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Extracting cell complexes from digital images
A. Pacheco, P. Lienhardt, and P. Real,

Abstract—In this paper, we define a method for constructing cell complexes from 4–dimensional binary digital images on a dual

grid. First, we revisit a method similar to Kenmochi et al. method [6], [7], [8] for treating with images of dimension 3. Then, we

extend this method to 4–dimensional images. The idea consists in considering the black 4–xels of the image as 0–cells of a cell

complex. The cells of higher dimension of the complex are constructed by deforming the 4–cubes of the dual grid. Finally, the

resulting complex can be simplified, for instance, by merging adjacent 4–cells which share a common 3–cell. More concretely,

0,1,2,3–cells non-incident to 4–cells are stored, together with 3–cells (and their boundary) incident to exactly one 4–cell.

Index Terms—cell complex, dual binary digital image, convex hull, degeneracy operator.

✦

1 INTRODUCTION

An–dimensional digital image can be defined as a set
of n–xels on a grid made up by n–cubes. The n–

xels can be identified with (1) the n–cubes of the grid;
or with (2) the central points of these n–cubes. In the
first case, we work with a primal grid; whereas in the
second one, we work with a dual grid constructed from
the primal one.

Segmentation consists in computing a partition of an
image into regions. Every n–xel is assigned a label and
each region is made up by n–xels with the same label.
If the only labels allowed for the n–xels are “white”
and “black”, the segmentation is said binary.

Methods as Marching cubes [4], [10], [11] and Ken-
mochi et al. [6], [7], [8] construct complexes whose cells
are predefined, i.e. they are regular cells as simplices,
polyhedra, etc. These complexes represent the topol-
ogy of the region of interest of a 3–dimensional binary
digital image. In the first method, the algorithm con-
structs a simplicial complex, whose 0–cells are points
of the edges of the dual grid. In the second one, the
authors construct a cell complex on a dual grid, i.e.
the 0–cells of the complex are vertices of the dual grid.
In order to construct the complex, Kenmochi et al.
compute (up to rotations) the different configurations
of white and black vertices of a cube and, then, they
construct the convex hulls of the black points of these
configurations. These convex hulls define the cells of
the complex, up to rotations.
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The work developed in this paper extends Ken-
mochi et al. method to dimension 4. The goal is
to construct a cell complex from a binary digital
image defined on a dual grid. First, we determine
(up to isometries) the subsets of points which can
be constructed from the vertices of a 4–cube, i.e. the
pattern subsets, and we store them in a look-up table.
Later, we construct the convex hulls defined by the
pattern subsets, i.e. the pattern cells, and we store
them in another look-up table. The construction of
a pattern cell is made by deforming the unit cube
which contains the subset associated to it. This con-
struction method represents to a novelty respect to
Kenmochi et al. method since it can be generalized
and extended to any dimension. Then, we determine
the pattern subsets of the image and we identify each
of these subsets with its pattern cell. Latter define
(up to isometries) the cells of the cell complex. So,
by inverting the isometries, we obtain the cells of
the complex. Finally, the cell complex is simplified by
extracting its boundary.

The construction of the cell complex from the pat-
tern subsets and pattern cells can be massively par-
allelised. More concretely, each 4–cube of the grid is
scanned, the pattern subset of that 4–cube is deter-
mined and it is identified with its pattern cell.

This paper is structured as follows: in Section 2, we
define the procedure above-described for constructing
cell complexes from dual binary digital images; in
Section 3, (a) we describe Kenmochi et al. method
for constructing cell complexes from 3–dimensional
dual binary digital images, (b) we implement algo-
rithms for determining both the pattern subsets and
the pattern cells. More concretely, once the pattern
subsets are determined, we compute the pattern cell
associated to each subset by deforming the unit cube
which contains it. In this way, we obtain an alternative
to Kenmochi et al. method, and (c) we compare the
results obtained by using both methods; in Section
4, we extend the algorithms implemented in Section
3(b) for determining both the pattern subsets and the
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pattern cells in dimension 4, obtaining a method for
constructing cell complexes from 4–dimensional dual
binary digital images; and finally, in Section 5, we
show some conclusions about the method.

2 METHOD DESCRIPTION

Given a n–dimensional binary digital image I on a
dual grid G, in this section, we describe a method for
constructing a cell complex CC(I) from I . The method
is divided into two stages.

2.1 Pattern subsets and pattern cells

The first stage is a preprocessing made only once for
each dimension. Let C be a n–cube of G. The non-
isometric subsets which can be constructed from the
vertices of C are computed. In this way, we obtain the
pattern subsets which are stored in a look-up table.

Each pattern subset defines a pattern cell. This cell
is an open set made up by all the points inside the
convex hull of the points of the subset which defines
the cell. The boundary of this convex hull is given
by its vertices, edges, faces, etc. These convex hulls
are constructed by deforming C and we distinguish
several basic construction operations (deformation,
degeneracy of cells, etc.). The pattern cells (together
with their boundary) are stored in a look-up table.

2.2 Cell complex construction

The second stage consists of six general steps (non-
depending on the dimension) which allow us to con-
struct CC(I) from the pattern subsets and pattern
cells. Below, we describe each of these steps.

2.2.1 Subsets of n–xels of I

We split the set of n–xels of I in such a way that each
subset of n–xels coincides with the vertices of a n–
cube of G. More concretely, we scan each n–cube of
G and we check which is the subset of n–xels of I
corresponding to its vertex set. A naive algorithm, as
Algorithm A.2 (in Appendix), allows us to implement
this step.

2.2.2 Pattern subsets of I

We associate each subset of n–xels of I with one
of the pattern subsets determined in the first stage.
More precisely, we search the isometry between every
subset of n–xels of I and the corresponding pattern
subset. A naive algorithm, as Algorithm A.3 (in Ap-
pendix), allows us to implement this step.

2.2.3 Pattern cells of CC(I)

We choose the pattern cells defined by the pattern
subsets of I in the look-up table in the first stage.

2.2.4 Cells of CC(I)

The cells of CC(I) are obtained by inverting the
isometry σ between each subset X of n–xels of I
and its associated pattern subset Y . Let C(Y ) be the
pattern cell corresponding to the pattern subset Y . If
we replace every point of C(Y ) with its pre-image
under σ, then we obtain the cell C(X) corresponding
to the subset X .

2.2.5 Construction of CC(I)

CC(I) is formed by attaching the cells obtained in
Section 2.2.4 along their boundaries.

2.2.6 Simplifying CC(I)

CC(I) can be simplified by removing the (n−1)–cells
incident to two n–cells. More concretely, the simplified
cell complex is given by: (a) the 0,1,...,(n − 1)–cells of
CC(I) which are not incident to a n–cell; and (b)
the set of (n− 1)–cells (together with their boundary)
incident to exactly one of the n–cells of CC(I). A naive
algorithm, as Algorithm A.4 (in Appendix), allows us
to obtain the simplified cell complex from CC(I).

In Figure 1, we present a diagram summarizing the
steps above-described for constructing a cell complex
from a n–dimensional dual binary digital image.

Fig. 1. The diagram shows the procedure which allows

us to construct the cell complex from the image.

In Examples 1 and 2 (see Appendix), we show
the results obtained by applying this method to two
dual binary digital images of dimension 3 and 4,
respectively.

3 EXTRACTING CELL COMPLEXES FROM 3–
DIMENSIONAL DIGITAL IMAGES

In this section, (1) we recall Kenmochi et al. method
(see [6], [7], [8]) for constructing cell complexes from
3–dimensional binary digital images on a dual grid;
(2) we construct the look-up tables with the pattern
subsets and pattern cells (respectively) in dimension
3, obtaining an alternative to Kenmochi et al. method;
and finally, (3) we compare both methods.
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3.1 Kenmochi et al. method

Kenmochi et al. define 3–dimensional digital images
as subsets of a dual grid (see, for instance, [6], [7],
[8]). The voxels of these images are the vertices of the
cubes of the dual grid. They work with binary images,
so that the voxels are white or black. Kenmochi et
al. construct a cell complex from the black voxels of
the image, in such a way that the boundary of the
complex represents the object. The cell complex consists
of a collection of cells together with the information
on how they are attached to each other. The black
voxels are the 0–cells of the complex. Every cell is
defined by the black vertices of a cube of the grid.
More concretely, every cell is an open set including
the points inside the convex hull of the vertices which
define it. Moreover, the boundary of the cell is given
by the vertices, edges and faces of the convex hull. The
cells are attached to each other along their boundaries.

