
HAL Id: hal-01016843
https://hal.science/hal-01016843v2

Submitted on 17 Jul 2014 (v2), last revised 12 Nov 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAGA: A Fast Incremental Gradient Method With
Support for Non-Strongly Convex Composite Objectives

Aaron Defazio, Francis Bach, Simon Lacoste-Julien

To cite this version:
Aaron Defazio, Francis Bach, Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient Method
With Support for Non-Strongly Convex Composite Objectives. 2014. �hal-01016843v2�

https://hal.science/hal-01016843v2
https://hal.archives-ouvertes.fr

SAGA: A Fast Incremental Gradient Method With Support for
Non-Strongly Convex Composite Objectives

Aaron Defazio
NICTA

Australian National University, Canberra

Francis Bach
INRIA - Sierra Project-Team

École Normale Supérieure, Paris, France

Simon Lacoste-Julien
INRIA - Sierra Project-Team

École Normale Supérieure, Paris, France

July 17, 2014

Abstract

In this work we introduce a new optimisation method called SAGA in the spirit of SAG, SDCA, MISO
and SVRG, a set of recently proposed incremental gradient algorithms with fast linear convergence rates.
SAGA improves on the theory behind SAG and SVRG, with better theoretical convergence rates, and has
support for composite objectives where a proximal operator is used on the regulariser. Unlike SDCA,
SAGA supports non-strongly convex problems directly, and is adaptive to any inherent strong convexity of
the problem. We give experimental results showing the effectiveness of our method.

1 Introduction

Remarkably, recent advances [1, 2] have shown that it is possible to minimise strongly convex finite sums
provably faster in expectation than is possible without the finite sum structure. This is significant for ma-
chine learning problems as a finite sum structure is common in the empirical risk minimisation setting. The
requirement of strong convexity is likewise satisfied in machine learning problems in the typical case where
a quadratic regulariser is used.

In particular, we are interested in minimising functions of the form

f(x) =
1

n

n∑
i=1

fi(x),

where x ∈ Rd, each fi is continuous and convex, and has Lipschitz continuous derivative with constant L.
We will also consider the case where each fi is strongly convex with constant µ, and the “composite” (or
proximal) case where an additional regularisation function is added:

F (x) = f(x) + h(x),

where h is continuous but potentially non-differentiable, and where the proximal operation of h is easy to
compute.

Our contributions are as follows. In Section 2 we describe the SAGA algorithm, a novel incremental
gradient method. In Section 5 we prove theoretical convergence rates for SAGA in the strongly convex case
better than those for SAG [1] and SVRG [3], and a factor of 2 from the SDCA [2] convergence rates. These

1

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

http://hal.archives-ouvertes.fr/hal-01016843
http://hal.archives-ouvertes.fr

rates also hold in the composite setting. Additionally, we show that like SAG but unlike SDCA, our method
is applicable to non-strongly convex problems without modification. We establish theoretical convergence
rates for this case also. In Section 3 we discuss the relation between each of the fast incremental gradient
methods, showing that each stems from a very small modification of another.

2 SAGA Algorithm

We start with some known initial vector x0 ∈ Rd and known derivatives f ′i(φ
0
i) ∈ Rd with φ0

i = x0

for each i. These derivatives are stored in a table data-structure of length n, or alternatively a n × d matrix.
Given the value of xk and of each f ′i(φ

k
i) at the end of iteration k, the updates for iteration k+1 is as follows:

1. Pick a j uniformly at random.

2. Take φk+1
j = xk, and store f ′j(φ

k+1
j) in the table. All other entries in the table remain unchanged. The

quantity φk+1
j is not explicitly stored.

3. Update x using f ′j(φ
k+1
j), f ′j(φ

k
j) and the table average:

wk+1 = xk − 1

η
f ′j(φ

k+1
j) +

1

η

[
f ′j(φ

k
j)− 1

n

n∑
i=1

f ′i(φ
k
i)

]
, (1)

xk+1 = proxhη
(
wk+1

)
. (2)

The proximal operator we use above is defined as

proxhη (y) := argmin
x∈Rd

{
h(x) +

η

2
‖x− y‖2

}
. (3)

In the strongly convex case, when a step size of η = 2(µn+ L) is chosen we have the following conver-
gence rate in the composite and hence also the non-composite case:

E
∥∥∥xk − x∗∥∥∥2 ≤ (1− µ

2(µn+ L)

)k [∥∥x0 − x∗∥∥2 + 1

µn+ L

[
f(x0)−

〈
f ′(x∗), x0 − x∗

〉
− f(x∗)

]]
.

