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Traditionally, the channel used for differential multiple-input-multiple-output (MIMO) systems is constant during one frame and changes randomly from one frame to another. This channel behavior is too simple to be realistic. In this paper, we propose a new time selective channel model for differential space-time modulation (DSTM) schemes. A sufficient number of Rayleigh channel matrices are randomly generated, and the other channel matrices are sinc interpolated according to the Nyquist's sampling theorem. The performance of DSTM schemes with two, four and eight transmit antennas are evaluated over this time selective channel model. Simulation results show slightly degraded but more realistic performance when this new channel model is used.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) technique has been widely analyzed in the last decade. This technique can enlarge the capacity and robustness of wireless communication systems and some of the schemes have been applied in current standards.

According to whether the receiver needs the channel state information (CSI), MIMO systems can be divided into two types. The type I that need CSI and the type II that do not need CSI. Type I systems are also called coherent MIMO systems. In [START_REF] Telatar | Capacity of multi-antenna gaussian channels[END_REF], [START_REF] Foschini | On limits of wireless communications in a fading environment when using multiple antennas[END_REF], the authors have analyzed the capacity and the error performance of such systems with Gaussian noise. As a consequence, several coding schemes have been proposed such as space-time block codes (STBC) [START_REF] Tarokh | Space time block codes from orthogonal designs[END_REF], space-time trellis codes (STTC) [START_REF] Tarokh | Space-time coding for high data rate wireless communication: Performance analysis and code construction[END_REF], Bell Labs layered space-time codes (BLAST) [START_REF] Foschini | Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[END_REF], etc.

However, for the type I MIMO systems, the CSI is difficult to obtain when the number of antennas is large or the channel state changes rapidly. Indeed, the number of channel coefficients to be estimated by the receiver is equal to the product of the number of transmit antennas by the number of receive antennas. Furthermore, the length of the training sequences is proportional to the number of transmit antennas [START_REF] Hassibi | How much training is needed in multiple-antenna wireless links[END_REF], which reduces the overall system throughput. When the channel state changes rapidly enough, the estimation of channel coefficients is even not achievable before they change to other values. Therefore, the type II MIMO systems that do not need CSI are attractive.

Generally, the type II MIMO systems often use differential schemes. For example, Tarokh and Jafarkhani proposed the differential space-time block coding (DSTBC) scheme [START_REF] Tarokh | A differential detection scheme for transmit diversity[END_REF] based on Alamouti's transmit diversity scheme [START_REF] Alamouti | A simple transmitter diversity scheme for wireless communications[END_REF]. Brian L. Hughes introduced a differential space-time modulation in [START_REF] Hughes | Differential space-time modulation[END_REF]. Marzetta and Hochwald analyzed the capacity of the MIMO systems without CSI in [START_REF] Marzetta | Capacity of a mobile multipleantenna communication link in rayleigh flat fading[END_REF] and designed the unitary spacetime modulation (USTM) in [START_REF] Hochwald | Unitary space-time modulation for multiple-antenna communications in rayleigh flat fading[END_REF]. Based on this scheme, Hochwald and Sweldens presented the differential unitary space-time modulation (DUSTM) scheme [START_REF] Hochwald | Differential unitary space time modulation[END_REF]. In [START_REF] Ji | A new differential space-time modulation scheme for MIMO systems with four transmit antennas[END_REF], [START_REF] Ji | A new differential space-time modulation scheme based on weyl group[END_REF], we designed new differential schemes for MIMO systems based on the Weyl group.

However, the channel model used in [START_REF] Tarokh | A differential detection scheme for transmit diversity[END_REF], [START_REF] Hughes | Differential space-time modulation[END_REF], [START_REF] Ji | A new differential space-time modulation scheme for MIMO systems with four transmit antennas[END_REF], [START_REF] Ji | A new differential space-time modulation scheme based on weyl group[END_REF] is constant during one frame and changes randomly to a new one for the next frame, which is not realistic. The channel model of the papers [START_REF] Hochwald | Unitary space-time modulation for multiple-antenna communications in rayleigh flat fading[END_REF], [START_REF] Hochwald | Differential unitary space time modulation[END_REF] is Jakes' model, which corresponds to wideband channels (frequency selective channels). In this paper, we propose a more realistic and easy to simulate time selective channel model. Then we evaluate the performance and the robustness of DSTM schemes with two, four and eight transmit antennas over this time selective channel.

