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SPECTRAL MULTIPLIER THEOREMS AND AVERAGED
R-BOUNDEDNESS

CHRISTOPH KRIEGLER AND LUTZ WEIS

ABSTRACT. Let A be a 0-sectorial operator with a bounded H> (X, )-calculus for some
o € (0,7), e.g. a Laplace type operator on LP(Q2), 1 < p < oo, where  is a manifold
or a graph. We show that A has a H$(R;) Hormander functional calculus if and only if
certain operator families derived from the resolvent (A— A)~!, the semigroup e™*4, the wave
operators €4 or the imaginary powers A of A are R-bounded in an L?-averaged sense. If
X is an LP(9) space with 1 < p < 0o, R-boundedness reduces to well-known estimates of
square sums.

1. INTRODUCTION

Hormander’s Fourier multiplier theorem states that for a function f € H$ (R, ) the opera-
tor f(—A), defined in terms of the functional calculus on L*(R?) can be extended to LP(RY)
if1<p<ooanda>g.Here

Hy(Ry) ={f € C(R,C): Stgg o f () [lwg @,y < o}

where ¢ € C*(R) with compact supp ¢ C (0,00) is a cut-off function and W (R,) is the
usual Riesz-potential Sobolev space. For a@ € N, an equivalent norm on H$ is given by the
“classical” Hormander condition

1 [2R
sup —/ It DP f(1)|?dt < oo.
R>0,8=0,...a B JR
There is a large literature extending such a spectral multiplier result to more general self-
adjoint operators on LP(), e.g. for Laplace type operators on manifolds, infinite graphs
and fractals (see e.g. [1, 7, 10, 11, 26, 30] and the references therein). There are various
approaches to the H$ calculus using kernel estimates, maximal estimates or square function
estimates for the resolvent (A — A)~!, the analytic semigroup e *4 generated by —A and
their “boundary”, the wave operators e, or the imaginary powers A* of A. Relevant are

e.g. estimates on operator functions such as (o > Im>a—1are fixed)

27 2
o Ty(t) = Aze "4 teR,,
1 .

o Ry(t) = A2 R(et, A), teRy,

o W(s)=|s| @A t3(ed — 1) seR,
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2 CH. KRIEGLER AND L. WEIS

o I(t)=(1+|t|)) A" teR.
Many of these estimates imply or are closely related to square sum estimates of the fol-
lowing form

3 3
(1.1) <Z |Sixi|2> <C (Z |xi|2>
i . i .
where z; € LP(Q2) and the S; are members of one of the families listed above (see e.g. [3, 32]
for an early appearance of this square sum estimate in the context of spectral multiplier
theorems). If (r,,) is a sequence of Rademacher functions on [0, 1] one can reformulate (1.1)
equivalently as

(12) /O I3 )izl < c/o I3 el

This statement makes sense in an arbitrary Banach space X and a set 7 C B(X) is called
R-bounded if (1.2) holds for all S; € 7 and z; € X. Using R-boundedness in place of
kernel estimates and the holomorphic H*(X,) calculus instead of the spectral theorem for
selfadjoint operators, one can develop a theory of spectral multiplier theorems for 0-sectorial
operators on Banach spaces (see [20, 21, 22, 23, 24]). Again, R-bounds for one of the operator
families listed above are sufficient to secure H$ (R, ) spectral theorems for such operators
A. However, neither in this general framework nor in the case of Laplace type operators
on an LP(£2) space (see above), one obtains necessary and sufficient conditions in terms of
R-bounds or kernel estimates. This is related to the (usually) difficult task of determining
the optimal a for the H$ (R ) spectral calculus of a given operator A. Thus the purpose of
this paper is to give a characterization of the H$ (R, ) spectral multiplier theorem in terms
of an L?*-averaged R-boundedness condition. More precisely, let t € J — N(t) € B(X)
be weakly square integrable on an interval J. Then (N (t))c; is called R[L*-bounded if for
h € L*(J) with ||h||z2(;) < 1 the strong integrals

Ny = / WON(edt, ©€ X
J

define an R-bounded subset {Ny, : ||A||z2¢;) < 1} of B(X). By R[L*(J)](N(t)), we denote
the R-bound of this set. In a Hilbert space X, R[L?(J)]-boundedness reduces to the simple
estimate

([ 1 @a ki) < lol ol or at oy < 1.
J

Assume now that A is a O-sectorial operator with an H*(3,) calculus for some o € (0, 7)
on a Banach space isomorphic to a subspace of an LP(2) space with 1 < p < oo (or more
generally, let X have Pisier’s property («)). Then our main results, Theorems 6.1 and 6.4
show (among other statements), that the following conditions on the operator function above
are essentially equivalent:

A has an R-bounded H3 spectral calculus, i.e. {f(A): [[f|lng®,) < 1} is R-bounded in B(A

resolvents: R[L*(R.)](Ry(-)) < C|0]~* for § — 0
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semigroup: R[L2(R)|(Ty(-)) < 0(— —|6])~ for |6] — g

(W ())<OO
(I(-) <

The estimates on Ry(-) (resp. on Ty(-)) measure the growth of the resolvent (the analytic
semigroup) as we approach the spectrum of A (resp. the “boundary” iR of C,) on rays in
C\R, (in C,). Clearly, the R[L?(.J)]-boundedness of I(-) measures the polynomial growth
of the imaginary powers and W(-) the growth of the regularized wave operators e4. The
latter regularization is necessary since outside Hilbert space the operators e®4 are usually
unbounded. The equivalence of these statements shows in particular that estimates of resol-
vents, the semigroup, wave operators or imaginary powers are all equivalent ways to obtain
the boundedness of f(A) for arbitrary f € HS(R,).

We end this introduction with an overview of the article. Section 2 contains the background
on H* functional calculus for a sectorial operator A, R-boundedness as well as the definition
of relevant function spaces. In Section 3 we introduce the Hérmander and Mihlin function
spaces and their functional calculus. In Section 4 as a preparation for the proof of Theorem
6.1, we relate the wave operators ¢4 with imaginary powers A® via the Mellin transform.
In Section 5, we study the notion of averaged R-boundedness. We feel that it is worthwhile
to introduce averaged R-boundedness also for other function spaces than L?(.J) since these
notions appeared already implicitly in the literature and have proven to be quite useful.
Finally in Section 6 we state the main Theorem 6.1, which establishes equivalences between
the smaller W4 functional calculus and averaged R-boundedness of the operator families
above (see Section 3 for the definition of this function space). However, most of the classical
spectral multipliers (e.g. f(\) = %) belong to Hg\W4. Therefore we extend in Theorem 6.4
this calculus to H$ by means of a localization procedure. Finally, in Section 7, we indicate
how our main results can be transferred to bisectorial and strip-type operators.

(L7
wave operators: R[L*(R)]
(L (R)]

imaginary powers: R[L*(R)

2. PRELIMINARIES

2.1. 0-sectorial operators. We briefly recall standard notions on H* calculus. For w €
(0,7) we let ¥, = {z € C\{0} : |argz| < w} the sector around the positive axis of aperture
angle 2w. We further define H>°(3,) to be the space of bounded holomorphic functions on
¥,. This space is a Banach algebra when equipped with the norm || f||sw = supyes, |f(A)]-

A closed operator A : D(A) C X — X is called w-sectorial, if the spectrum o(A) is
contained in ¥,,, R(A) is dense in X and

(2.1) for all > w there is a Cy > 0 such that [[A(A — A)7| < Cy for all A € 5"

Note that R(A) = X along with (2.1) implies that A is injective. In the literature, in the
definition of sectoriality, the condition R(A) = X is sometimes omitted. Note that if A
satisfies the conditions defining w-sectoriality except R(A) = X on X = LP(Q), 1 < p < oo
(or any reflexive space), then there is a canonical decomposition X = R(A) & N(A), x =
x1 ® x9, and A = A; ®0, x — Azy @ 0, such that A; is w-sectorial on the space R(A) with
domain D(A;) = R(A) N D(A).
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For an w-sectorial operator A and a function f € H*(3y) for some 6 € (w, m) that satisfies
moreover an estimate | f(\)] < C|A|°/]1 + A%, one defines the operator

(2.2 FA) = 3 [ S0 - 4)n

where IT" is the boundary of a sector 3, with o € (w, ), oriented counterclockwise. By the
estimate of f, the integral converges in norm and defines a bounded operator. If moreover
there is an estimate || f(A)|| < C|| fl|c0,p With C uniform over all such functions, then A is said
to have a bounded H>(Xy) calculus. In this case, there exists a bounded homomorphism
H>(%y) = B(X), f+— f(A) extending the Cauchy integral formula (2.2).

