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1. Introduction. This work deals with the eigenvalue spectrum of a particular class of square matrices: stochastic matrices (SMs), for which all elements are nonnegative and such that their sums along rows 1 are all equal to one [START_REF] Meyn | Matrix Computations[END_REF]. SMs are important because they can describe the dynamics of Markov chains (MCs). In detail, the i-th row of a n × n SM describes the probability distribution (which sums up to unity) of the transition of the system towards n possible states, assuming that the system is in the i-th state. If one writes a row state vector u k-1 holding a repartition distribution in n different possible states, the dynamics of the system across consecutive time steps is described by the matrix equation u k = u k-1 P. (1.1) where the transition matrix P is a SM. If one sets u k-1 = u k , (1.1) becomes the unit eigenvalue equation, whose normalized solution u k /|u k | = ρ is the steady-state distribution of the MC associated with P 2 .

Given an arbitrary square matrix, the direct eigenvalue problem (DEP) consists in finding its eigenvalue spectrum. Many methods exist to solve the DEP, numerically or not [START_REF] Golub | Matrix Computations[END_REF], and most of them can be applied to an arbitrary SM. The matter is more delicate for the inverse eigenvalue problem (IEP), which consists in the reconstruction of a matrix from a given eigenvalue spectrum. In [START_REF] Chu | Structured Inverse Eigenvalue Problems[END_REF], the authors state the role of an IEP as "validating, determining, or estimating the unknown parameters of a system according to its observed or expected behavior". Since SMs are used to describe MCs, the IEP for a SM is tied to the problem of finding a valid transition matrix for a given eigenvalue spectrum -if no information is available on the physical mechanism driving the transitions from one state to the other. For instance, if the transition coefficients are unknown, an observed MC cannot be modeled numerically.

The trivial solution of the IEP for square matrices (a diagonal matrix holding all eigenvalues) does not work at all for SMs, which have an important constraint on the sum of all elements of their rows. This particular structure makes the Inverse Stochastic Spectrum Problem [START_REF] Chu | A Numerical Method for the Inverse Stochastic Spectrum Problem[END_REF] (ISSP) a nonlinear problem, since the sum of two SMs is not a SM. ISSP is one amongst many existing Structured IEP [START_REF] Chu | Structured Inverse Eigenvalue Problems[END_REF], i.e. inverse eigenvalue problems applied to matrices having a given structure. Since it is possible to map through similarity transformations non-negative matrices to SMs [START_REF] Chu | Structured Inverse Eigenvalue Problems[END_REF], it is known that a solution to ISSP solves also IEP for non-negative matrices. However, to find the solution to these problems in the general case is an open problem [START_REF] Wu | On Open Problems of Nonnegative Inverse Eigenvalues Proplem[END_REF], and answers are available only for small matrix size [START_REF] Soules | Constructing Symmetric Nonnegative Matrices[END_REF]. Algorithms exist to numerically construct the solutions of some structured problems [START_REF] Jian | Numerical Methods for Inverse Eigenvalue Problems[END_REF][START_REF] Rojo | Constructing Symmetric Nonnegative Matrices via the Fast Fourier Transform[END_REF] and of the ISSP [START_REF] Chu | A Numerical Method for the Inverse Stochastic Spectrum Problem[END_REF], using iterative methods that in some cases are unexpectedly slow to converge [START_REF] Chu | A Numerical Method for the Inverse Stochastic Spectrum Problem[END_REF]. Indeed, iterative methods for the IEP typically have a rate of convergence that depends on the modulus of the second largest eigenvalue [START_REF] Haviv | Aggregation/Disaggregation Methods for Computing the Stationary Distribution of a Markov Chain[END_REF][START_REF] Haveliwala | The Second Eigenvalue of the Google Matrix[END_REF], and a general algorithm that would cover all kinds of eigenvalue spectra is still to be found.

