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Abstract

We study the Euclidean property for totally indefinite quaternion

fields. In particular, we establish the complete list of norm-Euclidean

such fields over imaginary quadratic number fields. This enables us

to exhibit an example which gives a negative answer to a question

asked by Eichler. The proofs are both theoretical and algorithmic.

1 Introduction

Quaternion fields are special cases of central division algebras. Let us recall

that such an algebra F is a 4-dimensional algebra over a number field K
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with basis (1, i, j, k) such that i2 = a, j2 = b and k = ij = −ji, where

a, b are non-zero elements of K. This algebra is denoted by

(

a, b

K

)

. Let

w = x + yi + zj + tk ∈
(

a, b

K

)

, where x, y, z, t ∈ K. We denote by w

the image of w by the canonical involution of

(

a, b

K

)

, which is defined

by w = x − yi − zj − tk, and by nrdF/K(w) = ww its reduced norm.

The algebra

(

a, b

K

)

is a division algebra if and only if the quadratic form

nrdF/K(x+ yi+ zj + tk) = x2 − ay2 − bz2 + abt2 represents zero on K only

trivially. In this case, we say that

(

a, b

K

)

is a quaternion field. Throughout

this paper, F will be a quaternion field over a number field K. We will

denote by ZK the ring of integers of K, by Z×
K its unit group and by NK/Q

the norm form. We will also use NK/Q for the norm of an ideal (if I is a

nonzero ideal of ZK , NK/Q(I) = |ZK/I|) and nrdF/K for the reduced norm

of an ideal (if J is an ideal of F , nrdF/K(J) is the ideal of K generated by

the nrdF/K(x), x ∈ J).

Definition 1.1. Let Λ be an order of F . We say that Λ is right-Euclidean

if and only if there exist a well-ordered set W and a map Φ : Λ −→ W

such that for every (a, b) ∈ Λ× Λ \ {0} there exists some q ∈ Λ satisfying

(1) Φ(a− bq) < Φ(b).

We will also say that Φ is a right-Euclidean stathm for Λ.

Let us denote by N : F −→ Q≥0 the absolute value of the reduced norm

map nrdF/Q : F −→ Q defined by nrdF/Q = NK/Q ◦ nrdF/K . The map N

is multiplicative and for any order Λ of F , it satisfies N(Λ) ⊆ Z≥0. So N ,

with W = Z≥0, is a natural and practical candidate for checking whether Λ

is right-Euclidean, which leads to the following, more precise definition.

Definition 1.2. An order Λ of F is right-norm-Euclidean if for any (a, b) ∈
Λ× Λ \ {0}, there exists some q ∈ Λ such that

(2) N(a− bq) < N(b).

We can define similarly left-Euclidean orders and left-norm-Euclidean

orders by replacing bq by qb in (1) and (2). In fact, these two notions are

equivalent, which allows to speak of Euclidean and norm-Euclidean orders

(see [3]). Moreover, if F admits a Euclidean (repectively norm-Euclidean)
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order Λ, then Λ is maximal and every maximal order of F is also Euclidean

(respectively norm-Euclidean), which enables us to speak of Euclidean (re-

spectively norm-Euclidean) quaternion fields: quaternion fields admiting a

Euclidean (respectively norm-Euclidean) maximal order. All these consid-

erations are developed in [3] and will be recalled in Section 2.

Our main results are the following theorems which deal with totally

indefinite quaternion fields, i.e. quaternion fields in which no infinite place

is ramified.

Theorem 3.4. Let F be a totally indefinite quaternion field over a number

field K. Then the following statements hold.

(i) If K is Euclidean, then F is Euclidean;

(ii) If K is norm-Euclidean, then F is norm-Euclidean;

(iii) If the class number of K is equal to 1, then for any maximal order Λ

of F , we have M(Λ) ≤ M(K).

We refer the reader to Section 2 for the definitions of the Euclidean

minima M(Λ) and M(K). This result will enable us to find an example

of Euclidean quaternion field which is not norm-Euclidean (see Proposition

3.8).

Eichler [6, Section IV] had already studied a variation of the norm-

Euclidean property for quaternion fields satisfying the so-called Eichler

condition1 (which is satisfied by any totally indefinite quaternion field). He

proved a statement similar to (ii), but his proof (as others in the literature)

seems to be incomplete. See Section 3 for details.

Theorem 4.1. Let K = Q(
√
−d) (where d is a squarefree positive integer)

be an imaginary quadratic number field. Let F be a quaternion field over

K. Then F is norm-Euclidean if and only if d ∈ {1, 2, 3, 7, 11} or F =
( −2,−5

Q(
√
−19)

)

.

Eichler asked a question that can be reformulated in our context as

follows. Let F be a totally indefinite2 quaternion field over a number field K.

1A quaternion field F over a number field K satisfies the Eichler condition if there
exists at least one infinite place of K which is not ramified in F .

2Actually, he only asked for F to satisfy the Eichler condition, which is looser in gen-
eral. When K is an imaginary quadratic field, F is totally indefinite and as a consequence,
it satisfies the Eichler condition.
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Let us suppose that F is norm-Euclidean. Does this imply that K is norm-

Euclidean? The last quaternion field of Theorem 4.1 provides a negative

answer to this question. It is norm-Euclidean while the field Q(
√
−19) is

not norm-Euclidean, and even not Euclidean.

The organization of the paper is as follows. In Section 2, we give basic

definitions and recall some properties of totally indefinite quaternion fields

and Euclidean quaternion fields. Then Sections 3 and 4 are respectively

devoted to proving Theorem 3.4 and Theorem 4.1.

2 First definitions

2.1 Orders, ideals

We first recall some definitions and basic properties. The reader may refer

to [5], [10] and [11] for more details. Let v be a place of K and Kv be the

completion of K at v. We say that v is ramified in F if Fv = F ⊗K Kv is a

skew field. An infinite place of K which is ramified in F is necessarily real.

