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Let f be a plane curve. We give a procedure based on Abhyankar's approximate roots to detect if it has a single place at infinity, and if so construct its associated δ-sequence, and consequently its value semigroup. Also for fixed genus (equivalently Frobenius number) we construct all δ-sequences generating numerical semigroups with this given genus. For a δ-sequence we present a procedure to construct all curves having this associated sequence.

We also study the embeddings of such curves in the plane. In particular, we prove that polynomial curves might not have a unique embedding.

Introduction

Let K be an algebraically closed field of characteristic zero and let f (x, y) = y n + a 1 (x)y n-1 + • • • + a n (x) be a nonzero polynomial of K[x][y]. Assume, after possibly a change of variables, that deg x (a i (x)) < i for all 1 ≤ i ≤ n. Write f (x, y) = y n + i,j,i+j<n c ij x i y j and let F (x, y, u) = y n + c ij u n-i-j x i y j ∈ K[u, x, y]. Let C be the curve f = 0 in K 2 . Then the projective curve C : F = 0 is the projective closure of C in P 2 K . Furthermore, p = (0, 1, 0) is the unique point at infinity of C and F (u, 1, y) is the local equation of C at p. We say that f has one place at infinity if F (u, 1, y) is analytically irreducible in K [[u, y]]. Curves with one place at infinity play an important role in affine geometry. In particular, it has been proved in [START_REF] Abhyankar | On the semigroup of a meromorphic curve, Part 1[END_REF] and [START_REF] Abhyankar | Embedding of the line in the plane[END_REF] that if f has one place at infinity, then so is for f -λ for all λ ∈ K. Also, we can associate with f a numerical semigroup that has some good properties (it is free, and thus a complete intersection and symmetric). By using the arithmetic of the semigroup of a polynomial with one place at infinity and its approximate roots, S.S. Abhyankar and T.T. Moh proved that given two polynomials x(t), y(t) ∈ K[t] with t-degrees n > m, if K[x(t), y(t)] = K[t], then m divides n, showing that a coordinate of K 2 has a unique embedding in K 2 .

The study of polynomials with one place at infinity is also motivated by the plane Jacobian conjecture. Let g ∈ K[x, y]. This conjecture says the following: if the Jacobian J(f, g) is a nonzero constant, then K[x, y] = K[f, g]. If K[x, y] = K[f, g], then f is equivalent to a coordinate, in particular f has one place at infinity. Hence the plane Jacobian conjecture is equivalent to the following: if J(f, g) is a nonzero constant, then f has one place at infinity. Despite a lot of activities, this conjecture is still open.

Let f be as above and let g be a polynomial of K[x, y]. Let C 1 be the affine curve g = 0. We say that C is isomorphic to C 1 if the ring of coordinates K[C] and K[C 1 ] are isomorphic. We say that C is equivalent to C 1 if f = σ(g) for some automorphism σ of K[x, y]. It is natural to ask which isomorphic curves are equivalent. Curves with one place at infinity, with their good properties, offer a good setting where this question can be studied.

The main aim of this paper is to give an algorithmic approach to the study of curves with one place at infinity, together with an implementation in the semigroup package GAP ( [START_REF]GAP -Groups, Algorithms, and Programming[END_REF]). Our contributions in this direction are the following. For [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF] and [START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF] we make extensive use of the concept of δ-sequence (see Page 7).

(1) (Section 3) Given a polynomial f ∈ K[x, y], decide if f has one place at infinity and if yes, compute the set of its approximate roots and the generators of its semigroup. Our approach here is the irreducibility criterion given by S.S. Abhyankar in [START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF]. This criterion is straightforward from the equation. It is based on the notion of generalized Newton polygons and it does not use neither the resolution of singularities nor the calculation of Puiseux series at infinity. We have implemented this procedure using the numericalsgps ( [START_REF] Delgado | numericalsgps": a gap package on numerical semigroups[END_REF]) GAP ( [START_REF]GAP -Groups, Algorithms, and Programming[END_REF]) package, and named it SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity. (2) (Section 4) Given a sequence of integers in N, decide if this sequence generates the semigroup of a polynomial at infinity, and if it is the case, calculate an equation of such a polynomial. Our equation allows in particular, using the notion of generalized Newton polygons, the calculation of all polynomials with the given semigroup. The GAP function implemented for this is CurveAssociatedToDeltaSequence (compare with [10, Algorithm 1]). (3) (Section 5) Given a positive integer g, compute the set of semigroups of polynomials with one place at infinity with genus g (hence with conductor 2g). Note that if Γ is such a semigroup and if f is a polynomial with one place at infinity whose semigroup is Γ, then g is the geometric genus of a nonsingular element of the pencil (f -λ) λ∈K , and 2g is the rank of the K-vector space K[x, y]/(f x , f y ), where f x (respectively f y ) denotes the x-derivative (respectively the y-derivative) of f . The function DeltaSequencesWithFrobeniusNumber has been designed to do this. In [START_REF] Fujimoto | Construction of affine plane curves with one place at infinity[END_REF] there is an alternative procedure to compute all δ-sequences with given genus.

