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Abstract. In this article we present the L2-section, a tool used to rep-
resent a hypergraph in terms of an “advanced graph” and results leading
to first algorithm, in O(nm), for a bounded-rank, bounded-degree hyper-
graph H, which factorizes H in prime factors. The paper puts a premium
on the characterization of the prime factors of a hypergraph, by exploit-
ing isomorphisms between the layers in the 2-section, as returned by
a standard graph factorization algorithm, such as the one designed by
IMRICH and PETERIN.

1 Introduction

Cartesian products of graphs have been studied since the 1960s by V1zING and
SABIDUSSI. They independently showed ([Sab60)), that for every finite connected
graph there is a unique (up to isomorphism) prime decomposition of the graph
into factors. This fundamental theorem was the starting point for research con-
cerning the relations between a Cartesian product and its factors [IPv97|[Bre06].
Some of the questions raised are still open, as in the case of the Vizing’s conjec-
tur. These relations are of particular interest as they allow us to break down
problems by transfering algorithmic complexity from the product to the factors.

Some examples of problems that can be made easier by studying factors rather
than the whole product include: classical problems, like the determination of
the chromatic number, as the chromatic number of a Cartesian product is the
maximum of the chromatic number of each factor; or the detemination of the in-
dependence number (see [IKRO08|). More original numbers or properties are also
investigated, especially in coloring theory: the antimagicness of a graph [ZS09| or
the game chromatic number [Pet07], to quote a few. These numbers, easily com-
putable thanks to Cartesian product operations, are graphical invariants. Graph
products offer an interesting framework as soon as these graphical invariants
are involved. This is the reason why they are studied with various applications;
most of networks used in the context of parallel and distributed computation are
Cartesian products: the hypercube, grid graphs, etc. In this context, the problem

! This conjecture expressed by Vizing in 1968 states that the domination number
of the Cartesian product of graphs is greater than the product of the domination
numbers of its factors.



of finding a “Cartesian” embedding of an interconnection network into another
is of fundamental importance and thus has gained considerable attention. Carte-
sian products are also used in telecommunications [Ves02|.

In 2006, Imrich and Peterin IP07| gave an algorithm able to compute the
prime factorization of connected graphs in linear time and space, making the
use of Cartesian product decomposition particularly attractive.

Hypergraph theory has been introduced in the 1960s as a generalization of
graph theory. A lot of applications of hypergraphs have been developed since
(for a survey see |Bre04]). Cartesian products of hypergraphs can be defined in
a same way as graphs, and similarly it is easier to study the hypergraph factors
than the product. They also support graphical invariants (see |Bre06|), as it is
the case for the linearity, conformity, transversal and matching number, Helly
property, and it is generally possible to extend graphical invariants discovered
on graphs to them.

Summuary of the Results

In this paper we present an algorithm which gives the prime decomposition
of a Cartesian product of hypergraphs. It is the first algorithm of recognition
of Cartesian products of hypergraphs, up to our knowledge. This one is based
on the algorithm of IMRICH and PETERIN [IP07] but it is easily adaptable to
any algorithm which factorizes Cartesian products of graphs. Hypergraphs store
more informations than graphs can (for fixed parameters); we explicit how a
hypergraph can be seen as an “advanced” graph by introducing the L2-section
tool. Some mathematical properties of the L2-section of a hypergraph help us
then to design a recognition algorithm. By making an arrangement (called R*-
Cartesian joins) on the factors returned by the recognition algorithm working
on the 2-section, it finally releases the prime factors of a given hypergraph in
O(mn) time, when the rank and the degree of the hypergraph are constant.

Preliminaries

The cardinality of a set A is denoted by |A|. The set P2(A) is the set of pairs
{z,y} such that z,y € A and x # y. A hypergraph H on a set of vertices V is
a pair (V, E) where F is a set of non-empty subsets of V called hyperedges such
that (J,cpe = V. The set V may be written V(H). This implies in particular
that every vertex is included in at least one hyperedge. If |J,cpe # V, H is
called a pseudo-hypergraph. A hypergraph is simple if no hyperedge is contained
in another one.