We prove this result in Section 5. The requirement of strong convexity can be relaxed from needing to hold
for each fi to just holding on average, but at the expense of a worse geometric rate (1− µ

6(µn+L)), requiring
a step size of η = 3(µn+ L).

In the non-strongly convex case, we have established the convergence rate in terms of the average iterate,
excluding step 0: x̄k = 1

k

∑k
t=1 x

t. Using a step size of η = 3L we have

E
[
F (x̄k)

]
− F (x∗) ≤ 3n

k

[
3L

2n

∥∥x0 − x∗
∥∥2

+ f(x0)−
〈
f ′(x∗), x0 − x∗

〉
− f(x∗)

]
.

This result is proved in the Appendix. That same step size can work in both the strongly convex and
non-strongly convex case, allowing the algorithm to automatically adapt to the level of strong convexity
naturally present. If η = 3L is used on strongly convex problems, the geometric constant changes to(
1−min

{
1

2n ,
µ

3L

})
.

3 Related Work

In the non-composite case, it is possible to write the SAGA algorithm in terms of two quantities at each step
instead of one: xk and uk.

2

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

Non-composite case
Given the value of uk and of each f ′i(φ

k
i) at the end of iteration k, the updates for iteration k+1, is as follows:

1. Calculate xk:

xk = uk − 1

η

n∑
i=1

f ′i(φ
k
i). (4)

2. Update u with uk+1 = uk + 1
n (xk − uk).

3. Pick a j uniformly at random.

4. Take φk+1
j = xk, and store f ′j(φ

k+1
j) in the table replacing f ′j(φ

k
j). All other entries in the table remain

unchanged. The quantity φk+1
j is not explicitly stored.

Writing the algorithm in this form makes the relationship with prior methods more apparent. We explore the
relationship between SAGA and the other fast incremental gradient methods in this section. By using SAGA
as a midpoint, we are able to provide a more unified view than is available in the existing literature. A brief
summary of the properties of each method considered in this Section is given in Figure 1.

SAG

If we eliminate xk we get an update for u in SAGA of:

uk+1 = uk − 1

ηn

n∑
i=1

f ′i(φ
k
i). (5)

After translating notation, this is identical to the SAG (Stochastic Average Gradient) [1] update, except instead
of setting φk+1

j = uk, we are using a more aggressive update of φk+1
j = xk = uk − 1

η

∑
i f
′
i(φ

k
i). The order

of the steps is also changed, as in SAG the jth gradient is updated before the x step is taken, where as above it
is updated after. However the order of the steps for SAG doesn’t effect the algorithm so the ordering change
is not significant.

The significance of this change is the effect it has on our current estimate of the gradient. In SAG, the
gradient approximation 1

n

∑
i f
′
i(φ

k
i) is biased away from the true gradient, whereas for all the other methods

considered here, including SAGA, the gradient approximation is unbiased. The trade-off for the increased
bias is a decreased variance in the f ′i(φ

k
i) gradients, due to the less aggressive φki updates used.

The per update cost of SAGA and SAG is essentially the same. The advantage over SAG is that SAGA
has a much more complete, simple and tight theory. The theoretical convergence rate is better for SAGA, and
no theory exists for the use of proximal operators in SAG.

SVRG/S2GD

Recall the xk+1 update for SAGA (Equation 1) in the non-composite case:

xk+1 = xk − 1

η
f ′j(x

k) +
1

η

[
f ′j(φ

k
j)− 1

n

n∑
i=1

f ′i(φ
k
i)

]
. (6)

This can be compared against the SVRG (Stochastic Variance Reduced Gradient) [3] update:

xk+1 = xk − 1

η
f ′j(x

k) +
1

η

[
f ′j(x̃)− 1

n

n∑
i=1

f ′i(x̃)

]
.

The vector x̃ is not updated every step, but rather the loop over k appears inside an outer loop, where x̃ is
updated at the start of each outer iteration. Essentially SAGA is at the midpoint between SVRG and SAG; it

3

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

SAG SDCA SVRG FINITO SAGA
Strongly Convex (SC) 3 3 3 3 3

Convex, Non-SC* 3 7 ? ? 3

Prox Reg. ? 7 3 7 3

Non-smooth 7 3 7 7 7

Low Storage Cost 7 7 3 7 7

Simple(-ish) Proof 7 3 3 3 3

Adaptive to SC 3 7 ? ? 3

Figure 1: Basic summary of method properties. Question marks denote unproven, but not experimentally ruled out
cases. (*) Note that any method can be applied to non-strongly convex problems by adding a small amount of L2
regularisation, this row describes methods that do not require this trick.

updates the φj value each time index j is picked, whereas SVRG updates all of φ’s as a batch. The S2GD
method [4] has the same update as SVRG, just differing in how the number of inner loop iterations is chosen.
We use SVRG henceforth to refer to both methods.