All these GAP functions will be included in the next release of the package numericalsgps.

In Section 1 we recall the main properties of curves with one place at infinity and we give a proof of Abhyanlar-Moh Theorem: a rational nonsingular one place curve is equivalent to a coordinate of K 2 . In Section 2 we explicitly describe the automorphism that transforms the equation of the curve into a coordinate. The method of the proof allows us to give a simple demonstration of the fact that two equivalent polynomials with one place at infinity have the same δ-sequences. In the last section, we study the embedding of polynomial curves (rational curves with one place at infinity). In particular, we give an example of a polynomial curve with two inequivalent embeddings in the affine plane.

Semigroup of one place at infinity curves

Let f (x, y) = y n + a 1 (x)y n-1 + • • • + a n (x) be a nonzero polynomial of K[x]
[y] and assume, after possibly a change of variables, that for all 1 ≤ i ≤ n, deg x a i (x) < i. Assume that f has one place at infinity. Given a polynomial g ∈ K[x, y], we define the intersection of f with g, denoted int(f, g), to be the rank of the K-vector space K[x, y]/(f, g). Clearly 0 = int(f, 1) and int(f,

g 1 g 2 ) = int(f, g 1 ) + int(f, g 2 ).
The set {int(f, g)

| g ∈ K[x, y] \ (f )} is a subsemigroup of N.
We denote it by Γ(f ), and we say that Γ(f ) is the Abhyankar semigroup associated to f . We also say that a subsemigroup Γ of N is an Abhyankar semigroup if there exists f such that Γ = Γ(f ) (for basic properties on numerical semigroups, please, refer to [START_REF] Rosales | Numerical Semigroups[END_REF]).

Let d ∈ N * and assume that

d | n. Let G be a monic polynomial of K[x][y] of degree n d in y. Write f = G d + α 1 (x, y)G d-1 + • • • + α d (x, y),
where deg y α k (x, y) < n d for all 1 ≤ k ≤ d. We say the G is a dth approximate root of f if α 1 (x, y) = 0. It is well known that a dth approximate root exists and it is unique (see [START_REF] Abhyankar | On the semigroup of a meromorphic curve, Part 1[END_REF]). We denote it by App d (f ).

Assume, after possibly a change of variables, that a 1 (x) = 0. In particular App n (f ) = y. Let

r 0 = d 1 = n and r 1 = m = deg x a n (x) = int(f, y). For all k ≥ 2, let d k = gcd(d k-1 , r k-1 ), g k = App d k (f ) and r k = int(f, g k ).
It is well known that there exists h ∈ N such that d h+1 = 1 (see [START_REF] Abhyankar | On the semigroup of a meromorphic curve, Part 1[END_REF]). Thus every Abhyankar semigroup is a numerical semigroup, that is, its complement in N is finite. We set g 1 = y = App d 1 (f ) and g h+1 = f . We also set e k = d k d k+1 for all 1 ≤ k ≤ h. Recall that a numerical semigroup Γ = r 0 , . . . , r h is a free semigroup (for this arrangement of generators, and with the notation of the above paragraph) if e k r k ∈ r 0 , . . . , r k-1 for k > 0 and e k is the minimum positive integer with this property; we are not imposing {r 0 , . . . , r h } to be a minimal generating system of Γ. These semigroups are a special kind of complete intersections (semigroups with minimal presentations with the minimal possible cardinality: h with the above notation). Complete intersection numerical semigroups are symmetric (see for instance [START_REF] Rosales | Numerical Semigroups[END_REF]Chapter 8]), that is, for every x ∈ Z \ Γ, F(Γ) -x ∈ S, where F(S) the largest element in Z \ Γ, called the Frobenius number of S. When the semigroup is free and r 0 < • • • < r h , we say that it is telescopic.