The set of places (finite and infinite) which are ramified in F is nonempty

(since F is a field), of even cardinality and uniquely characterizes F up to

K-algebra isomorphism. If no infinite place is ramified, we say that F is

totally indefinite. As a consequence, if K is totally complex, any quaternion

field over K is totally indefinite. In this case, the number of finite places of

K which ramify in F is a positive even number.

An ideal I of a quaternion field F is a full ZK-lattice in F , i.e. such that

KI = F . An order of F is an ideal which is also a subring of F . Equivalently,

an order Λ of F is a subring of F containing ZK such that KΛ = F and

whose elements are integral over ZK . An order is maximal if it is not properly

contained in another order. An ideal I defines two orders, its right order

and its left order respectively given by: Or(I) = {x ∈ F ; Ix ⊆ I} and

Ol(I) = {x ∈ F ; xI ⊆ I}.
Two ideals I, J are left-equivalent if there exists some x ∈ F \ {0} such

that I = xJ . The classes of ideals with right order Λ are called the right

classes of Λ. We define in the same way the left classes of Λ. If Λ is a

maximal order of F , the number of right classes of Λ is finite and equal to

the number of left classes of Λ. Moreover this number is independent of the

choice of Λ. It is called the class number of F and we will denote it by hF .

Two orders Λ and Λ′ of F are of the same type (or conjugate) if there

exists some x ∈ F \ {0} such that Λ′ = x−1Λx. This defines an equivalence

relation over the set of maximal orders in F . The number of classes for this
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relation in the set of maximal orders is called the type number of F and we

will denote it by tF . We have tF ≤ hF .

An ideal I is two-sided if Or(I) = Ol(I), normal if both Or(I) and Ol(I)

are maximal orders, integral if it is normal and if I ⊆ Or(I). In the latter

case, we also have I ⊆ Ol(I). For instance, if Λ is a maximal order and if

b ∈ Λ \ {0}, then bΛ is an integral ideal with right order Λ and left order

its conjugate bΛb−1.

Let Λ be a maximal order. A prime ideal P of Λ is a proper integral two-

sided ideal with right order Λ such that for every pair of two-sided ideals

S, T , with the same properties, if ST ⊆ P then S or T ⊆ P. For every

prime ideal P of a maximal order Λ, there exists a unique prime ideal p of

ZK such that p ⊆ P and we have p = P∩ZK . Conversely, if Λ is a maximal

order, for every prime ideal p of ZK , there exists a unique prime ideal of Λ

such that p ⊆ P. With this notation, if the prime p is ramified in F , then

pΛ = P2.

A maximal ideal N is a maximal element in the set of proper integral

ideals with right order Or(N). In this case, N is also maximal in the set of

proper integral ideals with left order Ol(N).

Remark 2.1. Assume that Λ is a maximal order and that N is a maximal

ideal with right order Λ. In contrast to the commutative case, we can find

x, y ∈ Λ such that xy ∈ N but neither x nor y belongs to N. For instance let

us take F =

(−1,−1

Q

)

and Λ = Z + iZ + jZ + 1+i+j+k
2

Z, respectively the

Hamilton quaternion field and the Hurwitz quaternion ring. Set α = 1+i+j

and N = αΛ, which is a maximal ideal with right order Λ. Then x = 1+i+k

and y = x satisfy xy = 3 ∈ N and neither x ∈ N nor y ∈ N.

For every maximal ideal N with right maximal order Λ, there is a unique

prime ideal P of Λ such that P ⊆ N and we have P = {x ∈ Λ; Λx ⊆ N}.
Then, with the previous notation, we have N ∩ ZK = P ∩ ZK = p and

nrdF/K(N) = p.

A proper product of ideals is a product N1 · · ·Nl where for every 1 ≤
i ≤ l − 1, Or(Ni) = Ol(Ni+1). Every proper integral ideal I admits a

decomposition into a proper product of maximal ideals I = N1 · · ·Nl where

Ol(I) = Ol(N1) and Or(I) = Or(Nl) (see [10, Theorem 22.18]). Then, as

seen in [3, Lemma 2.2], we have

nrdF/K(I) = nrdF/K(N1) · · · nrdF/K(Nl).

Lemma 2.2. Let Λ be a maximal order of F and let p be a nonzero prime

ideal of ZK.
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(i) If p is ramified in F , there exists a unique maximal ideal N of F such

that p ⊆ N. Moreover, N is two-sided.

(ii) Let x ∈ Λ and y ∈ pΛ, then nrdF/K(x+ y) = nrdF/K(x) mod p.

(iii) Suppose that a ∈ Λ\{0} is such that nrdF/K(a) ∈ p. Then there exists

a maximal ideal N with right order Λ such that a ∈ N and N∩ZK = p.

Proof. (i) See [3, Lemma 2.2].

(ii) There exist a positive integer r, (pj)1≤j≤r ∈ pr, and (λj)1≤j≤r ∈ Λr

such that y =
∑r

j=1
pjλj. We compute nrdF/K(x + y) = nrdF/K(x) +

nrdF/K(y) + trdF/K(xy). First,

nrdF/K(y) =
∑

1≤j<k≤r

trdF/K(pjλjpkλk) +
r

∑

j=1

nrdF/K(pjλj)

=
∑

1≤j<k≤r

pjpktrdF/K(λjλk) +
r

∑

j=1

p2jnrdF/K(λj).

That proves that nrdF/K(y) ∈ p. Likewise,

trdF/K(xy) =
r

∑

j=1

trdF/K(xλj)pj ∈ p.

(iii) Consider the integral ideal I = aΛ+pΛ. Its right order is Λ. Assuming

I ( Λ, there exists a maximal ideal N with right order Λ containing

I. As p is included in N, we have N ∩ ZK = p. By construction, we

also have a ∈ N.

It remains to prove that I ( Λ. Let us assume that I = Λ. Then there

exist λ ∈ Λ and µ ∈ pΛ such that

1 = aλ+ µ.

But then 1 = nrdF/K(aλ + µ) = nrdF/K(a)nrdF/K(λ) mod p thanks

to (ii). As nrdF/K(a) ∈ p, this proves that 1 ∈ p, which is obviously

false. Thus, I ( Λ.