SVRG makes a trade-off between time and space. For the equivalent practical convergence rate it makes
2x-3x more gradient evaluations, but in doing so it does not need to store a table of gradients, but a single
average gradient. The usage of SAG v.s. SVRG is problem dependent. For example for linear predictors
where gradients can be stored as a reduced vector of dimension p − 1 for p classes, SAGA is preferred over
SVRG both theoretically and in practice. For neural networks, where no theory is available for either method,
the storage of gradients is generally more expensive than the additional backwards propagations, but this is
computer architecture dependent.

SVRG also has an additional parameter besides step size that needs to be set, namely the number of
iterations per inner loop (m). This parameter can be set via the theory, or conservatively as m = n, however
doing so does not give anywhere near the best practical performance. Having to tune one parameter instead
of two is a practical advantage for SAGA.

Finito/MISOµ

The Finito [5] and MISOµ [6] methods are also closely related to SAGA. Both Finito and MISOµ use updates
of the following form, for a step length η:

xk+1 =
1

n

∑
i

φki −
1

η

n∑
i=1

f ′i(φ
k
i).

Note that the step sized used is of the order of µn, roughly comparable to the η in SAGA. This should be
contrasted with the much smaller ηn step size used in SAG. We will introduce the notation φ̄ = 1

n

∑
i φ

k
i to

simplify the discussion of this algorithm.
SAGA can be interpreted as Finito, but with the quantity φ̄ replaced with u, which is updated in the same

way as φ̄, but in expectation. To see this, consider how φ̄ changes in value and in expectation:

E
[
φ̄k+1

]
= E

[
φ̄k +

1

n

(
xk − φkj

)]
= φ̄k +

1

n

(
xk − φ̄k

)
.

The update is identical in expectation to the update for u, uk+1 = uk + 1
n (xk − uk).

There are three advantages of SAGA over Finito/MISOµ. SAGA doesn’t require strong convexity to
work, it has support for proximal operators, and it doesn’t require storing the φi values. MISO has proven
support for proximal operators only in the case where impractically small step sizes are used [6]. The big
advantage of Finito/MISOµ is that when it is applicable, it can be used with a per-pass repermuted access
ordering, which can make it up to 2x faster. Finito/MISOµ is particularly useful when fi is computationally
expensive to compute compared to the extra storage costs required over the other methods.

4

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

SDCA

The Stochastic Dual Coordinate Descent (SDCA) [2] method on the surface appears quite different from the
other methods considered. It works with the convex conjugates of the fi functions. However, in this section
we show a novel transformation of SDCA into an equivalent method that only works with primal quantities,
and is closely related to the MISOµ method.

Consider the following algorithm:

SDCA algorithm in the primal
Step k + 1:

1. Pick an index j uniformly at random.

2. Compute φk+1
j = proxfjη (z), where η = µn and z = − 1

η

∑n
i 6=j f

′
i(φ

k
i).

3. Store the gradient f ′j(φ
k+1
j) = η

(
z − φk+1

j

)
in the table at location j. For i 6= j, the table entries

are unchanged (f ′i(φ
k+1
i) = f ′i(φ

k
i)).

At completion, return xk = − 1
η

∑n
i f
′
i(φ

k
i) .

We claim that this algorithm is equivalent to the version of SDCA where exact block-coordinate max-
imisation is used on the dual.1 Firstly, note that while SDCA was originally described for one-dimensional
outputs (binary classification or regression), it has been expanded to cover the multi-class predictor case [7]
(called Prox-SDCA there). In this case, the primal objective has a separate strongly convex regulariser, and
the functions fi are restricted to the form fi(x) := ψi(X

T
i x), where Xi is a d × p feature matrix, and ψi is

the loss function that takes a p dimensional input, for p classes. To stay in the same general setting as the
other incremental gradient methods, we work directly with the fi(x) functions rather than the more structured
ψi(X

T
i x). The dual objective to maximise then becomes

D(α) =

−µ
2

∥∥∥∥∥ 1

µn

n∑
i=1

αi

∥∥∥∥∥
2

− 1

n

n∑
i=1

f∗i (−αi)

 ,
where αi’s are d-dimensional dual variables. Generalising the exact block-coordinate maximisation update
that SDCA performs to this form, we get the dual update for block j (with xk the current primal iterate):

αk+1
j = αkj + argmax

∆aj∈Rd

{
−f∗j

(
−αkj −∆αj

)
− µn

2

∥∥∥∥xk +
1

µn
∆αj

∥∥∥∥2
}
. (7)

In the special case where fi(x) = ψi(X
T
i x), we can see that (7) gives exactly the same update as Option I of

Prox-SDCA in [7, Figure 1], which operates instead on the equivalent p-dimensional dual variables α̃i with
the relationship that αi = Xiα̃i.2 As noted by Shalev-Shwartz & Zhang [7], the update (7) is actually an
instance of the proximal operator of the convex conjugate of fj . Our primal formulation exploits this fact by
using a relation between the proximal operator of a function and its convex conjugate known as the Moreau
decomposition:

proxf
∗
(v) = v − proxf (v).