Lemma 1 ([2]

). Let g ∈ K[x, y] and let B = {θ = (θ 1 , . . . , θ h+1 ) | θ i < e i for all i ∈ {1, . . . , h}}. Then there exists B ′ ⊂ B with finitely many elements such that

g = θ∈B ′ c θ (x)g θ 1 1 . . . g θ h h f θ h+1 . Moreover, (i) f | g if and only if θ h+1 > 1 for all θ ∈ B ′ , (ii) if f ∤ g, then there exists a unique θ 0 ∈ B ′ such that θ 0 h+1 = 0 and int(f, g) = deg x c θ 0 (x)r 0 + h i=1 θ 0 i r i = max{deg x c θ (x)r 0 + h i=1 θ i r i | θ ∈ B ′ }. Proposition 2. Under the standing hypothesis: i) Γ(f ) = r 0 , r 1 , . . . , r h ; ii) for all 1 ≤ k ≤ h, e k r k ∈ r 0 , . . . , r k-1 , that is, Γ(f ) is free with respect to the arrangement (r 0 , r 1 , . . . , r h ); iii) for all 2 ≤ k ≤ h, r k-1 d k-1 > r k d k ; iv) the Frobenius number of Γ(f ) is F(Γ(f )) = h k=1 (e k -1)r k -r 0 .
In particular, the conductor of

Γ(f ), is C(Γ(f )) = h k=1 (e k -1)r k -r 0 + 1.
Proof. See [START_REF] Abhyankar | On the semigroup of a meromorphic curve, Part 1[END_REF][START_REF] Abhyankar | Newton Puiseux expansion and generalized Tschirnhausen ransformation[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF].

Let f x , f y denote the partial derivatives of f . We have the following.

Lemma 3. Define µ(f ) = rank K (K[x, y]/(f x , f y )). i) µ(f ) = C(Γ(f )) = ( h k=1 (e k -1)r k ) -r 0 + 1. ii) int(f, f y ) = µ(f ) + r 0 -1 = h
k=1 (e k -1)r k . Proof. See [START_REF] Abhyankar | On the semigroup of a meromorphic curve, Part 1[END_REF][START_REF] Assi | Meromorphic plane curves[END_REF]. Proposition 4. Let the notations be as above. For all 1 ≤ k ≤ h, g k = App d k (f ) is a polynomial with one place at infinity. Furthermore, the following conditions hold. i)

Γ(g k ) = r 0 /d k , . . . , r k-1 /d k . ii) µ(f ) = d k µ(g k ) + ( h i=k (e i -1)r i ) -d k + 1. iii) {g 1 , . . . , g k-1 } is the set of approximate roots of g k . Proof. See [1]. Example 5. Let f = ((y 3 -x 2 ) 2 -xy 2 ) 4 -(y 3 -x 2 ).
gap> f:=((y^3-x^2)^2-x*y^2)^4-(y^3-x^2);; gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f,"all"); [ [ 24, 16, 28, 7 ], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y^2 ] ] gap> g:=last [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF][3]; y^6-2*x^2*y^3+x^4-x*y^2 gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(g,"all"); [ [START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF][START_REF] Assi | Deux remarques sur les racines approchées d'Abhyankar-Moh[END_REF], [ y, y^3-x^2 ] ] gap> s:=SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f); <Numerical semigroup with 4 generators> gap> FrobeniusNumber(s); 57 Corollary 6. Let the notations be as above. We have µ(f ) = 0 if and only if µ(g k ) = 0 and

r i = d i+1 for all k ≤ i ≤ h.
Proof. For all i ≥ k we have e i > 1 and

r i ≥ d i+1 ≥ 1, hence (e i -1)r i ≥ d i -d i+1 . In particular, h i=k (e i -1)r i -d k + 1 ≥ h i=k (d i -d i+1 ) -d k + 1 = 0. If µ(f ) = 0, then µ(g k ) = h i=k (e i -1)r i -d k + 1 = 0. For k = h, (e h -1)r h -d h + 1 = 0 = (d h -1)(r h -1). As d h = 1, r h = 1 = d h+1 . Now for k = h -1, (e h-1 -1)r h-1 + (e h -1)r h -d h-1 + 1 = 0. We use the case k = h, and we obtain (e h-1 -1)r h-1 -(d h-1 -d h ). But e h-1 -1 = (d h-1 -d h )/d h , and so (d h-1 -d h ) r h-1 d h -1 = 0. We conclude r h-1 = d h .
And we keep reasoning in this way, and we finally derive r i = d i+1 for all i ∈ {k, . . . , h}.

