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TV-NL : Une coopération entre les NL-means et les méthodes variationnelles

Cet article traite du problème de débruitage des images via une nouvelle formulation variationnelle exploitant localement le caractère redondant ou bien régulier des images. Nous effectuons une minimisation de la variation totale avec une attache aux données non locale. En tirant parti à la fois des approches non locales et variationnelles, nous montrons que l'on peut pallier deux défauts respectifs de ces deux approches : l'effet de crénelage et de bruit résiduel. Par ailleurs, le modèle proposé s'étend à différentes statistiques de bruit et nous montrons qu'une solution peut être obtenue efficacement dans le cas de lois issues de la famille exponentielle. Les résultats obtenus, en associant l'approche non locale aux méthodes variationnelles, montrent une réduction des effets de crénelage et de bruit résiduel. Nos résultats offrent à la fois un gain un terme de qualité visuelle et de rapport signal à bruit.

Introduction

Le débruitage d'images est un problème central en traitement d'images, et est souvent nécessaire pour l'analyse ou l'extraction d'informations de haut niveau. Au coeur de cette problématique de débruitage, on trouve les méthodes variationnelles parmi lesquelles le modèle de ROF [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] impose par minimisation de la variation totale (TV) la régularité tout en préservant les contours. Minimiser TV pousse la solution à être constante par morceaux, ce qui est bien adapté pour débruiter tout en préservant les contours. En revanche, les textures ont tendance à être atténuées et on observe un effet de crénelage sur les zones uniformes, mal représentées par un modèle constant par morceaux.

Parmi les méthodes récentes de débruitage, on trouve également l'algorithme des moyennes non locales (NL-means) de Buades et al [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. Il exploite la redondance naturelle des motifs des images à travers l'étude des similarités entre patchs (petites fenêtres extraites autour des pixels). L'algorithme consiste à effectuer une moyenne non pas des pixels proches localement du pixel à traiter, mais des pixels dont les voisinages sont similaires à celui du pixel central. Cette méthode présente de bons résultats dans les zones où la redondance des patchs est éle-Remerciements : Camille Sutour tient à remercier la DGA et la région Aquitaine pour le financement de sa thèse. vée, comme les zones lisses mais aussi les textures. Aux alentours des contours ou des structures singulières en revanche, il peut être difficile de trouver des patchs similaires résultant en un effet de bruit résiduel. Pour réduire cet effet, Louchet et Moisan [START_REF] Louchet | Total variation as a local filter[END_REF] ont mis en place une adaptation des NL-means qui régularise les patchs dans ces zones pour forcer la redondance. L'idée de combiner les méthodes non locales s'est aussi répandue au sein des méthodes variationnelles : Gilboa et Osher [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF] mettent en place une régularisation TV dite "non locale" basée sur la définition d'un gradient non local qui permet de gérer à la fois les structures fines de l'image et les zones texturées en palliant ainsi l'effet de crénelage. La variation totale non locale a ensuite été adaptée à différentes problématiques telles que la désocclusion dans le domaine des ondelettes [START_REF] Zhang | Wavelet inpainting by nonlocal total variation[END_REF] et la déconvolution d'images [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF]. Si de bons résultats sont obtenus sur des problèmes de désocclusion, en débruitage en revanche, ce modèle souffre aussi de l'effet de bruit résiduel. Le but de notre travail est de réduire les deux effets indésirables respectifs de TV et NL-means, à savoir le crénelage et le bruit résiduel, à travers une minimisation de type TV avec une attache aux données pondérée par des poids non locaux. Protter et al. [START_REF] Protter | Generalizing the non-local means to super-resolution reconstruction[END_REF] ainsi que d'Angelo et Vandergheynst [START_REF] Angelo | Fully non-local super-resolution via spectral hashing[END_REF] ont étudié ce modèle dans le cadre de la super-résolution. En utilisant des poids non locaux sommant à un, leur modèle restreint au cas du débruitage revient à effectuer une résolution de type NL-means puis à appliquer une régularisation TV sur cette solution. Dans notre modèle en revanche, nous suggérons d'utiliser des poids non normalisés. Ceci permet de pondérer localement l'influence de l'attache aux données par rapport à la régularisation, et donc d'effectuer une régularisation adaptative en fonction de la redondance locale. Ainsi, nous montrons que notre modèle permet de contre-carrer l'effet de bruit résiduel et de réduire l'effet de crénelage.

