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Derivation of viscous correction terms for the isothermal quantum Euler model

The aim of this paper is to compute viscous correction terms for the isothermal quantum Euler system of Degond, Gallego, Méhats (SIAM Multiscale Model Simul., 6, 2007). We derive this model by using a Chapman-Enskog expansion up to order 1. In a last part, we consider a situation where the flow is nearly irrotational in order to get a simplified model.

1 Introduction.

This paper is the continuation of a program of work initiated in 2003 in [START_REF] Degond | Quantum Moment Hydrodynamics and the Entropy Principle[END_REF]. Extending Levermore's moments method [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] to a quantum context, P. Degond and C. Ringhofer derived hydrodynamical models from Chapman-Enskog expansions around quantum local equilibriums. Next, after this work, an entropic quantum drift-diffusion model was derived in [START_REF] Degond | Quantum energy-transport and drift-diffusion models[END_REF], numerically discretized in [START_REF] Gallego | Entropic discretization of a quantum driftdiffusion model[END_REF] and discussed in the context of quantum transport in electronic nanostructures in [START_REF] Degond | An entropic Quantum Drift-Diffusion model for electron transport in resonant tunneling diodes[END_REF]. In [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF], an isothermal quantum Euler system was derived, recovering at a semiclassical asymptotics a model obtained in [START_REF] Jüngel | A derivation of the isothermal quantum hydrodynamic equations using entropy minimization[END_REF]. Extended models were also discussed in [START_REF] Bourgade | On quantum extensions to classical Spherical Harmonics Expansion / Fokker-Planck models[END_REF][START_REF] Degond | On Quantum Hydrodynamic and Quantum Energy Transport Models[END_REF].

All these models were obtained -formally-by applying a hydrodynamic or a diffusive scaling to a Wigner equation with ad-hoc relaxation operators and performing the limit as the mean free path converges to zero. In this paper, we are interested in the next order approximation of the hydrodynamic limit. In the classical setting, it is well-known [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF] that this leads to the viscous correction to the Euler equations, i.e. to the Navier-Stokes system. Here, we apply the same idea in the quantum setting in order to derive the first order correction to the isothermal Euler equation of [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF]. By analogy, we shall call quantum Navier-Stokes system the obtained model.

Let us shortly present the approach. From the Wigner equation, integrations with respect to the momentum variable p ∈ R 3 lead to equations for the first two moments n(t, x) (the mass density) and n(t, x)u(t, x) (the current density), both densities being functions of the space variable x ∈ R 3 and the time variable t ∈ R:

∂ t n + div(nu) = 0, (1) 
∂ t (nu) + div(nu ⊗ u + P)

+ n∇V = 0, (2) 
where V denotes an applied potential. Of course, this system of equations is not closed, since the pressure tensor P is still expressed in terms of the microscopic Wigner function f (t, x, p):

P = R d (p -u)(p -u) f (t, x, p) dp (2π ) 3 , (3) 
where is the dimensionless Planck constant. The Wigner function f (t, x, p) can be seen as a quantum extension of the phase-space Boltzmann distribution function, though f (t, x, p) is not a positive function.

In [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF], an isothermal quantum Euler system was derived by closing the system of moments as follows. The expression (3) of P is simply replaced by another one in terms of n and nu:

P = R d (p -u)(p -u) f eq n,nu dp (2π ) 3 , (4) 
where f eq n,nu is the so-called local equilibrium, depending only on n and nu in a non local (and non explicit) way -see Definition 1. Equivalently, this isothermal quantum Euler model can be obtained as the limit ε → 0 of the following quantum BGK equation in a hydrodynamic scaling:

∂ t f + p • ∇ x f + Θ(V )f = 1 ε (f eq n,nu -f ).
In the present paper, in order to obtain a Navier-Stokes model, f will be formally expanded up to first order around the local equilibrium f eq n,nu as f = f eq n,nu + εf 1 .

The outline of the paper is the following. In Section 2, the quantum Navier-Stokes model is derived and formulated in Theorem 1. Then, Section 3 is devoted to some simplifications of this model when the flow is assumed to be nearly irrotational: Proposition 1 is a reformulation of the quantum Navier-Stokes model in this situation.

Derivation of the model

In this section we first recall some backgrounds about the Wigner equation and we present the model derived in the general situation.

Notations and background.