The converse is obvious.

Corollary 7. Let the notations be as above. The following conditions are equivalent.

(i) µ(f ) = 0. (ii) r i = d i+1 for all 1 ≤ i ≤ h. (iii) 0 = C(Γ(f )). (iv) There exist x(t), y(t) ∈ K[t] such that f (x(t), y(t)) = 0 and K[x(t), y(t)] = K[t].
Furthermore, each of the conditions above implies that m divides n.

Proof. (i) equivalent to (ii) follows from Corollary 6.

(i) implies (iii) is obvious by Lemma 3.

(iii) implies (iv) Since µ(f ) = 0, the genus of Γ(f ) = 0. This forces the genus of the curve C = V(f ) to be zero and consequently f is rational. Also, since f has one place at infinity, f can be parametrized by polynomials (see [START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF]). Now 1 ∈ Γ(f ), and so there exists

p ∈ K[x, y] such that rank K (K[x, y]/(f, p)) = 1 = deg t p(x(t), y(t)) (one can prove this by using the isomorphism between K[x, y]/(f ) and K[(x(y), y(t)]). If follows that at + b = p(x(t), y(t)) for some a ∈ K * , b ∈ K. Hence K[at + b] = K[t] ⊆ K[x(t), y(t)] ⊆ K[t]. In particular K[t] = K[x(t), y(t)].
(iv) implies (iii) t = p(x(t), y(t)) for some p(x, y) ∈ K[x, y], whence 1 ∈ Γ(f ). Now assume that Condition (ii) holds. We have r 1 = m = d 2 . Thus m divides n.

Reduced forms of one place curves

Let f = y n + a 2 (x)y n-2 + • • • + a n (x)
be a polynomial with one place at infinity and assume that n > m = deg x a n (x). In particular this implies that deg x a i (x) < i for all i ∈ {1, . . . , n}, because otherwise the Newton polygon associated to f would have more than one edge, and consequently f would have more than one place at infinity (see [START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF]Chapter 4]).

Let r = (r 0 , . . . , r h ), d = (d 1 , . . . , d h , d h+1 = 1), e = (e 1 , . . . , e h ) be the set of characteristic sequences associated with f as in Section 1, and let g 1 = y, g 2 , . . . , g h , g h+1 = f be the set of approximate roots of f . Remark 8 (Generalized Newton polygons, see [START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF]). Let 1 ≤ k ≤ h and let

g k+1 = g e k k +α 2 (x, y)g e k -2 k + • • • + α e k (x
, y) be the expansion of g k+1 with respect to g k . We have the following:

(i) int(g k+1 , α e k (x, y)) = r k d k+1 e k = int(g k+1 , g e k k ). (ii) For all i = 2, . . . , e k -1, int(g k+1 , α i (x, y)) < i r k d k+1 .
Since the expression of g k+1 in terms of g k is monic and there is no term of degree e k -1, we set α 0 = 1 and α 1 = 0. Then the convex hull of the points (0, 0), int(g k+1 , α i (x, y)), r k d k+1 (e k -i) , i ∈ {0, . . . , e k } is the triangle with vertices (0, 0), 0, r k d k+1 e k and ( r k d k+1 e k , 0). The generalized Newton polygon of g k+1 with respect to g k is the segment of line joining 0, r k d k+1 e k with r k d k+1 e k , 0 (recall that, by (ii), it does not contain any of the points int(g k+1 , α i (x, y)), (e k -i) r k d k+1 , i = 2, . . . , e k -1). Lemma 9. Let the notations be as above. If µ(f ) = 0, then for all k ∈ {1, . . . , h}, there exist