Présentation du modèle 2.1 Le modèle de ROF

Le modèle de ROF propose un compromis entre attache aux données et régularité en cherchant l'image restaurée u TV à partir d'une image dégradée g qui minimise le problème suivant :

u TV = argmin u u -g 2 + λ TV(u) (1) avec TV(u) = i∈Ω (∇u) i .
ug 2 est un terme dit d'attache aux données, et TV un terme dit de régularisation appelé variation totale, donné par TV(u) = (∇u) i , où i ∈ Ω désigne l'indice d'un pixel du domaine Ω de l'image. λ > 0 est le paramètre qui gère le compromis entre attache aux données et régularisation.

De nombreuses techniques de résolution ont été développées, en particulier l'algorithme forward-backward [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] ou la méthode primale-duale de Chambolle-Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF].

De plus, la formule (1) est bien adaptée au bruit gaussien car elle s'interprète d'un point de vue bayésien comme un maximum a posteriori avec une attache aux données de type logvraisemblance [START_REF] Polzehl | Propagation-separation approach for local likelihood estimation[END_REF]. Il est donc possible de généraliser ce modèle à différentes statistiques de bruits en remplaçant le terme d'attache aux données par la log-vraisemblance associée au bruit.

Les NL-means

L'algorithme des NL-means consiste à effectuer une moyenne pondérée des pixels dont les voisinages sont similaires. En tout pixel d'indice i ∈ Ω, il effectue une moyenne pondérée de la forme :

(u NL ) i = 1 Z i j∈Ω w i,j g j avec Z i = j∈Ω w i,j (2) 
où les poids w i,j ∈ [0, 1] sont définis pour sélectionner les pixels d'indices j dont les patchs environnants sont similaires à celui extrait autour du pixel d'intérêt d'indice i. Dans [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], les poids sont définis de la manière suivante :

w i,j = exp -k∈V d(g i+k , g j+k ) h 2 (3) 
où la fonction d permet de mesurer la distance entre deux patchs, V est la taille du voisinage de comparaison et h un paramètre de filtrage. La distance d est dans le cas d'un bruit gaussien une distance euclidienne, mais elle peut également être adaptée à la statistique du bruit, comme proposé dans [START_REF] Deledalle | How to compare noisy patches ? patch similarity beyond gaussian noise[END_REF].

Le modèle TV-NL

Le modèle proposé associe la minimisation TV aux NL-means afin de pallier aux défauts respectifs de chacun, en réalisant une minimisation TV avec une attache aux données non locale. Le problème se formule alors de la façon suivante :

u TV-NL = argmin u i∈Ω j∈Ω w i,j (g j -u i ) 2 + λ TV(u). (4) 
Avec des poids non locaux comme définis dans [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], la solution de (4) avec λ = 0 correspond à la solution des NL-means [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. En choisissant des poids w i,j = δ i,j (où δ i,j = 1 si i = j, 0 sinon), la solution de (4) correspond à une solution de type TV [START_REF] Anthoine | Some proximal methods for poisson intensity CBCT and PET[END_REF]. Intuitivement, la régularisation et les NL-means se complètent. Contrairement au modèle proposé dans [START_REF] Protter | Generalizing the non-local means to super-resolution reconstruction[END_REF][START_REF] Angelo | Fully non-local super-resolution via spectral hashing[END_REF], les poids ne sont normalisés à 1. Ainsi, dans les zones de forte redondance (comme les zones homogènes), l'attache aux données non locale est prépondérante sur le terme de régularisation et la solution tend vers celle des NL-means en évitant l'effet de crénelage. Dans les zones peu redondantes (contours, textures et structures singulières), le terme de régularisation est prépondérant sur l'attache aux données et la solution tend donc vers une solution de type TV en évitant l'effet de bruit résiduel.