Lemma 2.3. Let Λ be a maximal order of F . Then, for any a, b ∈ Λ such

that aΛ+bΛ = Λ, there exists c ∈ Λ such that nrdF/K(a+bc) and nrdF/K(b)

are coprime3.

3Let x, y be two elements of ZK . We say that x and y are coprime or that x is coprime
to y when the ideals xZK and yZK are coprime.
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Such a lemma was stated by Eichler and used without a proof ([6, p.

241] ). Vignéras gave an unconvincing proof of it ([11, p. 91])4.

Remark 2.4. If hF = 1, we can obtain a similar decomposition, even

without the assumption that aΛ+bΛ = Λ. Indeed, as aΛ+bΛ is an ideal with

right order Λ and hF = 1, there exists a µ ∈ Λ such that aΛ+bΛ = µΛ. Then

we can consider µ−1a and µ−1b, which satisfy the hypotheses of the lemma.

Therefore, there exist α, β, τ ∈ Λ such that nrdF/K(α) and nrdF/K(β) are

coprime and

a = µα + µβτ, b = µβ.

Proof of Lemma 2.3. If b is zero or a unit, the lemma is clear, so we may

assume from now on that nrdF/K(b) is neither zero nor a unit. Let P be the

set of nonzero prime ideals of ZK dividing nrdF/K(b).

First, we want to prove that for any p ∈ P , there exists some τp ∈ Λ

such that

nrdF/K(a+ bτp) /∈ p or trdF/K(a+ bτp) /∈ p.

Obviously, if nrdF/K(a) /∈ p or trdF/K(a) /∈ p, we may take, τp = 0. Let us

assume then that nrdF/K(a) ∈ p and trdF/K(a) ∈ p. Thanks to Lemma 2.2

(iii), there exists a maximal ideal N such that a ∈ N and N ∩ ZK = p. As

aΛ + bΛ = Λ, we have b /∈ N, therefore N + bΛ = Λ. Consequently, there

exist m ∈ N and τp ∈ Λ such that

1 = m+ bτp.

As a result, 1−bτp ∈ N. But 1−bτp = 1−trdF/K(bτp)+τp ·b. If trdF/K(bτp) ∈
p ⊆ N, then 1 + τp · b ∈ N. By multiplying on the right by b ∈ Λ =

Or(N), as nrdF/K(b) ∈ p we obtain b ∈ N, which is impossible. Therefore,

trdF/K(bτp) /∈ p, and, as required,

trdF/K(a+ bτp) /∈ p.

Now, we prove that for any p ∈ P , there exists some cp ∈ Λ

nrdF/K(a+ bcp) /∈ p.

4Her proof relied on the following property. Let Λ be a maximal order and let N be
a maximal ideal with right order Λ. Let x, y ∈ Λ such that xy ∈ N. Then x or y ∈ N.
We have seen in Remark 2.1 that this is incorrect, and even in the totally indefinite

case, it is still false. As an example, that we will study later, take F =
(

−2,−5
Q(

√

−19)

)

, Λ =

ZK ⊕ iZK ⊕ 1+i+j
2 ZK ⊕ 2−i+k

4 ZK , α = 1+ i, and N = αΛ. Then x = 1+ 2−i+k
4 and y = x

satisfy xy = 3 = nrdF/K(α) ∈ N. On the one hand, since hF = 1 and nrdF/K(α) = 3,

it is easy to see that N is maximal. On the other hand, trdF/K(α−1x) = 2
3 6∈ ZK and

trdF/K(α−1y) = 4
3 /∈ ZK , which implies that neither x ∈ N nor y ∈ N.
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Fix any p ∈ P . If τp is such that nrdF/K(a + bτp) /∈ p, then take cp = τp. If

not, then we have nrdF/K(a+ bτp) ∈ p and trdF/K(a+ bτp) /∈ p. Let us take

any nonzero prime ideal q 6= p of ZK . Then p and q are coprime, so there

exist s ∈ p and t ∈ q such that

1 = s+ t.

Besides, as (a+ bτp)Λ + bΛ = Λ, there exist λ, µ ∈ Λ such that

1 = (a+ bτp)λ+ bµ.

Then set cp = τp + µt. We have

nrdF/K(a+ bcp) = nrdF/K(a+ bτp) + nrdF/K(bµt)

+ trdF/K

(

(a+ bτp)bµt
)

.
(3)

But nrdF/K(a+ bτp) ∈ p, nrdF/K(bµt) = nrdF/K(b)nrdF/K(µt) ∈ p and

trdF/K

(

(a+ bτp)bµt
)

= trdF/K

(

(a+ bτp)1− (a+ bτp)λ
)

t,

= trdF/K (a+ bτp) t

− trdF/K

(

(a+ bτp) · λ · a+ bτp
)

t,

=
(

trdF/K (a+ bτp)− nrdF/K(a+ bτp)trdF/K(λ)
)

t.

Therefore, (3) shows that nrdF/K(a+bcp) = trdF/K(a+bτp) mod p, which

proves that nrdF/K(a+ bcp) /∈ p, as expected.

Finally, we prove that there exists some c ∈ Λ such that for any p ∈ P ,

nrdF/K(a+ bc) /∈ p. If |P| = 1, it is clear. If not, let us fix p ∈ P . Then

p+
∏

q∈P
q6=p

q = ZK .

So there exist rp ∈ p and sp ∈
∏

q∈P
q6=p

q such that

rp + sp = 1.

Put c =
∑

q∈P sqcq. Then, for any p ∈ P ,

c− cp =
∑

q∈P
q6=p

sqcq − rpcp.

As a result, c− cp ∈ pΛ. Therefore, by Lemma 2.2 (ii),

nrdF/K(a+ bc) = nrdF/K(a+ bcp) mod p.

Consequently, for any p ∈ P , nrdF/K(a+ bc) /∈ p.
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2.2 The Euclidean property

We recall the main properties of Euclidean quaternionic orders seen in [3,

§2.3].