We refer to [5] for details. We call A 0-sectorial if A is w-sectorial for all w > 0.

For w € (0, 7), define the algebras of functions Hol(X,) ={f: 3, = C: I3neN: p"f €
H>(3,)}, where p(A) = A(1 + A\)72 For a proof of the following lemma, we refer to [27,
Section 15B] and [14, p. 91-96],[15],[16].

Lemma 2.1. Let A be a 0O-sectorial operator. There exists a linear mapping, called the
extended holomorphic calculus,

(2.3) U Hol(X,) — {closed and densely defined operators on X}, f+— f(A)

O<w<T

extending (2.2) such that for any f,g € Hol(X3,), f(A)g(A)x = (fg)(A)x for z € {y €
D(g(A)) : g(A)y € D(f(A))} c D((fg)(4)) and D(f(4)) = {z € X : [p"f)(A)z €
D(p(A)™™) = D(A™) N R(A™)}, where (p"f)(A) is given by (2.2), i.e. n € N is sufficiently

large.

2.2. Function spaces on the line and half-line. In this subsection, we introduce several
spaces of differentiable functions on R, = (0,00) and R. Let ¢ € C°(R). Assume that
suppty C [-1,1] and > 2 ¢(t —n) =1 for all ¢t € R. For n € Z, we put ¢, = ¥(- — n)
and call (@Dn)nez an equidistant partition of unity. Let ¢ € C2°(R,). Assume that supp ¢ C
3.2] and >0 p(27) = 1 for all t > 0. For n € Z, we put ¢, = ¢(27") and call
(pn)nez a dyadlc partition of unity. Next let ¢g, ¢1 € C°(R) such that supp ¢; C [ ,2] and
supp ¢g C [—1,1]. For n > 2, put ¢, = ¢,(2'7"), so that supp ¢, C [2"72,2"]. For n < —1,
put ¢, = ¢_n(—-). We assume that > _, ¢,(t) = 1 for all £ € R. Then we call (¢)nez a
dyadic partition of unity on R, which we will exclusively use to decompose the Fourier image
of a function. For the existence of such partitions, we refer to the idea in [2, Lemma 6.1.7].
We recall the following classical function spaces:

Notation 2.2. Let m € Ny and a > 0.

(1) C’g” ={f:R — C: fm-times diff. and f, f',..., f™ uniformly cont. and bounded}.

(2) Ws = {f € LP(R) : [ fllws = I(F()(1 + [¢])*) [|> < o0}
(3) BS,;, the Besov space defined for example in [33, p. 45]: Let (¢,)nez be a dyadic
partltlon of unity on R. Then

B =By, ={f€C): Iflpe, =D 2"If * bulloe < 00}

nez
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The space W§' is a Banach algebra with respect to pointwise multiplication if o > %, and

2
the space B* is a Banach algebra for any o > 0 [31, p. 222].
Further we also consider the local space

(4) Woioe ={f R—=C: foe Wy forall p € C} for a > 3.
This space is closed under pointwise multiplication. Indeed, if ¢ € Cg° is given, choose
¢ € O such that ¢ = . For f,g € W3, we have (fg)e = (f)(9¢) € W3-

2.3. Rademachers, Gaussians and R-boundedness. A classical theorem of Marcinkiewicz
and Zygmund states that for elements xy,...,z, € LP(U, u) we can express “square sums”

in terms of random sums
1

q

<Z \%(-)\2) (EH > ijjH%p(U>> = (EH > H‘ip(U)>
j=1 j=1 j=1

with constants only depending on p,q € [1,00). Here (¢;); is a sequence of independent
Bernoulli random variables (with P(e; = 1) = P(e; = —1) = 1) and (v;); is a sequence of
independent standard Gaussian random variables. Following [4] it has become standard by
now to replace square functions in the theory of Banach space valued function spaces by
such random sums (see e.g. [27]). Note however that Bernoulli sums and Gaussian sums for
x1,...,%, in a Banach space X are only equivalent if X has finite cotype (see [8, p. 218] for
details).

Let 7 be a subset of B(X). We say that 7 is R-bounded if there exists a C' < oo such that

k=1 k=1

for any n € N, T,...,T,, € 7 and zq,...,x, € X. The smallest admissible constant C' is
denoted by R(7). We remark that one always has R(7) > supy¢, ||T]| and equality holds if
X is a Hilbert space.

Recall that by definition, X has Pisier’s property («) if for any finite family zj; in X,
(k,1) € F, where F' C Z x Z is a finite array, we have a uniform equivalence

Z ek(w)el(w')mex ng Z ek7l(w)xk7l

(kHeF (k,l)eF

q

12

Le(U)

E,E.

’ X

Note that property («) is inherited by closed subspaces, and that an LP space has property
(a) provided 1 < p < oo [27, Section 4].
3. HORMANDER AND MIHLIN CLASSES

Aside from the classical spaces in Notation 2.2 we introduce the following Mihlin class and
Hormander class.

Definition 3.1.
(1) Let o > 0. We define the Mihlin class

M ={f:R, »C: f, € B},
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equipped with the norm || f[|pe = || fel| s, where we write from now on
fe:d =C, z— f(e?)
for a function f : I — C such that I C C\(—o0,0]and J={2z€ C: |Imz| < 7, e* €
I'}. The space M coincides with the space A% ;(Ry) in [5, p. 73].
(2) Let o > 1. We define

Wy = {f:(0,00) = C: [[fllwg = lfellws < oo}
and equip it with the norm || f{[ys.

(3) Let (¢n)nez be an equidistant partition of unity and o > 1. We define the Hérmander
class

2 ={f € Lice(Ry) : I fllag = Sup [ fellwg < oo}

and equip it with the norm [ f||5g.

We have the following elementary properties of Mihlin and Hérmander spaces. Its proof
may be found in [20, Propositions 4.8 and 4.9, Remark 4.16].

Lemma 3.2.
(1) The spaces M WS and H$ are Banach algebras.
(2) Different partitions of unity (¢,), give the same space H$ with equivalent norms.
(3) Lety>a>1 a>p+1and o € (0,7). Then
H*®(Z,) <= MY — HY < MP.
(4) For any t > 0, we have || fllug = /() s

Remark 3.3. The names “Mihlin and Hormander class” are justified by the following facts.
The Mihlin condition for a S-times differentiable function f: R; — Cis
(3.1) sup  [t]*]f0(1)] < o0

t>0,k=0,...,.0
[10, (1)]. If f satisfies (3.1), then f € M for a < 8 [5, p. 73]. Conversely, if f € M®, then
[ satisfies (3.1) for a > . The proof of this can be found in [12, Theorem 3.1], where also
the case § ¢ N is considered.
The classical Hormander condition with a parameter a; € N reads as follows [18, (7.9.8)]:

a1 2R

(3.2) S sup / R* PO (8)2dt /R < oo.
o B>0 JR/2

Furthermore, consider the following condition for some o > % :

(3.3) sup [0 f(t)]|we < oo,

where v is a fixed function in C°(R,;)\{0}. This condition appears in several articles on
Hormander spectral multiplier theorems, we refer to [11] for an overview. One easily checks
that (3.3) does not depend on the particular choice of ¢ (see also [11, p. 445]).

