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SPECTRAL MULTIPLIER THEOREMS AND AVERAGED

R-BOUNDEDNESS

CHRISTOPH KRIEGLER AND LUTZ WEIS

Abstract. Let A be a 0-sectorial operator with a bounded H∞(Σσ)-calculus for some
σ ∈ (0, π), e.g. a Laplace type operator on Lp(Ω), 1 < p < ∞, where Ω is a manifold
or a graph. We show that A has a Hα

2 (R+) Hörmander functional calculus if and only if
certain operator families derived from the resolvent (λ−A)−1, the semigroup e−zA, the wave
operators eitA or the imaginary powers Ait of A are R-bounded in an L2-averaged sense. If
X is an Lp(Ω) space with 1 ≤ p < ∞, R-boundedness reduces to well-known estimates of
square sums.

1. Introduction

Hörmander’s Fourier multiplier theorem states that for a function f ∈ Hα
2 (R+) the opera-

tor f(−∆), defined in terms of the functional calculus on L2(Rd) can be extended to Lp(Rd)
if 1 < p <∞ and α > d

2
. Here

Hα
2 (R+) = {f ∈ C(R+,C) : sup

t>0
‖φf(t·)‖Wα

2
(R+) <∞}

where φ ∈ C∞(R) with compact supp φ ⊂ (0,∞) is a cut-off function and W α
2 (R+) is the

usual Riesz-potential Sobolev space. For α ∈ N, an equivalent norm on Hα
2 is given by the

“classical” Hörmander condition

sup
R>0, β=0,...,α

1

R

∫ 2R

R

|tβDβf(t)|2dt <∞.

There is a large literature extending such a spectral multiplier result to more general self-
adjoint operators on Lp(Ω), e.g. for Laplace type operators on manifolds, infinite graphs
and fractals (see e.g. [1, 7, 10, 11, 26, 30] and the references therein). There are various
approaches to the Hα

2 calculus using kernel estimates, maximal estimates or square function
estimates for the resolvent (λ − A)−1, the analytic semigroup e−zA generated by −A and
their “boundary”, the wave operators eitA, or the imaginary powers Ait of A. Relevant are
e.g. estimates on operator functions such as (α > 1

2
, m > α− 1

2
are fixed)

• Tθ(t) = A
1

2 e−eiθtA, t ∈ R+,

• Rθ(t) = A
1

2R(eiθt, A), t ∈ R+,

• W (s) = |s|−αA−α+ 1

2 (eisA − 1)m, s ∈ R,
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• I(t) = (1 + |t|)−αAit, t ∈ R.

Many of these estimates imply or are closely related to square sum estimates of the fol-
lowing form

(1.1)

∥∥∥∥∥∥

(
∑

i

|Sixi|2
) 1

2

∥∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥

(
∑

i

|xi|2
) 1

2

∥∥∥∥∥∥
Lp

where xi ∈ Lp(Ω) and the Si are members of one of the families listed above (see e.g. [3, 32]
for an early appearance of this square sum estimate in the context of spectral multiplier
theorems). If (rn) is a sequence of Rademacher functions on [0, 1] one can reformulate (1.1)
equivalently as

(1.2)

∫ 1

0

‖
∑

i

ri(ω)Sixi‖dω ≤ C

∫ 1

0

‖
∑

i

ri(ω)xi‖dω.

This statement makes sense in an arbitrary Banach space X and a set τ ⊂ B(X) is called
R-bounded if (1.2) holds for all Si ∈ τ and xi ∈ X. Using R-boundedness in place of
kernel estimates and the holomorphic H∞(Σσ) calculus instead of the spectral theorem for
selfadjoint operators, one can develop a theory of spectral multiplier theorems for 0-sectorial
operators on Banach spaces (see [20, 21, 22, 23, 24]). Again, R-bounds for one of the operator
families listed above are sufficient to secure Hα

2 (R+) spectral theorems for such operators
A. However, neither in this general framework nor in the case of Laplace type operators
on an Lp(Ω) space (see above), one obtains necessary and sufficient conditions in terms of
R-bounds or kernel estimates. This is related to the (usually) difficult task of determining
the optimal α for the Hα

2 (R+) spectral calculus of a given operator A. Thus the purpose of
this paper is to give a characterization of the Hα

2 (R+) spectral multiplier theorem in terms
of an L2-averaged R-boundedness condition. More precisely, let t ∈ J 7→ N(t) ∈ B(X)
be weakly square integrable on an interval J. Then (N(t))t∈J is called R[L2]-bounded if for
h ∈ L2(J) with ‖h‖L2(J) ≤ 1 the strong integrals

Nhx =

∫

J

h(t)N(t)xdt, x ∈ X

define an R-bounded subset {Nh : ‖h‖L2(J) ≤ 1} of B(X). By R[L2(J)](N(t)), we denote
the R-bound of this set. In a Hilbert space X, R[L2(J)]-boundedness reduces to the simple
estimate (∫

J

|〈N(t)x, y〉|2dt
) 1

2

≤ C‖x‖ ‖y‖ for all x, y ∈ H.

Assume now that A is a 0-sectorial operator with an H∞(Σσ) calculus for some σ ∈ (0, π)
on a Banach space isomorphic to a subspace of an Lp(Ω) space with 1 ≤ p < ∞ (or more
generally, let X have Pisier’s property (α)). Then our main results, Theorems 6.1 and 6.4
show (among other statements), that the following conditions on the operator function above
are essentially equivalent:

A has an R-bounded Hα
2 spectral calculus, i.e. {f(A) : ‖f‖Hα

2
(R+) ≤ 1} is R-bounded in B(X

resolvents: R[L2(R+)](Rθ(·)) ≤ C|θ|−α for θ → 0
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semigroup: R[L2(R+)](Tθ(·)) ≤ C(
π

2
− |θ|)−α for |θ| → π

2
wave operators: R[L2(R)](W (·)) <∞

imaginary powers: R[L2(R)](I(·)) <∞.

The estimates on Rθ(·) (resp. on Tθ(·)) measure the growth of the resolvent (the analytic
semigroup) as we approach the spectrum of A (resp. the “boundary” iR of C+) on rays in
C\R+ (in C+). Clearly, the R[L2(J)]-boundedness of I(·) measures the polynomial growth
of the imaginary powers and W (·) the growth of the regularized wave operators eitA. The
latter regularization is necessary since outside Hilbert space the operators eitA are usually
unbounded. The equivalence of these statements shows in particular that estimates of resol-
vents, the semigroup, wave operators or imaginary powers are all equivalent ways to obtain
the boundedness of f(A) for arbitrary f ∈ Hα

2 (R+).
We end this introduction with an overview of the article. Section 2 contains the background

on H∞ functional calculus for a sectorial operator A, R-boundedness as well as the definition
of relevant function spaces. In Section 3 we introduce the Hörmander and Mihlin function
spaces and their functional calculus. In Section 4 as a preparation for the proof of Theorem
6.1, we relate the wave operators eisA with imaginary powers Ait via the Mellin transform.
In Section 5, we study the notion of averaged R-boundedness. We feel that it is worthwhile
to introduce averaged R-boundedness also for other function spaces than L2(J) since these
notions appeared already implicitly in the literature and have proven to be quite useful.
Finally in Section 6 we state the main Theorem 6.1, which establishes equivalences between
the smaller Wα

2 functional calculus and averaged R-boundedness of the operator families
above (see Section 3 for the definition of this function space). However, most of the classical
spectral multipliers (e.g. f(λ) = λit) belong to Hα

2\Wα
2 . Therefore we extend in Theorem 6.4

this calculus to Hα
2 by means of a localization procedure. Finally, in Section 7, we indicate

how our main results can be transferred to bisectorial and strip-type operators.

2. Preliminaries

2.1. 0-sectorial operators. We briefly recall standard notions on H∞ calculus. For ω ∈
(0, π) we let Σω = {z ∈ C\{0} : | arg z| < ω} the sector around the positive axis of aperture
angle 2ω. We further define H∞(Σω) to be the space of bounded holomorphic functions on
Σω. This space is a Banach algebra when equipped with the norm ‖f‖∞,ω = supλ∈Σω

|f(λ)|.
A closed operator A : D(A) ⊂ X → X is called ω-sectorial, if the spectrum σ(A) is

contained in Σω, R(A) is dense in X and

(2.1) for all θ > ω there is a Cθ > 0 such that ‖λ(λ− A)−1‖ ≤ Cθ for all λ ∈ Σθ
c
.

Note that R(A) = X along with (2.1) implies that A is injective. In the literature, in the

definition of sectoriality, the condition R(A) = X is sometimes omitted. Note that if A

satisfies the conditions defining ω-sectoriality except R(A) = X on X = Lp(Ω), 1 < p < ∞
(or any reflexive space), then there is a canonical decomposition X = R(A) ⊕ N(A), x =

x1 ⊕ x2, and A = A1 ⊕ 0, x 7→ Ax1 ⊕ 0, such that A1 is ω-sectorial on the space R(A) with

domain D(A1) = R(A) ∩D(A).



4 CH. KRIEGLER AND L. WEIS

For an ω-sectorial operator A and a function f ∈ H∞(Σθ) for some θ ∈ (ω, π) that satisfies
moreover an estimate |f(λ)| ≤ C|λ|ǫ/|1 + λ|2ǫ, one defines the operator

(2.2) f(A) =
1

2πi

∫

Γ

f(λ)(λ−A)−1dλ,

where Γ is the boundary of a sector Σσ with σ ∈ (ω, θ), oriented counterclockwise. By the
estimate of f, the integral converges in norm and defines a bounded operator. If moreover
there is an estimate ‖f(A)‖ ≤ C‖f‖∞,θ with C uniform over all such functions, then A is said
to have a bounded H∞(Σθ) calculus. In this case, there exists a bounded homomorphism
H∞(Σθ) → B(X), f 7→ f(A) extending the Cauchy integral formula (2.2).