The following notations will be used through the paper: Tr{A} denotes the trace of the matrix A and A H means the conjugate transpose of A. A is the Frobenius norm of A, i.e., A = i,j |a ij | 2 = Tr {A H A}. Re{z} is the real part of the complex number z. The zero-mean, unitvariance, circularly symmetric, complex Gaussian distribution is denoted as CN (0, 1).

II. DIFFERENTIAL MIMO SYSTEM MODEL

Generally, a MIMO system with M transmit antennas and N receive antennas can be written as:

y nt = M m=1 h nm x mt + w nt , n = 1, . . . , N (1) 
where x mt is the symbol sent by the transmit antenna m at time t and y nt is the symbol received by antenna n at time t; w nt is the complex additive white Gaussian noise, w nt ∼ CN (0, σ 2 ) and σ 2 is the noise variance. The coefficient h nm is the path gain from the transmit antenna m to the receive antenna n. The coefficients h nm are independent and identically distributed (iid), h nm ∼ CN (0, 1). For a narrowband MIMO channel, corresponding to low data rate wireless systems [START_REF] Kdouh | Zigbee-based sensor network for shipboard environments[END_REF] or for each sub-channel of OFDM (Orthogonal Frequency Division Multiplexing) MIMO systems [START_REF] Youssef | Distributed coding for OFDM-based transmission in cooperative broadcast networks[END_REF], the frequency response of the propagation channel can be considered constant within the frequency bandwidth of the system. Therefore, the coefficients h nm of the channel matrix are usually considered constant over the frequency bandwidth but time-variant.

To analyze the MIMO system conveniently, the matrix form of the system is used:

Y τ = H τ X τ + W τ ( 2 
)
where τ is the time index. X τ is the M × T transmission matrix, where T denotes the number of symbols transmitted by each antenna during the transmission of one matrix X τ .

H τ is the N × M channel matrix at time τ . W τ is the N × T complex, additive white Gaussian noise matrix and Y τ is the N × T received matrix. We define L equal to the normalized coherence time T c /T s during which the channel matrix H τ is approximately constant, where T c is the coherence interval and T s is the symbol duration. A popular definition of T c is: [START_REF] Sklar | Rayleigh Fading Channels, The mobile communications handbook[END_REF], where f d = v λ is the Doppler spread, v is the relative velocity between the transmitter and receiver, and λ is the signal wavelength. In practice, for simplicity, people usually use it as T c ≈ 0.5/f d . For example, with velocity v = 120 km/h, and carrier frequency f = 900 MHz, the Doppler spread is approximately 100 Hz and the coherence interval is approximately 5 ms. For a symbol rate of 30 kHz, L = 150 symbols are transmitted during the coherence interval T c . For high speed vehicular v = 350 km/h channels [START_REF] Itu-R | Requirements related to technical performance for IMT-Advanced radio interface(s)[END_REF], and carrier frequency f = 2.5 GHz, the Doppler spread is approximately 810 Hz and the coherence interval is approximately 0.6 ms. For a symbol rate of 500 kHz, L = 300 symbols are transmitted during this coherence interval.

T c = 9 16πf 2 d = 0.423 f d
For convenience, at each time slot the total power over M transmit antennas is set to be 1:

M m=1 |x mt | 2 = 1, t = 1, . . . , T. (3) 
It is proved in [START_REF] Marzetta | Capacity of a mobile multipleantenna communication link in rayleigh flat fading[END_REF] that for non-coherent MIMO systems, the capacities obtained with M > T and M = T are equal. Therefore, we choose M = T in our study.

The SNR is defined as follows:

SN R = E[|y nt -w nt | 2 ] E[|w nt | 2 ] = E | M m=1 h nm x mt | 2 E [|w nt | 2 ] = E M m=1 |h nm x mt | 2 σ 2 = E M m=1 |x mt | 2 σ 2 = 1 σ 2 (4) 
where E[•] denotes the mathematical expectation.