This decomposition allows us to compute the proximal operator of conjugate via the primal proximal operator.
As this is the only use in the basic SDCA method of the conjugate function, applying this decomposition

1More precisely, to Option I of Prox-SDCA as described in [7, Figure 1]. We will simply refer to this method as “SDCA” in this
paper for brevity.

2This is because f∗i (αi) = inf
α̃i s.t. αi=Xiα̃i

ψ∗i (α̃i).

5

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

allows us to completely eliminate the “dual” aspect of the algorithm, yielding the above primal form of
SDCA. The dual variables are related to the primal representatives φi’s through αi = −f ′i(φi). The KKT
conditions ensure that if the αi values are dual optimal then xk = 1

η

∑
i αi as defined above is primal optimal.

The same trick is commonly used to interpret Dijkstra’s set intersection as a primal algorithm instead of a
dual block coordinate descent algorithm [8].

The primal form of SDCA differs from the other incremental gradient methods described in this section
in that it assumes strong convexity is induced by a separate strongly convex regulariser, rather than each fi
being strongly convex. We now show how to modify SDCA so that it works without a separate regulariser,
giving a method that is at the midpoint between Finito and SDCA. Using Lagrangian duality theory, SDCA
can be shown at step k as minimising the following lower bound:

Ak(x) =
1

n
fj(x) +

1

n

n∑
i 6=j

[
fi(φ

k
i) +

〈
f ′i(φ

k
i), x− φki

〉]
+
µ

2
‖x‖2 .

Instead of directly including the regulariser in this bound, we can use the standard strong convexity lower
bound for each fi, by removing µ

2 ‖x‖
2 and changing the expression in the summation to fi(φki)+

〈
f ′i(φ

k
i), x− φki

〉
+

µ
2 ‖x− φi‖

2. The transformation to having strong convexity within the fi functions yields the following sim-
ple modification to the algorithm: φk+1

j = proxfjµ(n−1)(z), where:

z =
1

n− 1

∑
i 6=j

φki −
1

µ(n− 1)

∑
i 6=j

f ′i(φ
k
i).

It can be shown that after this update:

xk+1 = φk+1
j =

1

n

∑
i

φk+1
i − 1

µn

∑
i

f ′i(φ
k+1
i).

Now the similarity to Finito is apparent if this equation is compared Equation 3: xk+1 = 1
n

∑
i φ

k
i −

1
η

∑n
i=1 f

′
i(φ

k
i). The only difference is that the vectors on the right hand side of the equation are at their

values at step k + 1 instead of k. Note that there is a circular dependency here, as φk+1
j := xk+1 but φk+1

j

appears in the definition of xk+1. Solving the proximal operator is the resolution of the circular dependency.
This mid-point between Finito and SDCA is interesting in it’s own right, as it appears experimentally to have
similar robustness to permuted orderings as Finito, but it has no tunable parameters like SDCA.

When the proximal operator above is fast to compute, say on the same order as just evaluating fj , then
SDCA can be the best method among those discussed. It is a little slower than the other methods discussed
here, but it has no tuneable parameters at all. It is also the only choice when each fi is not differentiable.
The major disadvantage of SDCA is that it can not handle non-strongly convex problems directly. Although
like most methods, adding a small amount of quadratic regularisation can be used to recover a convergence
rate. It is also not adapted to use proximal operators for the regulariser in the composite objective case. The
requirement of computing the proximal operator of each loss fi initially appears to be a big disadvantage,
however there are variants of SDCA, discussed in the next section, that remove this requirement, but they
introduce additional downsides.

Other SDCA variants

The SDCA theory has been expanded to cover a number of other methods of performing the coordinate step
[7]. These variants replace the proximal operation in our primal interpretation in the previous section with an
update where φk+1

j is chosen so that:

f ′j(φ
k+1
j) = (1− β)f ′j(φ

k
j) + βf ′j(x

k).