In this paper, we present a simple method to directly, i.e. without iterations nor numerical approximations, construct a SM from a given real eigenvalue spectrum through an elementary Markov state disaggregation method named state splitting and based on a matrix operator. After showing some results on how the state splitting operator influences the SM steady-state distribution, we show that the state splitting operator has a fundamental property: when applied to a SM A of size n-by-n, it yields a SM of size (n+1)-by-(n+1), whose eigenvalue spectrum is equal to that of A, plus an additional eigenvalue, that belongs to a bounded interval. We use a construction method to prove that a SM matrix can be associated with any spectra made of real positive eigenvalues. Finally, we give a new sufficient condition for a set of real values to be the spectrum of a SM. Numerical experiments illustrating this condition conclude the paper.

2. Splitting operators and state disaggregation. Definition 2.1. Given a real value λ, positive real a such that |λ| < a and a real probability factor max{h min , 0} ≤ r ≤ min{h max , 1}, where h min = λ/(a + λ) and h max = a/(a + λ) the scalar splitting operator Ŝ(•, λ, r) is defined as:

Ŝ(a, λ, r) = a h max r h max -r r -h min 1 -r , (2.1) a 2 × 2 matrix whose second eigenvalue 3 is equal to λ. Lemma 2.2. H := (1/a) Ŝ(a, λ, r) is stochastic.
Proof. The sum of the elements of the first row of H is one. It is easy to prove that h max + h min = 1, so the sum of the elements of the second row is also one. All elements are non-negative by the definition of the range for r leading to H stochastic.

Markov state aggregation and disaggregation are powerful tools to investigate the dynamics of MCs [START_REF] Haviv | Aggregation/Disaggregation Methods for Computing the Stationary Distribution of a Markov Chain[END_REF][START_REF] Kafeety | A General Framework for Iterative Aggregation/Disaggregation Methods[END_REF] and have been applied for a long time to the DEP [START_REF] Chatelin | Aggregation/Disaggregation for Eigenvalue Problems[END_REF]. The aggregation method is based on grouping together the Markov states using some criteria in order to simplify the SM holding the transition probabilities. Aggregation and disaggregation methods are based on the rearrangement of the evolution states of the MC; more precisely, they alter the partition [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF] of states on which the MC is described.

The scalar 1 can be seen as a (degenerate) SM representing the simplest achievable transition matrix which is defined on the simplest possible partition A, limited to the certain event. It is a degenerate description because no dynamics is possible, because the certain event stays constant. The operator Ŝ(1, λ, r) splits the certain event into a couple of states, thus creating a new partition B composed of those two states on which a system described by the new SM evolves. The splitting operator thus performs an elementary Markov state disaggregation of the certain event.

Definition 2.3. A block representation isolating the k-th column and k-th row from the rest of the matrix is obtained by writing the k-th row (a k,1 , • • • , a k,n ) as the concatenation of three different row vectors r k1 , a k,k , r k2 , where either r k1 or r k2 can be empty if k = 1 or k = n, respectively. Similar consideration for the k-th column leads to the definition of the row vectors

c 1k = (a 1,k , a 2,k , • • • , a k-1,k ) c 2k = (a k+1,k , a k+2,k , • • • , a n,k ) r k1 = (a k,1 , a k,2 , • • • , a k,k-1 ) r k2 = (a k,k+1 , a k,k+2 , • • • , a k,n ),
which subsequently leads to the rewriting of matrix A into:

A =         A 11 c T 1k A 12 r k1 a k,k r k2 A 21 c T 2,k A 22         . (2.2)
Definition 2.4. Given a n × n SM A, an index 1 ≤ k ≤ n, a real value λ such that |λ| < a k,k and a real probability factor max{h min , 0} ≤ r ≤ min{h max , 1}, where h min = λ/(a k,k + λ) and h max = a k,k /(a k,k + λ), and writing A in the block representation of Definition 2.3, the state splitting operator ŜM (A, λ, r, k) is defined as the operator that yields the (n + 1) × (n + 1) matrix (2.3):

