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Abstract—Traditionally, the channel used for differential
multiple-input-multiple-output (MIMO) systems is constant dur-
ing one frame and changes randomly from one frame to another.
This channel behavior is too simple to be realistic. In this paper,
we propose a new time selective channel model for differential
space-time modulation (DSTM) schemes. A sufficient number
of Rayleigh channel matrices are randomly generated, and the
other channel matrices are sinc interpolated according to the
Nyquist’s sampling theorem. The performance of DSTM schemes
with two, four and eight transmit antennas are evaluated over
this time selective channel model. Simulation results show slightly
degraded but more realistic performance when this new channel
model is used.

Keywords—MIMO, Differential Space-Time Modulation, non-
coherent, channel model, Nyquist’s sampling theorem, sinc inter-
polation.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) technique has been

widely analyzed in the last decade. This technique can en-

large the capacity and robustness of wireless communication

systems and some of the schemes have been applied in current

standards.

According to whether the receiver needs the channel state

information (CSI), MIMO systems can be divided into two

types. The type I that need CSI and the type II that do not need

CSI. Type I systems are also called coherent MIMO systems.

In [1], [2], the authors have analyzed the capacity and the

error performance of such systems with Gaussian noise. As a

consequence, several coding schemes have been proposed such

as space-time block codes (STBC) [3], space-time trellis codes

(STTC) [4], Bell Labs layered space-time codes (BLAST) [5],

etc.

However, for the type I MIMO systems, the CSI is difficult

to obtain when the number of antennas is large or the channel

state changes rapidly. Indeed, the number of channel coeffi-

cients to be estimated by the receiver is equal to the product

of the number of transmit antennas by the number of receive

antennas. Furthermore, the length of the training sequences

is proportional to the number of transmit antennas [6], which

reduces the overall system throughput. When the channel state

changes rapidly enough, the estimation of channel coefficients

is even not achievable before they change to other values.

Therefore, the type II MIMO systems that do not need CSI

are attractive.

Generally, the type II MIMO systems often use differential

schemes. For example, Tarokh and Jafarkhani proposed the

differential space-time block coding (DSTBC) scheme [7]

based on Alamouti’s transmit diversity scheme [8]. Brian L.

Hughes introduced a differential space-time modulation in [9].

Marzetta and Hochwald analyzed the capacity of the MIMO

systems without CSI in [10] and designed the unitary space-

time modulation (USTM) in [11]. Based on this scheme,

Hochwald and Sweldens presented the differential unitary

space-time modulation (DUSTM) scheme [12]. In [13], [14],

we designed new differential schemes for MIMO systems

based on the Weyl group.

However, the channel model used in [7], [9], [13], [14] is

constant during one frame and changes randomly to a new one

for the next frame, which is not realistic. The channel model

of the papers [11], [12] is Jakes’ model, which corresponds

to wideband channels (frequency selective channels). In this

paper, we propose a more realistic and easy to simulate time

selective channel model. Then we evaluate the performance

and the robustness of DSTM schemes with two, four and eight

transmit antennas over this time selective channel.

The following notations will be used through the paper:

Tr{A} denotes the trace of the matrix A and AH means

the conjugate transpose of A. ‖A‖ is the Frobenius norm

of A, i.e., ‖A‖ =
√

∑

i,j |aij |2 =
√

Tr {AHA}. Re{z} is

the real part of the complex number z. The zero-mean, unit-

variance, circularly symmetric, complex Gaussian distribution

is denoted as CN(0, 1).

II. DIFFERENTIAL MIMO SYSTEM MODEL

Generally, a MIMO system with M transmit antennas and

N receive antennas can be written as:

ynt =

M
∑

m=1

hnmxmt + wnt, n = 1, . . . , N (1)

where xmt is the symbol sent by the transmit antenna m
at time t and ynt is the symbol received by antenna n at

time t; wnt is the complex additive white Gaussian noise,

wnt ∼ CN(0, σ2) and σ2 is the noise variance. The coefficient

hnm is the path gain from the transmit antenna m to the

receive antenna n. The coefficients hnm are independent and

identically distributed (iid), hnm ∼ CN(0, 1). For a narrow-

band MIMO channel, corresponding to low data rate wireless



systems [15] or for each sub-channel of OFDM (Orthogo-

nal Frequency Division Multiplexing) MIMO systems [16],

the frequency response of the propagation channel can be

considered constant within the frequency bandwidth of the

system. Therefore, the coefficients hnm of the channel matrix

are usually considered constant over the frequency bandwidth

but time-variant.