6

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

Where xk = − 1
µn

∑
i f
′
i(φ

k
i). The variants differ in how β ∈ [0, 1] is chosen. Note that φk+1

j does not
actually have to be explicitly known, just the gradient f ′j(φ

k+1
j), which is the result of the above interpolation.

Variant 5 by Shalev-Shwartz & Zhang [7] does not require operations on the conjugate function, it simply uses
β = µn

L+µn . The most practical variant performs a line search involving the convex conjugate to determine β.
As far as we are aware, there is no simple primal equivalent of this line search. So in cases where we can not
compute the proximal operator from the standard SDCA variant, we have the choice of either introducing a
tuneable parameter into the algorithm (β), or the use of a dual line search, which requires an efficient way to
evaluate the convex conjugates of each fi.

4 Implementation

We briefly discuss some implementation concerns:

• We give three equivalent formulations of the SAGA algorithm in this paper, Equations (4), (5) and (6).
If adapting existing SAG code, it may be best to implement using (5). For the composite loss case,
Equation (6) is the most natural.

• The SAGA update as stated is slower than necessary when derivatives are sparse. A just-in-time up-
dating of u or x may be performed just as is suggested for SAG [1], which ensures that only sparse
updates are done at each iteration.

• We give the form of SAGA for the case where each fi are strongly convex. However in practice
we usually have only convex fi, with strong convexity in f induced by the addition of a quadratic
regulariser. This quadratic regulariser may be split amount the fi functions evenly, to satisfy our
assumptions. It is perhaps easier to use a variant of SAGA where the regulariser µ

2 ||x||2 is explicit,
such as the following modification of Equation (6):

xk+1 =

(
1− µ

η

)
xk − 1

η
f ′j(x

k) +
1

η

[
f ′j(φ

k
j)− 1

n

∑
i

f ′i(φ
k
i)

]
.

For sparse implementations instead of scaling xk at each step, a separate scaling constant βk may be
scaled instead, with βkxk being used in place of xk. This is a standard trick used with stochastic
gradient methods.

5 Theory

In this section, to lighten the notation, we drop the superscript on quantities whose values are at iteration k
(i.e. x , xk). All expectations are taken with respect to the choice of j at iteration k + 1 and conditioned on
xk and each f ′i(φ

k
i) unless stated otherwise.

We start with two basic lemmas that just state properties of convex functions.

Lemma 1. Let f be µ-strongly convex and have Lipschitz continuous gradients with constant L. Then we
have for all x and y:

f(x) ≥ f(y) +
〈
f ′(y), x− y

〉
+

1

2 (L− µ)
∥∥f ′(x)− f ′(y)∥∥2

+
µL

2 (L− µ) ‖y − x‖
2 +

µ

(L− µ)
〈
f ′(x)− f ′(y), y − x

〉
.

7

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

Proof. Define the function g as g(x) = f(x) − µ
2 ‖x‖

2. Then the gradient is g′(x) = f ′(x) − µx. g has a
lipschitz gradient with with constant L− µ. By convexity we have [9, Thm. 2.1.5]:

g(x) ≥ g(y) + 〈g′(y), x− y〉+
1

2(L− µ)
‖g′(x)− g′(y)‖2 .

Substituting in the definition of g and g′, and simplifying terms gives the result.

Corollary 1. We can apply Lemma 1 to our finite sum structure, where each fi is µ-strongly convex and has
Lipschitz continuous gradients with constant L. We get that for all x and x∗:〈
f ′(x), x∗ − x

〉
≤ L− µ

L
[f(x∗)− f(x)]− µ

2
‖x∗ − x‖2 − 1

2Ln

∑
i

∥∥f ′i(x∗)− f ′i(x)∥∥2 − µ

L

〈
f ′(x∗), x− x∗

〉
.

Lemma 2. We have that for all φi and x∗:

1

n

∑
i

‖f ′i(φi)− f ′i(x∗)‖
2 ≤ 2L

[
1

n

∑
i

fi(φi)− f(x∗)− 1

n

∑
i

〈f ′i(x∗), φi − x∗〉
]
.

Proof. Apply the standard inequality f(y) ≥ f(x)+ 〈f ′(x), y − x〉+ 1
2L ‖f ′(x)− f ′(y)‖2, with y = φi and

x = x∗, for each fi, and sum.

Lemma 3. It holds that for any φi, x∗, xk and β > 0, with wk+1 as defined in Equation 1:

E
∥∥∥∥wk+1 − xk − 1

η
f ′(x∗)

∥∥∥∥2

≤ 1 + β−1

η2
E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

+
1 + β

η2
E
∥∥f ′j(xk)− f ′j(x∗)

∥∥2− β

η2

∥∥f ′(xk)− f ′(x∗)
∥∥2
.