We refer to [5] for details. We call A 0-sectorial if A is ω-sectorial for all ω > 0.
For ω ∈ (0, π), define the algebras of functions Hol(Σω) = {f : Σω → C : ∃ n ∈ N : ρnf ∈

H∞(Σω)}, where ρ(λ) = λ(1 + λ)−2. For a proof of the following lemma, we refer to [27,
Section 15B] and [14, p. 91-96],[15],[16].

Lemma 2.1. Let A be a 0-sectorial operator. There exists a linear mapping, called the
extended holomorphic calculus,

(2.3)
⋃

0<ω<π

Hol(Σω) → {closed and densely defined operators on X}, f 7→ f(A)

extending (2.2) such that for any f, g ∈ Hol(Σω), f(A)g(A)x = (fg)(A)x for x ∈ {y ∈
D(g(A)) : g(A)y ∈ D(f(A))} ⊂ D((fg)(A)) and D(f(A)) = {x ∈ X : (ρnf)(A)x ∈
D(ρ(A)−n) = D(An) ∩ R(An)}, where (ρnf)(A) is given by (2.2), i.e. n ∈ N is sufficiently
large.

2.2. Function spaces on the line and half-line. In this subsection, we introduce several
spaces of differentiable functions on R+ = (0,∞) and R. Let ψ ∈ C∞

c (R). Assume that
suppψ ⊂ [−1, 1] and

∑∞
n=−∞ ψ(t − n) = 1 for all t ∈ R. For n ∈ Z, we put ψn = ψ(· − n)

and call (ψn)n∈Z an equidistant partition of unity. Let ϕ ∈ C∞
c (R+). Assume that suppϕ ⊂

[1
2
, 2] and

∑∞
n=−∞ ϕ(2−nt) = 1 for all t > 0. For n ∈ Z, we put ϕn = ϕ(2−n·) and call

(ϕn)n∈Z a dyadic partition of unity. Next let φ0, φ1 ∈ C∞
c (R) such that supp φ1 ⊂ [1

2
, 2] and

supp φ0 ⊂ [−1, 1]. For n ≥ 2, put φn = φ1(2
1−n·), so that supp φn ⊂ [2n−2, 2n]. For n ≤ −1,

put φn = φ−n(−·). We assume that
∑

n∈Z φn(t) = 1 for all t ∈ R. Then we call (φn)n∈Z a
dyadic partition of unity on R, which we will exclusively use to decompose the Fourier image
of a function. For the existence of such partitions, we refer to the idea in [2, Lemma 6.1.7].
We recall the following classical function spaces:

Notation 2.2. Let m ∈ N0 and α > 0.

(1) Cm
b = {f : R → C : f m-times diff. and f, f ′, . . . , f (m) uniformly cont. and bounded}.

(2) W α
2 = {f ∈ Lp(R) : ‖f‖Wα

2
= ‖(f̂(t)(1 + |t|)α)̌ ‖2 <∞}.

(3) Bα
∞,1, the Besov space defined for example in [33, p. 45]: Let (φn)n∈Z be a dyadic

partition of unity on R. Then

Bα = Bα
∞,1 = {f ∈ C0

b : ‖f‖Bα
∞,1

=
∑

n∈Z

2|n|α‖f ∗ φ̌n‖∞ <∞}.
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The space W α
2 is a Banach algebra with respect to pointwise multiplication if α > 1

2
, and

the space Bα is a Banach algebra for any α > 0 [31, p. 222].
Further we also consider the local space

(4) W α
2,loc = {f : R → C : fϕ ∈ W α

2 for all ϕ ∈ C∞
c } for α > 1

2
.

This space is closed under pointwise multiplication. Indeed, if ϕ ∈ C∞
c is given, choose

ψ ∈ C∞
c such that ψϕ = ϕ. For f, g ∈ W α

2,loc, we have (fg)ϕ = (fϕ)(gψ) ∈ W α
2,loc.

2.3. Rademachers, Gaussians and R-boundedness. A classical theorem of Marcinkiewicz
and Zygmund states that for elements x1, . . . , xn ∈ Lp(U, µ) we can express “square sums”
in terms of random sums∥∥∥∥∥∥

(
n∑

j=1

|xj(·)|2
) 1

2

∥∥∥∥∥∥
Lp(U)

∼=
(
E‖

n∑

j=1

ǫjxj‖qLp(U)

) 1

q

∼=
(
E‖

n∑

j=1

γjxj‖qLp(U)

) 1

q

with constants only depending on p, q ∈ [1,∞). Here (ǫj)j is a sequence of independent
Bernoulli random variables (with P (ǫj = 1) = P (ǫj = −1) = 1

2
) and (γj)j is a sequence of

independent standard Gaussian random variables. Following [4] it has become standard by
now to replace square functions in the theory of Banach space valued function spaces by
such random sums (see e.g. [27]). Note however that Bernoulli sums and Gaussian sums for
x1, . . . , xn in a Banach space X are only equivalent if X has finite cotype (see [8, p. 218] for
details).

Let τ be a subset of B(X). We say that τ is R-bounded if there exists a C <∞ such that

E

∥∥∥
n∑

k=1

ǫkTkxk

∥∥∥ ≤ CE
∥∥∥

n∑

k=1

ǫkxk

∥∥∥

for any n ∈ N, T1, . . . , Tn ∈ τ and x1, . . . , xn ∈ X. The smallest admissible constant C is
denoted by R(τ). We remark that one always has R(τ) ≥ supT∈τ ‖T‖ and equality holds if
X is a Hilbert space.

Recall that by definition, X has Pisier’s property (α) if for any finite family xk,l in X,
(k, l) ∈ F, where F ⊂ Z× Z is a finite array, we have a uniform equivalence

EωEω′

∥∥∥
∑

(k,l)∈F

ǫk(ω)ǫl(ω
′)xk,l

∥∥∥
X

∼= Eω

∥∥∥
∑

(k,l)∈F

ǫk,l(ω)xk,l

∥∥∥
X
.

Note that property (α) is inherited by closed subspaces, and that an Lp space has property
(α) provided 1 ≤ p <∞ [27, Section 4].

3. Hörmander and Mihlin classes

Aside from the classical spaces in Notation 2.2 we introduce the following Mihlin class and
Hörmander class.

Definition 3.1.

(1) Let α > 0. We define the Mihlin class

Mα = {f : R+ → C : fe ∈ Bα},
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equipped with the norm ‖f‖Mα = ‖fe‖Bα , where we write from now on

fe : J → C, z 7→ f(ez)

for a function f : I → C such that I ⊂ C\(−∞, 0] and J = {z ∈ C : | Im z| < π, ez ∈
I}. The space Mα coincides with the space Λα

∞,1(R+) in [5, p. 73].

(2) Let α > 1
2
. We define

Wα
2 = {f : (0,∞) → C : ‖f‖Wα

2
= ‖fe‖Wα

2
<∞}

and equip it with the norm ‖f‖Wα
2
.

(3) Let (ψn)n∈Z be an equidistant partition of unity and α > 1
2
.We define the Hörmander

class
Hα

2 = {f ∈ L2
loc(R+) : ‖f‖Hα

2
= sup

n∈Z
‖ψnfe‖Wα

2
<∞}

and equip it with the norm ‖f‖Hα
2
.

We have the following elementary properties of Mihlin and Hörmander spaces. Its proof
may be found in [20, Propositions 4.8 and 4.9, Remark 4.16].

Lemma 3.2.

(1) The spaces Mα,Wα
2 and Hα

2 are Banach algebras.
(2) Different partitions of unity (ψn)n give the same space Hα

2 with equivalent norms.
(3) Let γ > α > 1

2
, α > β + 1

2
and σ ∈ (0, π). Then

H∞(Σσ) →֒ Mγ →֒ Hα
2 →֒ Mβ.

(4) For any t > 0, we have ‖f‖Hα
2

∼= ‖f(t·)‖Hα
2
.

Remark 3.3. The names “Mihlin and Hörmander class” are justified by the following facts.
The Mihlin condition for a β-times differentiable function f : R+ → C is

(3.1) sup
t>0,k=0,...,β

|t|k|f (k)(t)| <∞

[10, (1)]. If f satisfies (3.1), then f ∈ Mα for α < β [5, p. 73]. Conversely, if f ∈ Mα, then
f satisfies (3.1) for α ≥ β. The proof of this can be found in [12, Theorem 3.1], where also
the case β 6∈ N is considered.
The classical Hörmander condition with a parameter α1 ∈ N reads as follows [18, (7.9.8)]:

(3.2)

α1∑

k=0

sup
R>0

∫ 2R

R/2

|Rkf (k)(t)|2dt/R <∞.

Furthermore, consider the following condition for some α > 1
2
:

(3.3) sup
t>0

‖ψf(t·)‖Wα
2
<∞,

where ψ is a fixed function in C∞
c (R+)\{0}. This condition appears in several articles on

Hörmander spectral multiplier theorems, we refer to [11] for an overview. One easily checks
that (3.3) does not depend on the particular choice of ψ (see also [11, p. 445]).

By the following lemma which is proved in [20, Proposition 4.11], the norm ‖·‖Hα
2
expresses

condition (3.3) and generalizes the classical Hörmander condition (3.2).
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Lemma 3.4. Let f ∈ L1
loc(R+). Consider the conditions

(1) f satisfies (3.2),
(2) f satisfies (3.3),
(3) ‖f‖Hα

2
<∞.

Then (1) ⇒ (2) if α1 ≥ α and (2) ⇒ (1) if α ≥ α1. Further, (2) ⇔ (3).

3.1. Functional calculus for 0-sectorial operators. Let E be a Sobolev space or Besov
space as in Notation 2.2. In this subsection we define an E functional calculus for a 0-sectorial
operator A by tracing it back to the holomorphic functional calculus from Subsection 2.1.
The following lemma which is proved in [20, Lemma 4.15] will be useful.