a k 2 , . . . , a k e k , a k ∈ K such that a k e k = 0 and (i) g 2 = g e 1 1 + a 1 2 g e 1 -2 1 + • • • + a 1 e 1 -1 g 1 + a 1 e 1 x + a 1 . (ii) If k ≥ 2, then g k+1 = g e k k + a k 2 g e k -2 k + • • • + a k e k -1 g k + a k e k g k-1 + a k . Proof. We prove (ii) for k = h. Let, to this end, f = g h+1 = g d h h + a 2 (x, y)g d h -2 h + • • • + a d h -1 (x, y)g h + a d h (x, y)
be the expansion of f with respect to g h . From this expression of f , we obtain int(f,

g h ) = int(g h , a d h (x, y)). By Remark 8, int(f, a d h (x, y)) = int(f, g d h h ) = r h d h = d h (r h = d h+1 = 1 by Corollary 7) and for all k = 2, . . . , d h -1, int(f, a k (x, y)) < r h k = k < d h . From int(f, g d h h ) = r h d h , we deduce int(g h , a d h (x, y)) = r h = d h+1 = 1.
But for all k ∈ {2, . . . , d h }, int(f, a k (x, y)) ∈ r 0 , r 1 , . . . , r h-1 and d h = gcd(r 0 , . . . , r h-1 ). This proves that int(f, a k (x, y)) = 0 for all k, and consequently a 2 (x, y), . . . , a d h -1 (x, y) ∈ K. We know that int(f,

a d h (x, y)) = d h , which by Corollary 7 equals r h-1 . From Lemma 1, a d h = θ∈B ′ c θ (x)g θ 1 1 . . . g θ h h f θ h+1 . Since deg y a d h < deg y g h , this expression is of the form a d h = θ∈B ′ c θ (x)g θ 1 1 . . . g θ h-1 h-1 .
Moreover, Lemma 1 also tells us that there exists a unique θ 0 such that r

h-1 = int(f, a d h ) = deg x c θ 0 (x)r 0 + h-1 i=1 θ 0 i r i . This forces deg x c θ 0 (x) = θ 0 1 = • • • = θ 0 h-2 = 0 and θ 0 h-1 = 1. Observe also that r h-1 = d h ≤ r i for all i ∈ {0, . . . , h -2}. We deduce that there is a h e h ∈ K * and a h ∈ K such that a d h (x, y) = a h e h g h-1
+ a h . This proves our assertion. Now the same argument works for all 2

≤ k ≤ h -1. Let k = 1. We have Γ(g 2 ) = r 0 d 2 = e 1 , r 1 d 2 . Furthermore, g 2 = y e 1 + a 2 (x)y e 1 -2 + • • • + a e 1 (x). Now int(g 2 , a e 1 (x)) = int(g 2 , y e 1 ) = e 1 r 1 d 2 (Remark 8 once more). Also, by definition int(g 2 , a e 1 (x) = rank K (K[x, y]/(g 2 , a e 1 (x))) = e 1 deg x a e 1 (x) = r 0 d 2 deg
x a e 1 (x). Since r 0 = d 1 and r 1 = d 2 , we get deg x a e 1 (x) = 1 and there is a 1 e 1 ∈ K * and a 1 ∈ K such that a e 1 (x) = a 1 e 1 x + a 1 . This proves (i). Lemma 10. With the same hypothesis as in Lemma 9, we have

K[f, g h ] = K[g h , g h-1 ] = • • • = K[g 2 , g 1 ] = K[x, y]. Proof. We have K[x, y] = K[g 1 , g 2 ] = K[y, g 2 ]. In fact g 2 = g e 1 1 + a 1 2 g e 1 -2 1 + • • • + a 1 e 1 -1 g 1 + a 1 e 1 x + a 1
, where a 1 2 , . . . , a 1 e 1 -1 , a 1 ∈ K and a 1 e 1 ∈ K * . Since g 1 = y, the result is obvious. Let k ∈ {2, . . . , h}.