By the following lemma which is proved in [20, Proposition 4.11], the norm ||- |5 expresses
condition (3.3) and generalizes the classical Hérmander condition (3.2).
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Lemma 3.4. Let f € L] _(R,). Consider the conditions

loc
(1) f satisfies (3.2),
(2) f satisfies (3.3),

(3) 1 fllag < o0
Then (1) = (2) if a3 > a and (2) = (1) if @ > ay. Further, (2) < (3).
3.1. Functional calculus for 0-sectorial operators. Let E be a Sobolev space or Besov
space as in Notation 2.2. In this subsection we define an E functional calculus for a 0-sectorial

operator A by tracing it back to the holomorphic functional calculus from Subsection 2.1.
The following lemma which is proved in [20, Lemma 4.15] will be useful.

Lemma 3.5. Let E € {M* W)}, where o > 0 and § > 5. Then Ny ,or H*(Zw) N E
is dense in E. More precisely, if f € E, ¢ € C such that ¢(f) = 1 for |[t| < 1 and

U = 1¥(27™(+)), then
(fexwn)ologe () H*(S,)NE and (fo*1,)olog — f in E.
O<w<m
Thus if f happens to belong to several spaces E as above, then it can be simultaneously
approximated by a holomorphic sequence in any of these spaces.

Lemma 3.5 enables to base the F calculus on the H* calculus.

Definition 3.6. Let A be a 0-sectorial operator and E € {M® W/}, where a > 0 and
B > 1. We say that A has a (bounded) E calculus if there exists a constant C' > 0 such that

IFAI<CIfle (fe () HX(ES)NE).

O<w<m

In this case, by the just proved density of ;... H*(X,) N E in E, the algebra homomor-
phism v : (o ,cr H(E,)NE — B(X) given by u(f) = f(A) can be continuously extended
in a unique way to a bounded algebra homomorphism

u: E— B(X), f—u(f).

We write again f(A) = u(f) for any f € E. Assume that Ey, Fy € {M* W/} and that A
has an E; calculus and an Es calculus. Then for f € Ey N Ey, f(A) is defined twice by the
above. However, the second part of Lemma 3.5 shows that these definitions coincide.

The following convergence property can be deduced from an extension of the well-known
Convergence Lemma for the H* calculus [5, Lemma 2.1]. For a proof we refer to [20,
Corollary 4.20], see also [23].

Lemma 3.7. Let A be a 0-sectorial operator with bounded M® calculus for some o > 0. If
(¢n)nez is a dyadic partition of unity, then for any = € X,

(3.4) x = Z on(A)z  (convergence in X).

nez
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The following lemma gives a representation formula of the W3 calculus in terms of the
Co-group A™. It can be proved with the Cauchy integral formula (2.2) in combination with
the Fourier inversion formula [20, Proposition 4.22]. Here and below we use the short hand

notation (t) = /1 + t2.

Lemma 3.8. Let X be a Banach space with dual X’. Let o > 5, so that W3' is a Banach
algebra. Let A be a 0-sectorial operator with imaginary powers U (t) = A%,

1) Assume that for some C' >0 and all x € X, 2/ € X'
(1)

1/2
35 0 O@n ) = ([ 10w On P <l 2]

Then A has a bounded WY calculus. Moreover, for any f € Wy, f(A) is given by
1
(3.6) (f(A)a,2) = o /(fe) (U )z, 2)dt (z € X, 2" € X).
T
The above integral exists as a strong integral if moreover [|(t) U (t)z||12®) < 0o.

(2) Conversely, if A has a WS calculus, then (3.5) holds.

As for the H* calculus, there is an extended W' calculus which is defined for f. € W3,
as a counterpart of (2.3). Let (¢,), be a dyadic partition of unity and
(3.7) Dy={xeX:3INeN: ¢,(A)z=0 (|n|]>N)}.
Then D, is a dense subset of X. Indeed, for any z € X let xny = Z]kV:_N ¢vr(A)x. Then for

In| > N+1, pp(A)zy = Z]kV:_N(gongok)(A)x = 0, so that xy belongs to D 4. On the other
hand, by (3.4), zx converges to x for N — oo. Clearly, D, is independent of the choice of
(¢n)n- We call Dy the calculus core of A.

Definition 3.9. Assume that A has a W calculus and a M” calculus for some (possibly
large) 8 > 0. Let f. € W3,.. We define the operator f(A) to be the closure of

@ — D nez(fon)(A)z

Write @, = Yn—1+ @n + @ny1. Since for x € Dy and large |n|, (¢nf)(A)z = (Gnpnf)(A)x =
(@nf)(A)(pn)(A)z = 0, the above sum is finite.

Lemma 3.10. Let A and f be as above.
(a) The operator f(A) is closed and densely defined with domain

{DACX X

D(f(A) ={zr e X : Z (f - ¢r)(A)x converges in X as n — 0o},

and it is independent of the choice of the partition of unity (y,),. The sets D4 and
{g(A)x: g € CX(R,), x € X} are both cores for f(A).
(b) If furthermore f € WS (resp. f € M?), then f(A) coincides with the operator
defined by the W$ calculus (resp. M calculus) of A. If f € Hol(X,) for some
€ (0,7), then f(A) coincides with the (unbounded) holomorphic calculus of A.
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(c) Let g be a further function such that g. € W3,,.. Then f(A)g(A) C (fg)(A), where
f(A)g(A) is equipped with the natural domain {x € D(g(A)) : g(A)x € D(f(A))}.
If g(A) is a bounded operator, then even f(A)g(A) = (fg)(A).

Lemma 3.10 essentially follows from the identity (3.4). The technical details can be found
in [20, Proposition 4.25]. Note that the Hormander class H$ is contained in Wg,.. Thus the
W30 calculus in Lemma 3.10 enables us to define the H3 calculus, whose boundedness is a
main object of investigation in this article.

Definition 3.11. Let a > % and let A be a 0O-sectorial operator. We say that A has a
(bounded) H$ calculus if there exists a constant C' > 0 such that

(3.8) IF A< Clfllg (Fe [ H®(Zw)NHS).
we(0,m)

Let a > % and consider a 0-sectorial operator A having a H$ calculus in the sense of

Definition 3.11. Then A has a W¢' calculus and a M? calculus for any 8 > a. Thus we can
apply Lemma 3.10 and consider the unbounded Wy, calculus of A, and in particular f (A)
is defined for f € Hy C Wy,.. Then condition (3.8) extends automatically to all f € Hg.

4. WAVE OPERATORS AND BOUNDED IMAGINARY POWERS

In this section, we assume that A is a 0-sectorial operator. We relate wave operators with
imaginary powers of A by means of the Mellin transform M : L*(R,, %) — LA(R, dt), f

RO

Proposition 4.1. Let o > 1 and m € Nsuch that m > a—1. Assume that A%’O‘(ej”s“‘— nm
are well-defined closed operators for s > 0 with domain containing D4 from (3.7) (this is
the case e.g. if A has a M calculus for some (possibly large) v > 0) and that

It = ()" (A", 2) | 2@ < Clll| [l

or
1 s m
Is = ((sA) (€™ — )", 2") || o, 22) < Cll]| [l']).

Then for any z € D4 from (3.7), and 2’ € X', we have the identity in L?(R,dt) :
M |((sA)27 (€7 = 1), a) | (1) = he (1) (A", ),

where
e T 1 1
(4.1) h(t) = ﬁlﬂra)eiftr(ﬁ —atit) fu(s —a+it)
with
o m
4.2 (2) = —1)mFE—?
(42 CES WIS

and hy satisfies |he(t)] S (¢) 7.

The two following lemmas are devoted to the proof of Proposition 4.1.
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Lemma 4.2. Let m € N and Re z € (—m, 0). Then

Amfw*—w>d3:<>nx>

S
with f,, given in (4.2). Note that I'(z) f,,(2) is a holomorphic function for Re z € (—m, 0).

Proof. We proceed by induction over m. In the case m = 1, we obtain by integration by parts

fooo s*(e ® — 1)% = Bsz( - — } + f leze=sds = 0 4 1T(z +1) =T(2) =T'(2)fi(2).

