. An example e is covered by a rule r if there exists

a substitution σ such that σ(r) ⊆ e.

The search space can be organized as a lattice. In this paper,

we consider the following search lattice bounded by two rules

denoted ⊤ (top) and ⊥ (bottom) and ordered by the inclusion

relation. A clause c1 is included in an other one c2 if all the

literals of c1 appear in c2, up to variable renaming. In this

case, we say that c1 is more general than c2 and, similarly,

that c2 is more specific than c1.

The ⊤ clause is the most general clause of the lattice.

It covers the maximum number of (positive and negative)

examples. The empty clause which covers all the examples

and counter-examples can be considered as a ⊤ clause. But in

order to reduce the search space, many algorithms choose as

⊤ clause a more specialized one.

The bottom clause is the most specific one and should reject

most examples. In certain algorithms like FOIL [13], this

bound is theoretical since ⊥ is an infinite clause (and therefore

we have an infinite search space) because new variables can

be introduced at each step. This is why a bottom limit is

chosen by saturation of an example called a seed (see [14]

for complete explanation). Given a positive seed example s,

its saturation sat(s) consists in s augmented of all entailed

background knowledge literals. To obtain this limit, modes are

used and new variables corresponding to output modes may

be introduced. This set can be parameterized by a certain limit

to obtain a finite set and so a finite search space. Typically,

we can limit the number of new variables introduced under a

limit k.

To explore the search space, there exists different strategies

like top-down (See Figure 4), which starts from the hypothesis

⊤ and progressively specializes the hypothesis by adding new

literals, or bottom-up, which starts from ⊥ and generalizes

the hypothesis by removing some literals. These two strategies

consist in a sequence of operations, called refinements, the goal

of which is to specialize or generalize the current hypothesis.

Each refinement produces a new hypothesis. For a hypothesis,

there exists generally several possible refinements due to the

lattice structure. To choose the best one, algorithms use a

heuristic function based on a coverage score and/or the length

of the rule.

Let us illustrate this with an example. A very simple

refinement operator, in a top-down search, could be an op-

eration selecting a literal in the ⊥ clause and adding it to the

hypothesis. Then, the number of possible refinements would

be equal to the length of ⊥. To select a literal, we can choose

one with the best purity heuristic value defined by p

p+n
where

p and n correspond to the coverage score over positive and

negative examples.

We have presented the rule learning process with a hill-

climbing strategy but many versions exist with, for instance,

beam search or A∗ methods. Top-down are illustrated by

algorithms like FOIL [13], Progol [14], ICL [15], Beth [16]

and Propal [17]. But these algorithms fail on our CSP bench-

marks(see section IV-D). Recent works on phase transition

problems in ILP [18] and blind search or crossing ”plateau”

[9] indicate that searching a solution may fall into a very

difficult zone and CPS learning clearly belongs to this kind

of problems. Bottom-up approaches are not adapted because

of the expensive cost of coverage test at the beginning of

the search. To take advantages of the structure of CPS, we

have developed a new algorithm [19] based on a bidirectional

search. We describe it in the next section.

C. Bidirectional search

We have designed a new algorithm taking advantages of

top-down and bottom-up approaches. Our algorithm is a bidi-

rectional search where each refinement step is characterized

by a couple of hypothesis (Hi
⊤

, Hi
⊥

) In this couple, (Hi
⊤

and

Hi
⊥

) are two rules where Hi
⊤

is a specialization of ⊤ and Hi
⊥

a generalization of ⊥ (see fig. 4).

The search starts with H0
⊤

reduced to an empty rule, and

H0
⊥

obtained by saturation of a positive uncovered example.

The main characteristics of the approach are:

• Hi+1
⊤

is obtained from Hi
⊤

by adding a set of literals. The

candidate sets are selected from Hi
⊥

w.r.t. the analysis of

layers in the initial saturation H0
⊥

. We start by searching

singletons and the size of candidate sets is increased until

a satisfying candidate is found. Each candidate set S is

associated to a candidate clause obtained by adding S to

the body of Hi
⊤

.

• Candidate clauses are not evaluated w.r.t. their discrimi-

nating power but w.r.t. the discriminating power of their

saturation. This choice reduces the phenomenon of blind

search.

• We restrict the search to candidate sets so that if H0
⊥

contains a discriminating clause, then this clause can be

found by our bidirectional search.

• Once a candidate clause Hi+1
⊤

is selected, Hi+1
⊥

is

obtained by a saturation of Hi+1
⊤

where only literals from

H0
⊥

are added.