Proposition 2.5. Let Λ be an order of F .

(i) Λ is left-Euclidean if and only if Λ is right-Euclidean. Therefore, Λ

will be said to be Euclidean if it is left or right-Euclidean. However,

it does not mean necessarily that Λ admits a function which is both a

left and right-Euclidean stathm.

(ii) If Λ is Euclidean, then Λ is maximal.

(iii) If Λ is Euclidean, then hF = 1.

(iv) If Λ is Euclidean, then every maximal order of F is Euclidean.

These properties lead to the following definition: A Euclidean quaternion

field is a quaternion field admitting a Euclidean order, or equivalently such

that every maximal order is Euclidean.

2.3 When the stathm is the norm

Let us denote by mK the local Euclidean minimum map of K (for the

norm form) defined by mK(x) = inf
X∈ZK

|NK/Q(x − X)| for x ∈ K. Let

M(K) = sup
x∈K

mK(x) be the Euclidean minimum of K. In the same way,

let us introduce the notions of local (and global) Euclidean minima of an

order Λ of F .

Definition 2.6. For any ξ ∈ F , we set

mΛ(ξ) = inf
λ∈Λ

N(ξ − λ)

and we call it the local Euclidean minimum of Λ at ξ. We define the Eu-

clidean minimum of Λ by

M(Λ) = sup
ξ∈F

mΛ(ξ).

Let us notice that this supremum is a well-defined positive real number

and that for every ξ ∈ F there exists a λ ∈ Λ such that mΛ(ξ) = N(ξ − λ)

(see [4] and [1]).

Proposition 2.7. The following three statements are equivalent.
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(i) Λ is left-norm-Euclidean;

(ii) Λ is right-norm-Euclidean;

(iii) For all ξ ∈ F , mΛ(ξ) < 1.

Proof. See [3, Proposition 2.13]

This allows us to speak of a norm-Euclidean order without specifying

whether it is left norm-Euclidean or right norm-Euclidean. Obviously, with

the above notation, if M(Λ) < 1, then Λ is norm-Euclidean. From Proposi-

tion 2.5 (iii), we know that a norm-Euclidean order is necessarily maximal,

and, as in the general case, we also have:

Proposition 2.8. If F admits a norm-Euclidean (necessarily maximal) or-

der Λ, then every maximal order Λ′ of F is norm-Euclidean. Moreover, we

have M(Λ′) = M(Λ).

Proof. See [3, Proposition 2.14]

Remark 2.9. Note that the latter equality is true as soon as tF = 1. For a

counterexample when tF > 1, see [3, Remark 2.15].

Proposition 2.8 allows us to speak of norm-Euclidean quaternion fields

without giving any reference to the maximal order that we consider. A

norm-Euclidean quaternion field is a quaternion field admitting a norm-

Euclidean order, or equivalently such that every maximal order is norm-

Euclidean. Moreover if tF = 1, in particular if F is norm-Euclidean, we can

speak without any ambiguity of its Euclidean minimum: M(F ) = M(Λ) for

any maximal order Λ of F .

Let us summarize.

• If we want to prove that F is norm-Euclidean, it is sufficient to choose

a maximal order Λ of F and to prove that Λ is right norm-Euclidean

(or left norm-Euclidean).

• If we want to prove that F is not Euclidean, we have to find a maximal

order Λ that is not right-Euclidean (or not left-Euclidean).

3 Euclidean totally indefinite quaternion fields

In this section, F is a totally indefinite quaternion field over K, that is to say

no infinite place of K is ramified. This condition has important consequences

on the properties of the reduced norm map nrdF/K . The following lemma

summarizes them.
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Lemma 3.1. With the above notation, let Λ be a maximal order of F . Then,

(i) nrdF/K(F ) = K;

(ii) nrdF/K(Λ) = ZK;

(iii) For any x ∈ Λ and any integral two-sided ideal I of Λ such that

nrdF/K(x)ZK and nrdF/K(I) are coprime, we have

nrdF/K(x+ I) = nrdF/K(x) + I ∩ ZK .

These properties are usually stated with Eichler condition, such a gen-

erality is needless for us. Statement (iii) is Eichler’s Norm Theorem for

the arithmetic progression ([6, Satz 5]), it implies (ii) which is also due to

Eichler. In turn, (ii) implies (i), which is a special case of Hasse-Schilling-

Maaß Norm Theorem.

These properties have consequences on the class number hF of F .

Lemma 3.2. With the above hypotheses, hF = hK.

Proof. With the more general Eichler condition, hF is equal to the order of

the ray class group of K modulo the infinite ramified places, which coincides

with the class group of K as no infinite place of K is ramified. See [10,

Section 35].

Remark 3.3. In particular, if F is Euclidean, then hF = 1, thus hK = 1.

Now we can link the Euclidean properties of the number field K and of

the quaternion field F .

Theorem 3.4. Let F be a totally indefinite quaternion field over a number

field K. Then the following statements hold.

(i) If K is Euclidean, then F is Euclidean;

(ii) If K is norm-Euclidean, then F is norm-Euclidean;

(iii) Suppose that hK = 1. Then for any maximal order Λ of F , we have

M(Λ) ≤ M(K).

Proof. We will start by proving (i) and (ii). Let us assume that K is Eu-

clidean, which implies hF = hK = 1. Let ϕ : ZK −→ W be a Euclidean

stathm for some well-ordered set W . Set Λ to be a maximal order of F . We

put Φ = ϕ◦nrdF/K : Λ −→ W and we will prove that Φ is a right-Euclidean

stathm.
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Let α, β ∈ Λ. Then, using Lemma 2.3 and Remark 2.4, there exists

(µ, α′, β′, τ) ∈ Λ4 such that β = µβ′, α = µα′ + µβ′τ , and nrdF/K(α
′)

and nrdF/K(β
′) are coprime. Since ϕ is a Euclidean stathm, we can divide

nrdF/K(µ)nrdF/K(α
′) by nrdF/K(µ)nrdF/K(β

′) = nrdF/K(β) and there exists

a c ∈ ZK such that

(4) ϕ
(

nrdF/K(µ)nrdF/K(α
′)− nrdF/K(µ)nrdF/K(β

′)c
)

< ϕ(nrdF/K(β)).