Next we claim that for Rez > —m,

/000 e - 1)%3% =T i (?) ()" F(k+ 1)

k=0

Note that the left hand side is well-defined and holomorphic for Rez > —m and the right
hand side is meromorphic on C. By the identity theorem for meromorphic functions, it
suffices to show the claim for e.g. Rez > 0. For these z in turn, we can develop

/ SZ(G_S o 1)m6—5@ — (m) (_l)m—k/ Sze—kse—s@’
0 s — \ k 0 s

which gives the claim.
Assume now that the lemma holds for some m. Let first Rez € (—m, 0). In the following
calculation, we use both the claim and the induction hypothesis in the second equality, and

the convention (m111) = 0 in the third.
/ Sz(e—s _ 1)m+1d8 — / sz(e—s _ 1)m6—s§ _ / sz(e—s _ 1)m@
: s s : s
L (m
r@) Y () )0+ ) =T
k=0
m—+1 m m—+1 m
m+1 k T 1 m+1—k z
e (7)o e X () o
k=1 k=1
m+1 m
m+1—k z
103 |(7) + ()] s
=1
= I'(2) fm+1(2).
Thus, the lemma holds for m+ 1 and Rez € (—m, 0). For Re z € (—(m+ 1), —m/], we appeal
again to the identity theorem. O

Lemma 4.3. Let Rez € (—m,0) and Re A > 0. Then
o d o d
/ s (e — 1)m—8 = )\Z/ s*(e™® — 1)m—$.
0 s 0 S

Proof. This is an easy consequence of the Cauchy integral theorem. U
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Proof of Proposition 4.1. Let > 0 fixed. Combining Lemmas 4.2 and 4.3 with A\ = +ipu,
we get [° 57 (e —1)m L = (eF2 ) 7T (2) frn(2). Put now 2z = 3 —a+it for t € R, so that
Rez € (—m,0) by the assumptions of the proposition. Then [;* sittg—a(gFins _ 1)mds =
eFis (g metit) =it ~(3-e)D(2) £, (), so that with he(t) as in (4.1),

(43) M |(sp) 3= (eF = 1)7] (8) = he (0,

The statement of the proposition was (4.3) with p formally replaced by A (weak identity).
It is easy to see that sup,cp ‘ fm(% —a+ Zt)‘ < 00. Further, the Euler Gamma function has
a development [28, p. 15], |[(—3 + a + it)| = e 21[t|= (]t > 1), so that |hx(t)| S (¢)~*
Thus by the assumption of the proposition, we have ¢ — h(t)(A "z, 2') € L*(R,dt), or
s ((sA)z=2(eFA — 1)mg o) € L2(R,, ). Then the technicalities needed for the formal
replacement are outlined in [20, Proposition 4.40]. O

A variant of the wave operator expression (sA)2~%(e¥#4 — 1)™ from Proposition 4.1 is
given by the following proposition.

Proposition 4.4. Assume that a — 5 & Ny. Let m € Ny such that o — 1 € (m, m + 1) and

Then with M denoting again the Mellin transform, we have
1 1. 1 .
M({(sA) 2wy (sA)z, 2'))(t) = i *T2 ' (—a + 5T it) (A "z, 7).

Proof. The proof is similar to that of Proposition 4.1. We determine the Mellin transform
of s2w,(s) : By a contour shift of the integral s ~» is,

[ et = [t

S S

) m—1 o\
_ Z-—a+§+it/ S—a—l—%-ﬁ-it(e—s _ Z ( f) )@
0 =0 J: S

Applying partial integration, one sees that this expression equals ’i_o“r%“tl"(—a + % + it).
Thus,

, 1
M(s2wq(s))() =i **2HT(—a + 5 +it),

and applying the functional calculus yields the proposition, see [20, Proposition 4.40] for

details. n

5. AVERAGED R-BOUNDEDNESS

Let (£, ) be a o-finite measure space. Throughout the section, we consider spaces F
which are subspaces of the space L of equivalence classes of measurable functions on (€2, p).
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Here, equivalence classes refer to identity modulo p-null sets. We require that the dual E’
of E can be realized as the completion of

Ey={feL:3C>0:[{fg)|= I/Qf(t)g(t)dﬂ(t)l < Cliglle}

with respect to the norm || f|| = sup, <1 [{f; ). This is clearly the case in the following
examples:

E = LP(Q,wdu) for 1 < p < oo and a weight w,
(5.1) E =W3 = W5 (R) for a > %,
E=Ws.
Definition 5.1. Let (€, 1) be a o-finite measure space. Let E be a function space on (£, u)

as in (5.1). Let (N(t) : ¢t € Q) be a family of closed operators on a Banach space X such
that

(1) There exists a dense subspace Dy C X which is contained in the domain of N(t) for
any t € ().

(2) For any = € Dy, the mapping Q@ — X, t — N(t)z is measurable.

(3) For any x € Dy, 2’ € X" and f € E, t — f(¢t)(N(t)z,2') belongs to L'(Q).

Then (N(t) : t € Q) is called R-bounded on the E-average or R[E]-bounded, if for any
f € E, there exists Ny € B(X) such that

(5.2) (Nyx, ') / FO(N(t)x, 2" Ydu(t) (z € Dy, 2’ € X)
and further
RIE](N(t) : t €)= R{Nys: |[flz <1}) < oo

A number of very useful criteria for R-bounded sets known in the literature can be restated
in terms of R[FE]-boundedness.

Example 5.2. Let (2, 1) be a o-finite measure space and let (N(t) : ¢t € Q) be a family of
closed operators on X satisfying (1) and (2) of Definition 5.1.

a) (E=LY) If {N(t) : t € Q} is R-bounded in B(X), then it is also R[L(2)]-bounded, and
RIL'](N(t): t € Q) <2R({N(t): t € Q}).

Conversely, assume in addition that €2 is a metric space, u is a o-finite strictly
positive Borel measure and ¢ — N(t) is strongly continuous. If (N(t) : t € Q) is
R[L*(92)]-bounded, then it is also R-bounded.

b) (E = L*) Assume that there exists C' > 0 such that

/Q Nzl du(t) < Cllz]] - (z € Dy).

Then (N(t) : t € Q) is R[L*(2)]-bounded with constant at most 2C.
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c¢) (E = L?) Assume that X is a reflexive LP(U) space. If
< Cllz|| oy

(fronora]

for all z € Dy, then (N(t) : ¢t € Q) is R[L*(2)]-bounded and there exists a constant
Co = Cy(X) such that

R[L*(Q)](N(t) : t € Q) < CyC.

This can be generalized to spaces X with property («) and the generalized square
function spaces (€2, X) from [19].
d) (F = Lr/) Assume that X has type p € [1,2] and cotype g € [2,00]. Let 1 < r,7’ < oo with
=1—-= > i _ l
Assume that N(t ( ) € B(X) for all t € Q, that ¢t — N(¢) is strongly measurable,
and that

Nz € L7
Then (N(t) : t € Q) is R[L"(Q)]-bounded and there exists a constant Cy =
Co(r,p,q, X) such that
RIL"(Q)N(@) : t € Q) < CyC.

Proof. (E = L') Assume that (N(t) : t € Q) is R-bounded. Then it follows from the Convex
Hull Lemma [6, Lemma 3.2] that R[L*(Q)](N(t) : t € Q) < 2R({N(t) : t € Q}). Let us
show the converse under the mentioned additional hypotheses. Suppose that R({N(t) : t €
Q}) = co. We will deduce that also R[L'(Q)](N(t) : t € Q) = co. Choose for a given N € N
some z1,...,o, € X\{0} and ¢y, ..., z, € Q such that

EHZ%N(tk)kax > NE ZekkaX

It suffices to show that

for appropriate fi,-- fn It is easy to see that by the strong continuity of N, (5.3) holds
with f, = mxg tr,e) for € small enough. Here the fact that jp is strictly positive and

o-finite guarantees that u(B(t, €)) € (0, 00) for small e.

