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DIRECT SOLUTION OF THE INVERSE STOCHASTIC PROBLEM

THROUGH ELEMENTARY MARKOV STATE DISAGGREGATION

LORENZO CIAMPOLINI∗, SYLVAIN MEIGNEN† , OLIVIER MENUT‡, AND DAVID

TURGIS§

Abstract. Existing methods to find the eigenvalue spectrum (or a reasonable approximation to
it) of square matrices can be extended to Stochastic Matrices (SM). The matter is more delicate for
the Inverse Eigenvalue Problem (IEP), which consists in the reconstruction of a matrix from a given
eigenvalue spectrum. In this work, we present a simple method to solve a real-valued IEP for SM
by constructing step-by-step the solution matrix through an elementary Markov state disaggregation
method named state splitting, and based on a matrix operator. After showing some results on how
the splitting operator influences the steady-state distribution of the Markov chain associated with
the SM, we demonstrate that the state splitting operator has a fundamental property: when applied
to a SM A of size n-by-n, it yields a SM of size (n+1)-by-(n+1), whose eigenvalue spectrum is equal
to that of A, plus an additional eigenvalue belonging to a bounded interval. We use a constructive
method to prove that for any spectrum made of real and positive eigenvalues, one can build up an
infinite number of SM sharing this spectrum. Finally, we present a new sufficient condition to test if
a given set of real values can be the spectrum of a SM constructed by the proposed method.
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1. Introduction. This work deals with the eigenvalue spectrum of a particular
class of square matrices: stochastic matrices (SMs), for which all elements are non-
negative and such that their sums along rows1 are all equal to one [1]. SMs are
important because they can describe the dynamics of Markov chains (MCs). In detail,
the i-th row of a n × n SM describes the probability distribution (which sums up
to unity) of the transition of the system towards n possible states, assuming that
the system is in the i-th state. If one writes a row state vector uk−1 holding a
repartition distribution in n different possible states, the dynamics of the system
across consecutive time steps is described by the matrix equation

uk = uk−1P.(1.1)

where the transition matrix P is a SM. If one sets uk−1 = uk, (1.1) becomes the
unit eigenvalue equation, whose normalized solution uk/|uk| = ρ is the steady-state

distribution of the MC associated with P2 .
Given an arbitrary square matrix, the direct eigenvalue problem (DEP) consists

in finding its eigenvalue spectrum. Many methods exist to solve the DEP, numerically
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1This is the row-stochastic convention [13]. Some authors [12, 9, 10] use instead the column-

stochastic convention and thus a transposed transition matrix Q = PT , where the sum of the
elements along a column is equal to one. It is an equivalent notation; If λiui

= Qu
i
, then λivi

=
λiu

T

i
= uT

i
QT = uT

i
P; Q and P share the same eigenvalues, but the (right) column eigenvectors

u
i

of Q are (left) row eigenvectors uT

i
of P, and vice versa. Left and right eigenvectors coincide in

general only for symmetrical or self-adjoint matrices.
2Instead of indicating ρ as the normalized left eigenvector relative to the principal eigenvalue of

P, this text indicates sometimes for the sake of simplicity ρ as the steady-state distribution of P.
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or not [2], and most of them can be applied to an arbitrary SM. The matter is more
delicate for the inverse eigenvalue problem (IEP), which consists in the reconstruction
of a matrix from a given eigenvalue spectrum. In [3], the authors state the role of an
IEP as “validating, determining, or estimating the unknown parameters of a system
according to its observed or expected behavior”. Since SMs are used to describe
MCs, the IEP for a SM is tied to the problem of finding a valid transition matrix for a
given eigenvalue spectrum — if no information is available on the physical mechanism
driving the transitions from one state to the other. For instance, if the transition
coefficients are unknown, an observed MC cannot be modeled numerically.