In the sequel, we suppose that hypergraphs are simple and that no hyperedge
is a loop, that is, the cardinality of a hyperedge is at least 2. Moreover we suppose
that they are connected, a hypergraph being connected if there is a path between
any pair of hyperedges. The number of hyperedges of a hypergraph H is denoted
by m(H) or simply m when unambiguous. It is convenient to define a simple
graph as a particular case of simple hypergraph where every hyperedge is of size



E=zsssssss=s==s|2]]

Ezssssss===(00]

Npmssss=s=s==

eEzssss=s==(010

Wppesss=ssss=s=====(110

Fig. 1. To the left, the Cartesian product TOK,0K, = TOK2, where T stands for the
triangle with vertex set {0, 1,2}, and K> the graph ({0, 1}, {{0, 1}}). Here we drew the
layers with different dash patterns, and erased brackets and comas to name the nodes.
For instance, T-layers are solid and thick, while K»>-layers are either dashed or doubled.
We filled the nodes with their coordinates (without brackets). Notice that even if two
isomorphic factors intervene in this product, their respective layers are considered as
different as the coordinates of the nodes they are incident to only have one coordinate
varying, but not the same. When considered isolated, “dashed” layers in the figure have
their second coordinate varying while “thick” ones have their third coordinate varying.
To the right the Cartesian product of hypergraphs H = T'OK3 where 1" stands for
the hypergraph 7" = ({0, 1, 2}, {{0, 1,2}}).

2. So we suppose every graph G = (V. E) to verify Uy, ,,ep{z,y} = V. Given a
graph G = (V, E) and A a subset of E, we define G(A) = (S, A) as a subgraph
of G where S = {r € a € A}. For E' C E theset H' = (J,cp e =V, E') is
the partial hypergraph generated by E’. The rank of H is r(H) = max{|e| : e €
E(H)}, written r when unambiguous.

The 2-section [H]y of a hypergraph H = (V,E) is the graph G = (V,E’)
where E' = .. P2(e), that is, two vertices are adjacent in G iff they belong
to a same hyperedge. Notice that every hyperedge of H is a clique of [H]s and
Uecpe = V implies U{x,y}GE/{'r’y} = V. Finally, an isomorphism from the
hypergraph H = (V, E) to the hypergraph H' = (V' E’) is a bijection f from
V to V' such that, for every e C V, e € E iff Vo € e, f(z) € f(e). If H is
isomorphic to H', we write H = H'. Let Hy = (V4,E1) and Hy = (Va, E3) be
hypergraphs. The Cartesian product of Hy and Hs is the hypergraph HyOH,
with set of vertices Vi x V5 and set of edges:

E\OFE; ={{z} xe:xeViande € Es}U{ex {u}:e€ Eyand u € V2}.

Al A2

Note that up to the isomorphism the Cartesian product is commutative and asso-
ciative. That allows us to denote simply by (v1, . . ., vy) the vertices of Vi X ... x V.
The figure[I]illustrates the notion of Cartesian product of hypergraphs.



We conclude this section with well-known facts about Cartesian products:
Lemma 1. A; N Ay = 0. Moreover, [eNeée'| <1 for anye € Ay, € € A,.

Proposition 1. Let Hy and Hs be two hypergraphs and H their Cartesian prod-
uct. Then [Hy]2O[Hs)s = [H]s.

2 Hypergraph Factorization Algorithm

In the sequel, we use some of the results from [IP07].

Cartesian coloring, layers, projections, coordinates, j-edges. In order
to find prime factorizations of hypergraphs, we extend the algorithm given in
[IPO7|. This algorithm is based on a coloring of the edges of the graph G revealing
the Cartesian structure of G. In the following, such a coloring will be adapted
for hypergraphs and evoked as “Cartesian coloring of the hyperedges”. Indeed,
the hypergraph H to be factorized contains isomorphic copies of the factors
which lay as proper subgraphs of H. These isomorphic copies are called layers.
If H=H,0...0Kg, a H;-layer (1 <14 < k) can be defined more formally as a
partial hypergraph H = (V;*, E7) such that E; is a maximal set of edges where
the coordinates of their endpoints are fixed except the i** one, and V;* = Uecp- €
By coloring with the same color these layers, we thus reveal what factors H is
made of. In the sequel, the colorings we will deal with will mainly refer to these
edge colorings. From this angle of view, layers can be identified to the colors
covering their edges. For all w € V, H* = (V| E}) will stand for the H;-layer
incident to w. For a product H = H10OH,0...OH;, we define the projection on
the i coordinate p; : V(H) — V(H;) as the mapping p; : (21, %2,...,2;) — ;.
Note that pijygw) is a hypergraph isomorphism, for all w € V(H). It can
be easily shown that every hyperedge of H is contained in exactly one layer.
Moreover the hyperedge sets of the layers partition the hyperedge set of H. If
we decide to assign edges colors corresponding to the layer they belong to, we
may call j-edges edges laying in a Hj-layer, and may assign them the colour j.