Proof. We follow a similar argument as occurs in the SVRG proof [3] for this term, but with a tighter ar-
gument. The tightening comes from using ‖x+ y‖2 ≤ (1 + β−1) ‖x‖2 + (1 + β) ‖y‖2 instead of the
simpler β = 1 case they use. The other key trick is the use of the standard variance decomposition
E[‖x− E[x]‖2] = E[‖x‖2]− ‖E[x]‖2 three times.

E
∥∥∥∥wk+1 − xk + 1

η
f ′(x∗)

∥∥∥∥2
= E

∥∥∥∥∥− 1

ηn

∑
i

f ′i(φi) +
1

η
f ′(x∗) +

1

η

[
f ′j(φj)− f ′j(xk)

]∥∥∥∥∥
2

=
1

η2
E

∥∥∥∥∥
[
f ′j(φj)− f ′j(x∗)−

1

n

∑
i

f ′i(φi) + f ′(x∗)

]
−
[
f ′j(x

k)− f ′j(x∗)− f ′(xk) + f ′(x∗)
]∥∥∥∥∥

2

+
1

η2

∥∥∥f ′(xk)− f ′(x∗)∥∥∥2
≤ 1 + β−1

η2
E

∥∥∥∥∥f ′j(φj)− f ′j(x∗)− 1

n

∑
i

f ′i(φi) + f ′(x∗)

∥∥∥∥∥
2

+
1 + β

η2
E
∥∥∥f ′j(xk)− f ′j(x∗)− f ′(xk) + f ′(x∗)

∥∥∥2 + 1

η2

∥∥∥f ′(xk)− f ′(x∗)∥∥∥2
≤ 1 + β−1

η2
E
∥∥f ′j(φj)− f ′j(x∗)∥∥2 + 1 + β

η2
E
∥∥∥f ′j(xk)− f ′j(x∗)∥∥∥2 − β

η2

∥∥∥f ′(xk)− f ′(x∗)∥∥∥2 .

Theorem 1. With x∗ the optimal solution, take

T =
1

n

∑
i

fi(φi)− f(x∗)− 1

n

∑
i

〈f ′i(x∗), φi − x∗〉+ c ‖x− x∗‖2 .

8

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

Then with η = 2(µn+ L), c = η2

2(η−µ)n , and κ = η/µ, we have that:

E[T k+1] ≤ (1− 1

κ
)T k.

Proof. The first three terms in T k+1 are straight-forward to simplify:

E

[
1

n

∑
i

fi(φ
k+1
i)

]
=

1

n
f(x) +

(
1− 1

n

)
1

n

∑
i

fi(φi).

E

[
− 1

n

∑
i

〈
f ′i(x

∗), φk+1
i − x∗

〉]
= − 1

n
〈f ′(x∗), x− x∗〉 −

(
1− 1

n

)
1

n

∑
i

〈f ′i(x∗), φi − x∗〉 .

For the change in the last term of T we apply the non-expansiveness of the proximal operator3:

c
∥∥xk+1 − x∗

∥∥2
= c

∥∥∥∥proxη(wk+1)− proxη(x∗ − 1

η
f ′(x∗))

∥∥∥∥2

≤ c

∥∥∥∥wk+1 − x∗ +
1

η
f ′(x∗)

∥∥∥∥2

.

Then we expand the quadratic and apply E[wk+1] = xk − 1
ηf
′(xk) to simplify the inner product term:

cE
∥∥∥∥wk+1 − x∗ +

1

η
f ′(x∗)

∥∥∥∥2

= cE
∥∥∥∥x− x∗ + wk+1 − x+

1

η
f ′(x∗)

∥∥∥∥2

= c ‖x− x∗‖2 + 2cE
[〈
wk+1 − x+

1

η
f ′(x∗), x− x∗

〉]
+ cE

∥∥∥∥wk+1 − x+
1

η
f ′(x∗)

∥∥∥∥2

= c ‖x− x∗‖2 − 2c

η
〈f ′(x)− f ′(x∗), x− x∗〉+ cE

∥∥∥∥wk+1 − x+
1

η
f ′(x∗)

∥∥∥∥2

≤ c ‖x− x∗‖2 − 2c

η
〈f ′(x), x− x∗〉+

2c

η
〈f ′(x∗), x− x∗〉 − cβ

η2
‖f ′(x)− f ′(x∗)‖2

+

(
1 + β−1

)
c

η2
E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

+
(1 + β) c

η2
E
∥∥f ′j(x)− f ′j(x∗)

∥∥2
. (Lemma 3)