Lemma 3.5. Let E ∈ {Mα,Wβ
2 }, where α > 0 and β > 1

2
. Then

⋂
0<ω<πH

∞(Σω) ∩ E
is dense in E. More precisely, if f ∈ E, ψ ∈ C∞

c such that ψ(t) = 1 for |t| ≤ 1 and
ψn = ψ(2−n(·)), then

(fe ∗ ψ̌n) ◦ log ∈
⋂

0<ω<π

H∞(Σω) ∩ E and (fe ∗ ψ̌n) ◦ log → f in E.

Thus if f happens to belong to several spaces E as above, then it can be simultaneously
approximated by a holomorphic sequence in any of these spaces.

Lemma 3.5 enables to base the E calculus on the H∞ calculus.

Definition 3.6. Let A be a 0-sectorial operator and E ∈ {Mα, Wβ
2 }, where α > 0 and

β > 1
2
. We say that A has a (bounded) E calculus if there exists a constant C > 0 such that

‖f(A)‖ ≤ C‖f‖E (f ∈
⋂

0<ω<π

H∞(Σω) ∩ E).

In this case, by the just proved density of
⋂

0<ω<πH
∞(Σω)∩E in E, the algebra homomor-

phism u :
⋂

0<ω<πH
∞(Σω)∩E → B(X) given by u(f) = f(A) can be continuously extended

in a unique way to a bounded algebra homomorphism

u : E → B(X), f 7→ u(f).

We write again f(A) = u(f) for any f ∈ E. Assume that E1, E2 ∈ {Mα,Wβ
2 } and that A

has an E1 calculus and an E2 calculus. Then for f ∈ E1 ∩ E2, f(A) is defined twice by the
above. However, the second part of Lemma 3.5 shows that these definitions coincide.

The following convergence property can be deduced from an extension of the well-known
Convergence Lemma for the H∞ calculus [5, Lemma 2.1]. For a proof we refer to [20,
Corollary 4.20], see also [23].

Lemma 3.7. Let A be a 0-sectorial operator with bounded Mα calculus for some α > 0. If
(ϕn)n∈Z is a dyadic partition of unity, then for any x ∈ X,

(3.4) x =
∑

n∈Z

ϕn(A)x (convergence in X).
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The following lemma gives a representation formula of the W α
2 calculus in terms of the

C0-group A
it. It can be proved with the Cauchy integral formula (2.2) in combination with

the Fourier inversion formula [20, Proposition 4.22]. Here and below we use the short hand
notation 〈t〉 =

√
1 + t2.

Lemma 3.8. Let X be a Banach space with dual X ′. Let α > 1
2
, so that W α

2 is a Banach
algebra. Let A be a 0-sectorial operator with imaginary powers U(t) = Ait.

(1) Assume that for some C > 0 and all x ∈ X, x′ ∈ X ′

(3.5) ‖〈t〉−α〈U(t)x, x′〉‖L2(R) =

(∫

R

|〈t〉−α〈U(t)x, x′〉|2dt
)1/2

≤ C‖x‖ ‖x′‖.

Then A has a bounded Wα
2 calculus. Moreover, for any f ∈ Wα

2 , f(A) is given by

(3.6) 〈f(A)x, x′〉 = 1

2π

∫

R

(fe)̂ (t)〈U(t)x, x′〉dt (x ∈ X, x′ ∈ X ′).

The above integral exists as a strong integral if moreover ‖〈t〉−αU(t)x‖L2(R) <∞.
(2) Conversely, if A has a Wα

2 calculus, then (3.5) holds.

As for the H∞ calculus, there is an extended Wα
2 calculus which is defined for fe ∈ W α

2,loc,
as a counterpart of (2.3). Let (ϕn)n be a dyadic partition of unity and

(3.7) DA = {x ∈ X : ∃N ∈ N : ϕn(A)x = 0 (|n| ≥ N)}.
Then DA is a dense subset of X. Indeed, for any x ∈ X let xN =

∑N
k=−N ϕk(A)x. Then for

|n| ≥ N + 1, ϕn(A)xN =
∑N

k=−N(ϕnϕk)(A)x = 0, so that xN belongs to DA. On the other
hand, by (3.4), xN converges to x for N → ∞. Clearly, DA is independent of the choice of
(ϕn)n. We call DA the calculus core of A.

Definition 3.9. Assume that A has a Wα
2 calculus and a Mβ calculus for some (possibly

large) β > 0. Let fe ∈ W α
2,loc. We define the operator f(A) to be the closure of

{
DA ⊂ X −→ X

x 7−→
∑

n∈Z(fϕn)(A)x
.

Write ϕ̃n = ϕn−1 + ϕn +ϕn+1. Since for x ∈ DA and large |n|, (ϕnf)(A)x = (ϕ̃nϕnf)(A)x =
(ϕ̃nf)(A)(ϕn)(A)x = 0, the above sum is finite.

Lemma 3.10. Let A and f be as above.

(a) The operator f(A) is closed and densely defined with domain

D(f(A)) = {x ∈ X :
n∑

k=−n

(f · ϕk)(A)x converges in X as n→ ∞},

and it is independent of the choice of the partition of unity (ϕn)n. The sets DA and
{g(A)x : g ∈ C∞

c (R+), x ∈ X} are both cores for f(A).
(b) If furthermore f ∈ Wα

2 (resp. f ∈ Mα), then f(A) coincides with the operator
defined by the Wα

2 calculus (resp. Mα calculus) of A. If f ∈ Hol(Σω) for some
ω ∈ (0, π), then f(A) coincides with the (unbounded) holomorphic calculus of A.
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(c) Let g be a further function such that ge ∈ W α
2,loc. Then f(A)g(A) ⊂ (fg)(A), where

f(A)g(A) is equipped with the natural domain {x ∈ D(g(A)) : g(A)x ∈ D(f(A))}.
If g(A) is a bounded operator, then even f(A)g(A) = (fg)(A).

Lemma 3.10 essentially follows from the identity (3.4). The technical details can be found
in [20, Proposition 4.25]. Note that the Hörmander class Hα

2 is contained in Wα
2,loc. Thus the

Wα
2,loc calculus in Lemma 3.10 enables us to define the Hα

2 calculus, whose boundedness is a
main object of investigation in this article.

Definition 3.11. Let α > 1
2
and let A be a 0-sectorial operator. We say that A has a

(bounded) Hα
2 calculus if there exists a constant C > 0 such that

(3.8) ‖f(A)‖ ≤ C‖f‖Hα
2

(f ∈
⋂

ω∈(0,π)

H∞(Σω) ∩ Hα
2 ).

Let α > 1
2
and consider a 0-sectorial operator A having a Hα

2 calculus in the sense of

Definition 3.11. Then A has a Wα
2 calculus and a Mβ calculus for any β > α. Thus we can

apply Lemma 3.10 and consider the unbounded Wα
2,loc calculus of A, and in particular f(A)

is defined for f ∈ Hα
2 ⊂ Wα

2,loc. Then condition (3.8) extends automatically to all f ∈ Hα
2 .

4. Wave Operators and Bounded Imaginary Powers

In this section, we assume that A is a 0-sectorial operator. We relate wave operators with
imaginary powers of A by means of the Mellin transform M : L2(R+,

ds
s
) → L2(R, dt), f 7→∫∞

0
f(s)sit ds

s
.

Proposition 4.1. Let α > 1
2
andm ∈ N such thatm > α− 1

2
. Assume that A

1

2
−α(e∓isA−1)m

are well-defined closed operators for s > 0 with domain containing DA from (3.7) (this is
the case e.g. if A has a Mγ calculus for some (possibly large) γ > 0) and that

‖t 7→ 〈t〉−α〈Aitx, x′〉‖L2(R,dt) ≤ C‖x‖ ‖x′‖
or

‖s 7→ 〈(sA) 1

2
−α(e∓isA − 1)mx, x′〉‖L2(R+, ds

s
) ≤ C‖x‖ ‖x′‖.

Then for any x ∈ DA from (3.7), and x′ ∈ X ′, we have the identity in L2(R, dt) :

M
[
〈(sA) 1

2
−α(e∓isA − 1)mx, x′〉

]
(t) = h∓(t)〈A−itx, x′〉,

where

(4.1) h∓(t) = e∓iπ
2
( 1
2
−α)e±

π
2
tΓ(

1

2
− α + it)fm(

1

2
− α+ it)

with

(4.2) fm(z) =
m∑

k=1

(
m

k

)
(−1)m−kk−z

and h∓ satisfies |h∓(t)| . 〈t〉−α.

The two following lemmas are devoted to the proof of Proposition 4.1.
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Lemma 4.2. Let m ∈ N and Re z ∈ (−m, 0). Then
∫ ∞

0

sz(e−s − 1)m
ds

s
= Γ(z)fm(z),

with fm given in (4.2). Note that Γ(z)fm(z) is a holomorphic function for Re z ∈ (−m, 0).

Proof. We proceed by induction over m. In the case m = 1, we obtain by integration by parts∫∞

0
sz(e−s − 1)ds

s
=
[
1
z
sz(e−s − 1)

]∞
0

+
∫∞

0
1
z
sze−sds = 0 + 1

z
Γ(z + 1) = Γ(z) = Γ(z)f1(z).

Next we claim that for Re z > −m,
∫ ∞

0

sz(e−s − 1)me−sds

s
= Γ(z)

m∑

k=0

(
m

k

)
(−1)m−k(k + 1)−z.

Note that the left hand side is well-defined and holomorphic for Re z > −m and the right
hand side is meromorphic on C. By the identity theorem for meromorphic functions, it
suffices to show the claim for e.g. Re z > 0. For these z in turn, we can develop

∫ ∞

0

sz(e−s − 1)me−sds

s
=

m∑

k=0

(
m

k

)
(−1)m−k

∫ ∞

0

sze−kse−sds

s
,

which gives the claim.
Assume now that the lemma holds for some m. Let first Re z ∈ (−m, 0). In the following

calculation, we use both the claim and the induction hypothesis in the second equality, and
the convention

(
m

m+1

)
= 0 in the third.