Lemma 2 (Square lemma). [IP07] Let G be a graph. If two edges of G are
adjacent edges which belong to non-isomorphic layers, then these edges lay in a
unique induced square.

A straightforward consequence of the Square Lemma is that any triangle of G
is necessarily contained in a single layer. Another consequence is that opposite
edges in squares have the same color. In the sequel, we will say that the square
lemma is verified when two adjacent edges with different colors lay in exactly
one induced square. From the Square lemma we easily get the following result,
also given in [IP07]: every clique in a graph is contained a single layer.

The extension to hypergraphs of the algorithm of [IP07] uses L2-sections.

Definition 1 (L2-section). Let H = (V, E) be a hypergraph, we define the L2-

section [H|p2 of H as the triple I' = (V, E', L) where (V, E') is the 2-section of
H and L : E' — P(E) is defined by L({z,y}) = {e: z,y € e € E}. Conversely,
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Fig.2. We adopt the same conventions of representations of the vertices in the draw-
ing as the ones available in figure To the left, the hypergraph H1OH> where
H, = ({0,1,2,3,4,5},{{0, 1},{0, 2}, {1,2},{0, 3}, {1,4},{2,5},{3,4,5}}) and where
H; = K2, V(K32) = {0,1}. Dashed edges emphasize K»-layers. The given decompo-
sition is the prime decomposition of the given hypergraph. The 2-section of the given
hypergraph, with its Cartesian coloring is shown in the figure[I] at the left (up to iso-
morphisms). You can notice that the colors of HiOH2 can be obtained by merging
color classes in figure[T] left. If w stands for the vertex (1,1) then Hi’ is the induced
partial hypergraph with vertices {(0, 1), (1,1),(2,1),(3,1)(4,1), (5,1)}. We note that,
as expected, only the first coordinate vary for the vertices of this layer. The hypergraph
Hy is simply ({(1,1),(1,0)},{{(1,1),(1,0)}}). The hypergraph H; is represented to
the left. Finally we observe that Hi = p1(H) & HY’ and H2 = H3’, more precisely we
have p1(H1") = H1 and p2(H3") = Ha.

if I = (V,E', L) is a triple where L is a function from E' to P(E), we define
the inverse L2-section |7y = (V,E) of I' as the pseudo-hypergraph with E =
Ue, e (L(ei)). The mapping L is also referred to as a labelling on edges.

It is easy to check that if I" is a L2-section then [I'];; is a hypergraph. Not
surprisingly the following result comes from the definition.

Proposition 2. For all hypergraphs H and L2-sections I' we have [[H] 1275 =
H and [[I;lr2=1T.

The Cartesian product operation is now extended to L2-sections.

Definition 2 (Cartesian product of L2-sections). Let It = (V1,E!, L1)
and Iy = (Va, Eb, Lo) be the L2-sections of Hy = (V1, E1) and Hy = (Va, E3).
We define their Cartesian product 10Ty as the triple (V, E', £L10Ls) where:

— (V, E') is the Cartesian product of (V1, E}) and (Vz, EY).
— L£410Ls is the map from E' = E{OFE} to P(E10OFEy) defined by:

cocte o -{ {257 B0 o



Lemma 3. For all hypergraphs Hy, Ho we have: [H1OHs| o = [Hi]2O[Ha] Lo
and [[Hy)£20[Hs] o)1y = [[H1] 2] 73 Ol[Hz)r2) 15 -