Now, notice that nrdF/K(α
′)− nrdF/K(β

′)c ∈ nrdF/K (α′) + nrdF/K(β
′)ZK .

We may then apply Lemma 3.1 (iii) with I = nrdF/K(β
′)Λ and x = α′.

We obtain nrdF/K (α′) + nrdF/K(β
′)ZK = nrdF/K

(

α′ + nrdF/K(β
′)Λ

)

⊆
nrdF/K (α′ + β′Λ). This allows us to write nrdF/K(α

′) − nrdF/K(β
′)c =

nrdF/K(α
′ − β′γ) for a γ ∈ Λ. Consequently,

nrdF/K(µ)nrdF/K(α
′)−nrdF/K(µ)nrdF/K(β

′)c = nrdF/K(µ)nrdF/K(α
′−β′γ),

and (4) can be rewritten as

ϕ(nrdF/K(α− β(τ + γ))) < ϕ(nrdF/K(β)),

which completes the proof of (i).

If we assume K to be norm-Euclidean, then we can take ϕ = |NK/Q| :
ZK −→ Z≥0. We proved above that Φ = N is a right-Euclidean stathm for

Λ, that is to say that F is norm-Euclidean. That proves (ii).

Now, we will prove (iii). Take ξ ∈ F . Since hK = 1 we also have hF = 1

by Lemma 3.2, and thanks to Lemma 2.3 and Remark 2.4, ξ can be written

as ξ = β−1α + τ for some α, β, τ ∈ Λ such that nrdF/K(α) and nrdF/K(β)

are coprime. Then, we can take a c ∈ ZK such that

(5)
∣

∣NK/Q

(

nrdF/K(β
−1α)− c

)∣

∣ = mK

(

nrdF/K(β
−1α)

)

.

As before, Lemma 3.1 (iii) proves that

nrdF/K(α) + nrdF/K(β)ZK = nrdF/K

(

α + nrdF/K(β)Λ
)

⊆ nrdF/K (α + βτ + βΛ) .

We deduce from it that there exists a γ ∈ Λ such that

nrdF/K(α)− nrdF/K(β)c = nrdF/K (α + βτ − βγ) .

Dividing by nrdF/K(β) and using (5), we find
∣

∣NK/Q(nrdF/K(ξ − γ))
∣

∣ = mK

(

nrdF/K(β
−1α)

)

.

Therefore, we have mΛ(ξ) ≤ mK

(

nrdF/K(β
−1α)

)

≤ M(K), from which we

easily deduce (iii).
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Now, we can complete the list of Euclidean and norm-Euclidean quater-

nion fields over Q.

Corollary 3.5. Let F be a quaternion field over Q. Then F is Euclidean if

and only if F is norm-Euclidean, which happens exactly when F is indefinite

or

F ∈
{(−1,−1

Q

)

,

(−1,−3

Q

)

,

(−2,−5

Q

)}

.

Proof. The case where F is definite over Q was treated in [3, Section 4].

If F is indefinite over Q, then F is norm-Euclidean thanks to Theorem 3.4

(ii).

Remark 3.6. The Euclidean and the norm-Euclidean properties are equiv-

alent in this setting. This is analogous to the cases of imaginary quadratic

number fields and totally definite quaternion fields over quadratic number

fields (see [3]).

So far, all examples of Euclidean quaternion fields were in fact norm-

Euclidean. As there exist Euclidean number fields which are not norm-

Euclidean, we can use Theorem 3.4 (i) to find quaternion fields which are

Euclidean, but not necessarily norm-Euclidean. To exhibit examples which

are actually not norm-Euclidean, we will need the following lemma.

Lemma 3.7. Let F a totally indefinite quaternion field over a number field

K with hK = 1. Let pi, 1 ≤ i ≤ s be some distinct finite places of K ramified

in F and t ∈ ZK such that tZK = p1 · · · ps (we have hK = 1). Then for any

v ∈ ZK coprime to t, there exists ξ ∈ F such that mΛ(ξ) ≥ mK(v/t).

Proof. First, by Lemma 3.1 (ii), there exists an a ∈ Λ such that nrdF/K(a) =

v. For every i, let us denote by Pi the unique prime two-sided ideal of Λ lying

above pi. These ideals satisfy: piΛ = P2
i , Pi ∩ ZK = pi and PiPj = PjPi

for every i, j (see [10, Section 22]). Moreover nrdF/K(Pi) = pi. Since the Pi

commute, we have P1 · · ·Ps ⊆ Pi for every i. This implies P1 · · ·Ps∩ZK ⊆
Pi ∩ ZK = pi for every i so that

P1 · · ·Ps ∩ ZK ⊆ p1 · · · ps.

Let us notice that nrdF/K(a)ZK = vZK and nrdF/K(P1 · · ·Ps) = p1 · · · ps =
tZK are coprime. Applying Lemma 3.1 (iii) to x = a and I = P1 · · ·Ps, we

obtain

nrdF/K(a+P1 · · ·Ps) = nrdF/K(a) +P1 · · ·Ps ∩ ZK

⊆ nrdF/K(a) + p1 · · · ps.
(6)
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Since hF = 1, there exists a b ∈ Λ such that P1 · · ·Ps = bΛ. Let us put

ξ = b−1a ∈ F . Then, there exists a λ ∈ Λ such that

mΛ(ξ) =
N(a− bλ)

N(b)

=
|NK/Q(nrdF/K(a− bλ))|

N(b)
.

As bλ ∈ P1 · · ·Ps, (6) shows that there exists a y ∈ p1 · · · ps = tZK such

that

nrdF/K(a− bλ) = nrdF/K(a) + y.

Hence there exists a z ∈ ZK such that

mΛ(ξ) =
|NK/Q(nrdF/K(a) + tz)|

N(b)
.