To analyze the MIMO system conveniently, the matrix form

of the system is used:

Yτ = HτXτ + Wτ (2)

where τ is the time index. Xτ is the M × T transmission

matrix, where T denotes the number of symbols transmitted

by each antenna during the transmission of one matrix Xτ .

Hτ is the N ×M channel matrix at time τ . Wτ is the N ×T
complex, additive white Gaussian noise matrix and Yτ is the

N × T received matrix.

We define L equal to the normalized coherence time Tc/Ts

during which the channel matrix Hτ is approximately constant,

where Tc is the coherence interval and Ts is the symbol

duration. A popular definition of Tc is: Tc =
√

9

16πf2
d

= 0.423
fd

[17], where fd = v
λ

is the Doppler spread, v is the relative

velocity between the transmitter and receiver, and λ is the

signal wavelength. In practice, for simplicity, people usually

use it as Tc ≈ 0.5/fd. For example, with velocity v = 120
km/h, and carrier frequency f = 900 MHz, the Doppler

spread is approximately 100 Hz and the coherence interval

is approximately 5 ms. For a symbol rate of 30 kHz, L = 150
symbols are transmitted during the coherence interval Tc. For

high speed vehicular v = 350 km/h channels [18], and carrier

frequency f = 2.5 GHz, the Doppler spread is approximately

810 Hz and the coherence interval is approximately 0.6 ms. For

a symbol rate of 500 kHz, L = 300 symbols are transmitted

during this coherence interval.

For convenience, at each time slot the total power over M
transmit antennas is set to be 1:

M
∑

m=1

|xmt|2 = 1, t = 1, . . . , T. (3)

It is proved in [10] that for non-coherent MIMO systems,

the capacities obtained with M > T and M = T are equal.

Therefore, we choose M = T in our study.

The SNR is defined as follows:

SNR =
E[|ynt − wnt|2]

E[|wnt|2]
=

E

[

|
M
∑

m=1

hnmxmt|2
]

E [|wnt|2]

=

E

[

M
∑

m=1

|hnmxmt|2
]

σ2
=

E

[

M
∑

m=1

|xmt|2
]

σ2
=

1

σ2

(4)

where E[·] denotes the mathematical expectation.

A. The model of differential space-time modulation

For differential space-time modulation systems, the informa-

tion matrix is used to multiply the previous transmitted matrix.

In general, the information matrix is selected from a group P
according to the incoming information bits. For example, at

time τ , Xτ is transmitted. At the next time τ + 1, a block

of information bits is mapped onto the matrix Viτ+1
from the

group P , and then the matrix

Xτ+1 = XτViτ+1
(5)

is transmitted. This relation is the fundamental differential

transmission equation.

Therefore, the sequence of transmitted matrices is:

X0 = V0

X1 = X0Vi1 = V0Vi1

X2 = X1Vi2 = V0Vi1Vi2

. . .

Xτ = Xτ−1Viτ
= V0Vi1 . . . Viτ

. . .

In general, the reference matrix V0 is the identity matrix. To

satisfy the constraint (3) imposed on the total transmit power,

all the matrices of the group P should be unitary matrices.

Furthermore, a perfect synchronization is assumed. Subse-

quently, a matrix stream Y0, . . . , Yτ , Yτ+1, . . . is detected by

the receive antennas, according to

Yτ = HτXτ + Wτ (6)

and

Yτ+1 = Hτ+1Xτ+1 + Wτ+1 (7)

For a quasi-static channel during the transmission of two

successive matrices Xτ and Xτ+1, we have the assumption:

Hτ+1 ≈ Hτ (8)

Using the differential transmission equation (5), we get

Yτ+1 = Hτ+1Xτ+1 + Wτ+1

≈ HτXτ+1 + Wτ+1

= YτViτ+1
+ W

′

τ+1

(9)

where W
′

τ+1 = Wτ+1 − WτViτ+1
.