(E = L) By [27, Corollary 2.17],

B3, <2083 n],

for any finite family Ny,,..., Ny, from (5.2) such that || fx|l; < 1, and any finite family
T1,...,%T, € Dy. Since Dy is a dense subspace of X, we can deduce that {N;: [|f]j; <1}
is R-bounded.
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(E = L?) For x € Dy, set o(z) = N(-)x € LP(U, L*(Q)). By assumption, ¢ extends to
a bounded operator LP(U) — LP(U, L*(Q2)). Then the assertion follows at once from [29,
Proposition 3.3]. The case that X has property («) follows from [13, Corollary 3.19].

(E = L") This is a result of Hyténen and Veraar, see [17, Proposition 4.1, Remark 4.2]. O
Proposition 5.3. If E is a space as in (5.1) and R[E|(N(t) : t € Q) = C < oo, then
(5.4) KN ()2, 2}z < Cllell 2" (x € Dy, 2" € X').
In particular, if 1 < p,p’ < oo are conjugated exponents and
RILZ(Q)N@E): t € Q) =C < o0,
then
1/p
([1veeaipan) < clal ) (o€ Dy, o' € X,

If X is a Hilbert space, then also the converse holds: Condition (5.4) implies that (N(¢) :
t € Q) is R[E]-bounded.

Proof. We have
RIE|(N(t): t € Q)
(5.5) = sup{|[Nyllpx) = [1fle < 1}

—sup{

tz, a)du(t)| : |flle <1, 2 € Dy, [lzf| <1, 2" € X', ||| < 1}

=sup {|(N()z,2")||z : © € Dy, ||z <1, 2" € X', ||2|| < 1}.
If X is a Hilbert space, then bounded subsets of B(X) are R-bounded, and thus, “>” in
(5.5) is in fact “=". O

An R[E]-bounded family yields a new averaged R-bounded family under a linear trans-
formation in the function space variable.

Lemma 5.4. For ¢ = 1,2, let (€, ;) be a o-finite measure space and E; a function space
on Q; asin (5.1), and K € B(E], EY) such that its adjoint K" maps Fs to Ej.

Let further (N(t) : t € ;) be an R[E;]-bounded family of closed operators and Dy be a
core for all N(t). Assume that there exists a family (M(¢) : t € Q) of closed operators with
the same common core Dy, = Dy such that ¢t — M (t)x is measurable for all z € Dy and

(M()x,2"y = K(N()z,2")) (v € Dy,2" € X').
Then (M(t) : t € §y) is R[E,]-bounded and

R[ESJ(M(t) : t € Qo) < ||K||R[EL](N(t) : t € ).
Proof. Let © € Dy and 2’ € X'. By (5.4) in Proposition 5.3, we have (N(-)z,2') € E}, and
thus, (M(-)z,2') € E). For any f € Es,

[ @) fOdiat) = [ (N0, (K5 Odpa(0) = N
Qo 971
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By assumption, the operator N/ belongs to B(X), and therefore also M belongs to B(X).
Furthermore,
RIB(M(t) : t € D) = R({M; = ||f]ls, < 1)
= R({Ngs : [|fllE, < 1})
<K' R{Ngrg o [|1K'fllgy < 1})
< [[K[|RENg - llglle, <1})
= [|K||R[E1](N(t) : t € ).
]

In the following lemma, we collect some further simple manipulations of R[E]-boundedness.
Its proof is immediate from Definition 5.1.

Lemma 5.5. Let (€, 1) be a o-finite measure space, let E be asin (5.1) and let (N (t) : t € Q)
satisfy (1) and (2) of Definition 5.1.
(1) Let f e L>(Q2) and (N(¢t) : t € Q) be R[LP(2)]-bounded for some 1 < p < co. Then
RILPEOI(fON() - ¢ € Q) < [fllRILP(Q](N() - ¢ € Q).
In particular, R[LP(Q)](N(t) : t € Q1) < R[LP(Q)](N(t) : t € Q) for any measurable
subset 2; C Q.
(2) Let w : @ — (0,00) be measurable. Then for 1 < p < oo and p’ the conjugate
exponent,
RILP @, w(t)dp(t)[(N () : ¢ € Q) = RIS, d))(w(t) (1) : t € Q)
(3) For n € N, let ¢, : @ — Ry with Y% ¢, (t) =1 for all t € Q. Then

RIE|(N(t): te Q) < iR[E](cpn(t)N(t) cte Q).

We turn to applications to the functional calculus. That is, the R-bounded functional
calculus yields R[L?]-bounded sets by the following proposition. Here we may and do always
choose the dense subset Dy = D4, the calculus core from (3.7).

Definition 5.6. Let A be a 0-sectorial operator. Let E € {HS, M* W5}. We say that A
has an R-bounded E calculus if A has an E calculus, which is an R-bounded mapping in
the sense of [25, Definition 2.7], i.e.

R{f(A): [[flle £1}) < oo.

In the next proposition we need the Mellin transform
M : L*(R,,ds/s) — L*(R,dt), f — (t — / s f(s)ds/s).
0

Proposition 5.7. Let A be a 0-sectorial operator having an R-bounded W' calculus for
some a > 1. Let ¢ € W (R,) such that ¢t — Ma(t)(t)* belongs to L>(R), where M

2 ,Jloc

denotes the Mellin transform. Then (¢(tA) : ¢ > 0) is R[L*(Ry, %)]-bounded with bound
< OIMo) () [loo-
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Proof. We have to show that (¢.(t + log(A)) : t € R) is R[L?*(R)]-bounded. For h €
L*(R) N L*(R) with, say, compact support, we have

(5.6) /R B(—t)u(t + log(A))adt = (h = 6.) o log(A)z  (x € Dy).

Indeed, for fixed © € Dg, there exists 1)y € C(R) such that vy o log(A)x = z. Choose
some ¢ € C°(R) such that ¢(r) = 1 for r € supp ¢y — supp h, so that (t + log(A))z =
Y(t 4 log(A))g o log(A)x = 1 o log(A)x = x for any —t € supp h. Then for any 2’ € X/,

/R B(—t)(6(t + log(A)), o')dt = / B(—8){((6eth)(t + log(A))z, o'}t

:/Rh(—t)%/R(gbew)A(S)GiSt(Aisl‘,ZL‘/>d$dt

-/ / =06 (6.0) (5)it) (40, ) s

= —/ A%z, 2")ds

((hs (¢etp)) o log(A)z, z').

where we used h € L'(R), ¢.tp € W and s — (s)"(A*z,2') € L*(R), to apply Fubini in
the third line. We also have (h  (¢.1))0 = (h * ¢e)ty and (5.6) follows. Then the claim
follows from ||¢e * hllwe < [|0e(t)(£)*|| oo ®) |||l 2(r) and density of the above h in L*(R). O
Example 5.8. Consider ¢(t) = t?(e? —t)~1, where 5 € (0,1) and |§] < 7 and A an operator
as in the proposition above. Then ¢(tA) = tPAP(e? —tA)™t = tF1AP (et~ — A)~1is an
R[L?(%)]-bounded family with bound < 6~°. Indeed, M¢(t) = (—e™)*+5~ 1W As
|sin(it + B — 1)| = cosh(t) for fixed 3, we have |Ma(t)(t)¥| = e~ O™t (t) < 0.

COSh(TK’t ~

Theorem 6.1 will show that a converse to Proposition 5.7 holds, for many classical operator
families including the above example, i.e. one can recover the R-bounded W¢ calculus from
averaged R-boundedness conditions.

6. MAIN RESULTS

We introduced the notion of R[E]-boundedness to give the following characterization of

(R-bounded) W' calculus.

Theorem 6.1. Let A be a 0-sectorial operator on a Banach space X with a bounded H*(%,))
calculus for some w € (0, 7). Let o > £. Consider the following conditions.

Sobolev Calculus

(1) A has an R-bounded WY calculus.
Imaginary powers

(2) ((t)~ A" . t € R) is R[L*(R)]-bounded.