But nrdF/K(b) ∈ ZK and nrdF/K(b)ZK = nrdF/K(P1 · · ·Ps) = p1 · · · ps =

tZK so that we have nrdF/K(b) = εt where ε ∈ Z×
K . From this we deduce

mΛ(ξ) =
|NK/Q(nrdF/K(a) + tz)|

|NK/Q(εt)|

=
|NK/Q(v + tz)|

|NK/Q(t)|
=

∣

∣

∣NK/Q

(v

t
+ z

)∣

∣

∣

≥ mK

(v

t

)

.

Proposition 3.8. Let K be the real quadratic field of discriminant 53. We

set x ∈ K such that x2 − x − 13 = 0. We put t = x + 2 and p = tZK. Let

F be any totally indefinite quaternion field over K in which p is ramified.

For instance, we can take F =

(−1, 7

K

)

. Then F is Euclidean, but not

norm-Euclidean.

Proof. Take any F satisfying the conditions of the proposition. As F is

totally indefinite, hF = hK = 1. Harper proved that K is Euclidean (without

assuming GRH, see [7]). Consequently, by Theorem 3.4 (i), F is Euclidean.

Furthermore, let us define v = 2x + 7, which is coprime to t. Then, by

Lemma 3.7, there exists some ξ ∈ F such that mΛ(ξ) ≥ mK

(

v
t

)

. But we

chose v and t such that mK

(

v
t

)

= M(K) = 9

7
. Therefore, mΛ(ξ) ≥ 1, which

proves that F is not norm-Euclidean.
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4 Quaternion fields over imaginary quadratic

number fields

The section will be devoted to the proof of the following statement.

Theorem 4.1. Let K = Q(
√
−d) (where d is a squarefree positive integer)

be an imaginary quadratic number field. Let F be a quaternion field over

K. Then F is norm-Euclidean if and only if d ∈ {1, 2, 3, 7, 11} or F =
( −2,−5

Q(
√
−19)

)

.

In this section, K is an imaginary quadratic number field K = Q(
√
−d),

where d > 0 is a squarefree integer, and F is a quaternion field over

K. Let us remark that no infinite place of K ramifies in F , so that F

is totally indefinite. Suppose that F is norm-Euclidean. Since F is to-

tally indefinite, by Lemma 3.2, we have hK = hF = 1. This implies that

d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. In Subsection 3.1 we will prove that F

is norm-Euclidean for d = 1, 2, 3, 7, 11 and not norm-Euclidean for d > 19.

Then, Subsection 3.2 will be devoted to the remaining case d = 19, and we

will prove that under this hypothesis the only norm-Euclidean quaternion

field is

( −2,−5

Q(
√
−19)

)

, thus proving Theorem 4.1.

4.1 First steps, the case d 6= 19

First, we can deal with the 5 first values of d.

Proposition 4.2. If d = 1, 2, 3, 7 or 11, then F is norm-Euclidean.

Proof. It is a classical fact that d = 1, 2, 3, 7 and 11 are the only values

of d for which K is norm-Euclidean. Then, thanks to Theorem 3.4 (ii), we

conclude that F is norm-Euclidean.

Now, in view of proving that F cannot be norm-Euclidean for d > 19 we

have to establish some preliminary results. In particular, in order to apply

Lemma 3.7, we look for convenient points x ∈ K such that mK(x) ≥ 1.

Lemma 4.3. Suppose that d ∈ {19, 43, 67, 163}. If t ∈ ZK satisfies

(i) either t ∈ Z and |t| ≥
√
d√

d− 4

(ii) or t 6∈ Z and |t| ≥ 2√
d− 4



16 J.-P. Cerri, J. Chaubert and P. Lezowski

then, there exists some v ∈ ZK such that mK(v/t) ≥ 1.

Proof. In all cases, we have d ≡ 3 mod 4 and ZK = Z+Zω where ω = 1+
√
−d

2
.

Let us put

B =

{

x ∈ K; 1 ≤ Im(x) ≤
√
d

2
− 1

}

.

It is easy to see that if x ∈ B then mK(x) ≥ 1. Thus, it is sufficient to find

v ∈ ZK such that v/t ∈ B. Let us write t = t1 + t2ω where t1, t2 ∈ Z.

Case (i): t ∈ Z (t2 = 0). Let us search for such a v with v = kω and k ∈ Z

with the same sign as t. Since Im
(v

t

)

=
k
√
d

2t
, we have

v

t
∈ B ⇐⇒ 2|t|√

d
≤ |k| ≤ (

√
d− 2)|t|√

d
.

But condition (i) implies that the difference between the right-hand side

and the left-hand side of this double inequality is at least 1, so that we can

find such a k.

Case (ii): t 6∈ Z (t2 6= 0). Here, let us search for v in Z, whose sign is

opposite to the sign of t2. Since Im
(v

t

)

= −vt2
√
d

2|t|2 , we have

v

t
∈ B ⇐⇒ 2|t|2

|t2|
√
d
≤ |v| ≤ |t|2(

√
d− 2)

|t2|
√
d

.

As above, such a v exists if
|t|2(

√
d− 4)

|t2|
√
d

≥ 1. But since
|t|
|t2|

≥
√
d

2
it is

sufficient to have
|t|(

√
d− 4)

2
≥ 1 which is implied by condition (ii).

Proposition 4.4. If d ∈ {43, 67, 163}, then F is not norm-Euclidean.

Proof. In these three cases, K = Q(
√
−d) has class number 1. Recall also

that, since F is totally indefinite, the set S of finite primes of K that ramify

in F is non-empty and has even cardinality. Let p be such a prime. Since

hK = 1, there exists a t ∈ ZK with p = tZK . Moreover |t| > 1 because p is

prime.