ŜM (A, λ, r, k) =             A 11 rc T 1k (1 -r)c T 1k A 12 r k1 Ŝ(a k,k , λ, r) r k2 r k1 r k2 A 21 rc T 2,k (1 -r)c T 2,k A 22             (2.3) Lemma 2.5. S = ŜM (A, λ, r, k) is stochastic. Proof.
For the sake of simplicity, and with no loss of generality, let us consider the case k = n. One can write

ŜM (A, λ, r, k) =        a 1,1 • • • a 1,k-1 ra 1,k (1 -r)a 1,k . . . . . . • • • • • • • • • a k-1,1 • • • a k-1,k-1 ra k-1,k (1 -r)a k-1,k a k,1 • • • a k,k-1 a k,k h 1,1 a k,k h 1,2 a k,1 • • • a k,k-1 a k,k h 2,1 a k,k h 2,2        , (2.4) where H = (h i,j ) 1≤i,j≤2 = (1/a k,k ) Ŝ(a k,k , λ, r).
The coefficients on the rows indexed by {1, • • • , k -1} sum to one, since they coincide with the sums of the rows of A with the same indices. Since H is stochastic

(Theorem 2.2), a k,k (h i,1 + h i,2 ) = a k,k for i = {1, 2}
and the sums of the coefficients on the rows indexed by {k, k + 1} are also equal to one. For the same reason, the elements in the rows indexed by {k, k + 1} are non-negative. Since r and (1 -r) are non-negative, all elements of ŜM (A, λ, r, k) are finally non-negative, and the matrix is stochastic.

Theorem 2.6. The splitting operator ŜM (., λ, r, k) leaves unchanged the steadystate distribution ρ of the n × n SM A in all of its components except the k-th component ρ k , which is split into two components f ρ k and (1 -f )ρ k , for 0 ≤ f ≤ 1, satisfying:

f = (r + rλ -λ)/(1 -λ). (2.5)
Proof. Again, we consider for the sake of simplicity the case k = n with no loss of generality. The unit eigenvalue equation ρ = ρA for the SM A is a system of k equations, with the i-th equation being

ρ 1 a 1,i + • • • + ρ k a k,i + • • • + ρ n a n,i = ρ i . (2.6) Given S = ŜM (A, λ, r, k) described in (2.4), its unit eigenvalue equation ρ ′ = ρ ′ S yields k + 1 equations: ρ ′ 1 a 1,i + • • • + ρ ′ k-1 a k-1,i + ρ ′ k a k,i + ρ ′ k+1 a k,i = ρ ′ i for i < k ρ ′ 1 ra 1,k + • • • + ρ ′ k-1 ra k-1,k + ρ ′ k a k,k h 1,1 + ρ ′ k+1 a k,k h 2,1 = ρ ′ k for i = k ρ ′ 1 (1 -r)a 1,k + • • • + ρ ′ k-1 (1 -r)a k-1,k + +ρ ′ k a k,k h 1,2 + ρ ′ k+1 a k,k h 2,2 = ρ ′ k+1 for i = k + 1 (2.7)
A unique set of k + 1 real, non-negative values ρ ′ is the solution of the full system of k + 1 equations, and Theorem 2.6 states that the steady-state distribution ρ ′ can be written in the form

(ρ 1 , • • • , ρ k-1 , f ρ k , (1 -f )ρ k ). (2.8)
Let us define ρ k0 = f ρ k and ρ k1 = (1 -f )ρ k to simplify the notation, and test if the vector described by (2.8) is the steady-state distribution that satisfies (2.7). Adding together ρ k0 and ρ k1 , one finds immediately

ρ k0 + ρ k1 = ρ k . (2.9)
Let us suppose that ρ ′ is given by (2.8): the first set of equations in (2.7) can then be rewritten as

ρ 1 a 1,i + • • • + ρ k-1 a k-1,i + ρ k0 a k,i + ρ k1 a k,i = ρ i ⇔ ρ 1 a 1,i + • • • + ρ k-1 a k-1,i + ρ k a k,i = ρ i ,
which is true since ρ = ρA.