As 

g k+1 = g e k k + a k 2 g e k -2 k + • • • + a k e k -1 g k + a k e k g k-1 + a k , where a k 2 , . . . , a k e k , a k ∈ K and a k e k ∈ K * , we have K[g k , g k+1 ] = K[g k-1 , g k ].
: K[g 1 = y, g 2 ] → K[x, y], σ 0 (g 1 ) = x, σ 0 (g 2 ) = y and for all 1 ≤ k ≤ h -1, let σ k : K[g k+1 , g k+2 ] → K[g k , g k+1 ], σ k (g k+1 ) = g k , σ k (g k+2 ) = g k+1 . i) For all 0 ≤ k ≤ h -1, σ k is an automorphism. ii) Let σ h = σ 0 • σ 1 • • • • • σ h-1 : K[g h , f = g h+1 ] → K[x, y], then σ h is an automorphism such that σ h (f ) = y (and σ h (g h ) = x).
Proof. This results from Lemmas 9 and 10.

Let the notations be as above. In particular

f = y n + a 2 (x)y n-2 + • • • + a n (x) and r 0 = n > r 1 = m = deg x a n (x).
Let k be the greatest element in {1, . . . , h + 1} such that µ(g k ) = 0 (observe that µ(g 1 ) = 0). By Corollaries 6 and 7 and Proposition 4, µ(g

1 ) = • • • = µ(g k ) = 0 and r i = d i+1 for all 1 ≤ i ≤ k -1. With the notations of Corollary 11, σ k-1 : K[g k-1 , g k ] → K[x, y] is an automorphism such that σ k-1 (g k-1 ) = x and σ k-1 (g k ) = y. Also, µ(g i ) > 0 for all k + 1 ≤ i ≤ h + 1. Let f = σ k-1 (f ). Assume that k ≥ 2,
and let us focus on k = 2. Then ,y). The conductor µ(g 2 ) of Γ(g 2 ) is 0, and Lemma 9 states that g 2 = y e 1 +a 1 2

g 3 = g e 2 2 + α 2 2 (x, y)g e 2 -2 2 
+ • • • + α 2 e 2 (x
y e 1 -2 +• • •+a 1 e 1 -1 y +a 1 e 1 x+ a 1 , with a 1 e 1 = 0. Set ϕ(y) = y e 1 + a 1 2 y e 1 -2 + • • • + a 1 e 1 -1 y + a 1 , and a = a 1 e 1 . Hence x = g 2 -ϕ(y)
a . With the notations of Corollary 11, we have σ 0 (g 2 ) = y and σ 0 (g 1 ) = x. Thus

σ 0 (g 3 ) = y e 2 + α 2 2 y -ϕ(x) a , x y e 2 -2 + • • • + α 2 e 2 y -ϕ(x) a , x .
Note that by using Remark 8 and Lemma 1, we deduce that there exist c, d ∈ N, with d < n d 2 , such that int(g 3 , α 2 e 2 (x, y)) = int(g 3 , g e 2 2 ) = e 2 r 2

d 3 = e 2 int(g 2 , x c y d ) = e 2 c n d 2 + d r 1 d 2 = e 2 c n d 2 + d (because r 1 = d 2 ).
Also, from Remark 8, we know that int(g 3 , α 2 k (x, y)) < k r 2 d 3 . But

a c σ 0 (x c y d ) = a c y -ϕ(x) a c x d = x c n d 2 +d + j < e 2 , i d 2 d 3 + j r 2 d 3 < d 2 d 3 r 2 d 3 c ij x i y j , for some c ij ∈ K. Hence, up to constants, σ 0 (x c y d ) = x r 2 /d 3 + j<e 2 ,i d 2 d 2 +j r 2 d 3 < d 2 d 3 r 2 d 3
x i y j . The same calculations with σ 0 (α 2 2 (x, y)), . . . , σ 0 (α 2 e 2 -1 (x, y)) shows that

σ 0 (g 3 ) = y e 2 + ᾱ2 2 (x)y e 2 -2 + • • • + ᾱ2 e 2 (x) + cx r 2 d 3 ,
with c ∈ K * , and Γ(g

3 ) = e 2 = d 2 d 3 , r 2 d 3 = r 1 d 3 , r 2 d 3 .
We prove in a similar way that Γ(σ 0 (f )) = r 1 , r 2 , . . . , r h and that ḡ1 = σ 0 (g 2 ) = y, ḡ2 = σ 0 (g 3 ), . . . , ḡh-1 = σ 0 (g h ) are the set of approximate roots of f = σ 0 (f ). If k ≥ 3, then µ(ḡ 2 ) = 0, whence we restart the process above with ḡ2 . We finally get the following:

(1)