Definition 3 (Isomorphism of L2-sections). An isomorphism between two
L2-sections It = (V1, E}, L1) and Iy = (Va, Ex', L3) is a bijection f from Vi to
Vo such that:

a) {z,y} € E{ if and only if {f(z), f(y)} € EY, for all x,y € V1.
b) e € Li({z,y}) if and only if {f(z) : z € e} € La({f(x), f(y)}), for all

z,y € V1 and e C Vi.
To express that Iy and I are isomorphic, we write: 17 = I

Lemma 4. Let H and H' be two hypergraphs. Then H = H' is equivalent to
[H]r2 = [H'|L2. If moreover H and H' are conformal then these statements are
equivalent to [H]o = [H']s.

Note that the Cartesian product is commutative and associative on L2-sections.
That allows us to overlook parenthesis for Cartesian products of L2-sections.
Recall that, given a hypergraph H and its “Cartesian” coloring, layers in its 2-
section are isomorphic, what may not be the case of the layers on its L2-section
(e.g. the labelled subgraphs are not isomorphic even if the non-labelled versions
of these subgraphs are). This is why layers for the 2-section in figure [1] do not
coincide with the ones of the hypergraph the 2-section comes from, given in
figure

In the sequel, the notions of H;-layers, H” etc. are naturally extended to L2-
sections with similar notations (I3-layers, I'? etc.) by adding the mapping £ to
the graph as defined in definition [T]

Definition 4 (Gj;-adjacent layers and Ij-adjacent layers). Let H be a
hypergraph, with 2-section G and L2-section I'. We will say that G; (resp. I )-
adjacent layers are vertex-disjoint layers G', G"” (resp. I'', I'"") such that there
exists an edge {x,x'} laying in a Gj- (resp. I';-) layer where z € V(G') and
y € V(G").

The following definition is intended to specify how layers are related one to the
other: some colors connect the incident layers by maintaining a mapping be-
tween them which is an L2-isomorphism, although others do not. Clearly, when
one color does not “define” an isomorphism between two adjacent layers, there
is not the slightest risk that the involved layers can be considered in different
labelled prime layers. Then this pattern can be envisaged as an obstruction
for the colors to define prime hypergraph factors. This is precisely what ex-
presses the R* relation introduced below. It will be used further, to build the
Cartesian joins, which can be seen as mergings of layers so that the new colors
resulting from the mergings are good candidates for the definition of the prime
factors.



Definition 5 (Induction of isomorphisms of I;-layers by I';-layers, rela-
tions A; ; and R, ;). We will say that I';-layers induce an isomorphism between
I-layers (i # j) if the following property A; ; is verified: “For all w,w’ € V(I"),
let I and I'*" be two I j-adjacent layers. The graph isomorphism between G"
and G which maps « to 2’ such that {z, '} is a j-edge gives rise to an iso-
morphism of L2-sections between I to I*".” If this relation A, j 15 not verified
and i # j, we will say that i is in relation with j and we will denote it by iRj.

In the sequel we will consider the reflexive, symmetric and transitive closure of
R, denoted by R*.

Definition 6 (Set Col of colors of a Cartesian coloring, equivalence
classes colors i € Col/R*, i-edges). The relation R* is defined as the sym-
metric, reflexive and transtive closure of R. Given Col the set of the colors
involved in the Cartesian coloring of a graph G, the set of these R*-equivalence
classes of colors will be denoted Col/R*. The equivalence class of colors of i,
i €{1,...,k} will be denoted by i.

We will talk of i-edges for edges colored in one color R*-equivalent to i.

Definition 7 (Cartesian joins 3" = (V;*, E¥, L¥), projection p;). Let H
be a hypergraph, I' = (V, E', L) its L2-section, G = G10...0Gy its 2-section,
and Col the set of the colors involved in the Cartesian coloring of G. Given w a
verter, we define G¥ = (V*, E'}’) (resp. I}" = (V¥ E'{’, LY¥)) as the connected
component of i-edges adjacent tow in G (resp. I'). The graph GY and the labelled
graphs I are called the R*-induced Cartesian joins; they will be referred to
as (Cartesian) joins in the sequel. We also redefine the projection p; as the
mapping which associates to a vertex in the Cartesian product HieC’al/R* I the

corresponding coordinate in the i-class.