∫ ∞

0

sz(e−s − 1)m+1ds

s
=

∫ ∞

0

sz(e−s − 1)me−sds

s
−
∫ ∞

0

sz(e−s − 1)m
ds

s

= Γ(z)

m∑

k=0

(
m

k

)
(−1)m−k(k + 1)−z − Γ(z)fm(z)

= Γ(z)

m+1∑

k=1

(
m

k − 1

)
(−1)m+1−kk−z + Γ(z)

m+1∑

k=1

(
m

k

)
(−1)m+1−kk−z

= Γ(z)
m+1∑

k=1

[(
m

k − 1

)
+

(
m

k

)]
(−1)m+1−kk−z

= Γ(z)fm+1(z).

Thus, the lemma holds for m+1 and Re z ∈ (−m, 0). For Re z ∈ (−(m+1),−m], we appeal
again to the identity theorem. �

Lemma 4.3. Let Re z ∈ (−m, 0) and Reλ ≥ 0. Then
∫ ∞

0

sz(e−λs − 1)m
ds

s
= λ−z

∫ ∞

0

sz(e−s − 1)m
ds

s
.

Proof. This is an easy consequence of the Cauchy integral theorem. �
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Proof of Proposition 4.1. Let µ > 0 fixed. Combining Lemmas 4.2 and 4.3 with λ = ±iµ,
we get

∫∞

0
sz(e∓iµs − 1)mds

s
= (e±iπ

2µ)−zΓ(z)fm(z). Put now z = 1
2
−α+ it for t ∈ R, so that

Re z ∈ (−m, 0) by the assumptions of the proposition. Then
∫∞

0
sit+

1

2
−α(e∓iµs − 1)mds

s
=

e∓iπ
2
( 1
2
−α+it)µ−itµ−( 1

2
−α)Γ(z)fm(z), so that with h∓(t) as in (4.1),

(4.3) M
[
(sµ)

1

2
−α(e∓isµ − 1)m

]
(t) = h∓(t)µ

−it.

The statement of the proposition was (4.3) with µ formally replaced by A (weak identity).
It is easy to see that supt∈R

∣∣fm(12 − α + it)
∣∣ < ∞. Further, the Euler Gamma function has

a development [28, p. 15],
∣∣Γ(−1

2
+ α + it)

∣∣ ∼= e−
π
2
|t||t|−α (|t| ≥ 1), so that |h∓(t)| . 〈t〉−α.

Thus by the assumption of the proposition, we have t 7→ h∓(t)〈A−itx, x′〉 ∈ L2(R, dt), or

s 7→ 〈(sA) 1

2
−α(e∓isA − 1)mx, x′〉 ∈ L2(R+,

ds
s
). Then the technicalities needed for the formal

replacement are outlined in [20, Proposition 4.40]. �

A variant of the wave operator expression (sA)
1

2
−α(e∓isA − 1)m from Proposition 4.1 is

given by the following proposition.

Proposition 4.4. Assume that α− 1
2
6∈ N0. Let m ∈ N0 such that α− 1

2
∈ (m,m+ 1) and

wα(s) = |s|−α

(
eis −

m−1∑

j=0

(is)j

j!

)
.

Then with M denoting again the Mellin transform, we have

M(〈(sA) 1

2wα(sA)x, x
′〉)(t) = i−α+ 1

2
+itΓ(−α +

1

2
+ it)〈A−itx, x′〉.

Proof. The proof is similar to that of Proposition 4.1. We determine the Mellin transform
of s

1

2wα(s) : By a contour shift of the integral s❀ is,
∫ ∞

0

sits
1

2wα(s)
ds

s
=

∫ ∞

0

(is)it(is)
1

2wα(is)
ds

s

= i−α+ 1

2
+it

∫ ∞

0

s−α+ 1

2
+it(e−s −

m−1∑

j=0

(−s)j
j!

)
ds

s
.

Applying partial integration, one sees that this expression equals i−α+ 1

2
+itΓ(−α + 1

2
+ it).

Thus,

M(s
1

2wα(s))(t) = i−α+ 1

2
+itΓ(−α +

1

2
+ it),

and applying the functional calculus yields the proposition, see [20, Proposition 4.40] for
details. �

5. Averaged R-boundedness

Let (Ω, µ) be a σ-finite measure space. Throughout the section, we consider spaces E
which are subspaces of the space L of equivalence classes of measurable functions on (Ω, µ).
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Here, equivalence classes refer to identity modulo µ-null sets. We require that the dual E ′

of E can be realized as the completion of

E ′
0 = {f ∈ L : ∃C > 0 : |〈f, g〉| = |

∫

Ω

f(t)g(t)dµ(t)| ≤ C‖g‖E}

with respect to the norm ‖f‖ = sup‖g‖E≤1 |〈f, g〉|. This is clearly the case in the following
examples:

E = Lp(Ω, wdµ) for 1 ≤ p ≤ ∞ and a weight w,

E =W α
2 = W α

2 (R) for α >
1

2
,(5.1)

E = Wα
2 .

Definition 5.1. Let (Ω, µ) be a σ-finite measure space. Let E be a function space on (Ω, µ)
as in (5.1). Let (N(t) : t ∈ Ω) be a family of closed operators on a Banach space X such
that

(1) There exists a dense subspace DN ⊂ X which is contained in the domain of N(t) for
any t ∈ Ω.

(2) For any x ∈ DN , the mapping Ω → X, t 7→ N(t)x is measurable.
(3) For any x ∈ DN , x

′ ∈ X ′ and f ∈ E, t 7→ f(t)〈N(t)x, x′〉 belongs to L1(Ω).

Then (N(t) : t ∈ Ω) is called R-bounded on the E-average or R[E]-bounded, if for any
f ∈ E, there exists Nf ∈ B(X) such that

(5.2) 〈Nfx, x
′〉 =

∫

Ω

f(t)〈N(t)x, x′〉dµ(t) (x ∈ DN , x
′ ∈ X ′)

and further

R[E](N(t) : t ∈ Ω) := R({Nf : ‖f‖E ≤ 1}) <∞.

A number of very useful criteria for R-bounded sets known in the literature can be restated
in terms of R[E]-boundedness.

Example 5.2. Let (Ω, µ) be a σ-finite measure space and let (N(t) : t ∈ Ω) be a family of
closed operators on X satisfying (1) and (2) of Definition 5.1.

a) (E = L1) If {N(t) : t ∈ Ω} is R-bounded in B(X), then it is also R[L1(Ω)]-bounded, and

R[L1(Ω)](N(t) : t ∈ Ω) ≤ 2R({N(t) : t ∈ Ω}).
Conversely, assume in addition that Ω is a metric space, µ is a σ-finite strictly

positive Borel measure and t 7→ N(t) is strongly continuous. If (N(t) : t ∈ Ω) is
R[L1(Ω)]-bounded, then it is also R-bounded.

b) (E = L∞) Assume that there exists C > 0 such that
∫

Ω

‖N(t)x‖dµ(t) ≤ C‖x‖ (x ∈ DN).

Then (N(t) : t ∈ Ω) is R[L∞(Ω)]-bounded with constant at most 2C.
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c) (E = L2) Assume that X is a reflexive Lp(U) space. If
∥∥∥∥∥

(∫

Ω

|(N(t)x)(·)|2dt
) 1

2

∥∥∥∥∥
Lp(U)

≤ C‖x‖Lp(U)

for all x ∈ DN , then (N(t) : t ∈ Ω) is R[L2(Ω)]-bounded and there exists a constant
C0 = C0(X) such that

R[L2(Ω)](N(t) : t ∈ Ω) ≤ C0C.

This can be generalized to spaces X with property (α) and the generalized square
function spaces l(Ω, X) from [19].

d) (E = Lr′) Assume that X has type p ∈ [1, 2] and cotype q ∈ [2,∞]. Let 1 ≤ r, r′ < ∞ with
1
r
= 1− 1

r′
> 1

p
− 1

q
.

Assume that N(t) ∈ B(X) for all t ∈ Ω, that t 7→ N(t) is strongly measurable,
and that

‖N(t)‖B(X) ∈ Lr(Ω).

Then (N(t) : t ∈ Ω) is R[Lr′(Ω)]-bounded and there exists a constant C0 =
C0(r, p, q,X) such that

R[Lr′(Ω)](N(t) : t ∈ Ω) ≤ C0C.

Proof. (E = L1) Assume that (N(t) : t ∈ Ω) is R-bounded. Then it follows from the Convex
Hull Lemma [6, Lemma 3.2] that R[L1(Ω)](N(t) : t ∈ Ω) ≤ 2R({N(t) : t ∈ Ω}). Let us
show the converse under the mentioned additional hypotheses. Suppose that R({N(t) : t ∈
Ω}) = ∞. We will deduce that also R[L1(Ω)](N(t) : t ∈ Ω) = ∞. Choose for a given N ∈ N

some x1, . . . , xn ∈ X\{0} and t1, . . . , xn ∈ Ω such that

E

∥∥∥
∑

k

ǫkN(tk)xk

∥∥∥
X
> NE

∥∥∥
∑

k

ǫkxk

∥∥∥
X
.

It suffices to show that

(5.3) E

∥∥∥
∑

k

ǫk

∫

Ω

fk(t)N(t)xkdµ(t)
∥∥∥
X
> NE

∥∥∥
∑

k

ǫkxk

∥∥∥
X

for appropriate f1, . . . , fn. It is easy to see that by the strong continuity of N , (5.3) holds
with fk = 1

µ(B(tk ,ǫ))
χB(tk ,ǫ) for ǫ small enough. Here the fact that µ is strictly positive and

σ-finite guarantees that µ(B(tk, ǫ)) ∈ (0,∞) for small ǫ.

(E = L∞) By [27, Corollary 2.17],

E

∥∥∥
n∑

k=1

ǫkNfkxk

∥∥∥
X
≤ 2CE

∥∥∥
n∑

k=1

ǫkxk

∥∥∥
X

for any finite family Nf1 , . . . , Nfn from (5.2) such that ‖fk‖1 ≤ 1, and any finite family
x1, . . . , xn ∈ DN . Since DN is a dense subspace of X, we can deduce that {Nf : ‖f‖1 ≤ 1}
is R-bounded.
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(E = L2) For x ∈ DN , set ϕ(x) = N(·)x ∈ Lp(U, L2(Ω)). By assumption, ϕ extends to
a bounded operator Lp(U) → Lp(U, L2(Ω)). Then the assertion follows at once from [29,
Proposition 3.3]. The case that X has property (α) follows from [13, Corollary 3.19].