The value of β shall be fixed later. Now we apply Corollary 1 to bound − 2c
η 〈f ′(x), x− x∗〉 and Lemma 2

to bound E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

:

cE
∥∥xk+1 − x∗

∥∥2 ≤
(
c− cµ

η

)
‖x− x∗‖2 +

(
(1 + β)c

η2
− c

ηL

)
E
∥∥f ′j(x)− f ′j(x∗)

∥∥2

−2c(L− µ)

ηL
[f(x)− f(x∗)− 〈f ′(x∗), x− x∗〉]− cβ

η2
‖f ′(x)− f ′(x∗)‖2

+
2
(
1 + β−1

)
cL

η2

[
1

n

∑
i

fi(φi)− f(x∗)− 1

n

∑
i

〈f ′i(x∗), φi − x∗〉
]
.

We can now combine the bounds we have derived for each term in T , and pull out a fraction 1
κ of T k (for any κ

at this point). Together with the inequality−‖f ′(x)− f ′(x∗)‖2 ≤ −2µ [f(x)− f(x∗)− 〈f ′(x∗), x− x∗〉] [9,

3Note that the first equality below is the only place in the proof where we use the fact that x∗ is an optimality point.

9

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

Fu
nc

tio
n

su
b-

op
tim

al
ity

5 10 15 20

10−4

10−8

10−12

5 10 15 20

10−4

10−8

10−12

5 10 15 20

10−4

10−8

10−12

5 10 15 20

100

10−4

10−8

10−12

5 10 15 20

10−1

10−2

5 10 15 20

3×10−2

2×10−2

5 10 15 20

102

101

100

10−1

10−2

5 10 15 20

100

10−1

Gradient evaluations / n
5101520

10010�410�810�1210�16
Finito perm Finito SAGA SVRG SAG SDCA LBFGS

Figure 2: From left to right we have the MNIST, COVTYPE, IJCNN1 and MILLIONSONG datasets. Top row is the L2
regularised case, bottom row the L1 regularised case.

Thm. 2.1.10], that yields:

E[T k+1]− T k ≤ − 1

κ
T k +

(
1

n
− 2c(L− µ)

ηL
− 2cµβ

η2

)[
f(x)− f(x∗)−

〈
f ′(x∗), x− x∗

〉]
+

(
1

κ
+

2(1 + β−1)cL

η2
− 1

n

)[
1

n

∑
i

fi(φi)− f(x∗)−
1

n

∑
i

〈
f ′i(x

∗), φi − x∗
〉]

+

(
1

κ
− µ

η

)
c ‖x− x∗‖2 +

(
(1 + β)c

η2
− c

ηL

)
E
∥∥f ′j(x)− f ′j(x∗)∥∥2 . (8)

Note that each of the terms in square brackets are positive, and it can be readily verified that our assumed
values for the constants (η = 2(µn+ L), c = η2

2(η−µ)n , and κ = η/µ), together with β = 2µn+L
L ensure that

each of the quantities in round brackets are non-positive.

Corollary 2. Note that c
∥∥xk − x∗∥∥2 ≤ T k, and therefore by chaining the expectations, plugging in the

constants explicitly and using µ(n− 0.5) ≤ µn to simplify the expression, we get:

E
[∥∥∥xk − x∗∥∥∥2] ≤ (1− µ

2(µn+ L)

)k [∥∥x0 − x∗∥∥2 + 1

µn+ L

[
f(x0)−

〈
f ′(x∗), x0 − x∗

〉
− f(x∗)

]]
.

Here the expectation is over all choices of index jk up to step k.

6 Experiments

We performed a series of experiments to validate the effectiveness of SAGA. We tested a binary classifier on
MNIST, COVTYPE, IJCNN1 and a least squares predictor on MILLIONSONG. Details of these datasets can
be found in [5]. We used the same code base for each method, just changing the main update rule. SVRG
was tested with the recalibration pass used every n iterations, as suggested in [4]. Each method had its step
size parameter chosen so as to give the fastest convergence.

We tested with a L2 regulariser, which all methods support, and with a L1 regulariser on a subset of the
methods. The results are shown in Figure 2. We can see that Finito (perm) performs the best on a per epoch
equivalent basis, but it can be the most expensive method per step. SVRG is similarly fast on a per epoch
basis, but when considering the number of gradient evaluations per epoch is double that of the other methods
for this problem, it is middle of the pack. SAGA can be seen to perform similar to the non-permuted Finito
case, and to SDCA. Note that SAG is slower than the other methods at the beginning. To get the optimal
results for SAG, an adaptive step size rule needs to be used rather than the constant step size we used.

In general, these tests confirm that the choice of methods should be done based on their properties as
discussed in Section 3, rather than their convergence rate.