This process is repeated until Hi
⊤

= Hi
⊥

. Each step produces

a refinement of the previous top clause, but coverage tests

are less expensive than in usual bottom-up search. At the

same time, it produces a generalization of the bottom clause

which both allows to reduce the search space and is used

for evaluating and choosing among refinements (to be more

accurate than top-down searches). We have obtained with this

technique very interesting and encouraging results compared

to other tested approaches. The detail of the algorithm can be

found in [19].

D. Experiments and discussion

To evaluate different existing strategies, we have generated

several benchmarks for the examples specified in Figure 3.

In doing so, we have generated a set of solutions and non-

solutions. To produce solutions, we have chosen a random

size for each problem (e.g. for the graph coloring problem,

the number of vertices and colors), and then solved the CSP.

For negative ones, we have proceeded in a similar way but

constraints have been relaxed and we have checked that there

is at least one unsatisfied constraint.



⊤

⊥

R

. . .

⊤

⊥

R
. . .

⊤

⊥

R

. . .

. . .

Top-down search Bottom-up search Bidirectional search

Fig. 4. Search strategies

We have tested most usual ILP algorithms. Results of

experiments are detailed in Figure 5. To compute the accu-

racy of a learned CPS (third column), we have generated

new examples and computed the ratio of examples correctly

discriminated by the learned rules (covered for solutions and

rejected for non-solutions). We have concentrated our effort on

recognized top-down approaches. Bottom-up approaches have

been totally ineffective due to the large size of ⊥ rules and

the expensive coverage test. For top-down searches, results are

more interesting but not enough to be acceptable. Only three

top-down approaches have given interesting results: Propal and

two configurations of Aleph [20]1. Propal is based on the data

driven strategy (a way to reject certain refinements). The first

configuration for Aleph, called Aleph1, is a breadth first search

with a maximum of 200000 visited search states and an infinite

open list. The second, named Aleph2, only differs from the

first one by the search strategy in which the breath-first search

has been replaced by a heuristic search. The more complex the

target concept is, the more Propal and Aleph2 find an incorrect

theory. For the n-queens problem, Propal has been stopped

after ten hours. These results show the main limitation of top-

down approaches when they face to plateau phenomena [9].

Aleph1 corresponds to a quasi complete search which may

succeeds but with an important computation time (depending

on the problems).

In contrast, our bidirectional method has succeeded with all

benchmarks: it finds accurate definition in a short amount of

time. But even if the meaning is identical, the learned rules are

not always the expected ones. For example, for n-queens, the

learned constraint for column is (gap is a predicate expressing

the difference of two integers):

position(Q1, X1, Y 1) ∧ position(Q2, X2, Y 2)
∧ gap(Y 1, Y 2, V 1) ∧ gap(Y 2, Y 2, V 2)
→ Q1 = Q2 ∨ V 2 6= V 1

Our prototype, as well as the benchmarks, can be obtained by

sending a mail to the authors. This method, built as shown in

[19], works very efficiently with CSP benchmark. It relies on a

1Aleph is a general system allowing the emulation of several other ILP
systems

stratified representation of the examples, which unfortunately

is not satisfied on all kind of learning problems.

V. TRANSLATION OF CPS TO CSP

Let us consider as example the school timetabling problem.

We assume the user has obtained a CPS during the learning

phase. To produce an actual CSP, she needs to provide a

partially completed table representing the predicate timetable
(fig. 1). In general, there may be several tables, called partial

extension. They set the parameters of the CPS. The objective,

for the user, is to obtain a CSP which is able, once solved,

to complete partial extensions. In Figure 1, the problem is to

determine rooms and time slots where teachers could do their

lessons. The user must give domains corresponding to rooms

and time slots in order to obtain the CSP model corresponding

to her problem. In particular, there may be new teachers, a

different number of groups. These data are very natural to

provide given an actual problem to solve.

A partial extension of a predicate p is a pair (p, E), where

E is a set of tuples 〈x1, x2, . . . , xk〉 defining this predicate,

and xi is either a constant or ?, the latter meaning that the user

does not know the value of the attribute. We denote by ext
the set of partial extensions given by the user. The translation

from CPS to CSP is composed of two steps. First, partial

extensions are completed with CSP variables which are set

to the corresponding domains. Second, for each rule of the

CPS, all possible substitutions of the body are produced and

the corresponding constraints (the head of the rule) are posted.

Algorithm V computes these two steps.

The first step (line 3) consists in completing ext, replacing

all ? by CSP variables with the right domain (given by the

user). The second step consists in producing constraints from

CPS rules with respect to the user instance. In doing so, we

generate all possible substitutions of the body G allowing

to satisfy thee body. Given a substitution σ, the body is

satisfied if each atom p(t1, . . . , tk) of G is satisfied with σ.