As Yτ and Yτ+1 are known by the receiver, we can use

the maximum likelihood detector to estimate the information

matrix:

V̂iτ+1
= arg min

V ∈P
‖Yτ+1 − YτV ‖

= arg min
V ∈P

Tr{(Yτ+1 − YτV )H(Yτ+1 − YτV )}

= arg max
V ∈P

Tr{Re(Y H
τ+1YτV )}

(10)

The detector gives good results if (8) is verified, i.e., the

propagation channel can be considered quasi-static during the

transmission of two successive matrices Xτ , Xτ+1. The prop-

agation channel proposed in this paper allows some variation



of the propagation channel and investigate the performance

degradation of the DSTM MIMO systems compared to their

performance obtained considering the channel matrix constant

during a frame.

III. THE NEW IMPROVED CHANNEL MODEL

A. The usual channel model for differential MIMO systems

As mentioned before, the channel model used in [7], [13],

[14] is constant during one frame and changes randomly for

the next frame. For example with the normalized coherence

interval L = 200, for M transmit antennas and N receive

antennas, during the transmission of the first 200 symbols,

the same channel matrix Hτ is considered. The next channel

matrix Hτ+1 is randomly generated to be used for the next

200 symbols. However, this is not the real case. In reality, the

channel changes continuously. Furthermore, at the beginning

of the new frame, the reference matrix V0 has to be transmitted

again. This reduces the overall simulation efficiency.

B. The new improved channel model

To overcome the fault of channel model mentioned in last

subsection, we propose a new channel model which changes

continuously.

With M transmit antennas and N receive antennas, during

the coherence interval L, Nm = L/T = L/M transmit

matrices will be sent. Thus Nm channel matrices are needed

to multiply the transmit matrices. We interpolate Nm−1 chan-

nel matrices H(1), . . . , H(Nm − 1) between two successive

randomly generated channel matrices RK and RK+1 instead

of one constant channel matrix RK . The Nm − 1 interpolated

channel matrices are related to the passed channel matrices

and also to the future channel matrices.

The interpolated channel sequence H(1), H(2), . . . ,

H(Nm − 1) is generated as follows:

1) A fix number 2K of Rayleigh distributed matrices are

randomly generated, i.e., R1, . . . , RK , RK+1, . . . , R2K .

2) With the Nyquist’s sampling theorem, the channel se-

quence between RK and RK+1 is generated by sinc

interpolation.

Using the well-known Nyquist’s sampling theorem, a band-

limited signal x(t) can be reconstructed from its samples

x(kT0) as follows:

x(t) =
+∞
∑

k=−∞

x(kT0)
sin f0π(t − kT0)

f0π(t − kT0)

=
+∞
∑

k=−∞

x(kT0)
sin π(f0t − k)

π(f0t − k)

(11)

if the sampling frequency f0 = 1/T0 > 2fM , where fM

is the maximum frequency of the signal. In our case, the

Rayleigh random matrices Rk can be considered as samples of

the continuous channel matrix H separated by the coherence

interval, so T0 = Tc = LTs. With 2K randomly generated

matrices, we get the Nm − 1 interpolated channel matrices

between the matrices RK and RK+1:

Fig. 1. Illustration of the interpolation of the channel matrix H .

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Time index

M
o

d
u

le
 o

f 
th

e
 c

h
a

n
n

e
l 
c
o

e
ff

ic
ie

n
t 

h
n
m

 

 

Original Channel Coefficient

Interpolated Channel Coefficient

Fig. 2. Comparison of the two channel models considering one channel
coefficient hnm, interpolated by the passed and future random variables.

H(i) =

2K
∑

k=1

Rk

sin π [f0(KLTs + iMTs) − k]

π [f0(KLTs + iMTs) − k]

=

2K
∑

k=1

Rk

sin π(K + i/Nm − k)

π(K + i/Nm − k)
,

i = 1, 2, . . . , Nm − 1.