Généralisation et implémentation

Les deux méthodes utilisées ci-dessus présentes toutes les deux des adaptations possibles au cas de bruit non gaussien. On peut donc généraliser le modèle TV-NL pour l'étendre à d'autres types de bruits (non corrélés) en considérant une attache aux données de la formew i,j log p(g j |u i ), et des poids adaptés. Le modèle généralisé de (4) peut se résoudre de manière rapide dans le cas général de la famille exponentielle. Cette famille inclut le bruit additif gaussien, le bruit de Poisson et certains bruits multiplicatifs que l'on rencontre dans différents problèmes d'imagerie (médical, radar, etc). Une loi de probabilité fait partie de la famille exponentielle si elle peut s'écrire sous la forme p(g|u) = h(g) exp(η(u)T (g)-A(u)) où h, T , η et A sont des fonctions connues. Le modèle généralisé s'écrit alors de la façon suivante :

u TV-NL = argmin u i∈Ω Z i A(u i ) -η(u i )µ i + λ TV(u) avec Z i = j∈Ω w i,j et µ i = j∈Ω w i,j T (g j ) . ( 5 
)
où µ et Z peuvent être calculés à la manière des NL-means avec un algorithme rapide, comme dans [START_REF] Darbon | Fast non-local filtering applied to electron cryomicroscopy[END_REF]. Dans le cas d'un bruit de Poisson par exemple, le modèle TV-NL prend la forme suivante :

u TV-NL = argmin u i∈Ω (Z i u i -µ i log u i ) + λ TV(u) (6) 
La minimisation peut ensuite s'effectuer via l'algorithme primaldual proposé par Anthoine et al. dans [START_REF] Anthoine | Some proximal methods for poisson intensity CBCT and PET[END_REF], qui permet de traiter le cas d'une attache aux données non différentiable à l'aide des opérateurs proximaux. 

Conclusion et perspectives

La méthode TV-NL proposée ci-dessus offre de bons résultats en terme de qualité visuelle et de PSNR, et améliore les défauts respectifs des NL-means et du modèle de ROF. De plus, elle s'applique dans le cadre général de la famille exponentielle où nous avons pu mettre en place une méthode rapide de résolution.

L'utilisation des poids dans la régularisation TV permet de rendre celle-ci adaptative en fonction des zones de l'image. Dans le cas présenté ci-dessus, les poids non locaux traduisent l'efficacité du débruitage réalisé par les NL-means, mais un choix judicieux de poids pourrait traduire d'autres caractéristiques des images et offrir une régularisation adaptative appropriée à un certain type de problème.

Les résultats satisfaisants nous encouragent à poursuivre notre étude dans le domaine de la vidéo. En effet, les NL-means sont particulièrement adaptés pour débruiter des séquences d'images tout en s'affranchissant du recalage entre frames, mais on observe toujours l'effet de bruit résiduel spatialement et tempo- 
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FIGURE 1 :

 1 FIGURE 1: Débruitage dans le cas gaussien. On observe l'effet de crénelage de TV autour des zones uniformes (visage du caméraman) et le mauvais débruitage des contours par NL-means, qui sont corrigés par TV-NL. 4 Résultats et discussions Nous avons testé ici notre algorithme sur deux types de bruits, additif gaussien et poissonnien. Nous l'avons confronté à l'algorithme des NL-means (2) ainsi qu'à la résolution par minimisation TV (1) et à l'algorithme TV-means de Louchet et Moisan qui traite le même problème dans le cas gaussien. La figure 1 présente les résultats de débruitage obtenus à partir des images "cameraman" et "bateau", de taille 512 × 512 à valeurs entre 0 et 255, et perturbés par un bruit blanc additif gaussien d'écart type σ = 20. La figure 2 présente les résultats de débruitage sur les mêmes images, cette fois détériorées par un bruit de Poisson afin d'obtenir un PSNR autour de 21dB. Nous observons dans chacun des cas la capacité de notre algorithme TV-NL à réduire les deux effets indésirables de TV et de NL-means, à savoir le crénelage et l'effet de patch rare. Sur les images débruitées par la méthode TV, on observe sur le bateau ou sur le visage du Caméraman l'effet de crénelage qui se manifeste par des petites zones constantes par morceaux similaires à un effet de peinture à l'huile. Cet effet est corrigé efficacement par TV-means et TV-NL. Ces deux méthodes préservent également mieux les contours. De plus, sur les images débruitées par les NL-means, on observe autour des structures singulières comme les câbles du bateau ou les contours du visage et de l'appareil du Caméraman du bruit résiduel résultant de l'effet de patch rare. Ce défaut est corrigé tout particulièrement par TV-NL qui offre un gain à la fois en terme de qualité visuelle et de PSNR.

FIGURE 2 :

 2 FIGURE 2: Débruitage dans le cas poissonnien. On note la capacité de TV-NL à débruiter les contours (autour de la tête du caméraman, par rapport aux NL-means) tout en préservant les structures fines (les câbles du bateau, par rapport à TV)
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