The k-th equation and k + 1-th equation are not independent due to (2.9), so only the k-th equation needs to be considered:

ρ 1 ra 1,k + • • • + ρ k-1 ra k-1,k + ρ k0 a k,k h 1,1 + ρ k1 a k,k h 2,1 = ρ k0 (2.10)
Adding ρ k ra k,k on both sides and rearranging terms, the last equation becomes

ρ k r = ρ k0 + ρ k ra k,k -ρ k0 a k,k h 1,1 -(ρ k -ρ k0 )a k,k h 2,1 . (2.11)
Rearranging terms one has

ρ k0 [1 + a k,k (h 2,1 -h 1,1 )] = ρ k (r -ra k,k + a k,k h 2,1 ). (2.12) From Definition 2.1, h 2,1 = (r -h min )/h max = [r(a k,k + λ) -λ]/a k,k and h 2,1 -h 1,1 = -λ/a k,k
. Substituting these expressions in (2.12 ), one gets

ρ k0 (1 -λ) = ρ k (r + rλ -λ). (2.13)
In conclusion, if (2.13) is verified, the unit eigenvalue equation is satisfied by an eigenvector of the form (2.8).

From this we deduce that

f = (r + rλ -λ)/(1 -λ). (2.14) Then since |λ| < a k,k ≤ 1, 0 ≤ f ≤ 1 corresponds to 0 ≤ r ≤ 1/(1 + λ) which is true. Indeed, if λ ≥ 0 we get r ≤ a k,k /(a k,k + λ) ≤ 1/(1 + λ) since a k,k ≤ 1.
On the contrary, when λ ≤ 0, since r ≤ 1 and 1/(1 + λ) ≥ 1, we get the expected result.

Let us now consider as an example the SM P: P = 0.95 0.05 0.45 0.55 . Note that by fixing |λ| < p 2,2 , one determines an interval in which r can be chosen. Fig. 2.1, right, shows the finite-state machine representation of the MC associated to the SM Q, which has steady-state distribution ρ ′ = (0.9, 0.07, 0.03). States 20 and 21 not only have different steady-state probabilities, but also many differences in their transition probabilities.

Nevertheless, the total transition probability from state 1 to any other state is the same (and equal to 5%) across the two machines of Fig. 2.1, and vice versa the transition probability towards state 1 from the other states is 45%, no matter which of 20 or 21 is the starting state. Since state 1 also has the same self-transition probability, one can conclude that this state has exactly the same dynamics in the two machines, and its steady-state probability must be the same in the two MCs. If one wanted to consider the two states 20 and 21 of the three-state machine as a single state (dot-dashed line in Fig. 2.1, right), one would obtain exactly the machine of Fig. 2.1, left. The two MCs are indeed closely related; in particular, one can speculate that both machines describe the same MC, except that Fig. 2.1, left is a lower-resolution representation of the MC of Fig. 2.1, right, obtained if no matter which of the states 20 or 21 are observed as a single state 2. It is worth noting here that given a lower resolution for the MC, there exist infinitely many choices for the higher resolution extension each of them being related to a particular choice for λ and r.

From a probabilistic point of view, let us consider a n × n SM A defined on a partition A of n states. The application of the splitting operator ŜM (•, λ, r, k) to A yields a (n + 1) × (n + 1) SM, that describes a MC on a partition B of n + 1 states. The splitting operator can be seen as an operator that performs an elementary state disaggregation of a MC, as already highlighted in the discussion of Fig. 2.1. More generally, this operator transfers the description of a MC from a given event partition A of n states to a new event partition B, which is obtained from the former by splitting its k-th state into two sub-states k0 and k1. In this sense, the operator defined in Definition 2.4 is a state splitting operator.

3. State splitting operator and eigenvalue spectrum. The state splitting operator has a fundamental property with respect to the eigenvalue spectrum of the matrix to which it is applied.

Theorem 3.1. The eigenvalue spectrum of S = ŜM (A, λ, r, k) denoted by λ(S) is {λ(A), λ}, where λ(A) is the eigenvalue spectrum of A.