(12)

For example, with 2K = 10 randomly generated Rayleigh

channel matrices R1, . . . , R5, R6, . . . , R10, the number of

transmit antennas M = 4, and the normalized coherence

interval L = 160, we get Nm − 1 = 39 interpolated

channel matrices H(i) between R5 and R6. This procedure

is illustrated in Fig 1.

The module of one channel coefficient hnm obtained by

interpolation between RK and RK+1is shown in Fig. 2. A

complete figure of the generated channel coefficient hnm

compared with the randomly generated Rayleigh values is

given in Fig. 3.

We can see that the channel generated by this method

changes slightly for each two successive transmit matrices.

However, there is still the problem of the selection of the

number K . Here, we resort to the relative error to select

appropriate K . As discussed before, with 2 × K Rayleigh

distributed channel matrices, we get Nm − 1 interpolated

channel matrices. We select a very large number, for example

Kmax = 4000 to get a group of interpolated reference channel

matrices. We estimate that Kmax is large enough to obtain
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Fig. 3. Time variation of the module of one channel coefficient hnm.

accurate channel matrices by interpolation. With K decreasing

to 1, we get other Kmax − 1 groups of interpolated channel

matrices. Compared with the reference group, each group

has different variations. The groups of interpolated channel

matrices are:

{Hk(1), Hk(2), · · · , Hk(Nm − 1)}, k = 1, · · · , Kmax. (13)

We define the mean relative error as:

εk =
1

Nm − 1

Nm−1
∑

i=1

‖HKmax(Nm) − Hk(i)‖
‖HKmax(i)‖ ,

k = 1, 2, · · · , Kmax.

(14)

As the matrices R1, . . . , RK , RK+1, . . . , R2K are gener-

ated randomly, the curve of the relative error is very rough. To

smooth the curve, we calculate the relative error 100 times and

get the mean as the final relative error. The curve of relative

error is shown in Fig. 4 with Kmax = 4000 and Nm = 50.

We get the table of relative error versus K in Table I with

Nm = 50 and Nm = 10 respectively. On the basis of these

data, we set K = 30 in our simulations. In this case, the

relative error is below 10%.

Nm = 50 Nm = 10

Relative error K Relative error K

2% 389 2% 548

3% 201 3% 229

5% 62 5% 105

9.725% 22 9.678% 21

10.23% 21 10.18% 20

TABLE I
THE VALUES OF K FOR DIFFERENT RELATIVE ERRORS WITH

Kmax = 4000.
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Fig. 4. The relative error versus different numbers of k with Nm = 10 and
Nm = 50 respectively.

IV. THE DIFFERENTIAL SPACE-TIME MODULATION

SCHEME

In this paper, the performance of the DSTM schemes

proposed in [13], [14] are evaluated over this new channel

model. This scheme is based on the Weyl group.

The multiplicative Weyl group Gw [19] is generated by

two matrices 1√
2

[

1 1
1 −1

]

and [ 1 0
0 i ]. As these two matrices

are unitary, all the matrices generated by them are also

unitary. For convenience, we divide the group into 12 cosets
(

C0, C1, . . . , C11

)

. Each coset contains 16 invertible matrices.

The first coset which is also a subgroup of the Weyl group is

defined as:

C0 = α

{[

1 0
0 1

]

,

[

1 0
0 −1

]

,

[

0 1
1 0

]

,

[

0 1
−1 0

]}

(15)

with α ∈ {1,−1, i,−i}. The 12 cosets of Gw are derived from

C0 as follows:

Ck = AkC0, ∀k = 0, 1, . . . , 11 (16)

where the matrices Ak, k = 0, 1, . . . , 5 are respectively:

A0 =

[

1 0
0 1

]

, A1 =

[

1 0
0 i

]

, A2 =
1√
2

[

1 1
1 −1

]

,

A3 =
1√
2

[

1 1
i −i

]

, A4 =
1√
2

[

1 i
1 −i

]

, A5 =
1√
2

[

1 i
i 1

]

,

and the matrices Ak, k = 6, 7, . . . , 11 are given by:

Ak+6 = ηAk, with η = (1 + i)/
√

2, ∀k = 0, 1, . . . , 5 (17)

We define the distance between two matrices Ma and Mb

as:

D(Ma, Mb) = ‖Ma − Mb‖. (18)



A. DSTM scheme with 2 transmit antennas

In this paper, for MIMO systems with 2 transmit antennas

and R = 1 bps/Hz, 4 matrices are needed. We select matrices

[ 1 0
0 1 ], [ 1 0

0 −1 ], [ 0 1
1 0 ], and [ 0 1

−1 0 ] as the information group. For

R = 2 bps/Hz, we select C0 which has 16 matrices as the

group to map the 4 bits information block as in [13].