By a density operator, we shall always mean a positive, Hermitian, traceclass operator acting on L 2 (R 3 ). Let us recall the definition of the first moments of a density operator ̺, i.e. the mass density n and the current density nu. These quantities are defined by duality, considering scalar test functions φ and vector ones Φ. We set

∀φ ∈ C ∞ 0 (R 3 ) nφdx = Tr{̺φ}, (5) 
∀Φ ∈ C ∞ 0 (R 3 ) 3 nu • Φ dx = Tr ̺W -1 [p • Φ] = -i Tr ̺ Φ • ∇ + 1 2 (∇ • Φ) (6) 
Note that an immediate consequence of ( 5) and ( 6) is the following property which will be useful later:

∀Φ - i Tr{̺(Φ • ∇)} = nu • Φ dx + i 2 n ∇ • Φ dx. (7) 
In [START_REF] Degond | Quantum hydrodynamic models derived from the entropy principle[END_REF], W -1 denote the inverse Wigner transform (or Weyl quantization).

Let us recall the definitions of the Wigner transform and the inverse Wigner transform. The Wigner transform maps operators on L 2 (R 3 ) onto symbols, ie L 2 (R 3 × R 3 ) functions of the classical position and momentum variables (x, p) ∈ R 3 × R 3 . More precisely, one defines the integral kernel of the operator ̺ to be the distribution ̺(x, x ′ ) such that ̺ operates on any function ψ(x) ∈ L 2 (R 3 ) as follows:

̺ψ(x) = ̺(x, x ′ )ψ(x ′ )dx ′ .
Then, the Wigner transform W [̺](x, p) is defined by:

W [̺](x, p) = ̺ x - 1 2 η, x + 1 2 η e iη•p dη. (8) 
The Wigner transform can be inverted and its inverse (called Weyl quantization) is defined for any function f (x, p) as the operator acting on ψ(x) ∈ L 2 (R 3 ) as:

W -1 [f ]ψ(x) = (2π ) -3 f x + y 2 , p ψ(y)e ip•(x-y) dp dy. (9) 
We have also the following Parseval property: for any operators ρ and σ in L 2 = {̺ : Tr(̺̺ † ) < ∞}:

Tr(ρσ † ) = W [ρ]W [σ] dx dp (2π ) 3 , (10) 
where the bar means complex conjugation. We also recall the cyclicity of the trace, where a, b, c are three operators:

Tr{[a, b]c} = Tr{[c, a]b} = Tr{[b, c]a}.
In quantum statistical mechanics, the Von Neumann entropy is defined by:

S(̺) = Tr(̺ ln ̺ -̺). (11) 
In order to deal with isothermal problems, we introduce the quantum free energy defined by:

G(̺) = T S(̺) + E(̺) = Tr (T (̺ ln ̺ -̺) + H̺) . ( 12 
)
where H is the Hamiltonian defined by

H = - 2 2 ∆ + V. (13) 
For simplicity, the potential V = V (t, x) applied to the system of particles is assumed to be given, independent of the particles.

In this paper, we suppose that the particle system interacts with a thermal bath and that the mass n and the current nu are conserved by this interaction. Following [START_REF] Degond | Quantum Moment Hydrodynamics and the Entropy Principle[END_REF], [START_REF] Degond | Quantum energy-transport and drift-diffusion models[END_REF], [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF], we shall model this interaction via a relaxation operator constructed according to a principle of free energy minimization. To this aim, we define the local thermal equilibrium associated to n and nu, at temperature T through the following formal procedure. The solution, if it exists, is called the local equilibrium density operator associated to n and nu. Lagrange multiplier theory for the constrained problem (14) (see [START_REF] Degond | Quantum Moment Hydrodynamics and the Entropy Principle[END_REF], [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF]) shows that there exist a scalar function A and a vector function B, both real valued and defined on R 3 , such that this local equilibrium density operator takes necessarily the form:

̺ eq n,nu = exp - 1 T H(A, B) , (15) 
where H(A, B) is the following modified Hamiltonian:

H(A, B) = W -1 1 2 (p -B) 2 + A = 1 2 (i ∇ + B) 2 + A. ( 16 
)
The local equilibrium Wigner function associated to n and nu is the Wigner transform of ̺ eq n,nu :

f eq n,nu = W [̺ eq n,nu ].