These graphs can also be qualified as Gj- (resp. I5-) layers; compared with
traditional G;- or I;- layers, these ones are built on color classes, instead of
single colors. One can also think of it as layers defined on colors resulting from
the merging of elementary colors, the last ones being induced by the Cartesian
coloring of the graph G. Notice, moreover, that Cartesian joins are L2-sections.

Proposition 3. Let H be a hypergraph, I' = (V,E', L) its L2-section, G its
2-section and Col the set of the colors involved in the Cartesian coloring of G.
For every w, for every i € {1,...,k}, we have: I7" = I3V,

Now that we know [j-layers are isomorphic, we can generalize the notion of
induction of I'j-layers by I'j-layers, by simply considering classes of colors insted
of single colors. It also allows us to define I'; as the L2-section p;(13”), for all w.

Lemma 5. Let I' = (V,E', L) be the Cartesianly colored L2-section of a hy-
pergraph H, and let G; be the layers of the 2-section G of H. Then, for all
i€ Col/R*, G; & eri G-



Algorithm 1. Hypergraph-prime decomposition
Require: A hypergraph H = (V, E).
Return: The prime factors of H, that is H1, Ha, ..., H,
1: Compute I' = (V, E’, L), the L2-section of H and G = (V, E').
2: Run the algorithm of [IP07] on G and call G1 = (V4, EY),...,Gx = (Vi, E},) its
prime factors.
3: Define £; as the restriction of £ to E;, I, = (V;, E}, L;).
4: Define the graph J = (Col={1,2,...,k},Eco := () whose connected components
(CC) will “correspond to” the prime factors of H.
5: Define the set of the CCs as S = {C1,...,Ck} with C; = () initially, Vi € {1,... k}.

6: Define c the investigated CC as 0, and 7" as an empty array connecting the colors
to the CC they belong to.

7: Let [ = 0 the number of the investigated CC.

8: For i =1 to k do

9: If TVi] is defined then

10: c="TTIi

11: Else

12: l=1l4+1,c=1,T[i]=c

13:  End If

14: Forj=1tok,j>1,j¢C.do

15: If iRj OR jRi then

16: Ecor = EcorU{i,j}, Cc=C.U{j}, Tlj]=c¢
17: End If

18: EndFor

19: EndFor

20: Return Hi = [Ic,)zs, - Hi = [Tc,]1-

Theorem 1. Let I' = (V, E', L) be the L2-section of a hypergraph H. Let G
be the 2-section of H. Suppose G = G10G20...0G; where G; = (V;, El), i €
{1,...,1} are layers in G (up to isomorphisms). Define Iy = (V;, El, L;), where
L; is the restriction of L to E.. Then

B J] -

i€(Col/R*)

Theorem 2. Let I' = (V,E', L) be the L2-section of a hypergraph H. Let G be
the 2-section of H. Then H = [[;¢(colyr+ [F;];Ql is a prime decomposition of I".

We introduce now an algorithm (algorithm[I)) which gives the prime factorization
of hypergraphs, derived from theorem [1] The idea is the following. From the
connected hypergraph H it first builds the L2-section I' of H. Then it runs
the algorithm of Imrich and Peterin which colors the edges of the unlabelled
underlying graph G. The color ¢ is used for all edges of all layers that belong to
the same factor GG;. When obtained the prime factorization of G, say Gy, ..., Gk
of G, we determine the R*-induced Cartesian joins thanks to £. To determine the
joins, we consider a graph whose vertices are the colors obtained from the prime



decomposition of G (i.e. 1, ..., k), and whose edges express an “obstruction”
for the prime factors of G to be considered as labelled prime factors of I" (this
obstruction exists from the moment the colors are R-related). Then the Cartesian
joins are the connected components in this new graph.

Finally, by using the inverse L2-section operation, we build back the factors
of H.

Theorem 3. Algorithm[ilis correct.

This is deduced from the previous results.

If we rely on special data structures, the overall complexity of this algorithm
is in O((logy n)?r®*mA?)), where A stands for the maximal degree of H, and n
stands for the number of vertices of H. This leads to a polynomial algorithm in
O(nm) when r, A are fixed.
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