σ k-1 (f ) = y d k + ᾱ2 (x, y)y d k -2 + • • • + ᾱd k (x, y). ( 2 
) σ k-1 (g k ) = y, σ k-1 (g k+1 ), . . . , σ k-1 (g h ) are the approximate roots of σ k-1 (f ). (3) Γ(σ k-1 (f )) = r k-1 = d k , . . . , r h . Note that if deg y σ k-1 (f ) = r k-1 = d k < deg x (σ k-1 (f )) = r k
, then the change of variables X = y, Y = x will change the sequence (r k-1 , r k , . . . , r h ) into (r k , r k-1 , . . . , r h ) in such a way that in the process above, we can always assume that the degree of σ k-1 (f ) in y is also the total degree of f .

Observe also that µ(σ k-1 (g k+1 )) > 0. Hence if we define the reduced degree of f , denoted rdeg(f ), to be rdeg

(f ) = inf{deg(σ(f )) | σ is an automorphism of K[x, y]}, then rdeg(f ) = d k . 2.1. The reduced equation. Let F (x, y) = y N + a 1 (x)y N -1 + • • • + a N (x)
be a polynomial with one place at infinity and assume that a 1 (x) = 0 and also that N > r 1 = deg x a 1 (x) > gcd(N, r 1 ). Let a n (x) = cx r 1 + r 1 -1 i=1 c i x i . We may assume, without loss of generality, that c = 1. Write

F (x, y) = x r 1 + b 1 (y)x r 1 -1 + • • • + b r 1 (y). Suppose that b 1 (y) = 0 and let p = deg y b 1 (y). Clearly p + r 1 -1 ≤ N -1, hence p ≤ N -r 1 . Furthermore, pr 1 + (r 1 -1)N ≤ N r 1 , and thus pr 1 ≤ N . But r 1 does not divide N , whence pr 1 ≤ N -1. By the change of variables X = x + b 1 (y) r 1 , Y = y, we get F (X, Y ) = Y N + ā1 (X)Y N -1 + • • • + āN (X) and ā1 (X) = ā1 ∈ K. If ā1 = 0, then we consider the change of variables X 1 = X, Y 1 = Y + ā1 N . Let F (X 1 , Y 1 ) = F (X 1 , Y 1 -ā1 N )
and let R(F ) = F (x, y). We say that R(F ) is the reduced form of F . We have the following.

• R(F )(x, y) = y N + c 2 (x)y N -2 + • • • + c N (x) with deg x c i (x) < i for all 2 ≤ i ≤ N . • c N (x) = x r 1 + r 1 -2 i=1 d i x i
, and the coefficient of

x r 1 -1 in R(F ) is 0. • Let d be a divisor of N and let G d = App d (R(F )). Then R(G d ) = G d .
• Let w 1 (respectively w 2 ) be an N th root (respectively an r 1 th root) of unity in K and let σ be the automorphism of K[x, y] such that σ(x) = w 1 x, σ(y) = w 2 y, then σ(R(F )) satisfies the same properties as R(F ). Hence R(F ) is unique modulo this type of automorphisms.

Let f be as above. We define the reduced equation of f , denoted r(f ), to be R(σ

k-1 (f )). It follows that rdeg(f ) = deg y σ k-1 (f ) = deg y (r(f )) (as above, k is the greatest element in {1, . . . , h + 1} such that µ(g k ) = 0). Example 12. Let f (x, y) = (y 2 -x) 2 -xy. We have Γ(f ) = 4, 2, 3 , g 1 = y, g 2 = y 2 -x. Now µ(g 2 ) = 0, hence σ 0 : K[g 2 , y] → K[y, x], σ 0 (g 2 ) = y, σ 0 (y) =
x is an automorphism of K[x, y] and σ 0 (x) = σ 0 (y) 2 -σ 0 (g 2 ) = x 2 -y. Therefore

f 1 = σ 0 (f ) = y 2 -(x 2 -y)x = y 2 + xy -x 3 .
(1) deg y f 1 = 2 < 3, hence we interchange x, y in -f 1 , so we get f 2 (x, y) = y 3 -x 2 -xy.