Resolvents
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(3) For some/all 5 € (0,1) there exists C' > 0 such that for all 6 € (—m,7)\{0} :
R[L2(Ry,dt/t)|(tP AL PR(e%t, A) : t > 0) < C|0]~
(4) For some/all 8 € (0,1) and 6y € (0, 7], (|6|* 2tP AXBR(ct, A) : 0 < |0] < 6y, t > 0)
is R[L*((0,00) x [0y, 60]\{0}, dt/tdf)]-bounded.
Analytic Semigroup (T (z) = e=*4)
(5) There exists C' > 0 such that for all § € (=%, 2): R[L*(Ry)](AY2T(e"t) : t > 0) <
C(5 - |0
(6) ((%)a\xriAlﬁT(:c +iy): x>0,y €R)is R[L*(R; x R)]-bounded.
Wave Operators

(7) The operators A=**z (¢4 — 1)™ are densely defined for some m > a — % and

2
(|s|~A=oF2(esA — 1)m ; s € R) is R[L(R)]-bounded.
(8) The operators Az~ (eiSA — ZT:_ol (isﬁy) are densely defined and

) ‘ m—1 ,. j
(AQO‘\s\a (e”A - Z (zsﬁl) ) D s € R)
p= !

~ J
is R[L*(R)]-bounded.

Then the following conditions are equivalent:

(1), (2), (4), (6), (7).

The condition (8) is also equivalent under the assumption that o — % ¢ Ny and m € Ny such
that o — 3 € (m, m + 1).
All these conditions imply the remaining ones (3) and (5). If X has property («) then,

conversely, these two conditions imply that A has an R-bounded Ws*¢ calculus for any € > 0.

As a preparatory lemma for the proof of Theorem 6.1, we state

Lemma 6.2. Let § € R and f(t) = f.(8 + it) with f,, as in (4.2). Then there exist
C,¢e,6 > 0 such that for any interval I C R with |I| > C there is a subinterval J C I with
|J| > 0 so that |f(t)| > € for t € J. Consequently, for N > C'/§,

> ft+ k) 21
k=—N

Proof. Suppose for a moment that
(6.1) 3C, € > 0V I interval with |I| > C3teI: |f(t)] > e

It is easy to see that sup,cp |f'(t)] < 0o, so that for such a ¢t and |s —t| < § = §(|| f']|, €):
|f(s)| > €/2. Thus the lemma follows from (6.1) with J = B(t,§/2).
It remains to show (6.1). Suppose that this is false. Then

(6.2) VC, e> 031 interval with [I| > C: Vte l: |f(t)] <e
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Since f” is bounded and || f'||zecry < \/8||fllzoo(ry I f" || o<1y, we deduce that (6.2) holds for
f"in place of f, and successively also for f™ for any n. But there is some n € N such that
infer | f™(¢)| > 0. Indeed,

f(n) (t) _ Z ( ilog k‘)n —ztlogk
k=1

with aj, = (7)) (=1)™ "%k~ # 0, whence

m—1
[F O] = lam| [logm|" =Y el [log k" > 0
k=1
for n large enough. This contradicts (6.2), so that the lemma is proved. U

Proof of Theorem 6.1.
(1) & (2): By the WY representation formula (3.6), we have R[L*(R,dt)]({t)">A" : t €
R({fp fO) () A dt || fllr2m) < 1}) R({27f(A): [[fllwg < 1}).

The strategy to show the stated remalmng (almost) equivalences between (2) and (3) —
(7) consists more or less in finding an integral transform K as in Lemma 5.4 mapping the
imaginary powers A% to resolvents, to the analytic semigroup and to the wave operators,
and vice versa.

(2) = (7): By Example 5.2 (general ), we clearly have that ||t — (£)"*(A"x, 2')|| 2,41 <
C|z| ||2’||, provided (2) holds. Thus, by Proposition 4.1, and Lemmas 5.4 and 5.5 (1), (7)
follows.

(7) = (2): Recall the function hs from Proposition 4.1. By the Euler Gamma function
development [28, p. 15|, we have the lower estimate

1 N o
he (O] 2 |fin(5 — a+it)]ex =10,

Thus, by Proposition 4.1, and Lemmas 5.4 and 5.5 (1),
1 )
(6.3) ((t>afm(§ —a+it) A" te R) is R[L*(R)]-bounded.

To get rid of f,,, in this expression, we apply Lemma 6.2. According to that lemma, we have
N e Nand § > 0 such that S |f(t+k6)| > 1 for any t € R and f(t) = fm(3 —a+it).
Write

N

> fEHRH AT = {%A M} [f(t+KO)(t + ko)~ ATETR]

By (6.3), the term in the second brackets is R[L*(R)]-bounded. The term in the first brack-
ets is a bounded function times a bounded operator, due to the assumption that A has a
bounded H*(X,,) calculus. Thus, the right hand side is R[L?*(R)]-bounded, and so the left
hand side is. Now appeal once again to Lemma 5.5 (1) to deduce (2).
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(2) = (3): We fix 0 € (—m,7) and set
1

Ko : L*(R,ds) — L*(R,ds), f(s) — (7 — o) St )

ONIOF

We have
Os
_ @ «a € a, —|s|(7—|6|)
sup || Kol| = sup (s)%(m —[0])" = — S sup(s(m — [0]))%e T < oo,
6] < |6]<7, s€R |sinm(8+is)| ™ o,

In [27, p. 228 and Theorem 15.18], the following formula is derived for x € A(D(A?)) and
0] < 7 :

' b Aisg — /Oo £ [19% A1-B (et 4 A)~'a] dt

sin (B + is) 0 t
for |6] < 7 and x € A(D(A?)). Thus,

sup |0]° RIL2(R,, dt /)] (t°P AV P R(te™®, A)) = sup (7 — |0])° R[L2(Ry., dt /)] (¢° AP (Pt + A)~1)

™

(6.4)

0<|0|<m 0] <m
) — o o L2 R GsAis
(65) s (0" BIL (R, )] e )

< R[L*(R, ds)]({s)"*A™).

Next we claim that for any € > 0, (3) implies (2), where in (2), « is replaced by a + €.
First we consider (s)~(®*9 A%z for s > 1. By Lemma 5.5 (3),

(6.6) RIL*([1,00), ds)]((s)~(*"IA®) < 3 "2 RIL*([2", 2" 1]))({s) " A").

For s € [2",2"*1]) we have

eens

- L gTna L 9-na —27"s <« _ en @ ’
(677 2SS (r = ) s

where 0,, = m — 27", Therefore
2(on on+l —a pls o 2 T Ons Ais
RIZA(2, 2 () A%) £ (= 0)° RIZA R ) e
(6.5)
< sup |9]°R[L*(R,, dt/t)]|(tP AP R(te | A)) < oo.
0<|0|1<m
Thus, the sum in (6.6) is finite.

The part (s)~(@+9) A% for s < —1 is treated similarly, whereas R[L?(—1,1)]({s)"*A%) =
R[L*(—1,1)](A%). It remains to show that the last expression is finite. We have assumed that
X has property («). Then the fact that A has an H* calculus implies that {A% : |s| < 1} is
R-bounded [27, Theorem 12.8]. For f € L*(—1,1), we have || f||; < C|| f||2, and consequently,

[ soamasiistesaf co] [ roaras i <1},

In other words, (A” : |s| < 1) is R[L*-bounded.
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(2) <= (4):
Consider

2 2 oz—% ]‘ e S s o s
(6.1) K+ IP(R,ds) = LR x (=), dsdd), f(5) o (= 10)"~ o™ (5),

Note that |sin7(8 + is)| = cosh(ws) for g € (0,1) fixed. K is an isomorphic embedding.
Indeed,

s = [ [ (= lope) oty

. | sin(7 (53 + is))]
and
/ (71' . |9|)2a_1€208d¢9 ~ / 9204—162(7r—6)\s|d9
-7 0
= cosh2(7r5)/ g2 Le=2lslgp,
0
For |s| > 1,

m 2|s|m
/ 92a71€f20|s\d9 — (2‘8‘)720{ / 92a71679d9 ~ ‘8‘720{.