For d = 67 and 163 we have

√
d√

d− 4
< 2,

2√
d− 4

< 1 and necessarily t

satisfies hypotheses of Lemma 4.3. This implies that there exists a v ∈ ZK

such that mK(v/t) ≥ 1. But v and t are coprime: if not, tZK being a prime

ideal, we would have v/t ∈ ZK and mK(v/t) = 0, which is absurd. Hence,

we can apply Lemma 3.7 with s = 1 and there exists a ξ ∈ F such that
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mΛ(ξ) ≥ mK(v/t) ≥ 1. Consequently, F is not norm-Euclidean.

For d = 43 we have

√
d√

d− 4
< 3 and

2√
d− 4

< 1. The same argument is

possible if t 6∈ Z or t ∈ Z with |t| ≥ 3. It remains to study the case where

t = ±2. But, as the cardinality of S is a positive even integer, there exists

another finite prime that ramifies in F , say p′ = t′ZK . If t′ 6∈ Z, we are done.

If t′ ∈ Z, necessarily |t′| ≥ 3 because p′ 6= p. We can apply again Lemma

4.3 with t′ and the conclusion follows.

Summarizing results of Proposition 4.2 and Proposition 4.4, we obtain

Theorem 4.5. For d 6= 19, F is norm-Euclidean if and only if

d ∈ {1, 2, 3, 7, 11}.

4.2 The case d = 19

It remains to study the case d = 19. We are first going to prove that there

is only one quaternion field over Q(
√
−19) that might be norm-Euclidean.

Proposition 4.6. If F is a norm-Euclidean quaternion field over Q(
√
−19),

then necessarily F =

( −2,−5

Q(
√
−19)

)

.

Proof. For d = 19 we have

√
d√

d− 4
< 13 and

2√
d− 4

<
√
32. The same

argument as above shows that if p = tZK is a finite prime of ZK that

ramifies in F , then we have |t|2 ≤ 31 if t 6∈ Z and |t| ≤ 12 otherwise. This

leads to the following list of candidates: the primes p2 = 2ZK , p3 = 3ZK ,

p5 = ωZK , p5, p7 = (1 + ω)ZK , p7, p11 = (2 + ω)ZK , p11, p17 = (3 + ω)ZK ,

p17, p19 = (−1 + 2ω)ZK , p19, p23 = (1 + 2ω)ZK , p23. Here pm is the prime

above m when m is inert, otherwise the two primes above m are pm and pm

(its conjugate). Now, it is easy to compute some appropriate local Euclidean

minima in K. We obtain

mK

(ω

2

)

=
5

4
, mK

(

3

1 + ω

)

= mK

(

3

1 + ω

)

= 1,

mK

(

5

2 + ω

)

= mK

(

5

2 + ω

)

= 1, mK

(

7

3 + ω

)

= mK

(

7

3 + ω

)

= 1,

mK

(

5

2ω − 1

)

= mK

(

7

2ω − 1

)

=
25

19
,

mK

(

5

2ω + 1

)

= mK

(

5

2ω + 1

)

=
25

23
.
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In all these cases, Lemma 3.7 (with s = 1) can be applied and we obtain

that only p3, p5 and p5 can be ramified in F . Moreover we have

mK

(

7

3ω

)

= mK

(

7

3ω

)

=
49

45
.

Again Lemma 3.7 (with s = 2) shows that neither p3 and p5, nor p3 and p5

can be ramified simultaneously. Since the number of finite ramified primes

is a positive even integer, we have a unique possibility: p5 and p5 are the

only primes of K that ramify in F . This leads (up to isomorphism) to

F =

( −2,−5

Q(
√
−19)

)

.

Remark 4.7. We have mK

(

1 + 2ω

ωω

)

=
23

25
and the primes p5 and p5 are

ramified. Therefore, Lemma 3.7 gives us the following bound:

(7) M(Λ) ≥ 23

25
.

Now let us focus on F =

( −2,−5

Q(
√
−19)

)

. As a maximal order of F , we

can take5

Λ = ZK ⊕ iZK ⊕ 1 + i+ j

2
ZK ⊕ 2− i+ k

4
ZK .

We are going to prove that F is norm-Euclidean. Our approach will be algo-

rithmic, following some ideas used in [2], [8] and [3] for the computation of

the Euclidean minimum. Let us work in a more general context. Let d > 1

be a squarefree integer and F =

(

a, b

K

)

be a totally indefinite quaternion

field over K = Q(
√
−d), where a, b are supposed to belong to Q, for sim-

plicity. Let Λ be a maximal order of F . Suppose that we have a description

of Λ:

Λ =
4

⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)ZK ,

where, for simplicity, we suppose that al,m ∈ Q for 1 ≤ l, m ≤ 4. Then F

can be written

F =
4

⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)K

= Λ +∆,

5We do not prove this because it is easy to check that Λ is an order whose discriminant
is equal to −52. It can also be checked using Magma ([9]).
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where

∆ =
4

⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)D,

and where D is a fundamental domain of K. Take for instance D = {x +

yθ; x, y ∈ J}, where J = [0, 1) ∩Q and

θ =

{

1+
√
−d

2
if d ≡ 3 mod 4,√

−d otherwise.

Now, since mΛ is Λ-periodic, to prove that F is norm-Euclidean, it is suf-

ficient to establish that for every ξ ∈ ∆ there exists a λ ∈ Λ such that

N(ξ − λ) < 1. The sets Λ and ∆ can be rewritten as

Λ =

{

4
∑

l=1

al,1zl + i
4

∑

l=1

al,2zl + j
4

∑

l=1

al,3zl + k
4

∑

l=1

al,4zl; xl, yl ∈ Z

}

,

∆ =

{

4
∑

l=1

al,1zl + i

4
∑

l=1

al,2zl + j

4
∑

l=1

al,3zl + k

4
∑

l=1

al,4zl; xl, yl ∈ J

}

,

where zl = xl + ylθ. Clearly, Λ and ∆ are respectively isomorphic to Z8 and

J8, and we embed both sets in R8 in the following way. To ξ = α + βi +

γj + δk ∈ F , where α, β, γ, δ ∈ K we associate the column vector
(

Re(α), Im(α),Re(β), Im(β),Re(γ), Im(γ),Re(δ), Im(δ)
)T

.