The trivial solution of the IEP for square matrices (a diagonal matrix holding
all eigenvalues) does not work at all for SMs, which have an important constraint on
the sum of all elements of their rows. This particular structure makes the Inverse
Stochastic Spectrum Problem [4] (ISSP) a nonlinear problem, since the sum of two
SMs is not a SM. ISSP is one amongst many existing Structured IEP [3], i.e. inverse
eigenvalue problems applied to matrices having a given structure. Since it is possible
to map through similarity transformations non-negative matrices to SMs [3], it is
known that a solution to ISSP solves also IEP for non-negative matrices. However,
to find the solution to these problems in the general case is an open problem [5], and
answers are available only for small matrix size [6]. Algorithms exist to numerically
construct the solutions of some structured problems [7, 8] and of the ISSP [4], using
iterative methods that in some cases are unexpectedly slow to converge [4]. Indeed,
iterative methods for the IEP typically have a rate of convergence that depends on
the modulus of the second largest eigenvalue [9, 10], and a general algorithm that
would cover all kinds of eigenvalue spectra is still to be found.

In this paper, we present a simple method to directly, i.e. without iterations
nor numerical approximations, construct a SM from a given real eigenvalue spectrum
through an elementary Markov state disaggregation method named state splitting and
based on a matrix operator. After showing some results on how the state splitting
operator influences the SM steady-state distribution, we show that the state splitting
operator has a fundamental property: when applied to a SM A of size n-by-n, it
yields a SM of size (n+1)-by-(n+1), whose eigenvalue spectrum is equal to that of
A, plus an additional eigenvalue, that belongs to a bounded interval. We use a
construction method to prove that a SM matrix can be associated with any spectra
made of real positive eigenvalues. Finally, we give a new sufficient condition for a set
of real values to be the spectrum of a SM. Numerical experiments illustrating this
condition conclude the paper.

2. Splitting operators and state disaggregation. Definition 2.1. Given a
real value λ, positive real a such that |λ| < a and a real probability factor max{hmin, 0}
≤ r ≤ min{hmax, 1}, where hmin = λ/(a + λ) and hmax = a/(a + λ) the scalar
splitting operator Ŝ(·, λ, r) is defined as:

Ŝ(a, λ, r) =
a

hmax

(

r hmax − r

r − hmin 1 − r

)

,(2.1)

a 2 × 2 matrix whose second eigenvalue3 is equal to λ.

3For any square matrix the trace is equal to the sum of the eigenvalues and, by the Perron–
Frobenius theorem, the principal (largest) eigenvalue of a SM is equal to 1. Since (1/a)Ŝ(a, λ, r) is
stochastic (see Lemma 2.2), its trace being equal to 1/hmax = 1 + λ/a, its second eigenvalue must
be equal to λ/a. The eigenvalues of S(a, λ, r) are then a and λ.
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Lemma 2.2. H := (1/a)Ŝ(a, λ, r) is stochastic.

Proof. The sum of the elements of the first row of H is one. It is easy to prove
that hmax + hmin = 1, so the sum of the elements of the second row is also one. All
elements are non-negative by the definition of the range for r leading to H stochastic.

Markov state aggregation and disaggregation are powerful tools to investigate the
dynamics of MCs [9, 11] and have been applied for a long time to the DEP [12].
The aggregation method is based on grouping together the Markov states using some
criteria in order to simplify the SM holding the transition probabilities. Aggregation
and disaggregation methods are based on the rearrangement of the evolution states
of the MC; more precisely, they alter the partition [13] of states on which the MC is
described.

The scalar 1 can be seen as a (degenerate) SM representing the simplest achievable
transition matrix which is defined on the simplest possible partition A, limited to the
certain event. It is a degenerate description because no dynamics is possible, because
the certain event stays constant. The operator Ŝ(1, λ, r) splits the certain event into
a couple of states, thus creating a new partition B composed of those two states
on which a system described by the new SM evolves. The splitting operator thus
performs an elementary Markov state disaggregation of the certain event.