There exist 28 = 256 configurations of white and
black voxels on a cube. Kenmochi et al. consider
that two configurations on a cube which have the
same number of black voxels are identical if there
exists a rotation which sends the first configuration
to the second one. In this way, they reduce the 256
configurations of white and black voxels on a cube to
23 configurations. In Table 1, extracted of [6], these 23
configurations of white and black voxels on a cube
are shown.

TABLE 1

Configurations of white and black voxels on a cube

obtained by Kenmochi et al.

In their works, Kenmochi et al. state that any 3–
dimensional binary digital image is made up by com-
bining (up to rotations) the 23 configurations of white
and black voxels shown in Table 1, taking into account
that it is not necessary to use all them and any of
them can be used more than once. In this way, given
a 3–dimensional binary digital image on a dual grid,
every configuration of white and black voxels on a
cube of the grid coincides (up to rotations) with one
of the 23 configurations shown in Table 1.

Next, for each configuration in Table 1, Kenmochi
et al. construct a cell defined by the black voxels of
the configuration. We recall that each of these cells
is an open set including the points inside the convex
hull of the vertices which define it and the boundary

of the cell is given by the vertices, edges and faces of
the convex hull. In this way, Kenmochi et al. obtain
the 23 cells shown in Table 2 from the black voxels
of the configurations shown in Table 1. These cells
are used later for constructing the cell complex whose
boundary represents the object encoded by the image.

TABLE 2

The 23 cells obtained by Kenmochi et al. (extracted of

[6]) from the black voxels of the configurations shown

in Table 1.

In their works, Kenmochi et al. state that the cell
complex corresponding to a 3–dimensional binary
digital image is made up by combining (up to rota-
tions) the 23 cells shown in Table 2. In this way, every
cell of the complex coincides (up to rotations) with
one of the 23 cells shown in Table 2.

3.2 Look-up tables of the method described in

Section 2 for dimension 3

The method described in Section 2 generalizes Ken-
mochi et al. method to any dimension, although the
cells of the complex are defined up to isometries and
not up to rotations. In this section, we construct the
look-up tables containing the pattern subsets and the
pattern cells in dimension 3.

3.2.1 Pattern subsets

We compute the non-isometric subsets which can be
made up from the vertices of a cube. There exist 256
subsets which can be constructed from the vertices of
a cube. We determine the isometric subsets and we
store a representative of each isometry class. They are
the pattern subsets.

A naive procedure for computing the isometric sub-
sets which can be made up from the vertices of a cube
consists in (1) determining the group of isometries
of a cube and (2) applying it to each subset. The
group of isometries of the unit cube can be computed
with Automorphisms[Hypercube[3]] in the Mathe-
matica package Combinatorica’. This command gives
a list with the 48 permutations of vertices which leave
the unit cube invariant. Moreover, by permuting the
vertices of each subset of the unit cube according to
this list, we obtain the subsets isometric to it.

In this way, in order to compute the pattern subsets:
(a) we consider an ordered list with the 256 subsets
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which can be constructed from the vertices of a cube
and (b) for each subset of the list, we compute and
remove the subsets of the list isometric to it. In the
last stage, we obtain a list with the pattern subsets.

Theorem 1 and Table 3 summarize the results.

Theorem 1: In Z
3, there exist: (a) one pattern subset

with zero points, (b) one pattern subset with one
point, (c) three pattern subsets with two points, (d)
three pattern subsets with three points, (e) six pattern
subsets with four points, (f) three pattern subsets with
five points, (g) three pattern subsets with six points,
(h) one pattern subset with seven points, and (i) one
pattern subset with eight points.

TABLE 3

Pattern subsets in Z
3 obtained by using the

lexicographic order.

Remark 1: If we change the order relation, we obtain
pattern subsets isometric to those shown in Table 3.

As main result, we can establish Theorem 2.

Theorem 2: Any 3–dimensional binary digital image
on a dual grid is made up by combining (up to
isometries) the 22 pattern subsets shown in Table 3,
taking into account that it is not necessary to use all
them and any of them can be used more than once.

Below, we associate each of the 22 pattern subsets
with a pattern cell. Every pattern cell consists in the
convex hull of the points of the corresponding pattern
subset. More precisely, every pattern subset is asso-
ciated with (1) an open cell made up by the points
inside the convex hull and (2) a boundary made up
by the boundary cells of the convex hull.

3.2.2 Pattern cells

We define a computational method for determining
the convex hull of each of the pattern subsets. The
technique consists in deforming the cube which con-
tains the subset. Moreover, we deform the faces of
the cube which contain vertices non-belonging to
the pattern subset, from now on white vertices (see
Figure 2 (a)). These deformations are a consequence of
degenerating edges incident to white vertices. These
edge degeneracies can lead to the fact that a face (resp.
volume) degenerates into an edge (resp. face) incident
to it (see Figure 2 (b) and (c)).

Fig. 2. (a) Degeneracy of the edge v4v8 into the vertex

v4. This edge degeneracy leads to the fact that the

square faces v2v4v6v8 and v3v4v7v8 are deformed into

the triangular faces v2v4v6 and v3v4v7, respectively.

Moreover, the square face v5v6v7v8 is geometrically

deformed into a non-planar face; it leads to the fact

that this face has to be subdivided into two triangular

faces v4v6v7 and v5v6v7. (b) Degeneracies of the edges

v3v7 and v4v8 into the vertices v3 and v4, respectively.

These edge degeneracies lead to the fact that the

square face v3v4v7v8 degenerates into the edge v3v4.

(c) Degeneracies of the edges v1v5, v2v6, v3v7 and

v4v8 into the vertices v1, v2, v3 and v4, respectively.

These edge degeneracies lead to the fact that the cube

degenerates into the square face v1v2v3v4.

3.2.2.1 Finding the edges to degenerate
We show that by degenerating edges incident to

a white vertex which do not belong to the cube,
we do not always obtain the convex hull of the
pattern subset. Moreover, we justify that if during the
deformation of the cube we only degenerate edges
belonging to the cube, then we always obtain the
convex hull of the subset.

Degenerating edges non-belonging to the cube

We suppose that we want to compute the convex
hull of the subset {v1, v2, v3, v4, v8} of vertices of the
cube (see Figure 3 (a)) and we suppose that at the
penultimate step of the deformation we have obtained
the polyhedron shown in Figure 3 (b). The last step
of the procedure consists in degenerating one of the
edges incident to v5.

If we degenerate the edge v2v5 (see Figure 4 (a)), we
do not obtain the convex hull of the subset of black
points. Actually, the black points define a volume
contained in the cube. However, in Figure 4 (b) we
have obtained an object made up by the square face
v1v2v3v4 (containing the triangular face v1v2v3) and
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Fig. 3. (a) Subset {v1, v2, v3, v4, v8} of vertices of the

cube. (b) Result obtained at the penultimate step of the

deformation.

three non-coplanar triangular faces v2v3v8, v2v4v8 and
v3v4v8 attached each other by an edge, containing the
volume incident to these three faces and a half of
the square. It is because to degenerate the edge v2v5,
the edge v3v5 goes through the polyhedron shown
in Figure 3 (b), sending it to the volume v2v3v4v8
together with a face v1v2v3 out of the volume.

Fig. 4. (a) By degenerating the edge v2v5, we do not

obtain the convex hull of the points in Figure 3 (a). (b)

We obtain an object made up by a square face v1v2v3v4
and three non-coplanar triangular faces v2v3v8, v2v4v8
and v3v4v8, containing the volume incident to these

three faces and a half of the square.

Let us note that we obtain a similar result by
degenerating the edge v3v5. On the other hand, if
we degenerate the edge v1v5 or v5v8, we obtain the
convex hull of the black points (see Figure 5).

Fig. 5. By degenerating the edge v1v5, we obtain the

convex hull of the points in Figure 3 (a).