10

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

A Non-strongly-convex problems

Theorem 2. When each fi is convex, using η = 3L, we have for x̄k = 1
k

∑k
t=1 x

t that:

E
[
F (x̄k)

]
− F (x∗) ≤ 3n

k

[
3L

2n

∥∥x0 − x∗
∥∥2

+ f(x0)−
〈
f ′(x∗), x0 − x∗

〉
− f(x∗)

]
.

Here the expectation is over all choices of index jk up to step k.

Proof. We proceed by using a similar argument as in Theorem 1, but we add an additional α ‖x− x∗‖2
together with the existing c ‖x− x∗‖2 term in the Lyapunov function.

We will bound α ‖x− x∗‖2 in a different manner to c ‖x− x∗‖2. Define ∆ = −η
(
wk+1 − x

)
− f ′(x),

the difference between our approximation to the gradient at x and true gradient. Then instead of using the
non-expansiveness property at the beginning, we use a result proved for prox-SVRG [10, 2nd eq. on p.12]:

αE
∥∥xk+1 − x∗

∥∥2 ≤ α ‖x− x∗‖2 − 2α

η
E
[
F (xk+1)− F (x∗)

]
+

2α

η2
E ‖∆‖2 .

Although their quantity ∆ is different, they only use the property that E[∆] = 0 to prove the above equation.
Essentially the same argument as in Lemma 3 can be used to bound the ∆ term yielding

E ‖∆‖2 ≤
(
1 + β−1

)
E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

+ (1 + β)E
∥∥f ′j(xk)− f ′j(x∗)

∥∥2
.

Applying this gives:

αE
∥∥xk+1 − x∗

∥∥2 ≤ α ‖x− x∗‖2 − 2α

η
E
[
F (xk+1)− F (x∗)

]
+

2(1 + β−1)α

η2
E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

+
2 (1 + β)α

η2
E
∥∥f ′j(x)− f ′j(x∗)

∥∥2
.

As in Theorem 1, we then apply Lemma 2 to bound E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

. Combining with the rest of the
Lyapunov function, if we take η = 3L, β = 2, c = L

n and α = L
2n , Then we are left with the following after

removing other non-positive terms:

E[T k+1]− T k ≤ − 1

3n
E
[
F (xk+1)− F (x∗)

]
.

These expectations are conditional on information from step k. We now take the expectation with respect
to all previous steps, yielding E[T k+1] − E[T k] ≤ − 1

3nE
[
F (xk+1)− F (x∗)

]
, where all expectations are

unconditional. Further negating and summing for k from 0 to k − 1 results in telescoping of the T terms,
giving:

1

3n
E

[
k∑
t=1

[
F (xt)− F (x∗)

]]
≤ T 0 − E[T k].

We can drop the −E
[
T k
]

term since T k is always positive. Then we apply convexity to pull the summation
inside of F , and multiply through by 3n/k, giving:

E

[
F (

1

k

k∑
t=1

xt)− F (x∗)

]
≤ 1

k
E

[
k∑
t=1

[
F (xt)− F (x∗)

]]
≤ 3n

k
T 0.

11

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

References
[1] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average

gradient. Technical report, INRIA, 2013.

[2] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. JMLR, 2013.

[3] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduc-
tion. NIPS, 2013.

[4] Jakub Konečný and Peter Richtárik. Semi-Stochastic Gradient Descent Methods. ArXiv e-prints, De-
cember 2013.

[5] Aaron Defazio, Tiberio Caetano, and Justin Domke. Finito: A faster, permutable incremental gradient
method for big data problems. Proceedings of the 31st International Conference on Machine Learning,
2014.

[6] Julien Mairal. Incremental majorization-minimization optimization with application to large-scale ma-
chine learning. Technical report, INRIA Grenoble Rhne-Alpes / LJK Laboratoire Jean Kuntzmann,
2014.

[7] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for regu-
larized loss minimization. Technical report, The Hebrew University, Jerusalem and Rutgers University,
NJ, USA, 2013.

[8] Patrick Combettes and Jean-Christophe Pesquet. Proximal Splitting Methods in Signal Processing. In
Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, 2011.

[9] Yu. Nesterov. Introductory Lectures On Convex Programming. Springer, 1998.

[10] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.
Technical report, Microsoft Research, Redmond and Rutgers University, Piscataway, NJ, 2014.

12

ha
l-0

10
16

84
3,

 v
er

si
on

 2
 -

17
 J

ul
 2

01
4

	Introduction
	SAGA Algorithm
	Related Work
	Implementation
	Theory
	Experiments
	Non-strongly-convex problems