(E = Lr′) This is a result of Hytönen and Veraar, see [17, Proposition 4.1, Remark 4.2]. �

Proposition 5.3. If E is a space as in (5.1) and R[E](N(t) : t ∈ Ω) = C <∞, then

(5.4) ‖〈N(·)x, x′〉‖E′ ≤ C‖x‖ ‖x′‖ (x ∈ DN , x
′ ∈ X ′).

In particular, if 1 ≤ p, p′ ≤ ∞ are conjugated exponents and

R[Lp′(Ω)](N(t) : t ∈ Ω) = C <∞,

then (∫

Ω

|〈N(t)x, x′〉|pdµ(t)
)1/p

≤ C‖x‖ ‖x′‖ (x ∈ DN , x
′ ∈ X ′).

If X is a Hilbert space, then also the converse holds: Condition (5.4) implies that (N(t) :
t ∈ Ω) is R[E]-bounded.

Proof. We have

R[E](N(t) : t ∈ Ω)

≥ sup{‖Nf‖B(X) : ‖f‖E ≤ 1}(5.5)

= sup

{∣∣∣∣
∫

Ω

f(t)〈N(t)x, x′〉dµ(t)
∣∣∣∣ : ‖f‖E ≤ 1, x ∈ DN , ‖x‖ ≤ 1, x′ ∈ X ′, ‖x′‖ ≤ 1

}

= sup {‖〈N(·)x, x′〉‖E′ : x ∈ DN , ‖x‖ ≤ 1, x′ ∈ X ′, ‖x′‖ ≤ 1} .
If X is a Hilbert space, then bounded subsets of B(X) are R-bounded, and thus, “≥” in

(5.5) is in fact “=”. �

An R[E]-bounded family yields a new averaged R-bounded family under a linear trans-
formation in the function space variable.

Lemma 5.4. For i = 1, 2, let (Ωi, µi) be a σ-finite measure space and Ei a function space
on Ωi as in (5.1), and K ∈ B(E ′

1, E
′
2) such that its adjoint K ′ maps E2 to E1.

Let further (N(t) : t ∈ Ω1) be an R[E1]-bounded family of closed operators and DN be a
core for all N(t). Assume that there exists a family (M(t) : t ∈ Ω2) of closed operators with
the same common core DM = DN such that t 7→M(t)x is measurable for all x ∈ DN and

〈M(·)x, x′〉 = K(〈N(·)x, x′〉) (x ∈ DN , x
′ ∈ X ′).

Then (M(t) : t ∈ Ω2) is R[E2]-bounded and

R[E2](M(t) : t ∈ Ω2) ≤ ‖K‖R[E1](N(t) : t ∈ Ω1).

Proof. Let x ∈ DN and x′ ∈ X ′. By (5.4) in Proposition 5.3, we have 〈N(·)x, x′〉 ∈ E ′
1, and

thus, 〈M(·)x, x′〉 ∈ E ′
2. For any f ∈ E2,∫

Ω2

〈M(t)x, x′〉f(t)dµ2(t) =

∫

Ω1

〈N(t)x, x′〉(K ′f)(t)dµ1(t) = 〈NK ′fx, x
′〉.
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By assumption, the operator NK ′f belongs to B(X), and therefore alsoMf belongs to B(X).
Furthermore,

R[E2](M(t) : t ∈ Ω2) = R({Mf : ‖f‖E2
≤ 1})

= R({NK ′f : ‖f‖E2
≤ 1})

≤ ‖K ′‖R({NK ′f : ‖K ′f‖E1
≤ 1})

≤ ‖K‖R({Ng : ‖g‖E1
≤ 1})

= ‖K‖R[E1](N(t) : t ∈ Ω1).

�

In the following lemma, we collect some further simple manipulations ofR[E]-boundedness.
Its proof is immediate from Definition 5.1.

Lemma 5.5. Let (Ω, µ) be a σ-finite measure space, let E be as in (5.1) and let (N(t) : t ∈ Ω)
satisfy (1) and (2) of Definition 5.1.

(1) Let f ∈ L∞(Ω) and (N(t) : t ∈ Ω) be R[Lp(Ω)]-bounded for some 1 ≤ p ≤ ∞. Then

R[Lp(Ω)](f(t)N(t) : t ∈ Ω) ≤ ‖f‖∞R[Lp(Ω)](N(t) : t ∈ Ω).

In particular, R[Lp(Ω1)](N(t) : t ∈ Ω1) ≤ R[Lp(Ω)](N(t) : t ∈ Ω) for any measurable
subset Ω1 ⊂ Ω.

(2) Let w : Ω → (0,∞) be measurable. Then for 1 ≤ p ≤ ∞ and p′ the conjugate
exponent,

R[Lp(Ω, w(t)dµ(t))](N(t) : t ∈ Ω) = R[Lp(Ω, dµ)](w(t)
1

p′N(t) : t ∈ Ω).

(3) For n ∈ N, let ϕn : Ω → R+ with
∑∞

n=1 ϕn(t) = 1 for all t ∈ Ω. Then

R[E](N(t) : t ∈ Ω) ≤
∞∑

n=1

R[E](ϕn(t)N(t) : t ∈ Ω).

We turn to applications to the functional calculus. That is, the R-bounded functional
calculus yields R[L2]-bounded sets by the following proposition. Here we may and do always
choose the dense subset DN = DA, the calculus core from (3.7).

Definition 5.6. Let A be a 0-sectorial operator. Let E ∈ {Hα
2 ,Mα,Wα

2 }. We say that A
has an R-bounded E calculus if A has an E calculus, which is an R-bounded mapping in
the sense of [25, Definition 2.7], i.e.

R({f(A) : ‖f‖E ≤ 1}) <∞.

In the next proposition we need the Mellin transform

M : L2(R+, ds/s) → L2(R, dt), f 7→ (t 7→
∫ ∞

0

sitf(s)ds/s).

Proposition 5.7. Let A be a 0-sectorial operator having an R-bounded Wα
2 calculus for

some α > 1
2
. Let φ ∈ W α

2,loc(R+) such that t 7→ Mφ(t)〈t〉α belongs to L∞(R), where M

denotes the Mellin transform. Then (φ(tA) : t > 0) is R[L2(R+,
dt
t
)]-bounded with bound

≤ C‖Mφ(t)〈t〉α‖∞.
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Proof. We have to show that (φe(t + log(A)) : t ∈ R) is R[L2(R)]-bounded. For h ∈
L2(R) ∩ L1(R) with, say, compact support, we have

(5.6)

∫

R

h(−t)φe(t+ log(A))xdt = (h ∗ φe) ◦ log(A)x (x ∈ DA).

Indeed, for fixed x ∈ DA, there exists ψ0 ∈ C∞
c (R) such that ψ0 ◦ log(A)x = x. Choose

some ψ ∈ C∞
c (R) such that ψ(r) = 1 for r ∈ suppψ0 − supp h, so that ψ(t + log(A))x =

ψ(t+ log(A))ψ0 ◦ log(A)x = ψ0 ◦ log(A)x = x for any −t ∈ supp h. Then for any x′ ∈ X ′,
∫

R

h(−t)〈φe(t+ log(A))x, x′〉dt =
∫

R

h(−t)〈(φeψ)(t+ log(A))x, x′〉dt

=

∫

R

h(−t) 1

2π

∫

R

(φeψ)̂ (s)e
ist〈Aisx, x′〉dsdt

=
1

2π

∫

R

(∫

R

h(−t)eist(φeψ)̂ (s)dt

)
〈Aisx, x′〉ds

=
1

2π

∫

R

ĥ(s)(φeψ)̂ (s)〈Aisx, x′〉ds

= 〈(h ∗ (φeψ)) ◦ log(A)x, x′〉.
where we used h ∈ L1(R), φeψ ∈ W α

2 and s 7→ 〈s〉−α〈Aisx, x′〉 ∈ L2(R), to apply Fubini in
the third line. We also have (h ∗ (φeψ))ψ0 = (h ∗ φe)ψ0 and (5.6) follows. Then the claim

follows from ‖φe ∗h‖Wα
2
≤ ‖φ̂e(t)〈t〉α‖L∞(R)‖h‖L2(R) and density of the above h in L2(R). �

Example 5.8. Consider φ(t) = tβ(eiθ− t)−1, where β ∈ (0, 1) and |θ| < π and A an operator
as in the proposition above. Then φ(tA) = tβAβ(eiθ − tA)−1 = tβ−1Aβ(eiθt−1 − A)−1 is an
R[L2(dt

t
)]-bounded family with bound . θ−α. Indeed, Mφ(t) = (−eiθ)it+β−1 π

sinπ(it+β−1)
. As

| sin π(it+ β − 1)| ∼= cosh(πt) for fixed β, we have |Mφ(t)〈t〉α| ∼= e−(θ−π)t〈t〉α 1
cosh(πt)

. θ−α.

Theorem 6.1 will show that a converse to Proposition 5.7 holds, for many classical operator
families including the above example, i.e. one can recover the R-bounded Wα

2 calculus from
averaged R-boundedness conditions.

6. Main Results

We introduced the notion of R[E]-boundedness to give the following characterization of
(R-bounded) Wα

2 calculus.

Theorem 6.1. Let A be a 0-sectorial operator on a Banach space X with a boundedH∞(Σω)
calculus for some ω ∈ (0, π). Let α > 1

2
. Consider the following conditions.

Sobolev Calculus

(1) A has an R-bounded Wα
2 calculus.

Imaginary powers

(2) (〈t〉−αAit : t ∈ R) is R[L2(R)]-bounded.