Degenerating edges belonging to the cube

We show that by degenerating an edge belonging
to the cube, at each step, we obtain the convex hull.
Moreover, taking into account that a cube can be
decomposed into two prisms with triangular bases
(see Figure 6), by symmetries, it suffices to prove that
by degenerating an edge of these prisms, at each step,
we obtain the convex hull.

At the first step of the deformation of a cube C, we
consider the prism D containing the white vertex B. If
we degenerate an edge e ∈ C

⋂
D incident to B, we

Fig. 6. A cube decomposed into two prisms with

triangular bases.

obtain a pyramid (first two pairs of pictures in Fig-
ure 7) or a “pyramid” with a non-planar foursquare
face (last four pairs of pictures in Figure 7). Latter
appears by deforming the square face of D which
contains B and it is not incident to e. We can interpret
this deformation as a fold face, so it is necessary to
introduce an edge for representing the fold. The non-
planar face is replaced by two triangular faces.

Fig. 7. By degenerating any edge of C
⋂
D, the prism

is deformed into a pyramid.

We suppose, without loss of generality, that at the
following step of the deformation, B′ is a white vertex
of one of the pyramids P obtained in Figure 7 by
deforming D. Let us note that B′ can be the apex or a
base vertex of the pyramid P . Below, we show that, in
both cases, if we degenerate an edge e′ ∈ C

⋂
P , then

we obtain the convex hull of the vertices of P −{B′}.

• If B′ is the apex of P , we degenerate an edge
e′ ∈ C

⋂
P incident to the apex. Consequently, P

degenerates into its square base and we obtain a
square face divided into two coplanar triangular
faces sharing an edge. In order to obtain the
square face, we remove the edge shared by the
two triangular faces (see Figure 8).

Fig. 8. By degenerating any edge of C
⋂
P incident to

the apex, the pyramid is degenerated into a square.

• If B′ is a vertex of the base of P , we degenerate
any edge e′ ∈ C

⋂
P incident to B′. Consequently,

P is deformed into a tetrahedron (see first four
pairs of pictures in Figure 9) or into a “tetrahe-
dron” with a non-planar foursquare face (see last
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pair of pictures in Figure 9). In this last case, an
edge has to be added in order to keep planar
faces.

Fig. 9. By degenerating any edge of C incident to two

vertices of the base of P , we obtain a tetrahedron. By

degenerating any edge of C which joins a vertex of

the base of P with the apex, we obtain a tetrahedron

(except for an edge).

Finally, the degeneracy of a tetrahedron into a
triangle, a triangle into an edge, and an edge into
a point, respectively, is obtained by degenerating an
edge belonging to the cube incident to a white vertex
(Figure 10).

Fig. 10. (a) Degeneracy of a tetrahedron into a triangle,

(b) a triangle into an edge, and (c) an edge into a point.

Remark 2: If, at each step, we degenerate an edge
belonging to the cube incident to a white vertex,
the previous results prove that we always obtain the
convex hull.

Remark 3: It is also possible to obtain the convex
hull by degenerating edges which do not belong to
the cube; it happened in Figure 4 with the edge v5v8.
In this sense:

• Figure 7 allows us to note that by degenerating
any edge (belonging or not to the cube) of a
prism, we obtain a pyramid.

• Figure 8 shows that if the apex is the white vertex,
then the pyramid is degenerated into its basis by
degenerating any edge (belonging or not to the
cube) of the pyramid incident to the apex.

• If the white vertex is a vertex of the base of
the pyramid, then by degenerating any edge
(belonging or not to the cube) incident to it and
to another base vertex, we obtain a tetrahedron.
It is the case of the edge v5v8 in Figure 4, which
the vertices v1, v2, v4, v5, v8 define a pyramid in.
Moreover, the only operation which does not
allow us to obtain a tetrahedron consists in de-
generating an edge of the pyramid which does
not belong to the cube and it joins the apex
with a white vertex of the base. It is the case
of the edge v2v5 (resp. v3v5) in Figure 4, which
the vertices v1, v2, v4, v5, v8 (resp. v1, v3, v4, v5, v8)

define a pyramid in. On the other hand, if v1
were the white vertex in Figure 3 (b), then by
degenerating the edge v1v2 (resp. v1v3) we would
obtain the convex hull (see Figure 11).

Fig. 11. By degenerating the edge v1v2, we obtain the

convex hull of v2, v3, v4, v5, v8.

In the following paragraph, we detail a procedure
to assure that at each step of the deformation of the
cube, there exists an edge of the cube incident to the
white vertex to treat. This edge is degenerated in order
to obtain the convex hull.

3.2.2.2 An order relation on the edge degeneracies
We show that the edges of the cube have to degen-

erate following a certain order; otherwise, in the pro-
cedure of deformation of the cube there can be white
vertices non-incident to edges of it (see Figure 12), in
which case it may not be obtained the convex hull
of the points of the pattern subset. Moreover, we de-
scribe a procedure for obtaining an order relation for
degenerating the edges of the cube. This order relation
guarantees that, at each step of the deformation of
the cube, the white vertex to treat is incident to an
edge of the cube, avoiding situations as that shown
in Figure 12.

Fig. 12. The first picture shows an order for degen-

erating the edges incident to the white vertices of the

cube. The degenerated edges in the second, third, and

fourth picture, respectively, lead to the deformation of

the three edges of the cube incident to the vertex B4.

There are not any edge of the cube incident to the

vertex B4 for degenerating.

Let (Vc)i ⊂ Z
3 be a pattern subset with 0 ≤ c ≤ 8

points, contained in a cube C(Vc)i . The procedure for
obtaining an order relation on the edge degeneracies
consists of two steps.

The first of them is to consider the white vertices of
C(Vc)i and the edges which join them as a subgraph
S of C(Vc)i . More concretely, we consider C(Vc)i as a
graph with eight vertices and twelve edges. We delete
the points of (Vc)i from C(Vc)i and, consequently, the
edges incident to these points. In this way, we obtain
a subgraph S of C(Vc)i with 8 − c vertices and the
remaining edges of C(Vc)i (an example in Figure 13).
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In the second one, for each connected component
of S, we construct a rooted spanning tree whose root
is a white vertex adjacent to a black vertex (a vertex
which belongs to (Vc)i) of C(Vc)i . These trees allow us
to establish a hierarchy on the set of white vertices
of C(Vc)i (the last vertex is the root). This hierarchy
determines an order for degenerating the edges of
these trees, i.e. the edges of C(Vc)i which join white
vertices, since the number of edges of a tree with v
vertices is v−1. Hence, except for the root, each vertex
of a rooted tree is associated with the edge whose end-
points are itself and its father. After degenerating all
the edges of a tree, we degenerate the edge whose
end-points are the root and a black vertex adjacent
to it. The idea to avoid situations as that shown in
Figure 12 is to choose as root of each tree a white
vertex adjacent to a black vertex. In this way, each
root is always incident to an edge of C(Vc)i which has
not been deformed.

Fig. 13. On the left: the subgraph obtained by deleting

the black vertices of the cube shown in Figure 12. On

the right: its rooted spanning tree.

Remark 4: In the procedure described previously,
we have imposed that the root of each tree is adja-
cent to a black vertex of the cube. This condition is
essential for obtaining the order relation since after
degenerating the edges of the tree, it allows us that
the root is still incident to an edge of the cube. This
edge is the last one in degenerating. Let us observe
that this condition is not satisfied in Figure 12, since
the last edge to degenerate is incident to the white
vertex B4 which is not adjacent to any black vertex of
the cube.

On the other hand, the procedure assures that the
degenerated edges are always edges of the cube. It
is because they are edges of a spanning tree of a
subgraph of the cube. In this way, we avoid situations
as that shown in Figure 12.

3.2.2.3 Convex hull of a pattern subset
We describe a procedure for constructing convex

hulls of pattern subsets in Z
3. These convex hulls

allow us to determine (up to isometries) the cells
(together with their boundary) which can be obtained
by deforming a cube. The procedure is based on
degenerating edges of the cube incident to white
vertices.