Proof. The characteristic polynomial of S in the determinant form is det(S -xI). Let us suppose for the sake of simplicity that k = n, with no loss of generality. The explicit form of the determinant is:

a 1,1 -x • • • a 1,k-1 ra 1,k (1 -r)a 1,k . . . . . . • • • • • • • • • a k-1,1 • • • a k-1,k-1 -x ra k-1,k (1 -r)a k-1,k a k,1 • • • a k,k-1 a k,k h 1,1 -x a k,k h 1,2 a k,1 • • • a k,k-1 a k,k h 2,1 a k,k h 2,2 -x (3.1)
to which a pair of linear transformations on columns and rows are applied, that leave the determinant unchanged by virtue of known properties of determinants [START_REF] Jeffrey | Handbook of Mathematical Formulas and Integrals[END_REF]. The k + 1-th column of S -xI is added to its k-th column, yielding

a 1,1 -x • • • a 1,k-1 a 1,k (1 -r)a 1,k . . . . . . • • • • • • • • • a k-1,1 • • • a k-1,k-1 -x a k-1,k (1 -r)a k-1,k a k,1 • • • a k,k-1 a k,k -x a k,k h 1,2 a k,1 • • • a k,k-1 a k,k -x a k,k h 2,2 -x . (3.2)
Subtracting row k to row k + 1, one obtains

a 1,1 -x • • • a 1,k-1 a 1,k (1 -r)a 1,k . . . . . . • • • • • • • • • a k-1,1 • • • a k-1,k-1 -x a k-1,k (1 -r)a k-1,k a k,1 • • • a k,k-1 a k,k -x a k,k h 1,2 0 • • • 0 0 a k,k (h 2,2 -h 1,2 ) -x , (3.3)
and then, developing the determinant with respect to row k + 1, that det(S -xI) = det(A)(a k,k (h 2,2 -h 1,2 )-x). At the same time, using a k,k (h 2,2 -h 1,2 ) = λ, one finally gets det(S -xI) = (λ -x) det(A -xI), (3.4) where the identity matrices on the two sides have different sizes.

4. Solution to the Inverse Eigenvalue Problem. Theorem 3.1 allows in principle one to solve an IEP in a direct way, i.e. by constructing the solution matrix by repeated applications of the state splitting operator, which inserts one eigenvalue after the other in a matrix of growing size. This looks a very powerful method, which is extremely scalable to matrices of very large sizes. However, a successful construction is possible only if the condition |λ| < a i,i in Definition 2.4 is satisfied at each step. After some splitting operations, the resulting matrix does not allow one to insert an arbitrary eigenvalue λ.

More generally, SMs obtained from the state splitting operator are a small subset of all possible SMs, since parameter λ takes only real values, whereas SM may have complex eigenvalues. It is therefore interesting to determine under which conditions it is possible to construct the IEP solution using the state splitting operator and starting from a given set of n real values (or real n-tuple). To know whether the construction is feasible is both of theoretical interest and practical importance, since it provides a new insight into eigenvalues of SM, as the next result shows.

Theorem 4.1. Any real and positive n-tuple {λ 1 , λ 2 , • • • , λ n } for which max{λ i } = 1 is the spectrum of infinitely many SMs.

Proof. Let us suppose without loss of generality that the given values are in decreasing order, i.e.

λ 1 = 1 ≥ λ 2 ≥ • • • ≥ λ n .
From now on, the upper index inside parentheses will stand for a step index. Putting A (1) = 1, A (2) = Ŝ(1, λ 2 , r (2) , 2) can be constructed with a random λ 2 /(1 + λ 2 ) < r (2) < 1/(1 + λ 2 ), the spectrum of A (2) being {λ 1 , λ 2 } by Definition 2.1.