Definition 2.3. A block representation isolating the k-th column and k-th row
from the rest of the matrix is obtained by writing the k-th row (ak,1, · · · , ak,n) as the
concatenation of three different row vectors rk1, ak,k, rk2, where either rk1 or rk2 can
be empty if k = 1 or k = n, respectively. Similar consideration for the k-th column
leads to the definition of the row vectors

c1k = (a1,k, a2,k, · · · , ak−1,k)

c2k = (ak+1,k, ak+2,k, · · · , an,k)

rk1 = (ak,1, ak,2, · · · , ak,k−1)

rk2 = (ak,k+1, ak,k+2, · · · , ak,n),

which subsequently leads to the rewriting of matrix A into:

A =

















A11 cT
1k A12

rk1 ak,k rk2

A21 cT
2,k A22

















.(2.2)

Definition 2.4. Given a n × n SM A, an index 1 ≤ k ≤ n, a real value λ
such that |λ| < ak,k and a real probability factor max{hmin, 0} ≤ r ≤ min{hmax, 1},
where hmin = λ/(ak,k + λ) and hmax = ak,k/(ak,k + λ), and writing A in the block

representation of Definition 2.3, the state splitting operator ŜM (A, λ, r, k) is defined
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as the operator that yields the (n + 1) × (n + 1) matrix (2.3):

ŜM (A, λ, r, k) =

























A11 rcT
1k (1 − r)cT

1k A12

rk1
Ŝ(ak,k, λ, r)

rk2

rk1 rk2

A21 rcT
2,k (1 − r)cT

2,k A22

























(2.3)

Lemma 2.5. S = ŜM (A, λ, r, k) is stochastic.
Proof. For the sake of simplicity, and with no loss of generality, let us consider

the case k = n. One can write

ŜM (A, λ, r, k) =















a1,1 · · · a1,k−1 ra1,k (1 − r)a1,k

...
. . . · · · · · · · · ·

ak−1,1 · · · ak−1,k−1 rak−1,k (1 − r)ak−1,k

ak,1 · · · ak,k−1 ak,kh1,1 ak,kh1,2

ak,1 · · · ak,k−1 ak,kh2,1 ak,kh2,2















,(2.4)

where H = (hi,j)1≤i,j≤2 = (1/ak,k)Ŝ(ak,k, λ, r).
The coefficients on the rows indexed by {1, · · · , k − 1} sum to one, since they

coincide with the sums of the rows of A with the same indices. Since H is stochastic
(Theorem 2.2), ak,k(hi,1 + hi,2) = ak,k for i = {1, 2} and the sums of the coefficients
on the rows indexed by {k, k + 1} are also equal to one. For the same reason, the
elements in the rows indexed by {k, k + 1} are non-negative. Since r and (1 − r) are
non-negative, all elements of ŜM (A, λ, r, k) are finally non-negative, and the matrix
is stochastic.

Theorem 2.6. The splitting operator ŜM (., λ, r, k) leaves unchanged the steady-
state distribution ρ of the n × n SM A in all of its components except the k-th com-
ponent ρk, which is split into two components fρk and (1 − f)ρk, for 0 ≤ f ≤ 1,
satisfying:

f = (r + rλ − λ)/(1 − λ).(2.5)

Proof. Again, we consider for the sake of simplicity the case k = n with no loss
of generality. The unit eigenvalue equation ρ = ρA for the SM A is a system of k
equations, with the i-th equation being

ρ1a1,i + · · · + ρkak,i + · · · + ρnan,i = ρi.(2.6)

Given S = ŜM (A, λ, r, k) described in (2.4), its unit eigenvalue equation ρ′ = ρ′S
yields k + 1 equations:

ρ′1a1,i + · · · + ρ′k−1ak−1,i + ρ′kak,i + ρ′k+1ak,i = ρ′i for i < k
ρ′1ra1,k + · · · + ρ′k−1rak−1,k + ρ′kak,kh1,1 + ρ′k+1ak,kh2,1 = ρ′k for i = k

ρ′1(1 − r)a1,k + · · · + ρ′k−1(1 − r)ak−1,k+
+ρ′kak,kh1,2 + ρ′k+1ak,kh2,2 = ρ′k+1 for i = k + 1

(2.7)
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A unique set of k + 1 real, non-negative values ρ′ is the solution of the full system of
k + 1 equations, and Theorem 2.6 states that the steady-state distribution ρ′ can be
written in the form

(ρ1, · · · , ρk−1, fρk, (1 − f)ρk).(2.8)

Let us define ρk0 = fρk and ρk1 = (1 − f)ρk to simplify the notation, and test if the
vector described by (2.8) is the steady-state distribution that satisfies (2.7). Adding
together ρk0 and ρk1, one finds immediately

ρk0 + ρk1 = ρk.(2.9)