Derivation of the quantum Navier-Stokes system

Let us now introduce the quantum BGK equation, by adding a relaxation operator to the quantum Liouville equation. This operator, denoted by Q(̺), describes the collisions between the particles and a surrounding environnement at temperature T . In this paper, we choose this collision operator equal to the simplest quantum BGK operator that can be constructed according to the minimization problem (14):

ı ∂ t ̺ = [H, ̺] + ı ̺ eq n,nu -̺ ε , (17) 
where, for all t, the local equilibrium ̺ eq n,nu (t) is defined thanks to Definition 1 from the density n(t, •) and the current (nu)(t, •) associated to ̺(t) through ( 5), [START_REF] Degond | Quantum hydrodynamic models derived from the entropy principle[END_REF].

Let us now expand ̺ around ̺ eq n,nu as follows:

̺ = ̺ eq n,nu + ε̺ 1 .
By inserting this expansion of ̺ into the equation ( 17), we get the relation defining

̺ 1 ̺ 1 = -∂ t ̺ eq n,nu + ı [H, ̺ eq n,nu ].
By using a Wigner transformation of the equation ( 17), we get the following Wigner-BGK equation

∂ t f + p • ∇ x f -Θ(V )f = f eq n,nu -f ε (18) with Θ(V )f = ı (2π) 3 R 6 V (t, x + 2 η) -V (t, x -2 η) f (x, p ′ )e ı(p-p ′ )•η dηdp ′ . (19)
The Wigner transformation of the expansion of ̺ gives f = f eq n,nu + εf 1 . Hence f 1 has the expression

f 1 = -∂ t f -p • ∇ x f + Θ(V )f
and, formally,

f 1 = -∂ t f eq n,nu -p • ∇ x f eq n,nu + Θ(V )f eq n,nu + O(ε). (20) 
Moreover, by considering the first moments of (18) with respect to p, we obtain

∂ t f dp (2π ) 3 + div pf dp (2π ) 3 = 0 and ∂ t f p dp (2π ) 3 + div p ⊗ pf dp (2π ) 3 + n∇ x V = 0.
The last equation can be rewritten

∂ t (nu) + div p ⊗ pf eq n,nu dp (2π ) 3 + n∇ x V = -εdiv p ⊗ pf 1 dp (2π ) 3 .

Then (20) gives formally

∂ t (nu) + div p ⊗ pf eq n,nu dp (2π ) 3 + n∇ x V = εdiv p ⊗ p ∂ t f eq n,nu + p • ∇ x f eq n,nu -Θ(V )f eq n,nu dp (2π ) 3 + O(ε 2 ).
The isothermal quantum Navier-Stokes system is simply the model obtained when the O(ε 2 ) term is dropped in this equation:

∂ t n + div(nu) = 0, ( 21 
)
∂ t (nu) + div p ⊗ pf eq n,nu dp (2π ) 3 + n∇ x V = εdiv p ⊗ p ∂ t f eq n,nu + p • ∇ x f eq n,nu -Θ(V )f eq n,nu dp (2π ) 3 , (22)
where f eq n,nu is still defined from n and nu through Definition 1. Let us now simplify this system. Equation ( 22) contains moments of order 2 and 3 of the equilibrium function f eq n,nu which might not be easy to handle. Denote

Π ij = p i p j f eq n,nu dp (2π ) 3 , Q ijk = p i p j p k f eq n,nu dp (2π ) 3 . ( 23 
)
Using commutator properties as in [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF] and [START_REF] Degond | On Quantum Hydrodynamic and Quantum Energy Transport Models[END_REF], one can express divΠ in terms of n, nu, A and B only. We recall from [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF] that:

(divΠ) i = j ∂ j Π ij = j ∂ x j (nu i B j ) + j n(u j -B j )∂ x i B j -n∂ x i A. (24) 
Similarly, we shall express j,k Q ijk in terms of n, nu, A, B and Π only. This is the aim of the following theorem:

Theorem 1. The above defined isothermal quantum Navier-Stokes system (21), ( 22) is formally equivalent to the following system, up to terms of order O(ε 2 ):

∂ t n + div(nu) = 0, (25) 
∂ t (nu i ) + 3 j=1 ∂ x j (nu i B j ) + n(u j -B j )∂ x i B j + n∂ x i (V -A) = εS i (26)
where A and B are related to n and nu via Definition 1 and where S i is equal to:

S i = - 3 k=1 3 j=1 ∂ x k ∂ x j (nu i B j ) B k -n ∂ x j (u j -B j )∂ x i B j B k - 3 k=1 3 j=1 ∂ x i B k ∂ x j (nu k B j ) + n∂ x j (u j -B j )∂ x k B j - 3 k=1 ∂ x k (n∂ x i (V -A) B k ) + 3 k=1 (∂ x k (nu i ∂ t B k ) + ∂ x i ∂ t B k nu k ) - 3 k=1 n∂ x i B k ∂ x k (V -A) + 3 k=1 nu k ∂ x i A + B 2 2 -n ∂ x i ∂ t A + B 2 2 
- 3 j=1 3 j=1 ∂ x j ∂ x j A + B 2 2 nu i + ∂ x i A + B 2 2 nu j + 3 j=1 3 k=1 ∂ x j ∂ x k (B k Π ij ) + ∂ x j B k Π ik + ∂ x i B k Π jk - 2 4 3 j=1 3 k=1 ∂ x j ∂ x k (n∂ x i ∂ x j B k ) + 3 j=1 ∂ x j ∂ x j V nu i + ∂ x i V nu j , (27) 
the tensor Π being defined by (23).

Proof. From (24), we deduce directly that the l.h.s. of ( 22) can be rewritten as the l.h.s. of (26). To prove the theorem, it remains to consider the r.h.s. of ( 22), which is

-εdiv p ⊗ pf 1 dp (2π ) 3 = εg 1 + εg 2 + εg 3 ,
where we have set, for i = 1, 2, 3,

(g 1 ) i = 3 j=1 ∂ t ∂ x j p i p j f eq n,nu dp (2π ) 3 , ( 28 
) (g 2 ) i = 3 j=1 3 k=1 ∂ x j ∂ x k p i p j p k f eq n,nu dp (2π ) 3 , ( 29 
) (g 3 ) i = - 3 j=1 ∂ x j p i p j Θ(V )f eq n,nu dp (2π ) 3 . ( 30 
)
The expressions of g 1 , g 2 and g 3 are given in the following lemmas whose proof is in the appendix. By summing up these expressions, the proof of the theorem is complete.

Lemma 1. The quantity g 3 defined by (30) can be written

(g 3 ) i = 3 j=1 ∂ x j ∂ x j V nu i + ∂ x i V nu j . (31) 
Lemma 2. The quantity g 2 defined in (29) has the following expression:

(g 2 ) i = - 3 j=1 3 j=1 ∂ x j ∂ x j A + B 2 2 nu i + ∂ x i A + B 2 2 nu j + 3 j=1 3 k=1 ∂ x j ∂ x k (B k Π ij ) + ∂ x j B k Π ik + ∂ x i B k Π jk 2 4 3 j=1 3 k=1 ∂ x j ∂ x k (n∂ x i ∂ x j B k ). (32) 
Lemma 3. Up to O(ε) terms, the quantity g 1 defined in (28) has the following expression:

(g 1 ) i = - 3 k=1 3 j=1 ∂ x k ∂ x j (nu i B j ) B k -n ∂ x j (u j -B j )∂ x i B j B k - 3 k=1 3 j=1 ∂ x i B k ∂ x j (nu k B j ) + n∂ x j (u j -B j )∂ x k B j - 3 k=1 ∂ x k (n∂ x i (V -A) B k ) + 3 k=1 (∂ x k (nu i ∂ t B k ) + ∂ x i ∂ t B k nu k ) - 3 k=1 n∂ x i B k ∂ x k (V -A) + 3 k=1 nu k ∂ x i A + B 2 2 -n ∂ x i ∂ t A + B 2 2 . ( 33 
)
3 The system in the irrotational case

In this part we focus on the special case of irrotational flows, which enables to simply notably the system obtained in Theorem 1. Indeed, it has been shown in [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF], [START_REF] Degond | On Quantum Hydrodynamic and Quantum Energy Transport Models[END_REF] that when ∇ × u = 0 then the quantity B defined in Definition 1 is nothing but the velocity u itself.

In the case of the isothermal quantum Euler equation, i.e. when we make ε = 0 in (26), it has been shown in [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF] that when the initial data is irrotational, then the solution remains irrotational for all time. Unfortunately, it is not clear whether this property remains true for the quantum Navier-Stokes equations ( 25), (26). Instead, we have the following property:

if (∇ × u)(t = 0) = O(ε) then we have (∇ × u)(t) = O(ε), which implies B = u + O(ε).
In such situation, the model obtained by replacing B by u in the r.h.s. of (26) will only differ from (26) by O(ε 2 ) terms, and thus will remain consistent with our theory.