B. DSTM scheme with 4 transmit antennas

For MIMO systems with 4 transmit antennas, the Kronecker

product is used to expand the 2 × 2 Weyl group to a 4 × 4
matrices group. In fact, there are 4608 distinct matrices in this

group Gw4.

For R = 1 bps/Hz, the first matrix in C0 ([ 1 0
0 1 ]) is used to

make Kronecker product with all the matrices in C0 to get 16

unitary matrices as in [14].

For R = 2 bps/Hz, the best set used in [14] which contains

256 matrices is used here. In fact, the first 16 matrices from

every successive 192 matrices of the group Gw4 are selected

to form the set.

C. DSTM scheme with 8 transmit antennas

For MIMO systems with 8 transmit antennas and R = 1
bps/Hz, 256 matrices should be generated as the mapping

group. We get the group as follows. First, we generate a

set of 16 matrices of C44 by using the Kronecker product

between the first 4 matrices of C0. Second, the Kronecker

product between C0 (16 matrices of the size 2 × 2) and C44

(16 matrices of the size 4 × 4) produces a set C88 with 256

matrices.

V. SIMULATION RESULTS

The performance of the differential MIMO systems are

evaluated over the frame constant channel (step channel) and

over the proposed time selective channel (continuous channel).

We set L = 200, which means that for 2, 4 and 8 transmit

antennas, Nm = 100, 50 and 25 respectively.

Fig. 5 shows that for R = 1 bps/Hz, the M8N8 scheme

offers for BER = 10−4 a SNR gain of about 5.5 dB compared

to the M4N4 scheme and 17 dB compared to the M2N2

scheme on the step channel. Over the new continuous channel,

similar gains are obtained with the M8N8 scheme compared

to the M4N4 and M2N2 schemes. Furthermore, using the

continuous channel leads to a degradation compared to the

step channel which is about 1 dB for a BER = 10−4 with

the M8N8 scheme and 0.6 dB with M2N2 scheme. Similar

relative results for R = 2 bps/Hz M8N8, M4N4 and M2N2

schemes are obtained in Fig. 6. As expected, the M8N8 scheme

is more sensitive than the M4N4 and M2N2 schemes to the

time selectivity of the channel.

Fig. 7 presents the performance of M4N4 DSTM scheme

with R = 1 bps/Hz over the step channel and over the new

continuous channel with different normalized coherence time

L. As already mentioned, the faster the channel changes, the

smaller the value of L. Consistent with our supposition, there

is a trend that as L grows the BER performance becomes

better.
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Fig. 5. Performances of differential space-time schemes with R = 1 bps/Hz
over different channel models.
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Fig. 6. Performances of differential space-time schemes with R = 2 bps/Hz
over different channel models.

VI. CONCLUSION

In this paper we propose a simple and more realistic time-

selective propagation channel in order to obtain more reliable

estimations of the performance of DSTM MIMO systems with

2, 4 and 8 transmit antennas. This model is based as usual

on random Rayleigh channel matrices but is completed with

intermediate channel matrices obtained by sinc-interpolation.

During the transmission of two successive matrices, the prop-

agation channel may change, which determines a degradation

of the performance of the differential system. This degradation

is evaluated by simulation for DSTM MIMO systems using 2,

4 and 8 transmit antennas and for two values of the spectral

efficiency. As expected, the degradation is more important for

MIMO systems using more antennas. Moreover, the degrada-

tion is more important if the normalized coherence time is

reduced. Thus, the proposed channel model does not make
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Fig. 7. Performance of the DSTM M4N4R1 scheme with different L.

a difference between slow and fast Rayleigh channels, the

only parameter making the difference being the normalized

coherence time.
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