Let us suppose that ρ′ is given by (2.8): the first set of equations in (2.7) can
then be rewritten as

ρ1a1,i + · · · + ρk−1ak−1,i + ρk0ak,i + ρk1ak,i = ρi

⇔ ρ1a1,i + · · · + ρk−1ak−1,i + ρkak,i = ρi,

which is true since ρ = ρA.
The k-th equation and k+1-th equation are not independent due to (2.9), so only

the k-th equation needs to be considered:

ρ1ra1,k + · · · + ρk−1rak−1,k + ρk0ak,kh1,1 + ρk1ak,kh2,1 = ρk0(2.10)

Adding ρkrak,k on both sides and rearranging terms, the last equation becomes

ρkr = ρk0 + ρkrak,k − ρk0ak,kh1,1 − (ρk − ρk0)ak,kh2,1.(2.11)

Rearranging terms one has

ρk0[1 + ak,k(h2,1 − h1,1)] = ρk(r − rak,k + ak,kh2,1).(2.12)

From Definition 2.1, h2,1 = (r−hmin)/hmax = [r(ak,k +λ)−λ]/ak,k and h2,1 −h1,1 =
−λ/ak,k. Substituting these expressions in (2.12 ), one gets

ρk0(1 − λ) = ρk(r + rλ − λ).(2.13)

In conclusion, if (2.13) is verified, the unit eigenvalue equation is satisfied by an
eigenvector of the form (2.8).

From this we deduce that

f = (r + rλ − λ)/(1 − λ).(2.14)

Then since |λ| < ak,k ≤ 1, 0 ≤ f ≤ 1 corresponds to 0 ≤ r ≤ 1/(1 + λ) which is
true. Indeed, if λ ≥ 0 we get r ≤ ak,k/(ak,k + λ) ≤ 1/(1 + λ) since ak,k ≤ 1. On
the contrary, when λ ≤ 0, since r ≤ 1 and 1/(1 + λ) ≥ 1, we get the expected result.

Let us now consider as an example the SM P:

P =

(

0.95 0.05
0.45 0.55

)

.

Fig. 2.1, left, shows a finite-state machine representation of the MC associated with P.
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Fig. 2.1. Finite-state machine representation of a MC having two states (left), and of a MC
having three states (right). The two MCs are associated with matrices P and Q described in the
text. The shape area for each state is not proportional to the state steady-state probability ρ to find
the system in that state.

The steady-state distribution of this MC is ρ = (0.9, 0.1). The transition probabilities
are shown near the corresponding arrows, and the probabilities for each state to evolve
to the same state (self-transition probabilities) are written at the center of the states.
Let us calculate Q = ŜM (P, 0.2, 0.7, 2), whose three-digit approximation is

Q̃ =





0.95 0.0317 0.0183
0.45 0.475 0.075
0.45 0.275 0.275



 .

Note that by fixing |λ| < p2,2, one determines an interval in which r can be chosen.
Fig. 2.1, right, shows the finite-state machine representation of the MC associated to
the SM Q̃, which has steady-state distribution ρ′ = (0.9, 0.07, 0.03). States 20 and 21
not only have different steady-state probabilities, but also many differences in their
transition probabilities.

Nevertheless, the total transition probability from state 1 to any other state is
the same (and equal to 5%) across the two machines of Fig. 2.1, and vice versa the
transition probability towards state 1 from the other states is 45%, no matter which of
20 or 21 is the starting state. Since state 1 also has the same self-transition probability,
one can conclude that this state has exactly the same dynamics in the two machines,
and its steady-state probability must be the same in the two MCs. If one wanted
to consider the two states 20 and 21 of the three-state machine as a single state
(dot-dashed line in Fig. 2.1, right), one would obtain exactly the machine of Fig. 2.1,
left. The two MCs are indeed closely related; in particular, one can speculate that
both machines describe the same MC, except that Fig. 2.1, left is a lower-resolution
representation of the MC of Fig. 2.1, right, obtained if no matter which of the states
20 or 21 are observed as a single state 2. It is worth noting here that given a lower
resolution for the MC, there exist infinitely many choices for the higher resolution
extension each of them being related to a particular choice for λ and r.