Proposition 1. Assume that (∇ × u)(t = 0) = O(ε).
Then, for all time, we have (∇ × u)(t) = O(ε) and the following system is formally equivalent to (25), ( 26), up to O(ε 2 ) terms:

∂ t n + div(nu) = 0 (34) ∂ t (nu i ) + 3 j=1 ∂ x j (nu i B j ) + n(u j -B j )∂ x i B j + n∂ x i (V -A) = ε S i (35)
where

S i = 3 j=1 3 k=1 ∂ x j (∂ x j u k P ij ) + ∂ x j (∂ x i u k P jk ) + ∂ 2 x j x k (P ij u k ) + 3 k=1 ∂ x k (nu k )∂ x i A -n∂ x i (∂ t A) - 2 4 3 k=1 3 j=1 ∂ x j ∂ x k (n∂ x i ∂ x j u k ) (36)
and where P is the following tensor:

P = R d (p -u)(p -u) f eq n,nu dp (2π ) d . Proof. If B = u + O(ε), then (25), (26) yield ∂ t u i + 3 k=1 u k ∂ x k u i + ∂ x i (V -A) = O(ε). ( 37 
) So ∂ t u 2 2 reads ∂ t u 2 2 = - 3 j=1 3 k=1 (u j u k ∂ x k u j ) - 3 j=1 u j ∂ x j (V -A) + O(ε).
Let us replace B by u in the expression (27) of S i . The terms depending on V vanish:

-∂ x k (nu k ∂ x i V ) -∂ x k (nu i ∂ x k V ) + ∂ x i (-∂ x k V ) nu k -n∂ x k V ∂ x i u k +n∂ x i (u k ∂ x k V ) + ∂ x k (∂ x k V nu i ) + ∂ x k (∂ x i V nu k ) = 0.
Let X be defined by

X = -∂ x k ∂ x j nu j u i u k -∂ x k nu i u j ∂ x j u k -∂ x i u j ∂ x j u k nu k -∂ x i u k ∂ x j (nu k u j ) + ∂ x j nu j u k ∂ x i u k + n∂ x i u k ∂ x j u k u j + ∂ x j u k ∂ x j u k nu i + ∂ x j u k ∂ x i u k nu j .
and consider the terms depending on the stress tensor Π:

Y = ∂ x j (∂ x j u k nu i u k ) + ∂ x j (∂ x i u k nu j u k ) + ∂ 2 x j x k (nu i u j u k ) + ∂ x j (∂ x j u k P ik ) + ∂ x j (∂ x i u k P jk ) + ∂ 2 x j x k (P ij u k ).
Straightforward calculations lead to

X + Y = ∂ x j (∂ x j u k P ik ) + ∂ x j (∂ x i u k P jk ) + ∂ 2 x j x k (P ij u k ).
Furthermore, the terms depending on A become

∂ x k (n ∂ x i A u k ) + ∂ x k (nu i ∂ x i A) + ∂ x i (∂ x k A) nu k +n∂ x k A ∂ x i u k + ∂ x k (nu k ) ∂ x i A -n∂ x i (u k ∂ x k A) -∂ x k (∂ x k A nu i ) -∂ x k (∂ x i A nu k ) -n∂ x i (∂ t A) = ∂ x k (nu k )∂ x i A -n∂ x i (∂ t A).
Hence (36) follows.

Remark 1. The semi-classical limit of (36) leads to the classical isothermal Navier-Stokes equation. Indeed, in that case, P ij , A and B have the expressions [START_REF] Degond | Isothermal quantum hydrodynamics: derivation, asymptotic analysis and simulation[END_REF] 

P ij = nT δ ij , A = -T ln(n), B = u.
So we obtain

3 k=1 3 j=1 ∂ x j ∂ x j u k P ik + ∂ x i u k P jk = 3 j=1 ∂ x j (∂ x j u i + ∂ x i u j )nT , -n∂ x i (∂ t A) = -T ∂ x i (div(nu)) + T n ∂ x i n div(nu), div(nu) ∂ x i A = -div(nu) T n ∂ x i n, 3 j=1 ∂ x j (div(u P ij )) = T ∂ x i div(nu),
and we get finally

S i = 3 j=1 ∂ x j (∂ x j u i + ∂ x i u j )nT . (38) 
Appendix.