0 0
This clearly implies that || K f||2 = || f||2- Applying Lemma 5.4, we get

R[L*(R, ds)]({s)"*A™) = R[L}(R x (—n, ), dsd8)]((m — |6])°"* e Ai%).

cosh(7s)
Recall the formula (6.4), i.e.
, < . , dt
GsAzs :/ s tﬁ zGﬁAl—ﬁ zGt A -1 bt
sinw(ﬁ—l—is)e v 0 [#7 (%t + 4)"\a] t
for |§] < m and = € A(D(A?)). Note that A(D(A?)) is a dense subset of X. As the Mellin
transform f(s) — [;° 1" f(s)% is an isometry L*(Ry, %) — L*(R, dt), we get by Lemma 5.4
dt
t
~ RILA(R, x (0,27),dt/td0)](|6]* 2P ATPR(“t, A)).
so that (2) <= (4) for 6y = 7.
For a general 6, € (0, 7], consider K from (6.7) with restricted image, i.e.

K : L*(R,ds) = L*(R x (=7, —(7 — 6p)] U [r — 0y, ), dsdb).

™

RILA(R)]({s)""A™) = R[L* Ry x (=7, 7), —dO)|((w — [0))* 27 A7 (et + A) ")

Then argue as in the case 6y = 7.

(4) <= (6):
The proof of (2) <= (4) above shows that condition (4) is independent of 6, € (0, 7| and
B €(0,1). Put Oy =7 and § = % Apply Lemma 5.4 with

(ep+it) ™" = Klexp(=(-)e” 1) x(0.00 ()I(1),
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where K : L*(R,ds) — L*(R,dt) is the Fourier transform. This yields that (4) is equivalent
to
RIL((0, 5) x Ry, dfdt)](|6]°~2 AP T(exp(£i(5 — 6)1)) < oc.

Applying the change of variables 6 ~~ 7 £ 0 and dt ~ tdt shows that this is equivalent to

RIL((~5.5

Now the equivalence to (6) follows from the change of variables a = tcosf, b = tsinf, t =

la +ib|, dOtdt = da db.

) R+,d0dt)]((g —10])* 5t 3 ART(61)) < oo

(3) <= (5) for B =1: Use K and the first argument from the proof of (4) <= (6).

(2) <= (8): Recall the formula from Proposition 4.4, M denoting the Mellin transform,

M{(sA)2wa(sA)z, 2'))(t) = i T2t (—a + % +it) (A7, o),

where w,(s) = [s|™ (eis — Z;n:_ol (ZJS,)J) . Then we have, since o — % ¢ Ny,

4 1 z 3
‘Z-—aJr%Jth . F(-Oé + 5 + Zt)| >~ 2t ef§‘t|<t>7a

for t € R. Thus, with Lemmas 5.4 and 5.5 (2),
R[L*(R, dt)]({t)"“A") < co <= R[L*(R,, ds/s)]((sA)%wa(isA)) < 00
= R[L2(R, ds)|(A2w,(sA)) < oco.
U

Theorem 6.1 shows that averaged R-boundedness yields a good tool to describe W' func-
tional calculus. However, many of the functions f that correspond to relevant spectral
multipliers, as for example in (2) — (7) above, are not covered themselves by this calculus.
To pass from the W' calculus to the H§ calculus, which does cover all the spectral multi-
pliers alluded to above, we shall use the spectral decomposition of Paley-Littlewood type in
the following lemma, which is proved in [23].

Lemma 6.3. Let A be a 0-sectorial operator having a bounded M?” calculus for some
(possibly large) v > 0. Let further (¢, )nez be a dyadic partition of unity. Then

Z enon(A)x

nez

2] = E

X
As a consequence we obtain

Theorem 6.4. Let A be a 0-sectorial operator on a Banach space X with property («)
having a bounded H*(X,) calculus for some o € (0, 7). Then the following are equivalent
for a > %

(1) A has an R-bounded W' calculus.

(2) A has an R-bounded H$ calculus.
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Example 6.5. Consider the operator A = —A on X = LP(R?) for some 1 < p < oo and
d € N. Hormander’s classical result states that A has a bounded H$ calculus for o > g. In

fact, a stronger result holds and A has an R-bounded H$ calculus for the same range o > g.
This is proved in [21, Theorem 5.1}, [22, Corollary 3.5].

Proof of Theorem 6.4. As W§ C H$, only the implication (1) = (2) has to be shown.
Replacing A by a power if necessary, we may and do assume that o < 7. We first show that
A has a bounded M7 calculus for some v > 0. For Rez > 0, let f,(\) = exp(—z\). We claim
that for g > «a,

(6.8) R({(Rez/|z])’f.(A) : Rez > 0}) < oo.

Then by [24], (6.8) implies that A has a M calculus for v > § + % Since X has property
(a), the fact that A has a bounded H* calculus extends by [27, Theorem 12.8] to

(6.9) R({g(A) : [|gllmre(s, < 1}) < o0
for a 6 < 7. By assumption, also
(6.10) RUA(A) : [hllwg < 13) < .

By (6.9) and (6.10), it suffices to decompose f, = g.+ h. such that ||g.|/g=(s,) < (]2]/ Rez)?
and || |lwe < (]2|/ Rez)?. By a simple scaling argument, we may assume that |z[ = 1. We
choose the decomposition

L) = £:Ne M+ L)1 —e?).

Then [[f:(A)e™ |y = [lexp(=(2 + DAz, S 1, since 6+ [arg(z +1)| < §+F = 5.
Further, it is a simple matter to check that ||k, [ws < |Rez|™ for any 3 > a. For example,

if « =1, then
Iy = [ bt + e

< / (1 — )P+ [t(—2)e (1 — e )2 + b+
0

t

2t
t

1

</ e—2Rezt|1 . e—t|2 +t2|z‘2€—2Rezt|1 . e—t|2 +t2€—2(Rez+1)t@

~ t
0

o dt
+/ 6—2Rezt|1 . 6—t|2 +t2|2|26_2ReZt|1 . 6—t|2 +t26_2(ReZ+1)t—
1

t
1 e’}
< / t2ﬁ + / t2672 Rezt@
“Jo 1 t

> dt
S 1+ (Re z)_2/ t26_t7
0

<1+ (Rez)™™

Now we have established that A has a M7 calculus and we can thus apply Lemma 6.3.
Let now fi,..., fx € HS of norm less than 1, z1,...,2x € X, and (&), and (€),)nez two
independent Rademacher sequences. Note in the following calculation that ||, fi|[we <
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| fellng < 1. We have by property (a) and assumption (1) of the theorem, writing ©, =
Pn—-1 + Pn + Pn+1,

K K
Ell ) enfu(A)arll ZEE| YD enehon(A) Azl
k=1

k=1 n€eZ

—EEIHZZGkEnSOn (A) fr(A)zg|

k=1 n€eZ

~ B S S eunlonfi) (A)7n( Az

k=1 n€eZ

< R{(enfr)(A): neZ,k=1,..., K}E| ZZG”’W” )|

k=1 neZ
S EE| Zzeken% )|

k=1 neZ

K
2R el
k=1

This shows condition (2) of the theorem. O

7. BISECTORIAL OPERATORS AND OPERATORS OF STRIP TYPE

7.1. Bisectorial operators. In this short subsection we indicate how to extend our results
to bisectorial operators. An operator A with dense domain on a Banach space X is called
bisectorial of angle w € [0,7) if it is closed, its spectrum is contained in the closure of
So=1{z€C: |arg(xz)| < w}, and one has the resolvent estimate

||(I + )\A)71||B(X) < Cw’a VA g Sw’a w' > w.

If X is reflexive, then for such an operator we have again a decomposition X = N(A)® R(A),
so that we may assume that A is injective. The H>°(S,,) calculus is defined as in (2.2), but
now we integrate over the boundary of the double sector S,. If A has a bounded H>(S,,)
calculus, or more generally, if we have ||Az| = ||(—A2)zz| for € D(A) = D((—A?)z) (see
e.g. [9]), then the spectral projections Py, P, with respect to 37 =S5, NCy, ¥ =5, NC_
give a decomposition X = X; @& X, of X into invariant subspaces for resolvents of A such
that the part A; of A to X; and —As of —A to X, are sectorial operators with o(A;) C %;.
For f € H§(S,) we have

(7.1) f(A)z = fls,(A) Pix + fls,(As2) Pax.

