On Learning Constraint Problems - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

On Learning Constraint Problems


It is well known that modeling with constraints networks require a fair expertise. Thus tools able to automatically generate such networks have gained a major interest. The major contribution of this paper is to set a new framework based on Inductive Logic Programming able to build a constraint model from solutions and non-solutions of related problems. The model is expressed in a middle-level modeling language. On this particular relational learning problem, traditional topdown search methods fall into blind search and bottom-up search methods produce too expensive coverage tests. Recent works in Inductive Logic Programming about phase transition and crossing plateau shows that no general solution can face all these difficulties. In this context, we have designed an algorithm combining the major qualities of these two types of search techniques.We present experimental results on some benchmarks ranging from puzzles to scheduling problems.
Fichier principal
Vignette du fichier
ACTI-LALLOUET-2010-1.pdf (364.3 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01016891 , version 1 (01-07-2014)


  • HAL Id : hal-01016891 , version 1


Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel Vrain. On Learning Constraint Problems. International Conference on Tools with Artificial Intelligence,ICTAI, Oct 2010, Arras, France. pp.45-52. ⟨hal-01016891⟩
268 View
473 Download


Gmail Mastodon Facebook X LinkedIn More