Proof of Lemma 30. Let f be given. Then we have

p i p j Θ(V )f dp (2π ) 3 = -∂ η i ∂ η j Θ(V )f (t, x, 0). But from (19), it holds that Θ(V )f = ı V (t, x + 2 η) -V (t, x -2 η) f (t, x, η).
Hence

p i p j Θ(V )f dp = -ı∂ x i 1 2 ∂ x j V (t, x + 2 η) + 1 2 ∂ x j V (t, x -2 η) f + V (t, x + 2 η) -V (t, x -2 η) ∂ η j f η=0 . So p i p j Θ(V )f dp (2π ) 3 = -ı ∂ x j V ∂ η i f + ∂ x i V ∂ η j f (t, x, 0).
Then 3 , and (31) follows.

p i p j Θ(V )f dp (2π ) 3 = -∂ x j V nu i -∂ x i V nu j , where n = f dp (2π ) 3 , nu = f p dp (2π )
Proof of Lemma 2.

Recall the definition (23) of Q. We claim that, for all i and j,

3 k=1 ∂ x k Q ijk = -∂ x i A + B 2 2 nu j -∂ x j A + B 2 2 nu i + 3 k=1 ∂ x i B k Π jk + ∂ x j B k Π ik + ∂ x k (B k Π ij ) - 2 4 3 k=1 ∂ x k (n ∂ x i ∂ x j B k ). (39) 
From (39), we deduce (32) and the proof of Lemma 2 is complete.

Let us prove (39). To this aim, we recall a useful commutator lemma that was established in [START_REF] Degond | On Quantum Hydrodynamic and Quantum Energy Transport Models[END_REF]. Let us first introduce some notations. If α = (α 1 , α 2 , α 3 ) ∈ N 3 is a multi-index (with N the set of natural integers), we denote

p α = p α 1 1 p α 2 2 p α 3 3 , ∂ α x = ∂/∂x α 1 1 ∂/∂x α 2 2 ∂/∂x α 3 3 , |α| = α 1 + α 2 + α 3 , 0≤γ≤α = α 1 γ 1 =0 α 2 γ 2 =0 α 3 γ 3 =0 and α γ = α 1 γ 1 α 2 γ 2 α 3 γ 3 ,
where α i γ i are the binomial coefficients.

Lemma 4 (Lemma 3.4 of [START_REF] Degond | On Quantum Hydrodynamic and Quantum Energy Transport Models[END_REF]). Let α = (α 1 , α 2 , α 3 ) ∈ N 3 and β = (β 1 , β 2 , β 3 ) ∈ N 3 be two multi-indices and let λ(x) and µ(x) be any smooth real or complex valued functions. Let us denote [λp α , µp β ] the symbol associated to the commutator of the operators W -1 (λp α ) and W -1 (µp β ), i.e.:

[λp α , µp β ] = W W -1 (λp α ) , W -1 µp β . ( 40 
)
The following formal expansion holds:

[λp α , µp β ] = ⌊(|α+β|-1)/2⌋ k=0 ı 2k+1 - 1 4 k [λp α , µp β ] 2k+1 , (41) 
with

[λp α , µp β ] 2k+1 = 0≤γ≤α, 0≤ζ≤β |γ+ζ|=2k+1 (-1) |γ| α γ β ζ (∂ ζ x λ) (∂ γ x µ) p α+β-γ-ζ , (42 
) where ⌊•⌋ denotes the floor function.

Let µ(x) be a given test function. From Lemma 4, we compute:

3 k=1 ∂ x k µp i p j p k = ı |p| 2 2 , µp i p j . (43) 
Hence, an integration by parts gives

µ 3 k=1 ∂ x k Q ijk dx = - 3 k=1 ∂ x k µp i p j p k f eq n,nu dxdp (2π ) 3 = - ı |p| 2 2 , µp i p j f eq n,nu dxdp (2π ) 3 = - ı W - 2 2 ∆, W -1 (µp i p j ) f eq n,nu dxdp (2π ) 3 .
Now, using the Parseval property [START_REF] Jüngel | A derivation of the isothermal quantum hydrodynamic equations using entropy minimization[END_REF] and observing that

- 2 2 ∆ = H(A, B) -W -1 -B • p + A + B 2 2 ,
where H(A, B) is defined by (16), we get