An atom p(t1, . . . , tk) is satisfied if σ(p(t1, . . . , tk)) has a

support in ext or, in the case where p is intensionally defined,

if σ(p(t1, . . . , tk)) is valid with respect to the definition. A

problem exists when p is intensional. When there are CSP



Propal algorithm from [19]
benchmark # learned rules time (s) acc. # learned rules time (s) acc.

Graph coloring 1 0 100% 1 0.17 100%
School timetable 3 11 98,33% 2 0.69 100%

Job-shop 6 103 87,78% 5 7.37 100%
N-queens - - - 3 29.11 100%

Aleph1 Aleph2
Graph coloring 1 0.24 100% 1 0.14 100%

School timetable 1 1.24 100% 1 0.31 100%
Job-shop 3 1051.03 100% 6 1130.88 96%
N-queens 3 489.49 100% 3 4583.84 61.67%

Fig. 5. Experiments with different learning strategies

variables among positions with input mode of p, we generate

auxiliary CSP variables for the output. For instance, consid-

ering the following atom sum(X, Y, Z) and the substitution

{X/2, Y/v1, Z/?} where the domain of v1 is [2..6]. The sub-

stitution is completed with Z/v2 and the domain of v2 is [4..8].
When all the substitutions are computed, the algorithm substi-

tutes the head of the rule to produce the constraints (line 21).

These constraints are disjunctions of constraints. However, if

we consider the example of school timetabling problem, many

variables of the constraints have already a value allowing to

simplify the constraint. For instance, consider the substitution

{L1/Latin, T1/Mrs Green, R1/v1, S1/v2, L2/English,
T2/Mrs Green, R2/v3, S2/v4} of the second rule. The

computed constraint will be Mr Green 6= Mrs Green ∨
Latin = English ∨ v2 6= v4. It can be simplified in v2 6= v4.

Constraint cannot always be simplified; for instance, if the

substitution is applied to the first rule, the disjunction remains.

VI. CONCLUSION

The motivation of our work is to avoid some of the

limitations encountered with systems like CONACQ[3]. To our

best knowledge, CONACQ and our system are the only works

concerning the acquisition of CSP. In [21], Bessière et al.

propose a method to automatically generate viewpoints from

examples. However, no method is given to generate constraints

on these variables. More generally, several works exist about

reformulation of models, including the discovery of implied

or redundant constraints [22], [23]. In this case, the learning

task consists in learning only from positive examples since the

discrimination of solutions and non-solutions are already made

by the simple model. This is complementary to our approach

since our learned models would gain to be reformulated into

more efficient ones.

In this paper, we have presented a framework to obtain

automatically an abstract model of a CSP. Our approach,

based on Inductive Logic Programming, received examples

of what the user considers as solutions and non-solutions

of related problems. Then, she gets a specification (a CPS)

which can be further translated into a CSP by adding data

from her very problem. Even with a specification expressed

in first order logic, and which can potentially take advantage

of a lot of systems designed to learn such definitions, this

learning problem has proved to be very difficult. It falls into

well known limitations of ILP: blind search with plateau

Algorithm : TRANSLATE(CS, ext, domains)
1. //Complete the partial extension

2. // with CSP variables with domains

3. ext← COMPLETE(ext, domains)
4. //Initialize the variables set

5. //with these in ext

6. vars← GETVAR(ext)
7. constraints← ∅
8. for each G→ C ∈ CS
9. // Generate all substitution of the

body

10. subst← GENERATEALLSUBST(G, ext)
11. for each σ ∈ subst
12. //If there are atoms with no matching

13. // in ext,it adds aux. variables

14. // and the constraint

15. for each atoms p(t1, . . . , tk) ∈ G
16. such that (p, ) /∈ ext
17. vars.add(GETVAR(σ(p(t1, . . . , tk))))
18. constraints.add(σ(p(t1, . . . , tk)))
19. //It adds the constraint

20. //corresponding to the head

21. constraint.add(σ(C))
22. //Finally, it returns the CSP

23. return CSP(vars, domains, constraints)

Fig. 6. Translation of a CPS in CSP

phenomena for top-down searches and too expensive tests for

bottom-up search. In order to succeed in our learning task,

we have designed a new algorithm taking advantages of these

two strategies. This algorithm present a very good behavior

on CSP benchmarks. The final step of our framework consists

in a translation of the CPS and the data of the user’s very

problem into a CSP. This work constitutes an encouraging

step towards the automatic acquisition of a CSP. Obviously,

the CPS language has to be improved to handle larger CSP

problem classes. An easy way would be to add, similarly to the

”for all” block presented in this paper, an existential block. The

method should be the same. But an important improvement

would be the addition of aggregates (e.g. the sum of a list of

variables). However, each improvement has a cost which needs

to be taken in account to preserve the system efficiency.
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