As commented at the beginning of Section 3.2.2, the
degeneracy of an edge of the cube incident to a white
vertex can lead to the degeneracy of faces and/or

volumes contained in the cube. Below, we relate the
existence of degenerated faces and/or volumes to the
star of the degenerated edge and to that of the white
vertex to treat. We recall that the star of a cell c is the
set of cells whose boundary contains c.

Let (Vc)i be a pattern subset contained in the cube
C(Vc)i and S the subgraph of C(Vc)i constructed by
deleting the points of (Vc)i. For each white vertex B
of C(Vc)i , we consider the rooted spanning tree t of the
connected component of S containing B and the edge
e = AB of t whose end-points are B and its father.

The convex hull is obtained by deforming the cube.
If B is a white vertex belonging to a planar face T , the
end-point A of the edge e cannot be coplanar with the
vertices of T . If not, the vertices of T and the point A
define a planar face containing T .

Let S(B) be the star of the white vertex to treat and
S(e) the star of the edge e. Next, we degenerate e.

1) Let f be a square face contained in S(B).

a) If f /∈ S(e), then f is deformed into a face of
four non-coplanar vertices. In this case, in
order to avoid convexity problems related
to this non-planar face, we attach the edge
whose vertices are the other end-points of
the edges of f incident to B. This edge
allows us to cut up the non-planar face into
two triangular faces sharing the attached
edge. See Figure 14.

Fig. 14. The square face f is deformed into a non-

planar face with four vertices, as a consequence of

degenerating an edge which is not incident to f . To

avoid convexity problems, the red edge is attached.

This edge cuts up the non-planar face into two trian-

gular faces, f ′

1 and f ′

2.

b) If f ∈ S(e), then f is deformed into a
triangular face f ′. The vertices of f ′ are
those of f except B (see Figure 15).

Fig. 15. The square face f is deformed into the

triangular face f ′, as a consequence of degenerating

an edge which is incident to f .
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2) Let T be a triangular face contained in S(B).

a) If T /∈ S(e), then T is deformed into another
triangular face T ′. The vertices of T ′ are
those of T except B, which is replaced with
A. Figure 16 is an example.

Fig. 16. The triangular face T is deformed into another

triangular face T ′, as a consequence of degenerating

an edge which is not incident to T .

b) If T ∈ S(e), then T degenerates into an
edge e′ 6= e incident to T . The end-points
of e′ are the vertices of T except B. The
degenerated edge leads to a degenerated
triangular face. This degenerated triangular
face must be removed starting from the
third edge a 6= e, e′ incident to T (see
Figure 17).

Fig. 17. The triangular face T degenerates into an

edge e′ which is incident to T . This degenerated face

appears as a consequence of degenerating an edge of

the cube which is incident to T . The degenerated face

is removed starting from the edge a.

3) Let V be a volume contained in C(Vc)i and let F
be the set of faces of V .
If there exists only one face f ∈ F − S(B), then
V degenerates into f . The degenerated edge
leads to a degenerated volume. This degener-
ated volume must be removed starting from a
face incident to it (see Figures 18 and 19).

Remark 5: Algorithm 3.1 has been implemented in-
cluding the previous cases. Since for each pattern
subset this algorithm returns its convex hull, we get
a constructive proof of having considered all the
possible cell deformations and degeneracies.

As a consequence of these operations, two coplanar
triangular faces sharing an edge may have appeared
(see Figure 18). In this case, we must remove the
shared edge. The two coplanar triangular faces be-
come only one square face. Hence, the vertices of this
square face are those of the two triangular faces.

Summarizing, the developed technique for con-
structing the convex hull of a pattern subset consists

Fig. 18. The only face of the pyramid which does not

belong to S(B) is its square base, so the pyramid de-

generates into it. This degenerated pyramid is removed

starting from its square base.

Fig. 19. There exists only one face of the tetrahe-

dron which does not belong to S(B), so the tetrahe-

dron degenerates into it. This degenerated tetrahedron

is removed starting from the only face contained in

S(B)− S(e).

in: (1) attaching edges to convert non-planar faces
with four vertices into two triangular faces sharing
an edge; (2) studying the degenerated i–cells, for
i = 1, 2, 3; and (3) removing edges for converting two
coplanar triangular faces into only one square face.

In Algorithm 3.1, we define the procedure for: (1)
deforming the unit cube into the convex hull of any
pattern subset (Vc)i ⊂ Z

3; (2) constructing the cell
defined by this pattern subset; and (3) computing its
boundary.

Algorithm 3.1

Input: the unit cube CV .
a pattern subset (Vc)i ⊂ CV with c points.

Output: convex hull of (Vc)i.
begin
// V e: vertices of CV .
// Ed: edges of CV .
// Fa: faces of CV .
// V o: volume of CV .
// S: subgraph of CV constructed by deleting the points of (Vc)i.
// WV : set of white vertices of CV ordered according to Section
3.2.2.2.

1: Ed′ = Ed
2: Construct the set T of all the rooted spanning trees of all the

connected components of S
3: for each t ∈ T do
4: for each B ∈ t do
5: • Degenerate the edge incident to B and to its father in t

{This edge degeneracy replaces B with A, where A is the
father of B in t.}

6: • Obtain the lists V e′, Ed′, Fa′, V o′ of vertices, edges,
faces and volumes, respectively, by replacing B with A

7: for each f ′ ∈ Fa′ do
8: if f ′ is a face of 4 non-coplanar vertices then
9: • Ed′ = Ed′

⋃
{XX′}, where X,X′ ∈ V e′ satisfy

that XA,X′A ∈ ∂(f ′)
{We attach an edge for cutting up the non-planar
face into two triangular faces.}

10: • Fa′ = Fa′
⋃
{XX′A}
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11: • Fa′ = Fa′
⋃
{XX′P}, where P 6= A is such that

P ∈ V e′ and it satisfies XP,X′P ∈ ∂(f ′)
{We attach the two triangular faces.}

12: • Fa′ = Fa′ − {f ′}
{We remove the non-planar face.}

13: end if
14: if f ′ is a face degenerated into an edge e′ ∈ Ed′ then
15: Fa′ = Fa′ − {f ′}

{We remove f starting from a, where f is the trian-
gular face which became f ′ when B was replaced
with A and a 6= e, e′ is the third edge of f .}

16: end if
17: if v′ ∈ V o′ is a volume degenerated into f ′ then
18: • V o′ = V o′ − {v′}

{We remove v starting from g, where v is the volume
which became v′ when B was replaced with A and
g is a face incident to v.}

19: end if
20: if f ′ 6= f ′′ ∈ Fa′ are two coplanar triangular faces

sharing an edge e′′ ∈ Ed′ then
21: if {f ′+f ′′} /∈ Fa′, where f ′+f ′′ denotes the closure

of the all the points inside the convex hull of the
vertices of f ′ and f ′′ then

22: • Fa′ = Fa′
⋃
{f ′ + f ′′}

{We attach the square face made up by the two
coplanar triangular faces.}

23: end if
24: • Fa′ = Fa′ − {f ′}
25: • Fa′ = Fa′ − {f ′′}
26: • Ed′ = Ed′ − {e′′}

{We remove the two coplanar triangular faces and
the edge shared by both faces.}

27: end if
28: end for
29: end for
30: end for
31: return V e′, Ed′, Fa′

end

Remark 6: Given a pattern subset (Vc)i, Algo-
rithm 3.1 deforms and degenerates the cells contained
in the unit cube CV for computing the convex hull
of the points of (Vc)i. In this way, the cell C((Vc)i)
defined by (Vc)i is determined by the points inside
this convex hull. Moreover, the boundary of C((Vc)i)
is computed in terms of the vertices, edges and faces
of the convex hull. More concretely, ∂(C((Vc)i)) is
given by V e′, Ed′, Fa′.

By using as input the 22 pattern subsets shown in
Table 3, Algorithm 3.1 returns the 22 pattern cells
shown in Table 4. Let us note that 12 of them are
3–cells (see also Figure 1 in [1]).

Remark 7: The pattern cells shown in Table 4 are
stored in a look-up table. As commented in Section 2,
this table is used to construct a cell complex from a
3–dimensional binary digital image. Moreover, Theo-
rem 3 can be proved.