In other words, we consider the matrix M ∈ M8×8(R) defined by

M =

























a1,1 a1,1η a2,1 a2,1η a3,1 a3,1η a4,1 a4,1η
0 a1,1µ 0 a2,1µ 0 a3,1µ 0 a4,1µ
a1,2 a1,2η a2,2 a2,2η a3,2 a3,2η a4,2 a4,2η
0 a1,2µ 0 a2,2µ 0 a3,2µ 0 a4,2µ
a1,3 a1,3η a2,3 a2,3η a3,3 a3,3η a4,3 a4,3η
0 a1,3µ 0 a2,3µ 0 a3,3µ 0 a4,3µ
a1,4 a1,4η a2,4 a2,4η a3,4 a3,4η a4,4 a4,4η
0 a1,4µ 0 a2,4µ 0 a3,4µ 0 a4,4µ

























,

where η = Re(θ) and µ = Im(θ), and we see Λ and ∆ respectively as M ·Z8

and M · J8. Now, we consider a cutting-covering of ∆ = M · [0, 1]8 using

parallelotopes whose faces are orthogonal to the canonical axes of R8. These

parallelotopes P are of the form

P = {(ui)1≤i≤8 ∈ R8; |ui − Ci| ≤ hi},

where C = (ci)1≤i≤8 is the center of the parallelotope and 0 < hi for every

i. In order to prove that F is norm-Euclidean, it is sufficient to prove that

for every P of our cutting-covering of ∆ there exists a λ ∈ Λ such that

(8) for every u ∈ P , N(u− λ) < 1.
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In this case, we will say that P is absorbed by λ. But thanks to our identi-

fication N can be rewritten

N(t) =
∣

∣

∣
(t1 + t2I)

2 − a(t3 + t4I)
2 − b(t5 + t6I)

2 + ab(t7 + t8I)
2

∣

∣

∣

2

= f(t)2 + 4g(t)2,

where I is a complex square root of −1 and
{

f(t) = t21 − t22 − at23 + at24 − bt25 + bt26 + abt27 − abt28,
g(t) = t1t2 − at3t4 − bt5t6 + abt7t8.

Therefore, to ensure that (8) is satisfied, it is enough to establish that

(9) A(P , λ) + 4B(P , λ) < 1,

where

A(P , λ) = sup
t∈P−λ

f(t)2 and B(P , λ) = sup
t∈P−λ

g(t)2.

Let us remark that, if yi = Ci − λi, for every t ∈ P − λ, we have ti ∈
[yi − hi, yi + hi], from which we deduce

{

0 ≤ t2i ≤ y2i + 2|yi|hi + h2
i if |yi| ≤ hi

y2i − 2|yi|hi + h2
i ≤ t2i ≤ y2i + 2|yi|hi + h2

i if |yi| ≥ hi

and

yiyj − |yi|hj − |yj|hi − hihj ≤ titj ≤ yiyj + |yi|hj + |yj|hi + hihj.

If we take into account the signs of a and b, these inequalities give us explicit

bounds for f(t) and g(t) when t ∈ P−λ, say α ≤ f(t) ≤ β and γ ≤ g(t) ≤ δ,

from which we deduce that (9) will be satisfied if

(10) max{α2, β2}+ 4max{γ2, δ2} < 1.

Now, it is sufficient to prove that every P of our cutting-covering satisfies

(10) for some λ belonging to a finite set S of precomputed elements of Λ.

Of course, things are not so simple: in general, if we begin with a reasonable

cutting-covering, some parallelotopes are not absorbed. In this case, we

cut them into 28 smaller parallelotopes and we continue. The algorithm is

roughly as follows.

1. Define a set S of elements of Λ.

2. Define a covering of ∆ by parallelotopes as described above. Denote

by T the set of these parallelotopes.
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3. For any P ∈ T , search for a λ in S that absorbs P , replacing 1 by a

constant k < 1 in (10) to control rounding errors. If such a λ exists,

remove P from T .

4. If T = ∅, we are done and the algorithm stops.

5. If not, cut every P ∈ T into 28 smaller parallelotopes and replace T

with the set of these smaller parallelotopes. Then go to step (3).

In the case of F we have K = Q(
√
−19), θ = 1+

√
−19

2
and as a maximal

order for F we take Λ = ZK ⊕ iZK ⊕ 1+i+j
2

ZK ⊕ 2−i+k
4

ZK so that our matrix

M is

M =







































1 1

2
0 0 1

2

1

4

1

2

1

4

0
√
19

2
0 0 0

√
19

4
0

√
19

4

0 0 1 1

2

1

2

1

4
−1

4
−1

8

0 0 0
√
19

2
0

√
19

4
0 −

√
19

8

0 0 0 0 1

2

1

4
0 0

0 0 0 0 0
√
19

4
0 0

0 0 0 0 0 0 1

4

1

8

0 0 0 0 0 0 0
√
19

8







































.

The algorithm ran with the following parameters: the set S was defined

by S = {M · X; Xi ∈ Z ∩ [−2, 3] for every i}, the cutting-covering of ∆

was obtained by cutting ∆ by 60 in each direction, and the constant k was

equal to 0.921. After 3 loops, all parallelotopes were absorbed at one step

or another and we obtained:

Proposition 4.8. The quaternion field F is norm-Euclidean.

Combining Theorem 4.5, Proposition 4.6 and Proposition 4.8 completes

the proof of Theorem 4.1.

Remark 4.9. If we take k = 0.92, the algorithm does not succeed. There

are many problematic parallelotopes and after several loops, their number

increases dramatically. Since we know that M(Λ) ≥ 23

25
it is reasonable to

conjecture that we have an equality.

Remark 4.10. This gives a negative answer to the question asked by

Eichler. Here K = Q(
√
−19) is not norm-Euclidean and even not Euclidean

for any stathm, but F =

(−2,−5

K

)

is norm-Euclidean. Let us note that
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Eichler’s definition of the Euclidean property for K was slightly different

than the standard one that we use. Anyway, in our context, both definitions

are equivalent.
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