From a probabilistic point of view, let us consider a n × n SM A defined on a
partition A of n states. The application of the splitting operator ŜM (·, λ, r, k) to A

yields a (n + 1) × (n + 1) SM, that describes a MC on a partition B of n + 1 states.
The splitting operator can be seen as an operator that performs an elementary state
disaggregation of a MC, as already highlighted in the discussion of Fig. 2.1. More
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generally, this operator transfers the description of a MC from a given event partition
A of n states to a new event partition B, which is obtained from the former by splitting
its k-th state into two sub-states k0 and k1. In this sense, the operator defined in
Definition 2.4 is a state splitting operator.

3. State splitting operator and eigenvalue spectrum. The state splitting
operator has a fundamental property with respect to the eigenvalue spectrum of the
matrix to which it is applied.

Theorem 3.1. The eigenvalue spectrum of S = ŜM (A, λ, r, k) denoted by λ(S)
is {λ(A), λ}, where λ(A) is the eigenvalue spectrum of A.

Proof. The characteristic polynomial of S in the determinant form is det(S−xI).
Let us suppose for the sake of simplicity that k = n, with no loss of generality. The
explicit form of the determinant is:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 − x · · · a1,k−1 ra1,k (1 − r)a1,k

...
. . . · · · · · · · · ·

ak−1,1 · · · ak−1,k−1 − x rak−1,k (1 − r)ak−1,k

ak,1 · · · ak,k−1 ak,kh1,1 − x ak,kh1,2

ak,1 · · · ak,k−1 ak,kh2,1 ak,kh2,2 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.1)

to which a pair of linear transformations on columns and rows are applied, that leave
the determinant unchanged by virtue of known properties of determinants [14]. The
k + 1-th column of S− xI is added to its k-th column, yielding

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 − x · · · a1,k−1 a1,k (1 − r)a1,k

...
. . . · · · · · · · · ·

ak−1,1 · · · ak−1,k−1 − x ak−1,k (1 − r)ak−1,k

ak,1 · · · ak,k−1 ak,k − x ak,kh1,2

ak,1 · · · ak,k−1 ak,k − x ak,kh2,2 − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(3.2)

Subtracting row k to row k + 1, one obtains

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 − x · · · a1,k−1 a1,k (1 − r)a1,k

...
. . . · · · · · · · · ·

ak−1,1 · · · ak−1,k−1 − x ak−1,k (1 − r)ak−1,k

ak,1 · · · ak,k−1 ak,k − x ak,kh1,2

0 · · · 0 0 ak,k(h2,2 − h1,2) − x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(3.3)

and then, developing the determinant with respect to row k + 1, that det(S − xI) =
det(A)(ak,k(h2,2−h1,2)−x). At the same time, using ak,k(h2,2−h1,2) = λ, one finally
gets

det(S− xI) = (λ − x) det(A − xI),(3.4)

where the identity matrices on the two sides have different sizes.

4. Solution to the Inverse Eigenvalue Problem. Theorem 3.1 allows in
principle one to solve an IEP in a direct way, i.e. by constructing the solution matrix
by repeated applications of the state splitting operator, which inserts one eigenvalue
after the other in a matrix of growing size. This looks a very powerful method, which is
extremely scalable to matrices of very large sizes. However, a successful construction
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is possible only if the condition |λ| < ai,i in Definition 2.4 is satisfied at each step.
After some splitting operations, the resulting matrix does not allow one to insert an
arbitrary eigenvalue λ.

More generally, SMs obtained from the state splitting operator are a small subset
of all possible SMs, since parameter λ takes only real values, whereas SM may have
complex eigenvalues. It is therefore interesting to determine under which conditions it
is possible to construct the IEP solution using the state splitting operator and starting
from a given set of n real values (or real n-tuple). To know whether the construction
is feasible is both of theoretical interest and practical importance, since it provides a
new insight into eigenvalues of SM, as the next result shows.

Theorem 4.1. Any real and positive n-tuple {λ1, λ2, · · · , λn} for which max{λi} =
1 is the spectrum of infinitely many SMs.