Resolvents
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(3) For some/all β ∈ (0, 1) there exists C > 0 such that for all θ ∈ (−π, π)\{0} :
R[L2(R+, dt/t)](t

βA1−βR(eiθt, A) : t > 0) ≤ C|θ|−α.

(4) For some/all β ∈ (0, 1) and θ0 ∈ (0, π], (|θ|α− 1

2 tβA1−βR(eiθt, A) : 0 < |θ| ≤ θ0, t > 0)
is R[L2((0,∞)× [−θ0, θ0]\{0}, dt/tdθ)]-bounded.

Analytic Semigroup (T (z) = e−zA)

(5) There exists C > 0 such that for all θ ∈ (−π
2
, π
2
) : R[L2(R+)](A

1/2T (eiθt) : t > 0) ≤
C(π

2
− |θ|)−α.

(6) (〈x
y
〉α|x|− 1

2A1/2T (x+ iy) : x > 0, y ∈ R) is R[L2(R+ × R)]-bounded.

Wave Operators

(7) The operators A−α+ 1

2 (eisA − 1)m are densely defined for some m > α − 1
2
and

(|s|−αA−α+ 1

2 (eisA − 1)m : s ∈ R) is R[L2(R)]-bounded.

(8) The operators A
1

2
−α
(
eisA −

∑m−1
j=0

(isA)j

j!

)
are densely defined and

(
A

1

2
−α|s|−α

(
eisA −

m−1∑

j=0

(isA)j

j!

)
: s ∈ R

)

is R[L2(R)]-bounded.

Then the following conditions are equivalent:

(1), (2), (4), (6), (7).

The condition (8) is also equivalent under the assumption that α− 1
2
6∈ N0 and m ∈ N0 such

that α− 1
2
∈ (m,m+ 1).

All these conditions imply the remaining ones (3) and (5). If X has property (α) then,
conversely, these two conditions imply that A has an R-boundedWα+ǫ

2 calculus for any ǫ > 0.

As a preparatory lemma for the proof of Theorem 6.1, we state

Lemma 6.2. Let β ∈ R and f(t) = fm(β + it) with fm as in (4.2). Then there exist
C, ǫ, δ > 0 such that for any interval I ⊂ R with |I| ≥ C there is a subinterval J ⊂ I with
|J | ≥ δ so that |f(t)| ≥ ǫ for t ∈ J. Consequently, for N > C/δ,

N∑

k=−N

|f(t+ kδ)| & 1.

Proof. Suppose for a moment that

(6.1) ∃C, ǫ > 0 ∀ I interval with |I| ≥ C ∃ t ∈ I : |f(t)| ≥ ǫ.

It is easy to see that supt∈R |f ′(t)| < ∞, so that for such a t and |s − t| ≤ δ = δ(‖f ′‖∞, ǫ),
|f(s)| ≥ ǫ/2. Thus the lemma follows from (6.1) with J = B(t, δ/2).

It remains to show (6.1). Suppose that this is false. Then

(6.2) ∀C, ǫ > 0 ∃ I interval with |I| ≥ C : ∀ t ∈ I : |f(t)| < ǫ.
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Since f ′′ is bounded and ‖f ′‖L∞(I) ≤
√

8‖f‖L∞(I)‖f ′′‖L∞(I), we deduce that (6.2) holds for

f ′ in place of f, and successively also for f (n) for any n. But there is some n ∈ N such that
inft∈R |f (n)(t)| > 0. Indeed,

f (n)(t) =

m∑

k=1

αk(−i log k)ne−it log k,

with αk =
(
m
k

)
(−1)m−kk−β 6= 0, whence

|f (n)(t)| ≥ |αm| | logm|n −
m−1∑

k=1

|αk| | log k|n > 0

for n large enough. This contradicts (6.2), so that the lemma is proved. �
Proof of Theorem 6.1.

(1) ⇔ (2): By the Wα
2 representation formula (3.6), we have R[L2(R, dt)](〈t〉−αAit : t ∈

R) = R
({∫

R
f(t)〈t〉−αAitdt : ‖f‖L2(R) ≤ 1

})
= R

({
2πf(A) : ‖f‖Wα

2
≤ 1
})
.

The strategy to show the stated remaining (almost) equivalences between (2) and (3) –
(7) consists more or less in finding an integral transform K as in Lemma 5.4 mapping the
imaginary powers Ait to resolvents, to the analytic semigroup and to the wave operators,
and vice versa.
(2) ⇒ (7): By Example 5.2 (general E), we clearly have that ‖t 7→ 〈t〉−α〈Aitx, x′〉‖L2(R,dt) ≤
C‖x‖ ‖x′‖, provided (2) holds. Thus, by Proposition 4.1, and Lemmas 5.4 and 5.5 (1), (7)
follows.
(7) ⇒ (2): Recall the function h∓ from Proposition 4.1. By the Euler Gamma function
development [28, p. 15], we have the lower estimate

|h∓(t)| & |fm(
1

2
− α + it)|eπ

2
(±t−|t|)〈t〉−α.

Thus, by Proposition 4.1, and Lemmas 5.4 and 5.5 (1),

(6.3)

(
〈t〉−αfm(

1

2
− α + it)A−it : t ∈ R

)
is R[L2(R)]-bounded.

To get rid of fm in this expression, we apply Lemma 6.2. According to that lemma, we have
N ∈ N and δ > 0 such that

∑N
k=−N |f(t+ kδ)| & 1 for any t ∈ R and f(t) = fm(

1
2
− α+ it).

Write

N∑

k=−N

f(t+ kδ)〈t〉−αA−it =

N∑

k=−N

[〈t+ kδ〉α
〈t〉α A−ikδ

] [
f(t+ kδ)〈t+ kδ〉−αAi(t+kδ)

]
.

By (6.3), the term in the second brackets is R[L2(R)]-bounded. The term in the first brack-
ets is a bounded function times a bounded operator, due to the assumption that A has a
bounded H∞(Σω) calculus. Thus, the right hand side is R[L2(R)]-bounded, and so the left
hand side is. Now appeal once again to Lemma 5.5 (1) to deduce (2).
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(2) ⇒ (3): We fix θ ∈ (−π, π) and set

Kθ : L
2(R, ds) → L2(R, ds), f(s) 7→ (π − |θ|)α 1

sin π(β + is)
eθs〈s〉αf(s).

We have

sup
|θ|<π

‖Kθ‖ = sup
|θ|<π, s∈R

〈s〉α(π − |θ|)α eθs

| sin π(β + is)| . sup
θ,s

〈s(π − |θ|)〉αe−|s|(π−|θ|) <∞.

In [27, p. 228 and Theorem 15.18], the following formula is derived for x ∈ A(D(A2)) and
|θ| < π :

(6.4)
π

sin π(β + is)
eθsAisx =

∫ ∞

0

tis
[
tβeiθβA1−β(eiθt+ A)−1x

] dt
t

for |θ| < π and x ∈ A(D(A2)). Thus,

sup
0<|θ|≤π

|θ|αR[L2(R+, dt/t)](t
βA1−βR(teiθ, A)) = sup

|θ|<π

(π − |θ|)αR[L2(R+, dt/t)](t
βA1−β(eiθt + A)−1)

= sup
|θ|<π

(π − |θ|)αR[L2(R, ds)](
π

sinπ(β + is)
eθsAis)(6.5)

. R[L2(R, ds)](〈s〉−αAis).

Next we claim that for any ǫ > 0, (3) implies (2), where in (2), α is replaced by α + ǫ.
First we consider 〈s〉−(α+ǫ)Aisx for s ≥ 1. By Lemma 5.5 (3),

R[L2([1,∞), ds)](〈s〉−(α+ǫ)Ais) ≤
∞∑

n=0

2−nǫR[L2([2n, 2n+1])](〈s〉−αAis).(6.6)

For s ∈ [2n, 2n+1], we have

〈s〉−α . 2−nα . 2−nαe−2−ns . (π − θn)
α eθns

sin π(β + is)
,

where θn = π − 2−n. Therefore

R[L2([2n, 2n+1])](〈s〉−αAis) . (π − θn)
αR[L2(R, ds)](

π

sinπ(β + is)
eθnsAis)

(6.5)

. sup
0<|θ|≤π

|θ|αR[L2(R+, dt/t)](t
βA1−βR(teiθ, A)) <∞.

Thus, the sum in (6.6) is finite.
The part 〈s〉−(α+ǫ)Ais for s ≤ −1 is treated similarly, whereas R[L2(−1, 1)](〈s〉−αAis) ∼=

R[L2(−1, 1)](Ais). It remains to show that the last expression is finite. We have assumed that
X has property (α). Then the fact that A has an H∞ calculus implies that {Ais : |s| < 1} is
R-bounded [27, Theorem 12.8]. For f ∈ L2(−1, 1), we have ‖f‖1 ≤ C‖f‖2, and consequently,

{∫ 1

−1

f(s)Aisds : ‖f‖2 ≤ 1

}
⊂ C

{∫ 1

−1

f(s)Aisds : ‖f‖1 ≤ 1

}
.

In other words, (Ais : |s| < 1) is R[L2]-bounded.
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(2) ⇐⇒ (4):
Consider

(6.7) K : L2(R, ds) → L2(R× (−π, π), dsdθ), f(s) 7→ (π− |θ|)α− 1

2

1

sin π(β + is)
eθs〈s〉αf(s),

Note that | sinπ(β + is)| ∼= cosh(πs) for β ∈ (0, 1) fixed. K is an isomorphic embedding.
Indeed,

‖Kf‖22 =
∫

R

∫ π

−π

(
(π − |θ|)α− 1

2 eθs
)2
dθ

1

| sin2(π(β + is))| 〈s〉
2α|f(s)|2ds

and ∫ π

−π

(π − |θ|)2α−1e2θsdθ ∼=
∫ π

0

θ2α−1e2(π−θ)|s|dθ

∼= cosh2(πs)

∫ π

0

θ2α−1e−2θ|s|dθ.

For |s| ≥ 1,
∫ π

0

θ2α−1e−2θ|s|dθ = (2|s|)−2α

∫ 2|s|π

0

θ2α−1e−θdθ ∼= |s|−2α.