Theorem 3: The cell complex constructed from a
given 3–dimensional binary digital image on a dual
grid is made up by combining (up to isometries) the
22 pattern cells shown in Table 4, taking into account
that it is not necessary to use all them and any of them
can be used more than once.

3.3 Comparison with Kenmochi et al. method

In a similar way as Kenmochi et al. in [6], [7], [8],
the above-described method constructs cell complexes

TABLE 4

Pattern cells defined by the pattern subsets shown in

Table 3.

from 3–dimensional binary digital images on a dual
grid, although there exist some differences.

A minor difference between the results obtained
by Kenmochi et al. and our results is the number
of different subsets on a cube. They consider that
two subsets are the same if one is a rotation of the
other one; whereas we consider that two subsets are
the same if one is an isometry of the other one. In
this way, Kenmochi et al. obtain 23 different subsets
(see Table 1 at page 6); whereas we obtain 22 (see
Table 3 at page 18). Moreover, each subset in Table 1
corresponds (up to rotations) to a pattern subset in
Table 3, except those with four points. In this case,
Kenmochi et al. obtain 7 subsets; whereas we obtain
6. More concretely, P4c and P4d in Table 1 coincide
(up to isometries) with the pattern subset C((V4)3)
in Table 3. Kenmochi et al. consider that P4c and
P4d are different subsets because there does not exist
a rotation which sends P4c into P4d; whereas we
consider that they are identical because there exists
a reflection from P4c into P4d.

The main difference with Kenmochi et al. method
is that we propose a procedure which allows us to
construct the pattern subsets and the pattern cells.
Moreover, this procedure can be implemented and
generalized to dimension 4, as we show in the fol-
lowing section.

4 EXTRACTING CELL COMPLEXES FROM 4–
DIMENSIONAL DIGITAL IMAGES

In this section, we extend the procedure developed
in Section 3.2 for constructing the pattern subsets
and pattern cells in dimension 4. In this way, as
commented in Section 2, we obtain a method for
constructing cell complexes from 4–dimensional dual
binary digital images.
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4.1 Pattern subsets

We compute (up to isometries) the different subsets
of vertices of a 4–cube. There exist 65536 subsets of
points which can be constructed from the vertices of
a 4–cube. We extend to dimension four the procedure
described in Section 3.2.1 for computing the isometric
subsets.

In order to compute the isometric subsets which
can be made up from the vertices of a 4–cube, (1) we
determine the group of isometries of a 4–cube and (2)
we apply it to each subset. More concretely, Automor-
phisms[Hypercube[4]] in the Mathematica package
Combinatorica’ returns a list with the 384 permuta-
tions of vertices which leave the unit 4–cube invariant.
Moreover, by permuting the vertices of each subset of
the unit 4–cube according to this list, we obtain the
subsets isometric to it.

In this way, (a) we consider an ordered list with
the 65536 subsets which can be constructed from the
vertices of a 4–cube and (b) for each subset of the
list, we compute and remove the subsets of the list
isometric to it. In the last stage, we obtain a list with
the pattern subsets.

In Appendix, we show a table with the obtained
pattern subsets.

As main result, we can establish Theorem 4 (exten-
sion to dimension 4 of Theorem 2).

Theorem 4: Any 4–dimensional binary digital image
on a dual grid is made up by combining (up to isome-
tries) the 402 pattern subsets shown in Appendix,
taking into account that it is not necessary to use all
them and any of them can be used more than once.

4.2 Pattern cells

We generalize the computational method shown in
Section 3.2.2 in order to determine the convex hull of
the pattern subsets in Z

4. In a similar way, the tech-
nique consists in deforming the 4–cube which con-
tains to the subset. The deformation is a consequence
of degenerating the edges of the 4–cube incident to
white vertices. In this case, the degeneracies of the
edges of the 4–cube can lead to the deformations
and/or degeneracies of faces, volumes and hypervol-
umes contained in the 4–cube (see Figure 20).

Remark 8: Let us recall that in dimension 3, the
convex hull may not be obtained by degenerating
edges not belonging to the cube. In dimension 4, this
problem is inherited. In Figure 21, we show a 4–
dimensional example obtained by extending a similar
case to that shown in Figure 4 in Section 3.2.2.1.

Remark 9: Analogously to dimension 3, the edges of
the 4–cube have to degenerate following a certain or-
der; otherwise, at one of the steps of the deformation
of the 4–cube, the white vertex to treat may not be
incident to any edge of the 4–cube. Figure 22 shows a
generalization of the example presented in Figure 12
in Section 3.2.2.2.

Fig. 20. The degeneracies of the edges

v1v2, v3v4, v5v6, v7v8, v9v10, v11v12, v13v14, v15v16 into

the vertices v2, v4, v6, v8, v10, v12, v14, v16, respectively,

lead to the fact that the 4–cube is degenerated into the

cube v1v3v5v7v9v11v13v15.

Fig. 21. (a) The hypervolume v1v2v3v5v8v, which

is bordered by the volumes v1v2v3v5, v1v2v3v,

v1v2v5v, v1v3v5v, v2v3v5v8, v2v3v5v, v2v3v8v,

v2v5v8v, v3v5v8v, is deformed by degenerating

the edge v2v5. More concretely, the tetrahedra

v1v2v3v, v2v3v8v are invariant, the tetrahedra

v1v3v5v, v3v5v8v are deformed into the tetrahedra

v1v2v3v, v2v3v8v, respectively, and the tetrahedra

v1v2v3v5, v1v2v5v, v2v3v5v8, v2v3v5v, v2v5v8v
are degenerated into the triangles

v1v2v3, v1v2v, v2v3v8, v2v3v, v2v8v, respectively. (b)

The vertices v1, v2, v3, v8, v define a hypertetrahedron,

but the convex hull of these vertices cannot be

obtained from (a). Moreover, we obtain similar results

by degenerating the edge v5v or v3v5, but if we

degenerate the edge v1v5 or v5v8, we obtain the

convex hull.

A procedure similar to that shown in Section 3.2.2.2
allows us to determine an order relation on the edge
degeneracies, in such a way that at each step of the
deformation of the 4–cube, there exists an edge of it
incident to the white vertex to treat. More concretely,
the procedure consists in: (1) considering the white
vertices of the 4–cube and the edges which join them
as a subgraph S of the 4–cube; and (2) constructing
a rooted spanning tree of each connected component
of S, whose root is a white vertex adjacent to a black
vertex of the 4–cube. These trees establish a hierarchy
on the set of white vertices and, consequently, they de-
termine an order for degenerating the edges incident
to white vertices, where the last edge in degenerating
is that made up by the root and by a black vertex
adjacent to it. Let us note that in dimension 4, a vertex
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Fig. 22. If we degenerate (1) the edge incident to

B0 marked with an arrow, (2) the edge incident to

B1 marked with an arrow, (3) the edge incident to B2

marked with an arrow, and (4) the edge incident to B3

marked with an arrow, then there is not any edge of the

4–cube incident to B4 for degenerating.

of the rooted spanning tree can be adjacent to at most
four vertices of the tree, i.e. a father can have at most
three children. See Figure 23 for an example.

Fig. 23. From left to right: (a) one of the pattern subsets

with eleven points; (b) the subgraph of the 4–cube

obtained by deleting the black vertices (and, obviously,

the edges incident to these vertices); (c) the rooted

spanning tree of the only connected component of the

subgraph. The root of the tree is denoted by r and the

arrows indicate how to degenerate the edges.

4.2.1 Convex hull of a pattern subset

We extend the procedure shown in Section 3.2.2.3 in
order to construct the convex hull of any pattern sub-
set in Z

4. In this way, we determine (up to isometries)
the cells (together with their boundary) which can
be obtained by deforming a 4–cube. Analogously, we
degenerate the edges of the 4–cube incident to white
vertices.

As commented at the beginning of Section 4.2, the
degeneracies of edges of the 4–cube incident to white
vertices can lead to the degeneracies of faces, volumes,
and/or hypervolumes contained in the 4–cube. Below,
we relate the existence of degenerated faces, volumes,
and/or hypervolumes to the star of the degenerated
edge and to that of the white vertex to treat.