µ 3 k=1 ∂ x k Q ijk dx = - ı Tr -2 ∆, W -1 (µp i p j ) ̺ eq n,nu = - ı Tr H(A, B) -W -1 -B • p + A + B 2 2 , W -1 (µp i p j ) ̺ eq n,nu = ı Tr W -1 -B • p + A + B 2 2 , W -1 (µp i p j ) ̺ eq n,nu = ı -B • p + A + B 2 2 , µp i p j f eq n,nu dxdp (2π ) 3
where we used the cyclicity of the trace and the crucial fact that, by (15), ̺ eq n,nu commutes with the operator H(A, B).

Let us now compute -B • p + A + B 2 2 , µp i p j . From Lemma 4, we deduce

A + B 2 2 , µp i p j = ı ∂ x i A + B 2 2 p j + ∂ x j A + B 2 2 p i µ,
and that

[B • p, µp i p j ] = ı [B • p, µp i p j ] 1 - ıh 3 4 [B • p, µp i p j ] 3 , with [B • p, µp i p j ] 1 = 3 k=1 [B k p k , µp i p j ] 1 = 3 k=1 ∂ x i B k µ p j p k + ∂ x j B k µ p i p k -B k ∂ x k µ p i p j and [B • p, µp i p j ] 3 = 3 k=1 [B k p k , µp i p j ] 3 = - 3 k=1 ∂ x i ∂ x j B k ∂ x k µ.
Hence,

-[B • p, µp i p j ] = -ı

3 k=1 ∂ x i B k p j p k + ∂ x j B k p i p k µ -ı 3 k=1 2 4 ∂ x i ∂ x j B k -B k p i p j ∂ x k µ.
We get finally, after an integration by parts, 

µ 3 k=1 ∂ x k Q ijk dx = - ∂ x i A
∂ x i B k Π jk + ∂ x j B k Π ik µdx - 3 k=1 ∂ x k 2 4 n∂ x i ∂ x j B k -B k Π ij µdx.
Therefore, since this expression holds true for all function µ(x), one can identify (39).

Proof of Lemma 3.

From (24), we deduce

(g 1 ) i = ∂ t (divΠ) i = 3 k=1 ∂ x k (∂ t (nu i ) B k ) + 3 k=1 ∂ x k (nu i ∂ t B k ) + 3 k=1 ∂ x i ∂ t B k nu k + 3 k=1 ∂ x i B k ∂ t (nu k ) -∂ t n ∂ x i A + B 2 2 -n ∂ x i ∂ t A + B 2 2 . ( 44 
)
But according to (21), ( 22), we have

∂ t n = -div(nu), ∂ t (nu i ) = - 3 j=1 ∂ x j (nu i B j ) -n 3 j=1 ∂ x j (u j -B j )∂ x i B j -n∂ x i (V -A) + O(ε). 16 
So, neglecting the O(ε) terms, we get the following relations:

∂ t (nu i )B k = - 3 j=1 ∂ x j (nu i B j )B k -n 3 j=1 ∂ x j (u j -B j )∂ x i B j B k -n∂ x i (V -A)B k , 3 k=1 ∂ x i B k ∂ t (nu k ) = 3 k=1 ∂ x i B k - 3 j=1 ∂ x j (nu k B j ) -n 3 j=1 ∂ x j (u j -B j ) ∂ x k B j -n ∂ x k (V -A)
and

∂ t n∂ i A + 1 2 B 2 = - 3 k=1 (nu k )∂ x i A + 1 2 B 2
which enable to simplify (44) and gives (33).

Definition 1 .

 1 Let the scalar function n(x) ≥ 0 and the vectorial function nu(x) be given. Consider the following constrained minimization problem: min {G(̺) such that ̺ is a density operator satisfying (5) and (6)} . (14)

  B k p j p k + ∂ x j B k p i p k µf eq ∂ x i ∂ x j B k -B k p i p j f eq n,nu µ

			+	B 2 2	p j + ∂ x j A +	B 2 2	p i µf eq n,nu	dxdp (2π ) 3
	+	3 k=1	∂ x i n,nu	dxdp (2π ) 3
	-	3 k=1	∂ x k	2 4			dxdp (2π ) 3
	= -	∂ x i A +	B 2 2	nu j + ∂ x j A +	B 2 2	nu i µdx
		3				
	+					
		k=1