We define the Hérmander class H$(R) on R by f € HY(R) if fxr, € HS and f(—)xr, € HS.
Let A be a 0-bisectorial operator, i.e. A is w-bisectorial for all w > 0. Then A has an (R-
bounded) H3(R) calculus if the set {f(A) : f € Nyewer H(Sw) N HE(R), || fllngr < 1}
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is (R-)bounded. Clearly, A has an (R-bounded) H$(R) calculus if and only if A; and —A,
have an (R-bounded) H$ calculus and in this case (7.1) holds again.

At Red >0
Let fi(A\) = A
et fild) {(—)\)“: Re\ < 0
has fi(A) = A% @ (—Ay)"® on X = X| @ X,. It is easy to show that ({(t)"f;(A): t € R) is
R[L*(R, dt)]-bounded if and only if ({t)"*A% : t € R) and ({t)~*(—A)" : t € R) are both
R[L*(R, dt)]-bounded. Similarly, we have that

RIL*(Ry, dt/)](t"| AP (et — A)7") < (min(|0], m —[6])) ™

. Then f;, € H>*(S,) for any w € (0,%). Clearly, one

for 0 < |0| < m if and only if both of the following conditions hold:
RIL* Ry, dt/O)(#° A7 (¢”t=A1) ") S 167 and R[L*(Ry, dt/0)](t(=A2)' 7 (¢"t+A42) 7 S 10]7°

for 0 < |#] < 7. Finally, we have that |s| A7tz (¢4 — 1)™ is R[L2(R)]-bounded if and

only if both |s|*°‘A17a+% (e —1)™ and |s| (= Ay)~**3 (e*42 — 1)™) are R[L2(R)]-bounded.

Note that if A has a bounded M?(R) calculus for some v > 0, meaning that both A; and
—As have a M calculus, then essentially by the same proof as for Lemma 6.3, we have a
spectral decomposition

]| = E

Z enon(Ar)z|| + E

nezZ

Z €n¢n(_A2)x

nezZ

Then using the projections P; and P, it is clear how our main Theorems 6.1 and 6.4 extend
to bisectorial operators.

7.2. Strip-type operators. For w > 0 we let Str, = {z € C: |Imz| < w} the horizontal
strip of height 2w. We further define H>°(Str,) to be the space of bounded holomorphic func-
tions on Str,,, which is a Banach algebra equipped with the norm || f||eow = supyeger, [f(A)]-
A densely defined operator B is called w-strip-type operator if o(B) C Str, and for all
0 > w there is a Cy > 0 such that |[A(A — B)™'|| < Cjy for all A\ € Stry . Similarly to
the sectorial case, one defines f(B) for f € H>(Stry) satisfying a decay for |Re \| — oo
by a Cauchy integral formula, and says that B has a bounded H*(Stry) calculus provided
that [|f(B)|| < C|flls.6, in which case f — f(B) extends to a bounded homomorphism
H>(Strg) — B(X). We refer to [5] and [14, Chapter 4] for details. We call B 0-strip-type if
B is w-strip-type for all w > 0.

There is an analogous statement to Lemma 2.1 which holds for a 0-strip-type operator B
and Str,, in place of A and %, and Hol(Str,) = {f : Str, = C: In € N: (poexp)"f €
H®°(Str,,)}, where p(A) = A\(1+ \)72

In fact, O-strip-type operators and O-sectorial operators with bounded H*°(Str,) and
bounded H*°(X,) calculus are in one-one correspondence by the following lemma. For a
proof we refer to [14, Proposition 5.3.3., Theorem 4.3.1 and Theorem 4.2.4, Lemma 3.5.1].

Lemma 7.1. Let B be a O-strip-type operator and assume that there exists a 0-sectorial
operator A such that B = log(A). This is the case if B has a bounded H>(Str,,) calculus
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for some w < 7. Then for any f € |, Hol(Str,,) one has

f(B) = (f olog)(A).

Note that the logarithm belongs to Hol(%,,) for any w € (0, 7). Conversely, if A is a 0-sectorial
operator that has a bounded H>(3%,) calculus for some w € (0,7), then B = log(A) is a
0-strip-type operator.

Let B be a 0-strip-type operator and E = W§* for some o > %, or E = B“ for some a > 0.
We say that B has a (bounded) FE calculus if there exists a constant C' > 0 such that

LB <Clflle (f € () H*(Str) N E).

w>0

In this case, by density of (., H>(Str,)NE in E, the definition of f(B) can be continuously
extended to f € F.

Assume that B has an E calculus and a bounded B? calculus for some 3 > 0. Let f € Fi,.
We define the operator f(B) to be the closure of

DpcX —X
x — 2 nez(Unf)(B),

where D ={z € X : AN e N: 9,(B)x =0 (|n|] > N)} and (¢)nez is an equidistant
partition of unity.

Then there holds an analogous version of Lemma 3.10, a proof of which can be found in
20, Proposition 4.25]. Let HY = {f € L% _(R) : 1fll7zg = supnez [¥nfllwg < oo}. Note

loc
that ﬁg‘ is contained in W3 .. Thus the W3, calculus for B enables us to define the ﬁg
calculus: Let o > % and B be a 0O-strip-type operator. We say that B has an (R-bounded)

”ﬁlg calculus if there exists a constant C' > 0 such that

w>0

{f(B) : fe ﬂ H>(Str,) NHS, 1l < 1} is (R-)bounded.

The strip-type version of the main Theorems 6.1 and 6.4 reads as follows.

Theorem 7.2. Let B be 0O-strip-type operator with H* calculus on some Banach space
with property (a). Denote U(t) the Cy-group generated by B and R(\, B) the resolvents of
B. For a > %, consider the condition

(C2)a B has an R-bounded H calculus.

Furthermore, we consider the conditions
(a), The family ((t)=2U(t) : t € R) is R[L?*(R)]-bounded.
(b)o The family (R(t + ic, B) : t € R) is R[L*(R)]-bounded for any ¢ # 0 and its bound
grows at most like |¢|~* for ¢ — 0.
Then for all € > 0,
(C2)a <= (a)a == (b)a = (C2)a+e
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Proof. Consider the O-sectorial operator A = €. Then (C,), <= (a), follows from Theo-
rems 6.1 and 6.4.

(a)a = (b)a : Let R, = [c|*R[L*](R(t +ic,B) : t € R). We have to show sup,,y R. < oc.
Applying Lemma 5.4 with K the Fourier transform and its inverse, we get

_JR[L?)(c*eU(t) - t <0), >0,
) RILA(|e|*eU(t) : t > 0), ¢<0.

For t < 0, sup,.o e = sup,q(t) " (t)*c¥e I < (1)~ Thus, sup..o R[L*](c*e?U(t) : t <
0) < R[LQ](< y~eU(t) : t < 0) < oco. The part ¢ < 0 is estimated similarly.

(b)a = (a)ayc : Let R, be as before. Split (t) (et (t) into the parts ¢t > 1,¢t < —1,|t] < 1,
and further ¢ > 1into ¢ € [2",2""!] n € Ny. Then ()= < 27" < 272" and by Lemma
5.5 (2),

R[L’|((t)"**9U@®): t21) < isz[ﬁ](zme?‘"tU(w L te[2n,2m)

n=0

<22 "“sup R, < 0.

n—0 c<0

The estimate for ¢ < —1 can be handled similarly. It remains to estimate R[L?]((s)~“T9U(s) :
|s| < 1) = R[L?](U(s) : |s| < 1). We have assumed that X has property (a). Then the fact
that B has an H* calculus implies that {U(s) : |s| < 1} is R-bounded [19, Corollary 6.6].
For f € L*([-1,1]), we have || f||; < C|f]|2, and consequently,

{/ PV 1l < 1 CC{/_lﬂs)U(s)dsr il <1}

In other words, (U(s) : |s| < 1) is R[L?*]-bounded. O
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