Let (Vc)i be a pattern subset contained in the 4–
cube HC(Vc)i and let S be the subgraph of HC(Vc)i

constructed by deleting the points of (Vc)i. For each
white vertex B of HC(Vc)i , we consider the rooted
spanning tree t of the connected component of S

containing B and the edge e = AB of t whose end-
points are B and its father.

The convex hull is obtained by deforming the 4–
cube. If B is a white vertex of a spatial volume v, the
end-point A of the edge e cannot be cospatial with the
vertices of v. If not, the vertices of v and the point A
define a spatial volume containing v.

Let S(B) be the star of the white vertex to treat and
S(e) the star of the edge e. Next, we degenerate e.

1) Let v be a tetrahedron contained in S(B).

a) If v /∈ S(e), then v is deformed into another
tetrahedron v′. The vertices of v′ are those
of v except B which is replaced with A. In
this case, we repeat the step 2(a) in Section
3.2.2.3 for each face T of v contained in
S(B). Figure 24 is an example.

Fig. 24. The tetrahedron v is deformed into another

tetrahedron v′, as a consequence of degenerating an

edge e satisfying that v /∈ S(e).

b) If v ∈ S(e), then, as commented in the
three-dimensional case, v is degenerated
into its only one face non-belonging to
S(B). In this case, we repeat the step 2 in
Section 3.2.2.3 for each face T of v con-
tained in S(B) and the step 3 for v. The
degenerated edge leads to a degenerated
volume. This degenerated volume must be
removed starting from a face incident to it
(see Figure 19 in Section 3.2.2.3).

2) Let v be a pyramid contained in S(B).

a) If v /∈ S(e), then v is deformed into another
(spatial or not) volume with five vertices.
Below, we detail both cases:

i) If B is the apex of v, then v is deformed
into another pyramid v′ whose base is
that of v and whose apex is A. In this
case, we repeat the steps 1(a) and 2(a)
in Section 3.2.2.3 for each face of v con-
tained in S(B). See Figure 25.

ii) If B is a vertex of the base of v, then v is
deformed into a volume v′ of five non-
cospatial vertices. In this case, we repeat
the steps 1(a) and 2(a) in Section 3.2.2.3
for each face of v contained in S(B).
Moreover, in order to avoid convexity
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Fig. 25. A pyramid v is deformed into another pyramid

v′, as consequence of degenerating an edge incident

to the apex of v.

problems related to the non-spatial vol-
ume v′, we attach the triangular face
whose vertices are the other end-points
of the edges of v incident to B. This
face allows us to cut up the non-spatial
volume into two tetrahedra sharing a
face. The shared face is the attached face.
See Figure 26.

Fig. 26. A pyramid v is deformed into a non-spatial

volume v′ with five vertices, as a consequence of de-

generating an edge e satisfying that v /∈ S(e). To avoid

convexity problems, the shaded face is attached. This

face cuts up the non-spatial volume into two tetrahedra

v1 and v2.

b) If v ∈ S(e), then, as commented in the
three-dimensional case, v is degenerated
into its only one face non-belonging to
S(B). In this case, we repeat the steps 1
and 2 in Section 3.2.2.3 for each face of v
contained in S(B), the step 3 for v, and
we treat the appearance of coplanar tri-
angular faces. The degenerated edge leads
to a degenerated volume. This degenerated
volume must be removed starting from a
face incident to it (see Figure 18 in Section
3.2.2.3).

3) Let v be a volume (different from a pyramid)
with p ≥ 5 vertices contained in S(B).

a) If v /∈ S(e), then v is deformed into a
volume v′ of p ≥ 5 non-cospatial vertices.
In this case, we repeat the steps 1(a) and
2(a) in Section 3.2.2.3 for each face of v
contained in S(B). Moreover, in order to
avoid convexity problems related to the
non-spatial volume v′, we attach the face

f whose vertices are the other end-points
of the edges of v incident to B. This face
allows us to cut up the non-spatial volume
v′ into two volumes v1 and v2 (see Fig-
ure 27). More concretely, v1 is the volume
consisted of p − 1 cospatial vertices which
coincide with those of v except B; and v2
is the volume whose vertices are A and the
vertices of the attached face. Moreover, the
relation between the vertices of f and those
of v2 is shown in Property 1.

Fig. 27. The volume v′ of non-cospatial vertices is cut

up into two volumes with a common face.

Property 1: f is a face of four non-coplanar
vertices if and only if v2 is a volume of
five non-cospatial vertices. Moreover, by
replacing A with B in the set of vertices of
v2, we obtain (up to isometry) the pattern
cell C((V5)2) (see Table 8 in Section 3.2.2.3).
If f is a face of four non-coplanar vertices,
then, in order to avoid convexity problems
related to this non-planar face, we attach
the edge whose end-points are the only two
vertices of f which do not belong to any
face of v. This edge allows us to cut up the
non-planar face into two triangular faces
sharing an edge. The shared edge is the
attached edge.
Moreover, Property 1 assures that v2 is a
volume of five non-cospatial vertices. In
order to avoid convexity problems related
to this non-spatial volume, we attach the
face whose vertices are A and the vertices
of the attached edge. This face allows us to
cut up the non-spatial volume v2 into two
tetrahedra sharing a face. The shared face
is the attached face. Furthermore, each of
these tetrahedra is attached to v1 by one of
the triangular faces forming f . All this has
allowed us to cut up the non-spatial volume
v′ into three volumes sharing a face two by
two. See Figure 28.

b) If v ∈ S(e), then v is deformed into a
volume v′ of p − 1 ≥ 4 cospatial vertices.
The vertices of v′ are those of v except B.
In this case, we repeat the steps 1 and 2
in Section 3.2.2.3 for each face of v and we
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Fig. 28. The volume v′ = AXX ′Y Y ′Q of non-cospatial

vertices is cut up into the volumes v1 = XX ′Y Y ′Q of

cospatial vertices and v2 = AXX ′Y Y ′ of non-cospatial

vertices sharing the non-planar face f = XX ′Y Y ′.

Moreover, f is cut up into two triangular faces sharing

the edge XX ′, and v2 is cut up into two tetrahedra

AXX ′Y and AXX ′Y ′ sharing the face AXX ′.

treat the appearance of coplanar triangular
faces. See Figure 29 for an example.

Fig. 29. A volume v with 7 vertices is deformed into a

volume v′ with 6 vertices.

4) Let HV be a hypervolume contained in HC(Vc)i ,
and let V be the set of volumes of HV .
If there exists only one volume O ∈ V − S(B),
then HV degenerates into O. This degenerated
hypervolume must be removed starting from
a volume incident to it (see Figure 30). The
degenerated edge leads to a degenerated hyper-
volume.

Fig. 30. There exists only one tetrahedron O of the

hypertetrahedron HV which does not belong to S(B),
so HV degenerates into O. This degenerated hyperte-

trahedron is removed starting from the only volume O1

in S(B)− S(e).

Remark 10: In an analogous way to the three–
dimensional case, an algorithm (Algorithm A.5, in Ap-
pendix) including the previous cases has been imple-
mented. Since for each pattern subset this algorithm
returns its convex hull, we get a constructive proof of
having considered all the possible cell deformations
and degeneracies.

The corresponding operations in the three-
dimensional case led to the fact that two coplanar

triangular faces sharing an edge may appear. In the
four-dimensional case, cospatial volumes (with up to
seven vertices) sharing a face may have appeared.
By reasoning in a similar way as Section 3.2.2.3,
we remove the shared face and the edges which
are inside of another volume. More concretely, in
dimension four, it may have appeared (a) three
cospatial volumes with common faces two by two
sharing an edge. In this case, we remove the shared
edge, three common faces, and three volumes, and
we attach a new volume made by the union of those
three volumes (see Figure 31); and it may also have
appeared (b) two cospatial volumes sharing a face.
In this case, we remove the common face, and both
volumes, and we attach a new volume made up by
the union of those two volumes (see Figure 32).

Fig. 31. By degenerating an edge of a hypervolume

with nine vertices, which consists of a cube with one

pyramid attached on each of its faces, we obtain three

pyramids forming a cube with an edge inside of it.