The recursive law A (i) = ŜM (A (i-1) , λ i , r (i) , i), with max{0, h

(i) min } ≤ r (i) ≤ min{1, h (i) max } with h (i) min = λ i /(a (i-1) i-1,i-1 + λ i ) and h (i) max = a (i-1) i-1,i-1 /(a (i-1)
i-1,i-1 + λ i ), defines for i ≥ 3 a sequence of SMs. Indeed, the diagonal elements of A (2) are r (2) 

(1+λ 2 ) and (1 -r (2) )(1 + λ 2 ). Because 0 ≤ λ 2 ≤ 1, we actually have h (2) min ≤ r (2) ≤ h (2) max so that we can write r (2) = (1 -ǫ)h (2) max + ǫh (2)
min from which we deduce the diagonal coefficient of A (2) are 1 -ǫ + ǫλ 2 and (1 -ǫ)λ 2 + ǫ both belonging to [λ 2 , 1]. From this, we immediately deduce that

λ 3 ≤ λ 2 ≤ a (2)
2,2 and that the recursive law can be applied for i = 3.

Let us suppose that the construction has been successful for the first q values of the n-tuple, i.e. one has λ i ≤ a

(i-1) i-1,i-1 for 2 ≤ i ≤ q.
Then, the last coefficient on the diagonal of A (q) is a (q) q,q = (a (q-1)

q-1,q-1 + λ q )(1 -r (q) ) = (1 -ǫ)λ q + ǫa (q-1)
q-1,q-1 , writing again r (q) = (1 -ǫ)h (q) max + ǫh (q) min (ǫ can be chosen with different value at each step, we just note ǫ for the sake of simplicity). So we deduce from this that a (q) q,q belongs to [λ q , a (q-1) q-1,q-1 ] so that one has λ q+1 ≤ λ q ≤ a (q) q,q . This finally implies that ŜM (A (q) , λ q+1 , r (q+1) , q + 1) is stochastic by Lemma 2.5. By induction, one can therefore state that it is possible to construct A (n) , such that its spectrum is the given n-tuple. This result has n degrees of freedom, since it holds independently on the chosen n-tuple (r (1) , • • • , r (n) ), provided each r (i) lies within its valid range.

If one allows the values to be negative, not all real n-tuples may be the spectrum of a SM: Lemma 4.2. A set of necessary conditions for an arbitrary real n-tuple

{λ i } = {λ 1 , λ 2 , • • • , λ n } to be the spectrum of at least one SM is max{λ i } = max{|λ i |} = 1 (4.1) n i=1 λ i ≥ 0. (4.2)
Proof. (4.1) is a known condition, tied to the fact that unity is the largest eigenvalue of SMs, after the Perron-Frobenius theorem. The left-hand side in (4.2) is the trace of a SM with spectrum {λ 1 , λ 2 , • • • , λ n }. Since all elements in a SM are nonnegative, and in particular the diagonal elements, the trace must be also non-negative, as required by (4.2).

One should note here that this necessary condition is very different from the sufficient condition found by Suleimanova in 1949 [START_REF] Chu | Structured Inverse Eigenvalue Problems[END_REF]. In this regard, we believe that condition to be far too restrictive. For instance, the following SM     0.0025 0.9925 0.0025 0.0025 0.9925 0.0025 0.0025 0.0025 0.0025 0.0025 0.0075 0.9875 0.0025 0.0025 0.9875 0.0075     has an eigenvalue spectrum (1,0.99,-0.99,-0.98), even if it does not satisfy Suleimanova's condition n i=p+1 |λ i | ≤ 1, where the summation runs over all negative eigenvalues (supposing with no loss of generality that the first p eigenvalues are positive). We now propose a new result that generalizes Suleimanova's:

Theorem 4.3. A real n-tuple λ = (λ 1 , λ 2 , • • • , λ n )
having p positive values is the eigenvalue spectrum of at least one SM if it satisfies (4.1-4.2) and if the (n -p) negative values can be grouped into p groups (that can be empty), which can be mapped to the p positive values of the n-tuple. The absolute value of the sum of the negative values of each group must be lesser than the corresponding positive value to which the group is mapped. Remark: Note that Suleimanova's result is a particular case of Theorem 4.3, where all negative eigenvalues are mapped to eigenvalue 1. Fig. 4 shows an example of the mapping required by Theorem 4.3. Proof. Let us suppose without loss of generality that λ is sorted in decreasing order and that the p first values are positive, i.e.