This clearly implies that ‖Kf‖2 ∼= ‖f‖2. Applying Lemma 5.4, we get

R[L2(R, ds)](〈s〉−αAis) ∼= R[L2(R× (−π, π), dsdθ)]((π − |θ|)α− 1

2

1

cosh(πs)
eθsAis).

Recall the formula (6.4), i.e.

π

sin π(β + is)
eθsAisx =

∫ ∞

0

tis
[
tβeiθβA1−β(eiθt+ A)−1x

] dt
t

for |θ| < π and x ∈ A(D(A2)). Note that A(D(A2)) is a dense subset of X. As the Mellin
transform f(s) 7→

∫∞

0
tisf(s)ds

s
is an isometry L2(R+,

ds
s
) → L2(R, dt), we get by Lemma 5.4

R[L2(R)](〈s〉−αAis) ∼= R[L2(R+ × (−π, π), dt
t
dθ)]((π − |θ|)α− 1

2 tβA1−β(eiθt+ A)−1)

∼= R[L2(R+ × (0, 2π), dt/tdθ)](|θ|α− 1

2 tβA1−βR(eiθt, A)).

so that (2) ⇐⇒ (4) for θ0 = π.
For a general θ0 ∈ (0, π], consider K from (6.7) with restricted image, i.e.

K : L2(R, ds) → L2(R× (−π,−(π − θ0)] ∪ [π − θ0, π), dsdθ).

Then argue as in the case θ0 = π.

(4) ⇐⇒ (6):
The proof of (2) ⇐⇒ (4) above shows that condition (4) is independent of θ0 ∈ (0, π] and
β ∈ (0, 1). Put θ0 = π and β = 1

2
. Apply Lemma 5.4 with

(eiθµ+ it)−1 = K[exp(−(·)eiθµ)χ(0,∞)(·)](t),
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where K : L2(R, ds) → L2(R, dt) is the Fourier transform. This yields that (4) is equivalent
to

R[L2((0,
π

2
)× R+, dθdt)](|θ|α−

1

2A
1

2T (exp(±i(π
2
− θ))t)) <∞.

Applying the change of variables θ π
2
± θ and dt tdt shows that this is equivalent to

R[L2((−π
2
,
π

2
)× R+, dθdt)]((

π

2
− |θ|)α− 1

2 t−
1

2A
1

2T (eiθt)) <∞.

Now the equivalence to (6) follows from the change of variables a = t cos θ, b = t sin θ, t =
|a+ ib|, dθ tdt = da db.

(3) ⇐⇒ (5) for β = 1
2
: Use K and the first argument from the proof of (4) ⇐⇒ (6).

(2) ⇐⇒ (8): Recall the formula from Proposition 4.4, M denoting the Mellin transform,

M(〈(sA) 1

2wα(sA)x, x
′〉)(t) = i−α+ 1

2
+itΓ(−α +

1

2
+ it)〈A−itx, x′〉,

where wα(s) = |s|−α
(
eis −

∑m−1
j=0

(is)j

j!

)
. Then we have, since α− 1

2
6∈ N0,

|i−α+ 1

2
+it · Γ(−α +

1

2
+ it)| ∼= e−

π
2
t · e−π

2
|t|〈t〉−α

for t ∈ R. Thus, with Lemmas 5.4 and 5.5 (2),

R[L2(R, dt)](〈t〉−αAit) <∞ ⇐⇒ R[L2(R+, ds/s)]((sA)
1

2wα(±sA)) <∞
⇐⇒ R[L2(R, ds)](A

1

2wα(sA)) <∞.

�

Theorem 6.1 shows that averaged R-boundedness yields a good tool to describe Wα
2 func-

tional calculus. However, many of the functions f that correspond to relevant spectral
multipliers, as for example in (2) – (7) above, are not covered themselves by this calculus.
To pass from the Wα

2 calculus to the Hα
2 calculus, which does cover all the spectral multi-

pliers alluded to above, we shall use the spectral decomposition of Paley-Littlewood type in
the following lemma, which is proved in [23].

Lemma 6.3. Let A be a 0-sectorial operator having a bounded Mγ calculus for some
(possibly large) γ > 0. Let further (ϕn)n∈Z be a dyadic partition of unity. Then

‖x‖ ∼= E

∥∥∥∥∥
∑

n∈Z

ǫnϕn(A)x

∥∥∥∥∥
X

.

As a consequence we obtain

Theorem 6.4. Let A be a 0-sectorial operator on a Banach space X with property (α)
having a bounded H∞(Σσ) calculus for some σ ∈ (0, π]. Then the following are equivalent
for α > 1

2
.

(1) A has an R-bounded Wα
2 calculus.

(2) A has an R-bounded Hα
2 calculus.
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Example 6.5. Consider the operator A = −∆ on X = Lp(Rd) for some 1 < p < ∞ and
d ∈ N. Hörmander’s classical result states that A has a bounded Hα

2 calculus for α > d
2
. In

fact, a stronger result holds and A has an R-bounded Hα
2 calculus for the same range α > d

2
.

This is proved in [21, Theorem 5.1], [22, Corollary 3.5].

Proof of Theorem 6.4. As Wα
2 ⊂ Hα

2 , only the implication (1) =⇒ (2) has to be shown.
Replacing A by a power if necessary, we may and do assume that σ < π

4
. We first show that

A has a bounded Mγ calculus for some γ > 0. For Re z > 0, let fz(λ) = exp(−zλ). We claim
that for β > α,

(6.8) R({(Re z/|z|)βfz(A) : Re z > 0}) <∞.

Then by [24], (6.8) implies that A has a Mγ calculus for γ > β + 1
2
. Since X has property

(α), the fact that A has a bounded H∞ calculus extends by [27, Theorem 12.8] to

(6.9) R({g(A) : ‖g‖H∞(Σθ) ≤ 1}) <∞
for a θ < π

4
. By assumption, also

(6.10) R({h(A) : ‖h‖Wα
2
≤ 1}) <∞.

By (6.9) and (6.10), it suffices to decompose fz = gz+hz such that ‖gz‖H∞(Σθ) . (|z|/Re z)β
and ‖hz‖Wα

2
. (|z|/Re z)β . By a simple scaling argument, we may assume that |z| = 1. We

choose the decomposition

fz(λ) = fz(λ)e
−λ + fz(λ)(1− e−λ).

Then ‖fz(λ)e−λ‖H∞(Σθ) = ‖ exp(−(z + 1)λ)‖H∞(Σθ) . 1, since θ+ | arg(z + 1)| ≤ π
4
+ π

4
= π

2
.

Further, it is a simple matter to check that ‖hz‖Wα
2
. |Re z|−β for any β > α. For example,

if α = 1, then

‖hz‖2W1
2

∼=
∫ ∞

0

|hz(t)|2 + |th′z(t)|2
dt

t

.

∫ ∞

0

|e−zt(1− e−t)|2 + |t(−z)e−zt(1− e−t)|2 + |te−(z+1)t|2dt
t

.

∫ 1

0

e−2Re zt|1− e−t|2 + t2|z|2e−2Re zt|1− e−t|2 + t2e−2(Re z+1)tdt

t

+

∫ ∞

1

e−2Re zt|1− e−t|2 + t2|z|2e−2Re zt|1− e−t|2 + t2e−2(Re z+1)tdt

t

.

∫ 1

0

t2
dt

t
+

∫ ∞

1

t2e−2Re ztdt

t

. 1 + (Re z)−2

∫ ∞

0

t2e−tdt

t

. 1 + (Re z)−2.

Now we have established that A has a Mγ calculus and we can thus apply Lemma 6.3.
Let now f1, . . . , fK ∈ Hα

2 of norm less than 1, x1, . . . , xK ∈ X, and (ǫk)k and (ǫ′n)n∈Z two
independent Rademacher sequences. Note in the following calculation that ‖ϕnfk‖Wα

2
≤
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‖fk‖Hα
2
≤ 1. We have by property (α) and assumption (1) of the theorem, writing ϕ̃n =

ϕn−1 + ϕn + ϕn+1,

E‖
K∑

k=1

ǫkfk(A)xk‖ ∼= EE
′‖

K∑

k=1

∑

n∈Z

ǫkǫ
′
nϕn(A)fk(A)xk‖

= EE
′‖

K∑

k=1

∑

n∈Z

ǫkǫ
′
nϕ̃n(A)ϕn(A)fk(A)xk‖

∼= E‖
K∑

k=1

∑

n∈Z

ǫnk(ϕnfk)(A)ϕ̃n(A)xk‖

≤ R({(ϕnfk)(A) : n ∈ Z, k = 1, . . . , K})E‖
K∑

k=1

∑

n∈Z

ǫnkϕ̃n(A)xk‖

. EE
′‖

K∑

k=1

∑

n∈Z

ǫkǫ
′
nϕ̃n(A)xk‖

∼= E‖
K∑

k=1

ǫkxk‖.

This shows condition (2) of the theorem. �

7. Bisectorial operators and operators of strip type

7.1. Bisectorial operators. In this short subsection we indicate how to extend our results
to bisectorial operators. An operator A with dense domain on a Banach space X is called
bisectorial of angle ω ∈ [0, π

2
) if it is closed, its spectrum is contained in the closure of

Sω = {z ∈ C : | arg(±z)| < ω}, and one has the resolvent estimate

‖(I + λA)−1‖B(X) ≤ Cω′, ∀ λ 6∈ Sω′ , ω′ > ω.

If X is reflexive, then for such an operator we have again a decomposition X = N(A)⊕R(A),
so that we may assume that A is injective. The H∞(Sω) calculus is defined as in (2.2), but
now we integrate over the boundary of the double sector Sω. If A has a bounded H∞(Sω)

calculus, or more generally, if we have ‖Ax‖ ∼= ‖(−A2)
1

2x‖ for x ∈ D(A) = D((−A2)
1

2 ) (see
e.g. [9]), then the spectral projections P1, P2 with respect to Σ1 = Sω ∩ C+, Σ2 = Sω ∩ C−

give a decomposition X = X1 ⊕ X2 of X into invariant subspaces for resolvents of A such
that the part A1 of A to X1 and −A2 of −A to X2 are sectorial operators with σ(Ai) ⊂ Σi.
For f ∈ H∞

0 (Sω) we have

(7.1) f(A)x = f |Σ1
(A1)P1x+ f |Σ2

(A2)P2x.