Proof. Let us suppose without loss of generality that the given values are in
decreasing order, i.e. λ1 = 1 ≥ λ2 ≥ · · · ≥ λn. From now on, the upper index inside
parentheses will stand for a step index. Putting A(1) = 1, A(2) = Ŝ(1, λ2, r

(2), 2) can
be constructed with a random λ2/(1 + λ2) < r(2) < 1/(1 + λ2), the spectrum of A(2)

being {λ1, λ2} by Definition 2.1.

The recursive law A(i) = ŜM (A(i−1), λi, r
(i), i), with max{0, h

(i)
min} ≤ r(i) ≤

min{1, h
(i)
max} with h

(i)
min = λi/(a

(i−1)
i−1,i−1 + λi) and h

(i)
max = a

(i−1)
i−1,i−1/(a

(i−1)
i−1,i−1 + λi), de-

fines for i ≥ 3 a sequence of SMs. Indeed, the diagonal elements of A(2) are r(2)(1+λ2)

and (1 − r(2))(1 + λ2). Because 0 ≤ λ2 ≤ 1, we actually have h
(2)
min ≤ r(2) ≤ h

(2)
max

so that we can write r(2) = (1 − ǫ)h
(2)
max + ǫh

(2)
min from which we deduce the diagonal

coefficient of A(2) are 1 − ǫ + ǫλ2 and (1 − ǫ)λ2 + ǫ both belonging to [λ2, 1]. From

this, we immediately deduce that λ3 ≤ λ2 ≤ a
(2)
2,2 and that the recursive law can be

applied for i = 3.
Let us suppose that the construction has been successful for the first q values

of the n-tuple, i.e. one has λi ≤ a
(i−1)
i−1,i−1 for 2 ≤ i ≤ q. Then, the last coefficient

on the diagonal of A(q) is a
(q)
q,q = (a

(q−1)
q−1,q−1 + λq)(1 − r(q)) = (1 − ǫ)λq + ǫa

(q−1)
q−1,q−1,

writing again r(q) = (1 − ǫ)h
(q)
max + ǫh

(q)
min (ǫ can be chosen with different value at

each step, we just note ǫ for the sake of simplicity). So we deduce from this that

a
(q)
q,q belongs to [λq, a

(q−1)
q−1,q−1] so that one has λq+1 ≤ λq ≤ a

(q)
q,q. This finally implies

that ŜM (A(q), λq+1, r
(q+1), q + 1) is stochastic by Lemma 2.5. By induction, one can

therefore state that it is possible to construct A(n), such that its spectrum is the
given n-tuple. This result has n degrees of freedom, since it holds independently on
the chosen n-tuple (r(1), · · · , r(n)), provided each r(i) lies within its valid range.

If one allows the values to be negative, not all real n-tuples may be the spectrum of
a SM:

Lemma 4.2. A set of necessary conditions for an arbitrary real n-tuple {λi} =
{λ1, λ2, · · · , λn} to be the spectrum of at least one SM is

max{λi} = max{|λi|} = 1(4.1)
n

∑

i=1

λi ≥ 0.(4.2)

Proof. (4.1) is a known condition, tied to the fact that unity is the largest eigen-
value of SMs, after the Perron–Frobenius theorem. The left-hand side in (4.2) is the
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trace of a SM with spectrum {λ1, λ2, · · · , λn}. Since all elements in a SM are non-
negative, and in particular the diagonal elements, the trace must be also non-negative,
as required by (4.2).

One should note here that this necessary condition is very different from the
sufficient condition found by Suleimanova in 1949 [3]. In this regard, we believe that
condition to be far too restrictive. For instance, the following SM









0.0025 0.9925 0.0025 0.0025
0.9925 0.0025 0.0025 0.0025
0.0025 0.0025 0.0075 0.9875
0.0025 0.0025 0.9875 0.0075









has an eigenvalue spectrum (1,0.99,-0.99,-0.98), even if it does not satisfy Suleimanova’s
condition

∑n

i=p+1 |λi| ≤ 1, where the summation runs over all negative eigenvalues
(supposing with no loss of generality that the first p eigenvalues are positive). We
now propose a new result that generalizes Suleimanova’s:

Theorem 4.3. A real n-tuple λ = (λ1, λ2, · · · , λn) having p positive values is
the eigenvalue spectrum of at least one SM if it satisfies (4.1-4.2) and if the (n − p)
negative values can be grouped into p groups (that can be empty), which can be mapped
to the p positive values of the n-tuple. The absolute value of the sum of the negative
values of each group must be lesser than the corresponding positive value to which the
group is mapped.
Remark: Note that Suleimanova’s result is a particular case of Theorem 4.3, where
all negative eigenvalues are mapped to eigenvalue 1. Fig. 4 shows an example of the
mapping required by Theorem 4.3.