λ 1 = 1 ≥ λ 2 ≥ • • • ≥ λ p > 0.
In what follows, an index inside parentheses will stand for a step index. Let us put A (1) = 1 and then define h 

min ≤ r (2) ≤ h (2)
max , a SM matrix as

A (2) = Ŝ(1, λ 2 , r (2) , 2). Putting r (2) = (1 -ǫ)h (2) max + ǫh (2)
min , one can rewrite A (2) as:

A (2) = 1 -ǫ(1 -λ 2 ) • • • • • • λ 2 + ǫ(1 -λ 2 ) .
Let us now define, for 3 ≤ i ≤ p, h

(i) min = λ i /(a (i-1)
i-1,i-1 +λ i ) and h

(i) max = a (i-1) i-1,i-1 /(a (i-1) i-1,i-1 + λ i ) for i ≤ p, where a (i-1)
i-1,i-1 is the i -1-th diagonal element of matrix A (i-1) and finally r (i) = (1 -ǫ)h

(i) max + ǫh (i)
min , ǫ being the same at each step. We thus obtain a sequence of stochastic matrices as follows: A (i) = ŜM (A (i-1) , λ i , r (i) , i) and a simple computation shows that: (a

(p) 1,1 , • • • , a (p) p,p ) = (1 + O(ǫ), λ 2 + O(ǫ), • • • , λ p + O(ǫ)) (4.3)
where O(ǫ) tends to 0 as ǫ tends to 0. Then, one defines A (p+1) = ŜM (A (p) , λ p+1 , r (p+1) , j), where λ p+1 is the first negative value and where max{0, h max are defined the same way as for smaller step indices. We know that A (p+1) is a SM provided 1 ≤ j ≤ p satisfies:

|λ p+1 | < a (p) j,j . (4.4)
Note that since λ p+1 < 0, 0 ≤ r (p+1) ≤ 1, so that we can write r (p+1) = 1 -ǫ. The diagonal coefficients of matrix A (p+1) which are all positive read: (a

(p) 1,1 , • • • , a (p) j-1,j-1 , (a (p) j,j + λ p+1 )(1 -ǫ), (a (p) j,j + λ p+1 )ǫ, a (p) j+1,j+1 , • • • , a (p) p,p ).
Let us now consider a second negative value, e.g. λ q , with p

+ 1 < q ≤ n. If a (p) j,j + λ p+1 + λ q > 0, then |λ q | < a (p+1) j,j
, and a new split operation ŜM (A (p+1) , λ q , 1 -ǫ, j) can be performed on the same j-th state. In general, if the n-tuple contains l negative values {λ

i1 , • • • , λ i l } such that a (p) j,j + λ i1 + • • • + λ i l > 0, (4.5) 
then one can perform a sequence of l splitting operations on the same j-th state, because a (p+m) j,j remains positive for 1 ≤ m ≤ l. Then (4.3) shows that a (p) j,j can be set arbitrarily close to λ j by taking a small enough ǫ which in turn means that (4.5) implies

|λ i1 + • • • + λ i l | < λ j . (4.6)
One can reorder the negative values in p groups (that can be empty), denote with l(j) the number of elements of the j-th group (with j ∈ {1, • • • , p} and 0 ≤ l(j) ≤ n-p) and indicate as i(j, k) the place in λ of the k-th element of the j-th group (if the group is non-empty). Such an arrangement of the negative values must satisfy the condition that all of them must be present once and only once4 across all groups, i.e.