We define the Hörmander classHα
2 (R) on R by f ∈ Hα

2 (R) if fχR+
∈ Hα

2 and f(−·)χR+
∈ Hα

2 .
Let A be a 0-bisectorial operator, i.e. A is ω-bisectorial for all ω > 0. Then A has an (R-
bounded) Hα

2 (R) calculus if the set {f(A) : f ∈
⋂

0<ω<πH
∞(Sω) ∩ Hα

2 (R), ‖f‖Hα
2
(R) ≤ 1}
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is (R-)bounded. Clearly, A has an (R-bounded) Hα
2 (R) calculus if and only if A1 and −A2

have an (R-bounded) Hα
2 calculus and in this case (7.1) holds again.

Let ft(λ) =

{
λit : Reλ > 0

(−λ)it : Reλ < 0
. Then ft ∈ H∞(Sω) for any ω ∈ (0, π

2
). Clearly, one

has ft(A) = Ait
1 ⊕ (−A2)

it on X = X1 ⊕X2. It is easy to show that (〈t〉−αft(A) : t ∈ R) is
R[L2(R, dt)]-bounded if and only if (〈t〉−αAit

1 : t ∈ R) and (〈t〉−α(−A2)
it : t ∈ R) are both

R[L2(R, dt)]-bounded. Similarly, we have that

R[L2(R+, dt/t)](t
β|A|1−β(eiθt−A)−1) . (min(|θ|, π − |θ|))−α

for 0 < |θ| < π if and only if both of the following conditions hold:

R[L2(R+, dt/t)](t
βA1−β

1 (eiθt−A1)
−1) . |θ|−α and R[L2(R+, dt/t)](t

β(−A2)
1−β(eiθt+A2)

−1 . |θ|−α

for 0 < |θ| ≤ π
2
. Finally, we have that |s|−α|A|−α+ 1

2 (eisA − 1)m is R[L2(R)]-bounded if and

only if both |s|−αA
−α+ 1

2

1 (eisA1 −1)m and |s|−α(−A2)
−α+ 1

2 (eisA2 −1)m) are R[L2(R)]-bounded.
Note that if A has a bounded Mγ(R) calculus for some γ > 0, meaning that both A1 and

−A2 have a Mγ calculus, then essentially by the same proof as for Lemma 6.3, we have a
spectral decomposition

‖x‖ ∼= E

∥∥∥∥∥
∑

n∈Z

ǫnϕn(A1)x

∥∥∥∥∥+ E

∥∥∥∥∥
∑

n∈Z

ǫnϕn(−A2)x

∥∥∥∥∥ .

Then using the projections P1 and P2, it is clear how our main Theorems 6.1 and 6.4 extend
to bisectorial operators.

7.2. Strip-type operators. For ω > 0 we let Strω = {z ∈ C : | Im z| < ω} the horizontal
strip of height 2ω.We further define H∞(Strω) to be the space of bounded holomorphic func-
tions on Strω, which is a Banach algebra equipped with the norm ‖f‖∞,ω = supλ∈Strω |f(λ)|.
A densely defined operator B is called ω-strip-type operator if σ(B) ⊂ Strω and for all
θ > ω there is a Cθ > 0 such that ‖λ(λ − B)−1‖ ≤ Cθ for all λ ∈ Strθ

c
. Similarly to

the sectorial case, one defines f(B) for f ∈ H∞(Strθ) satisfying a decay for |Reλ| → ∞
by a Cauchy integral formula, and says that B has a bounded H∞(Strθ) calculus provided
that ‖f(B)‖ ≤ C‖f‖∞,θ, in which case f 7→ f(B) extends to a bounded homomorphism
H∞(Strθ) → B(X). We refer to [5] and [14, Chapter 4] for details. We call B 0-strip-type if
B is ω-strip-type for all ω > 0.

There is an analogous statement to Lemma 2.1 which holds for a 0-strip-type operator B
and Strω in place of A and Σω, and Hol(Strω) = {f : Strω → C : ∃n ∈ N : (ρ ◦ exp)nf ∈
H∞(Strω)}, where ρ(λ) = λ(1 + λ)−2.

In fact, 0-strip-type operators and 0-sectorial operators with bounded H∞(Strω) and
bounded H∞(Σω) calculus are in one-one correspondence by the following lemma. For a
proof we refer to [14, Proposition 5.3.3., Theorem 4.3.1 and Theorem 4.2.4, Lemma 3.5.1].

Lemma 7.1. Let B be a 0-strip-type operator and assume that there exists a 0-sectorial
operator A such that B = log(A). This is the case if B has a bounded H∞(Strω) calculus
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for some ω < π. Then for any f ∈
⋃

0<ω<π Hol(Strω) one has

f(B) = (f ◦ log)(A).
Note that the logarithm belongs to Hol(Σω) for any ω ∈ (0, π). Conversely, if A is a 0-sectorial
operator that has a bounded H∞(Σω) calculus for some ω ∈ (0, π), then B = log(A) is a
0-strip-type operator.

Let B be a 0-strip-type operator and E =W α
2 for some α > 1

2
, or E = Bα for some α > 0.

We say that B has a (bounded) E calculus if there exists a constant C > 0 such that

‖f(B)‖ ≤ C‖f‖E (f ∈
⋂

ω>0

H∞(Strω) ∩ E).

In this case, by density of
⋂

ω>0H
∞(Strω)∩E in E, the definition of f(B) can be continuously

extended to f ∈ E.
Assume that B has an E calculus and a bounded Bβ calculus for some β > 0. Let f ∈ Eloc.

We define the operator f(B) to be the closure of
{
DB ⊂ X −→ X

x 7−→∑
n∈Z(ψnf)(B)x,

where DB = {x ∈ X : ∃N ∈ N : ψn(B)x = 0 (|n| ≥ N)} and (ψn)n∈Z is an equidistant
partition of unity.

Then there holds an analogous version of Lemma 3.10, a proof of which can be found in

[20, Proposition 4.25]. Let H̃α
2 = {f ∈ L2

loc(R) : ‖f‖H̃α
2

= supn∈Z ‖ψnf‖Wα
2
< ∞}. Note

that H̃α
2 is contained in W α

2,loc. Thus the W α
2,loc calculus for B enables us to define the H̃α

2

calculus: Let α > 1
2
and B be a 0-strip-type operator. We say that B has an (R-bounded)

H̃α
2 calculus if there exists a constant C > 0 such that

{
f(B) : f ∈

⋂

ω>0

H∞(Strω) ∩ H̃α
2 , ‖f‖H̃α

2

≤ 1

}
is (R-)bounded.

The strip-type version of the main Theorems 6.1 and 6.4 reads as follows.

Theorem 7.2. Let B be 0-strip-type operator with H∞ calculus on some Banach space
with property (α). Denote U(t) the C0-group generated by iB and R(λ,B) the resolvents of
B. For α > 1

2
, consider the condition

(C2)α B has an R-bounded H̃α
2 calculus.

Furthermore, we consider the conditions

(a)α The family (〈t〉−αU(t) : t ∈ R) is R[L2(R)]-bounded.
(b)α The family (R(t + ic, B) : t ∈ R) is R[L2(R)]-bounded for any c 6= 0 and its bound

grows at most like |c|−α for c→ 0.

Then for all ǫ > 0,

(C2)α ⇐⇒ (a)α =⇒ (b)α =⇒ (C2)α+ǫ
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Proof. Consider the 0-sectorial operator A = eB. Then (C2)α ⇐⇒ (a)α follows from Theo-
rems 6.1 and 6.4.
(a)α =⇒ (b)α : Let Rc = |c|αR[L2](R(t + ic, B) : t ∈ R). We have to show supc 6=0Rc < ∞.
Applying Lemma 5.4 with K the Fourier transform and its inverse, we get

Rc =

{
R[L2](cαectU(t) : t < 0), c > 0,

R[L2](|c|αectU(t) : t > 0), c < 0.

For t < 0, supc>0 c
αect = supc>0〈t〉−α〈t〉αcαe−|ct| . 〈t〉−α. Thus, supc>0R[L

2](cαectU(t) : t <
0) . R[L2](〈t〉−αU(t) : t < 0) <∞. The part c < 0 is estimated similarly.
(b)α =⇒ (a)α+ǫ : Let Rc be as before. Split 〈t〉−(α+ǫ)U(t) into the parts t ≥ 1, t ≤ −1, |t| < 1,

and further t ≥ 1 into t ∈ [2n, 2n+1], n ∈ N0. Then 〈t〉−α . 2−nα . 2−nαe−2−nt, and by Lemma
5.5 (2),

R[L2](〈t〉−(α+ǫ)U(t) : t ≥ 1) ≤
∞∑

n=0

2−nǫR[L2](2−nαe−2−ntU(t) : t ∈ [2n, 2n+1])

≤
∞∑

n=0

2−nǫ sup
c<0

Rc <∞.

The estimate for t ≤ −1 can be handled similarly. It remains to estimate R[L2](〈s〉−(α+ǫ)U(s) :
|s| < 1) ∼= R[L2](U(s) : |s| < 1). We have assumed that X has property (α). Then the fact
that B has an H∞ calculus implies that {U(s) : |s| < 1} is R-bounded [19, Corollary 6.6].
For f ∈ L2([−1, 1]), we have ‖f‖1 ≤ C‖f‖2, and consequently,

{∫ 1

−1

f(s)U(s)ds : ‖f‖2 ≤ 1

}
⊂ C

{∫ 1

−1

f(s)U(s)ds : ‖f‖1 ≤ 1

}
.

In other words, (U(s) : |s| < 1) is R[L2]-bounded. �
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