A. The model of differential space-time modulation

For differential space-time modulation systems, the information matrix is used to multiply the previous transmitted matrix. In general, the information matrix is selected from a group P according to the incoming information bits. For example, at time τ , X τ is transmitted. At the next time τ + 1, a block of information bits is mapped onto the matrix V iτ+1 from the group P , and then the matrix

X τ +1 = X τ V iτ+1 (5) 
is transmitted. This relation is the fundamental differential transmission equation. Therefore, the sequence of transmitted matrices is:

X 0 = V 0 X 1 = X 0 V i1 = V 0 V i1 X 2 = X 1 V i2 = V 0 V i1 V i2 . . . X τ = X τ -1 V iτ = V 0 V i1 . . . V iτ . . .
In general, the reference matrix V 0 is the identity matrix. To satisfy the constraint (3) imposed on the total transmit power, all the matrices of the group P should be unitary matrices. Furthermore, a perfect synchronization is assumed. Subsequently, a matrix stream Y 0 , . . . , Y τ , Y τ +1 , . . . is detected by the receive antennas, according to

Y τ = H τ X τ + W τ (6) 
and

Y τ +1 = H τ +1 X τ +1 + W τ +1 (7) 
For a quasi-static channel during the transmission of two successive matrices X τ and X τ +1 , we have the assumption:

H τ +1 ≈ H τ (8) 
Using the differential transmission equation ( 5), we get

Y τ +1 = H τ +1 X τ +1 + W τ +1 ≈ H τ X τ +1 + W τ +1 = Y τ V iτ+1 + W ′ τ +1 (9) 
where

W ′ τ +1 = W τ +1 -W τ V iτ+1 .
As Y τ and Y τ +1 are known by the receiver, we can use the maximum likelihood detector to estimate the information matrix:

Viτ+1 = arg min V ∈P Y τ +1 -Y τ V = arg min V ∈P Tr{(Y τ +1 -Y τ V ) H (Y τ +1 -Y τ V )} = arg max V ∈P Tr{Re(Y H τ +1 Y τ V )} (10) 
The detector gives good results if ( 8) is verified, i.e., the propagation channel can be considered quasi-static during the transmission of two successive matrices X τ , X τ +1 . The propagation channel proposed in this paper allows some variation of the propagation channel and investigate the performance degradation of the DSTM MIMO systems compared to their performance obtained considering the channel matrix constant during a frame.

III. THE NEW IMPROVED CHANNEL MODEL

A. The usual channel model for differential MIMO systems

As mentioned before, the channel model used in [START_REF] Tarokh | A differential detection scheme for transmit diversity[END_REF], [START_REF] Ji | A new differential space-time modulation scheme for MIMO systems with four transmit antennas[END_REF], [START_REF] Ji | A new differential space-time modulation scheme based on weyl group[END_REF] is constant during one frame and changes randomly for the next frame. For example with the normalized coherence interval L = 200, for M transmit antennas and N receive antennas, during the transmission of the first 200 symbols, the same channel matrix H τ is considered. The next channel matrix H τ +1 is randomly generated to be used for the next 200 symbols. However, this is not the real case. In reality, the channel changes continuously. Furthermore, at the beginning of the new frame, the reference matrix V 0 has to be transmitted again. This reduces the overall simulation efficiency.

B. The new improved channel model

To overcome the fault of channel model mentioned in last subsection, we propose a new channel model which changes continuously.

With M transmit antennas and N receive antennas, during the coherence interval L, N m = L/T = L/M transmit matrices will be sent. Thus N m channel matrices are needed to multiply the transmit matrices. We interpolate N m -1 channel matrices H(1), . . . , H(N m -1) between two successive randomly generated channel matrices R K and R K+1 instead of one constant channel matrix R K . The N m -1 interpolated channel matrices are related to the passed channel matrices and also to the future channel matrices.