I = ∀j s. t. l(j)>0 {i(j, 1), • • • , i(j, l(j))} (4.7) must be a permutation without repetitions of (p + 1, • • • , n).
If the elements are grouped in such a way that

l(j) k=1 λ i(j,k) ≤ λ j (4.8)
for every group for which l(j) > 0, then it is possible to apply l(j) times the state splitting operator to the j-th element of A (p) , with arguments λ i(j,1) , • • • , λ i(j,l(j)) . The result is a SM by virtue of Lemma 2.5, with the additional eigenvalues λ i(j,1) , • • • , λ i(j,l(j)) by virtue of Theorem 3.1. Since this holds for any j, it is possible to apply the state splitting operator n-p times, and obtain finally a SM A (n) whose eigenvalue spectrum is the given n-tuple.

However, Theorem 4.3 is not a necessary condition since it is known the n-tuple (1,0.75,0.7,0.1,-0.75,-0.8,-0.8) is the eigenvalue spectrum of at least one SM [START_REF] Shang-Jun | Row Stochastic Inverse Eigenvalue Problem[END_REF]. The proposed splitting operator has been implemented numerically in MATLAB, and its properties have been verified within the numerical precision using the functions provided by the computing environment. We wrote an algorithm that, after applying the splitting operator with ǫ = 10 -6 on the positive values taken in decreasing order, applies the splitting operator with ǫ = 0.5 on the negative values. For simple groups of negative values, it is sufficient to apply the operator on the state that has the largest self-transition probability.

As an example of a n-tuple satisfying Theorem 4.3, but not Suleimanova's condition, one can form with the given algorithm a SM that has for eigenvalue spectrum the n-tuple λ = (1, 0.98, 0.6, 0.5, 0.45, 0.4, 0.3, -0.97, -0.99), for which the eig MATLAB function yields a vector whose largest difference with the true λ is 2 × 10 -15 . We reproduce here the resulting matrix within a 10 -4 precision: 

            
              .
5. Discussion and Conclusions. In this paper, we have presented a simple method to directly construct a SM from a given eigenvalue spectrum through an elementary state disaggregation step named state splitting, described in terms of a matrix operator. We show that a splitting operation yields a SM having a steady-state distribution very close to the one of the original SM, so that the operator might be called a state splitting operator.

The state splitting operator has a fundamental property: when applied to a SM A, it yields a matrix whose eigenvalue spectrum is equal to that of A, plus an additional eigenvalue, which is de facto inserted by the operator. This property leads quite naturally to the solution of the IEP through step-by-step construction of a SM, inserting one by one the desired eigenvalues.

The state splitting operator has been used to prove quickly that all n-tuples of real and positive eigenvalues are realizable as eigenvalue spectra of infinitely many SM. A new, general condition has been found to prove the possibility for an arbitrary n-tuple with positive and negative values to be the eigenvalue spectrum of a SM.

Fig. 2 .

 2 Fig. 2.1, left, shows a finite-state machine representation of the MC associated with P.

Fig. 2 . 1 .

 21 Fig.2.1. Finite-state machine representation of a MC having two states (left), and of a MC having three states (right). The two MCs are associated with matrices P and Q described in the text. The shape area for each state is not proportional to the state steady-state probability ρ to find the system in that state.

Fig. 4 . 1 .

 41 Fig. 4.1. Arrows materialize the mapping between groups of negative values (dotted-line sets on the left) and isolated positive values (on the right). The set of all values shown in this example satisfies the conditions of Theorem 4.3.

( 2 )

 2 min = λ 2 /(1 + λ 2 ) and h (2) max = 1/(1 + λ 2 ). In such a case, following Definition 2.1, one can define for any h[START_REF] Golub | Matrix Computations[END_REF] 
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For any square matrix the trace is equal to the sum of the eigenvalues and, by the Perron-Frobenius theorem, the principal (largest) eigenvalue of a SM is equal to 1. Since (1/a) Ŝ(a, λ, r) is stochastic (see Lemma 2.2), its trace being equal to 1/hmax = 1 + λ/a, its second eigenvalue must be equal to λ/a. The eigenvalues of S(a, λ, r) are then a and λ.

Given s > p and t > p with s = t (s and t are indexes to two negative values of λ), if λs = λt, the two equal values are treated as two different items of the n-tuple.