Fig. 32. By degenerating an edge of a hypervolume

with six vertices, which consists of one pyramid at-

tached to an other on its square face, and four tetra-

hedra attached to the corresponding pairs of triangular

faces of both pyramids, we obtain two cospatial tetra-

hedra sharing a face. By removing this face, we obtain

a pyramid.

Summarizing, the technique developed for con-
structing the convex hull of a pattern subset in Z

4

includes, in addition to the operations of the three-
dimensional case, the steps of: (1) attaching faces for
converting non-spatial volumes into spatial volumes
sharing a face two by two; (2) studying the degen-
erated 4–cells; and (3) removing faces and edges for
converting cospatial volumes into only one volume.

The previous results allow us to define an algorithm
(Algorithm A.5, in Appendix), which generalizes Al-
gorithm 3.1 in Section 3.2.2.3, for: (1) deforming the
unit 4–cube into the convex hull of any pattern subset
(Vc)i ⊂ Z

4; (2) constructing the cell defined by this
pattern subset; and (3) computing its boundary.
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Remark 11: Given a pattern subset (Vc)i, Algo-
rithm A.5 (in Appendix) deforms and degenerates the
cells contained in the unit 4–cube HCV for computing
the convex hull of the points of (Vc)i. In this way, the
cell C((Vc)i) defined by (Vc)i is determined by the
points inside this convex hull. Moreover, the bound-
ary of C((Vc)i) is computed in terms of the vertices,
edges, faces, and volumes of the convex hull. More
concretely, ∂(C((Vc)i)) is given by V e′, Ed′, Fa′, V o′.

By using as input the 402 pattern subsets shown in
Appendix, Algorithm A.5 (in Appendix) returns the
402 pattern cells. In Figure 33 1, we show an example
of some of them.

Fig. 33. Some of the 4–dimensional pattern cells with

12, 13, 14 and 15 vertices, respectively.

Remark 12: The pattern cells are stored in a look-up
table. As commented in Section 2, this table is used to
construct a cell complex from a 4–dimensional binary
digital image. Moreover, Theorem 5 can be proved.

Theorem 5: The cell complex constructed from a
given 4–dimensional binary digital image on a dual
grid is made up by combining (up to isometries) the
402 pattern cells, taking into account that it is not
necessary to use all them and any of them can be
used more than once.

5 CONCLUSIONS

In this paper, we have defined a method for construct-
ing cell complexes from n–dimensional binary digital
images on a dual grid. Moreover, this method has
been implemented for n = 3, 4.

The first stage of the method consists in determin-
ing the pattern subsets which can be obtained from
the vertices of a n–cube and constructing the convex
hull of these subsets, i.e. the pattern cells. The second
stage is scanning each subset of vertices of a n–cube
of the grid and associating it with one of the pattern
subset determined in the first stage. We consider
the convex hull of the pattern subset and we invert
the isometry between this one and its corresponding
subset of vertices, in this way, we obtain the cells
of the cell complex. The cell complex is formed by
attaching the cells along their boundaries. Finally, this
complex is simplified by extracting its boundary.

The pattern subsets are determined by using an
algorithm whose input are (1) all the subsets of points
which can be constructed from the vertices of a n–
cube and (2) the group of isometries of a n–cube.

1. screenshots of “Hypercube” software developed by Régis
Meyssonnier in his Final Master Project supervised by Prof. Jean-
Luc Mari from University of Marseille (see [13])

The convex hull of the pattern subsets is con-
structed in two steps: (1) a first step consists in
determining an order on the edge degeneracy; and (2)
a second step is giving a list of rules for establishing
(2.1) the stages of “deformation” and “degeneracy”
of cells of a n–cube and (2.2) the stage of “correction”
which allows us to assure the convexity.

We think that, in a theoretical way, the method de-
veloped in this paper can be generalized to dimension
n. In order to get this goal, it is necessary: (a) to de-
termine the pattern subsets in nD, by computing the
group of isometries of an n–cube and (b) to construct
the convex hull of these subsets, by giving an order on
the edge degeneracy and by deforming/degenerating
(b.1) cells of an (n− 1)–cube and (b.2) (n− 1)–cells of
an n–cube. In practice, it is not possible to store the
pattern subsets in nD, for n ≥ 6, since the number of
pattern subsets in 6D is of the order of 1014 (see [5],
where the number of irreducible Boolean functions
of n variables coincides with the number of pattern
subsets in nD).
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minimal de représentation d’images 2d et 3d. PhD thesis,
Montpellier II University, 2001.

[3] G. Damiand. Topological model for 3D Image Representation:
Definition and Incremental Extraction Algorithm. Computer
Vision and Image Understanding 109(3): 260–289, 2008.

[4] F. Hanisch. Marching square. CGEMS: Computer graphics ed-
ucational materials source, 2008.

[5] M. A. Harrison. The Number of Transitivity Sets of Boolean
Functions. Journal of the Society for Industrial and Applied
Mathematics 11(3): 806–828, 1963.

[6] Y. Kenmochi and A. Imiya. Combinatorial boundary of a 3D
lattice point set. Visual Communication and Image Represen-
tation 17(4): 738–766, 2006.

[7] Y. Kenmochi, A. Imiya and N. F. Ezquerra. Polyhedra gener-
ation from lattice points. In S. Miguet, A. Montanvert and S.
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APPENDIX A

Example 1: Let {{0, 0, 0}, {0, 0, 1}, {0, 2, 1}, {1, 1, 0},

{1, 1, 1}, {1, 2, 1}, {2, 0, 1}, {2, 1, 1}, {2, 2, 0}, {3, 3, 4},

{3, 3, 5}, {3, 4, 3}, {3, 4, 4}, {3, 5, 4}, {4, 4, 3}, {4, 4, 5},

{4, 5, 3}, {4, 5, 4}, {5, 0, 0}, {5, 0, 4}, {5, 0, 5}, {5, 1, 0},

{5, 1, 5}, {5, 3, 3}, {5, 3, 4}, {5, 3, 5}, {5, 4, 3}, {5, 4, 4},

{5, 5, 0}, {5, 5, 3}, {5, 5, 4}} be the set of the 31 black
voxels of a binary digital image I on a dual grid of
size 6× 6× 6.

The simplified cell complex obtained by applying
the method above-described to I is shown in Fig-
ure 34. Moreover, Algorithm A.4 determines that all
the 0,1,2–cells of CC(I) are incident to a 3–cell of
CC(I) and it computes the 174 2–cells of CC(I)
incident to exactly one of the 3–cells of CC(I).

Fig. 34. Three viewpoints of the simplified cell complex

obtained from I.

Example 2: Let {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1},

{0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}} be the set of the 6 black
4–xels of a binary digital image I on a dual grid G
made up by 2× 2× 2× 2 4–cubes.

The cells of the cell complex obtained by applying
the method above-described to I are:

Six singleton subsets corresponding to 0–cells.
{{{0, 0, 0, 0}}, {{0, 1, 0, 0}}, {{0, 1, 0, 1}}, {{0, 1, 1, 0}},
{{0, 2, 0, 0}}, {{1, 1, 0, 0}}}

Fourteen subsets made up by two points (1–cells).
{{{0, 0, 0, 0}, {0, 1, 0, 1}}, {{0, 0, 0, 0}, {0, 1, 1, 0}},
{{0, 0, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}}, {{0, 1, 0, 0}, {0, 1, 1, 0}},
{{0, 1, 0, 0}, {0, 2, 0, 0}}, {{0, 1, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 1}, {0, 1, 1, 0}}, {{0, 1, 0, 1}, {0, 2, 0, 0}},
{{0, 1, 0, 1}, {1, 1, 0, 0}}, {{0, 1, 1, 0}, {0, 2, 0, 0}},
{{0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 2, 0, 0}, {1, 1, 0, 0}}}

Sixteen subsets made up by three points (2–cells).
{{{0, 0, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}}, {{0, 0, 0, 0},
{0, 1, 0, 1}, {1, 1, 0, 0}}, {{0, 0, 0, 0}, {0, 1, 1, 0},
{1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 0, 1}},
{{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 1, 0}}, {{0, 1, 0, 0},
{0, 0, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1},
{0, 1, 1, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 0}}, {{0, 1, 0, 0},
{0, 1, 1, 0}, {0, 2, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 1, 0},
{1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}}, {{0, 1, 0, 1},
{0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 1}, {0, 2, 0, 0},
{1, 1, 0, 0}}, {{0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}}