Fig. 4.1. Arrows materialize the mapping between groups of negative values (dotted-line sets
on the left) and isolated positive values (on the right). The set of all values shown in this example
satisfies the conditions of Theorem 4.3.

Proof. Let us suppose without loss of generality that λ is sorted in decreasing
order and that the p first values are positive, i.e. λ1 = 1 ≥ λ2 ≥ · · · ≥ λp > 0.
In what follows, an index inside parentheses will stand for a step index. Let us put

A(1) = 1 and then define h
(2)
min = λ2/(1 + λ2) and h

(2)
max = 1/(1 + λ2). In such a case,

following Definition 2.1, one can define for any h
(2)
min ≤ r(2) ≤ h

(2)
max, a SM matrix as

A(2) = Ŝ(1, λ2, r
(2), 2). Putting r(2) = (1 − ǫ)h

(2)
max + ǫh

(2)
min, one can rewrite A(2) as:

A(2) =

(

1 − ǫ(1 − λ2) · · ·
· · · λ2 + ǫ(1 − λ2)

)

.

Let us now define, for 3 ≤ i ≤ p, h
(i)
min = λi/(a

(i−1)
i−1,i−1+λi) and h

(i)
max = a

(i−1)
i−1,i−1/(a

(i−1)
i−1,i−1+

λi) for i ≤ p, where a
(i−1)
i−1,i−1 is the i − 1-th diagonal element of matrix A(i−1) and
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finally r(i) = (1 − ǫ)h
(i)
max + ǫh

(i)
min, ǫ being the same at each step. We thus obtain a

sequence of stochastic matrices as follows: A(i) = ŜM (A(i−1), λi, r
(i), i) and a simple

computation shows that:

(a
(p)
1,1, · · · , a

(p)
p,p) = (1 + O(ǫ), λ2 + O(ǫ), · · · , λp + O(ǫ))(4.3)

where O(ǫ) tends to 0 as ǫ tends to 0. Then, one defines A(p+1) = ŜM (A(p), λp+1, r
(p+1), j),

where λp+1 is the first negative value and where max{0, h
(p+1)
min } ≤ r(p+1) ≤ min{1, h

(p+1)
max },

where h
(p+1)
min and h

(p+1)
max are defined the same way as for smaller step indices. We know

that A(p+1) is a SM provided 1 ≤ j ≤ p satisfies:

|λp+1| < a
(p)
j,j .(4.4)

Note that since λp+1 < 0, 0 ≤ r(p+1) ≤ 1, so that we can write r(p+1) = 1 − ǫ. The
diagonal coefficients of matrix A(p+1) which are all positive read:

(a
(p)
1,1, · · · , a

(p)
j−1,j−1, (a

(p)
j,j + λp+1)(1 − ǫ), (a

(p)
j,j + λp+1)ǫ, a

(p)
j+1,j+1, · · · , a

(p)
p,p).

Let us now consider a second negative value, e.g. λq, with p+1 < q ≤ n. If a
(p)
j,j +

λp+1 + λq > 0, then |λq| < a
(p+1)
j,j , and a new split operation ŜM (A(p+1), λq, 1 − ǫ, j)

can be performed on the same j-th state. In general, if the n-tuple contains l negative
values {λi1 , · · · , λil

} such that

a
(p)
j,j + λi1 + · · · + λil

> 0,(4.5)

then one can perform a sequence of l splitting operations on the same j-th state,

because a
(p+m)
j,j remains positive for 1 ≤ m ≤ l. Then (4.3) shows that a

(p)
j,j can be

set arbitrarily close to λj by taking a small enough ǫ which in turn means that (4.5)
implies

|λi1 + · · · + λil
| < λj .(4.6)

One can reorder the negative values in p groups (that can be empty), denote with
l(j) the number of elements of the j-th group (with j ∈ {1, · · · , p} and 0 ≤ l(j) ≤ n−p)
and indicate as i(j, k) the place in λ of the k-th element of the j-th group (if the group
is non-empty). Such an arrangement of the negative values must satisfy the condition
that all of them must be present once and only once4 across all groups, i.e.