The interpolated channel sequence H(1), H(2), . . . , H(N m -1) is generated as follows:

1) A fix number 2K of Rayleigh distributed matrices are randomly generated, i.e., R 1 , . . . , R K , R K+1 , . . . , R 2K . 2) With the Nyquist's sampling theorem, the channel sequence between R K and R K+1 is generated by sinc interpolation. Using the well-known Nyquist's sampling theorem, a bandlimited signal x(t) can be reconstructed from its samples x(kT 0 ) as follows:

x(t) = +∞ k=-∞ x(kT 0 ) sin f 0 π(t -kT 0 ) f 0 π(t -kT 0 ) = +∞ k=-∞ x(kT 0 ) sin π(f 0 t -k) π(f 0 t -k) (11) 
if the sampling frequency f 0 = 1/T 0 > 2f M , where f M is the maximum frequency of the signal. In our case, the Rayleigh random matrices R k can be considered as samples of the continuous channel matrix H separated by the coherence interval, so T 0 = T c = LT s . With 2K randomly generated matrices, we get the N m -1 interpolated channel matrices between the matrices R K and R K+1 : 

H(i) = 2K k=1 R k sin π [f 0 (KLT s + iM T s ) -k] π [f 0 (KLT s + iM T s ) -k] = 2K k=1 R k sin π(K + i/N m -k) π(K + i/N m -k) , i = 1, 2, . . . , N m -1. (12) 
For example, with 2K = 10 randomly generated Rayleigh channel matrices R 1 , . . . , R 5 , R 6 , . . . , R 10 , the number of transmit antennas M = 4, and the normalized coherence interval L = 160, we get N m -1 = 39 interpolated channel matrices H(i) between R 5 and R 6 . This procedure is illustrated in Fig 1.

The module of one channel coefficient h nm obtained by interpolation between R K and R K+1 is shown in Fig. 2. A complete figure of the generated channel coefficient h nm compared with the randomly generated Rayleigh values is given in Fig. 3.

We can see that the channel generated by this method changes slightly for each two successive transmit matrices.

However, there is still the problem of the selection of the number K. Here, we resort to the relative error to select appropriate K. As discussed before, with 2 × K Rayleigh distributed channel matrices, we get N m -1 interpolated channel matrices. We select a very large number, for example K max = 4000 to get a group of interpolated reference channel matrices. We estimate that K m ax is large enough to obtain accurate channel matrices by interpolation. With K decreasing to 1, we get other K max -1 groups of interpolated channel matrices. Compared with the reference group, each group has different variations. The groups of interpolated channel matrices are:

{H k (1), H k (2), • • • , H k (N m -1)}, k = 1, • • • , K max . (13)
We define the mean relative error as:

ε k = 1 N m -1 Nm-1 i=1 H Kmax (N m ) -H k (i) H Kmax (i) , k = 1, 2, • • • , K max . (14) 
As the matrices R 1 , . . . , R K , R K+1 , . . . , R 2K are generated randomly, the curve of the relative error is very rough. To smooth the curve, we calculate the relative error 100 times and get the mean as the final relative error. The curve of relative error is shown in Fig. 4 with K max = 4000 and N m = 50. We get the table of relative error versus K in Table I with N m = 50 and N m = 10 respectively. On the basis of these data, we set K = 30 in our simulations. In this case, the relative error is below 10%. 

IV. THE DIFFERENTIAL SPACE-TIME MODULATION SCHEME

In this paper, the performance of the DSTM schemes proposed in [START_REF] Ji | A new differential space-time modulation scheme for MIMO systems with four transmit antennas[END_REF], [START_REF] Ji | A new differential space-time modulation scheme based on weyl group[END_REF] are evaluated over this new channel model. This scheme is based on the Weyl group.

The multiplicative Weyl group G w [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF] is generated by two matrices 1

√ 2 1 1 1 -1 and [ 1 0 0 i ].
As these two matrices are unitary, all the matrices generated by them are also unitary. For convenience, we divide the group into 12 cosets C 0 , C 1 , . . . , C 11 . Each coset contains 16 invertible matrices. The first coset which is also a subgroup of the Weyl group is defined as:

C 0 = α 1 0 0 1 , 1 0 0 -1 , 0 1 1 0 , 0 1 -1 0 (15) 
with α ∈ {1, -1, i, -i}. The 12 cosets of G w are derived from C 0 as follows:

C k = A k C 0 , ∀k = 0, 1, . . . , 11 (16) 
where the matrices A k , k = 0, 1, . . . , 5 are respectively:

A 0 = 1 0 0 1 , A 1 = 1 0 0 i , A 2 = 1 √ 2 1 1 1 -1 , A 3 = 1 √ 2 1 1 i -i , A 4 = 1 √ 2 1 i 1 -i , A 5 = 1 √ 2 
1 i i 1 ,
and the matrices A k , k = 6, 7, . . . , 11 are given by:

A k+6 = ηA k , with η = (1 + i)/ √ 2, ∀k = 0, 1, . . . , 5 (17) 
We define the distance between two matrices M a and M b as:

D(M a , M b ) = M a -M b . (18) 

A. DSTM scheme with 2 transmit antennas

In this paper, for MIMO systems with 2 transmit antennas and R = 1 bps/Hz, 4 matrices are needed. We select matrices

[ 1 0 0 1 ], [ 1 0 0 -1 ], [ 0 1 1 0 ]
, and [ 0 1 -1 0 ] as the information group. For R = 2 bps/Hz, we select C 0 which has 16 matrices as the group to map the 4 bits information block as in [START_REF] Ji | A new differential space-time modulation scheme for MIMO systems with four transmit antennas[END_REF].

B. DSTM scheme with 4 transmit antennas

For MIMO systems with 4 transmit antennas, the Kronecker product is used to expand the 2 × 2 Weyl group to a 4 × 4 matrices group. In fact, there are 4608 distinct matrices in this group G w4 .

For R = 1 bps/Hz, the first matrix in C 0 ([ 1 0 0 1 ]) is used to make Kronecker product with all the matrices in C 0 to get 16 unitary matrices as in [START_REF] Ji | A new differential space-time modulation scheme based on weyl group[END_REF].

For R = 2 bps/Hz, the best set used in [START_REF] Ji | A new differential space-time modulation scheme based on weyl group[END_REF] which contains 256 matrices is used here. In fact, the first 16 matrices from every successive 192 matrices of the group G w4 are selected to form the set.

C. DSTM scheme with 8 transmit antennas

For MIMO systems with 8 transmit antennas and R = 1 bps/Hz, 256 matrices should be generated as the mapping group. We get the group as follows. First, we generate a set of 16 matrices of C 44 by using the Kronecker product between the first 4 matrices of C 0 . Second, the Kronecker product between C 0 (16 matrices of the size 2 × 2) and C 44 (16 matrices of the size 4 × 4) produces a set C 88 with 256 matrices.

V. SIMULATION RESULTS

The performance of the differential MIMO systems are evaluated over the frame constant channel (step channel) and over the proposed time selective channel (continuous channel). We set L = 200, which means that for 2, 4 and 8 transmit antennas, N m = 100, 50 and 25 respectively. Fig. 5 shows that for R = 1 bps/Hz, the M8N8 scheme offers for BER = 10 -4 a SNR gain of about 5.5 dB compared to the M4N4 scheme and 17 dB compared to the M2N2 scheme on the step channel. Over the new continuous channel, similar gains are obtained with the M8N8 scheme compared to the M4N4 and M2N2 schemes. Furthermore, using the continuous channel leads to a degradation compared to the step channel which is about 1 dB for a BER = 10 -4 with the M8N8 scheme and 0.6 dB with M2N2 scheme. Similar relative results for R = 2 bps/Hz M8N8, M4N4 and M2N2 schemes are obtained in Fig. 6. As expected, the M8N8 scheme is more sensitive than the M4N4 and M2N2 schemes to the time selectivity of the channel. Fig. 7 presents the performance of M4N4 DSTM scheme with R = 1 bps/Hz over the step channel and over the new continuous channel with different normalized coherence time L. As already mentioned, the faster the channel changes, the smaller the value of L. Consistent with our supposition, there is a trend that as L grows the BER performance becomes better. 

VI. CONCLUSION

In this paper we propose a simple and more realistic timeselective propagation channel in order to obtain more reliable estimations of the performance of DSTM MIMO systems with 2, 4 and 8 transmit antennas. This model is based as usual on random Rayleigh channel matrices but is completed with intermediate channel matrices obtained by sinc-interpolation. During the transmission of two successive matrices, the propagation channel may change, which determines a degradation of the performance of the differential system. This degradation is evaluated by simulation for DSTM MIMO systems using 2, 4 and 8 transmit antennas and for two values of the spectral efficiency. As expected, the degradation is more important for MIMO systems using more antennas. Moreover, the degradation is more important if the normalized coherence time is reduced. Thus, the proposed channel model does not make a difference between slow and fast Rayleigh channels, the only parameter making the difference being the normalized coherence time.
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