Nine subsets made up by four points (3–cells).
{{{0, 0, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}},
{{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 1, 0}, {1, 1, 0, 0}},

{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}}

Two subsets made up by five points (4–cells).
{{{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0},
{1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0},
{0, 2, 0, 0}, {1, 1, 0, 0}}}

Algorithm A.2

Input: I and G.
Output: subsets of n–xels of I .
begin
// V (I): empty set to store the lists of n–xels of I .

for each n–cube Ci of G do
Let L be the subset of n–xels of I corresponding to the vertex
set of Ci

V (I) = V (I)
⋃
{L}

end for
return V (I)

end

Algorithm A.3

Input: V (I) and look-up table with the pattern subsets.
Output: look-up table with the pattern subsets of I and the isome-
tries between the subsets of V (I) and the pattern subsets.
// P (I): empty table to store the pattern subsets of I and the
isometries between the subsets of V (I) and the pattern subsets.
begin

for X ∈ V (I) do
if Y is a pattern subset isometric to X then

P (I) = P (I)
⋃
{(Y, σ)} where σ is the isometry that

satisfies σ(X) = Y
end if

end for
return P (I)

end

Algorithm A.4

Input: Ci(V (I)): i–cells of CC(I), for i = 0, 1, ..., n.
∂(Cn(V (I))): boundary of the cells in Cn(V (I)).

Output: simplified cell complex.
begin
// Boundary: empty list to store the cells of the simplified complex.

for i ∈ {0, 1, ..., n− 1} do
for each i–cell c ∈ Ci(V (I)) do

if c is not incident to a n–cell then
Boundary = Boundary

⋃
{c}

else
if i 6= n− 1 or c is incident to exactly one n–cell then

Boundary = Boundary
⋃
{c}

end if
end if

end for
end for
return Boundary

end

Algorithm A.5

Input: the unit 4–cube HCV .
a pattern subset (Vc)i ⊂ HCV with c points.

Output: convex hull of (Vc)i.
begin
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// V e: vertices of HCV .
// Ed: edges of HCV .
// Fa: faces of HCV .
// V o: volumes of HCV .
// Hv: hypervolume of HCV .
// S: subgraph of HCV constructed by deleting the points of (Vc)i.
// WV : set of white vertices of HCV ordered according to Remark
18.

Ed′ = Ed
Construct the set T of all the rooted spanning trees of all the
connected components of S
for each t ∈ T do

for each B ∈ t do
• Degenerate the edge incident to B and to its father in t
• Obtain the lists V e′, Ed′, Fa′, V o′, Hv′ of vertices,
edges, faces, volumes, and hypervolumes, respectively, by
replacing B with A
for v′ ∈ V o′ do

if v′ is a non-spatial volume then
for each f ′ ∈ Fa′

⋂
∂(v′) do

Lines 8–13 in Algorithm 3.5 in Section 3.2.2.3
end for
{We define a face starting from the vertices of v′

which are attached to A by an edge and we cut up v′

into two volumes}
• f ′ =

⋃
i
{Pi}, where Pi ∈ V e′

⋂
∂(v′) is attached

to A by an edge
• v1 = v′ − {A}
• v2 = f ′

⋃
{A}

• V o′ = V o′
⋃
{v1}

• V o′ = V o′ − {v′}
{Corollary 2 asserts that f ′ is a non-planar face iff v2
is a non-spatial volume.}
if f ′ is a face of 4 non-coplanar vertices then

• Ed′ = Ed′
⋃
{XX′}, where X,X′ 6= A are such

that X,X′ ∈ V e′
⋂

∂(f ′) and they satisfy X,X′ /∈
∂(g), ∀g 6= f ′ such that g ∈ Fa′

⋂
∂(v′)

• Fa′ = Fa′
⋃
{XX′Y }, where Y 6= X,X′ is such

that Y ∈ V e′ and it satisfies XY,X′Y ∈ ∂(f ′)
• Fa′ = Fa′

⋃
{XX′Y ′}, where Y ′ 6= X,X′ is

such that Y ′ ∈ V e′ and it satisfies XY ′, X′Y ′ ∈
∂(f ′)
{We attach the face defined by the vertex A and
the two end-points of the edge which cuts up f ′

in two triangular faces and we cut up v2 into two
tetrahedra}
• Fa′ = Fa′

⋃
XX′A

• V o′ = V o′
⋃

XX′Y A
• V o′ = V o′

⋃
XX′Y ′A

end if
if f ′ is a planar face then

• Fa′ = Fa′
⋃
{f ′}

• V o′ = V o′
⋃
{v2}

end if
end if
if v′ is a spatial volume then

for each f ′ ∈ Fa′
⋂

∂(v′) do
Lines 8–16 in Algorithm 3.5 in Section 3.2.2.3
Lines 20–27 in Algorithm 3.5 in Section 3.2.2.3,
taking into account that f ′′ ∈ Fa′

⋂
∂(v′)

end for
end if
if v′ is a volume degenerated into a face then

for each f ′ ∈ Fa′
⋂

∂(v′) do
Lines 14–27 in Algorithm 3.5 in Section 3.2.2.3,
taking into account that f ′′ ∈ Fa′

⋂
∂(v′) in Lines

20–27
end for

end if
if hv′ ∈ Hv′ is a hypervolume degenerated into v′ then

HV ′ = HV ′ − {hv′}
end if
if v′ 6= v′′ ∈ V o′ are two cospatial volumes sharing a
face f ′′ ∈ Fa′ then

if ∃ v′′′ ∈ V o′ cospatial with v′ and v′′ then
{v′, v′′′ share a face f ′′′ ∈ Fa′.}
{v′′, v′′′ share a face f ′′′′ ∈ Fa′.}

{v′, v′′, v′′′ share an edge e′′ ∈ Ed′. Moreover, e′′

is inside the volume {v′ + v′′ + v′′′}, where v′ +
v′′+v′′′ denotes the closure of all the points inside
the convex hull of the vertices of v′, v′′ and v′′′.}
if {v′ + v′′ + v′′′} /∈ V o′ then

V o′ = V o′
⋃
{v′ + v′′ + v′′′}

for each f ′ ∈ Fa′
⋂

∂(v′ + v′′ + v′′′) do
Lines 20–27 in Algorithm 3.5 in Section
3.2.2.3, taking into account that f ′′ ∈
Fa′

⋂
∂(v′ + v′′ + v′′′)

end for
end if
• V o′ = V o′ − {v′}
• V o′ = V o′ − {v′′}
• V o′ = V o′ − {v′′′}
• Fa′ = Fa′ − {f ′′}
• Fa′ = Fa′ − {f ′′′}, where
f ′′′ ∈ Fa′

⋂
∂(v′)

⋂
∂(v′′′)

• Fa′ = Fa′ − {f ′′′′}, where f ′′′′ ∈
Fa′

⋂
∂(v′′)

⋂
∂(v′′′)

• Ed′ = Ed′ − {e′′}, where e′′ ∈
Ed′

⋂
∂(v′)

⋂
∂(v′′)

⋂
∂(v′′′)

end if
if 6 ∃ v′′′ ∈ V o′ cospatial with v′ and v′′ then

if {v′ + v′′} /∈ V o′, where v′ + v′′ denotes the
closure of all the points inside the convex hull of
the vertices of v′ and v′′ then

V o′ = V o′
⋃
{v′ + v′′}

for each f ′ ∈ Fa′
⋂

∂(v′ + v′′) do
Lines 20–27 in Algorithm 3.5 in Section
3.2.2.3, taking into account that f ′′ ∈
Fa′

⋂
∂(v′ + v′′)

end for
end if
• V o′ = V o′ − {v′}
• V o′ = V o′ − {v′′}
• Fa′ = Fa′ − {f ′′}

end if
end if

end for
end for

end for
return V e′, Ed′, Fa′, V o′

end
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Table with the pattern subsets in dimension 4
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