I =
⋃

∀j s. t. l(j)>0

{i(j, 1), · · · , i(j, l(j))}(4.7)

must be a permutation without repetitions of (p + 1, · · · , n).
If the elements are grouped in such a way that

∣

∣

∣

∣

∣

∣

l(j)
∑

k=1

λi(j,k)

∣

∣

∣

∣

∣

∣

≤ λj(4.8)

4Given s > p and t > p with s 6= t (s and t are indexes to two negative values of λ), if λs = λt,
the two equal values are treated as two different items of the n-tuple.
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for every group for which l(j) > 0, then it is possible to apply l(j) times the state split-
ting operator to the j-th element of A(p), with arguments λi(j,1), · · · , λi(j,l(j)). The re-
sult is a SM by virtue of Lemma 2.5, with the additional eigenvalues λi(j,1), · · · , λi(j,l(j))

by virtue of Theorem 3.1. Since this holds for any j, it is possible to apply the state
splitting operator n−p times, and obtain finally a SM A(n) whose eigenvalue spectrum
is the given n-tuple.

However, Theorem 4.3 is not a necessary condition since it is known the n-tuple
(1,0.75,0.7,0.1,-0.75,-0.8,-0.8) is the eigenvalue spectrum of at least one SM [15]. The
proposed splitting operator has been implemented numerically in MATLAB, and its
properties have been verified within the numerical precision using the functions pro-
vided by the computing environment. We wrote an algorithm that, after applying
the splitting operator with ǫ = 10−6 on the positive values taken in decreasing order,
applies the splitting operator with ǫ = 0.5 on the negative values. For simple groups of
negative values, it is sufficient to apply the operator on the state that has the largest
self-transition probability.

As an example of a n-tuple satisfying Theorem 4.3, but not Suleimanova’s condi-
tion, one can form with the given algorithm a SM that has for eigenvalue spectrum the
n-tuple λ = (1, 0.98, 0.6, 0.5, 0.45, 0.4, 0.3,−0.97,−0.99), for which the eig MATLAB
function yields a vector whose largest difference with the true λ is 2 × 10−15. We
reproduce here the resulting matrix within a 10−4 precision:





























.0099 .9901 0 0 0 0 0 0 0

.9999 .0001 0 0 0 0 0 0 0

.0198 .0002 .0002 .97 .0065 .0023 .0007 .0002 0

.0198 .0002 .9702 .0 .0065 .0023 .0007 .0002 0

.0198 .0002 .3665 .0037 .6 .0042 .0014 .0004 .0001

.0198 .0002 .3665 .0037 .1037 .501 .0036 .0011 .0003

.0198 .0002 .3665 .0037 .1037 .051 .4505 .0035 .0011

.0198 .0002 .3665 .0037 .1037 .051 .0505 .4005 .0040

.0198 .0002 .3665 .0037 .1037 .051 .0505 .1005 .3040





























.

5. Discussion and Conclusions. In this paper, we have presented a simple
method to directly construct a SM from a given eigenvalue spectrum through an
elementary state disaggregation step named state splitting, described in terms of a
matrix operator. We show that a splitting operation yields a SM having a steady-state
distribution very close to the one of the original SM, so that the operator might be
called a state splitting operator.

The state splitting operator has a fundamental property: when applied to a SM
A, it yields a matrix whose eigenvalue spectrum is equal to that of A, plus an ad-
ditional eigenvalue, which is de facto inserted by the operator. This property leads
quite naturally to the solution of the IEP through step-by-step construction of a SM,
inserting one by one the desired eigenvalues.

The state splitting operator has been used to prove quickly that all n-tuples of
real and positive eigenvalues are realizable as eigenvalue spectra of infinitely many
SM. A new, general condition has been found to prove the possibility for an arbitrary
n-tuple with positive and negative values to be the eigenvalue spectrum of a SM.
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