(2) In f 2 We change x into wx, where w is a square root of -1. Hence we get f 3 (x, y) =

y 3 + x 2 -wxy. (3) Let X = x -wy 2 , Y = y. We have f ′ (X, Y ) = Y 3 + X 2 + Y 2 4 , hence f 4 (x, y) = y 3 + x 2 + y 2 4 . (4) Let Y 1 = y + 1 12 , X 1 = x. Then f 4 (X 1 , Y 1 -1 12 ) = Y 3 1 -1 48 Y 1 + 2 12 3 + X 2 1 . Finally r(f )(x, y) = y 3 + x 2 -1
48 y + 2 12 3 . gap> f:=(y^2-x)^2-x*y;; gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f,"all"); [ [START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF][START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF], [ y, y^2-x ] ] gap> rf:=y^3+x^2-1/48*y+2/12^3;; gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(rf,"all"); [ [START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF][START_REF] Abhyankar | Lectures on Expansion Techniques In Algebraic Geometry[END_REF]

, [ y ] ]

Let a 0 , a 1 , . . . , a s be a set of coprime nonnegative integers and let D 1 = a 0 and D k = gcd(D k-1 , a k-1 ) for all 2 ≤ k ≤ s + 1. We say that (a 0 , . . . , a s ) is a δ-sequence if the following conditions hold: 1) Γ = a 0 , . . . , a s is free with respect to the arrangement (a 0 , . . . , a s ).

2) For all 1

≤ k ≤ s -1, a k D k > a k+1 D k+1 . 3) a 0 > a 1 > D 2 > D 3 > • • • > D h+1 = 1.
Note that Conditions 1) and 2) imply that Γ is the semigroup of a polynomial with one place at infinity. Proposition 13. Let the notations be as above.

(1) Γ(r(f )) = r k , . . . , r h and (r k , . . . , r h ) is a δ-sequence.

(2) rdeg(f ) = d k = deg y r(f ).

Proof. Obvious.

In this reduction process the Abhyankar semigroup remains the same, but the δ-sequences shorten. Let g, h be two polynomials of K[x, y]. We say that g and h are equivalent if h = σ(g) for some automorphism σ of K[x, y].

Theorem 14. Let the notations be as above and let Γ(f ) = Γ(r(f )) = n = r 0 , . . . , r h , and assume that (r 0 , . . . , r h ) is a δ-sequence. Clearly f is equivalent to r(f ). Let g be a polynomial with one place at infinity. If g is equivalent to f , then Γ(g) = Γ(r(g)) = r 0 , . . . , r h .

Proof. If g is equivalent to f , then r(g) is also equivalent to r(f ). Hence r(g) = σ(r(f )) for some automorphism In all cases, f is not the reduced equation of a polynomial with one place at infinity. Furthermore, the total degree of f is ≥ n. Since σ is a composition of a finite number of elementary automorphisms, we get the same conclusion if either deg y σ(y) > 1 or σ(y) = ay + h(x) with a = 0 and h(x) / ∈ K * . Finally, σ(y) = ay, a ∈ K * and σ(x) = bx + h(y) with b = 0 and either h(y) = 0 or deg y h(y)r 1 < n. But then the coefficient of x r 1 -1 in σ(r(f )) is non zero. Hence σ(r(f )) = r(g). Thus, σ(y) = ay, σ(x) = bx with a, b ∈ K * . By definition of the reduced equation, a (respectively b) is an nth (respectively an r 1 th) root of unity. This proves our assertion.

σ of K[x, y]. Write r(f ) = y n + a 2 (x)y n-2 + • • • + a n (x) with deg x a n (x) = r 1 < n and let σ be an elementary automorphism of K[x, y]. Let f = σ(r(f )). (1) If σ(y) = ay + b with a, b ∈ K * , then f = a n y n + a n-1 by n-1 + ā2 (x)y n-2 + • • • + ān (x). ( 2 

The irreducibility criterion

Let f = y n + a 1 (x)y n-1 + • • • + a n (x) be a nonzero polynomial of K[x, y] and assume, after possibly a change of variables, that a 1 (x) = 0 and also that deg

x a i (x) < i for all 2 ≤ i ≤ n. Let d 1 = n > d 2 > • • • > d h+1 = 1 be a set of divisors of n and let G = (G 1 , G 2 , . . . , G h+1 = f ) be a set of polynomials of degrees n d 1 , . . . , n d h , respectively. Let r = (r 0 = n, r 1 , . . . , r h ) such that d k = gcd(r 0 , . . . , r k-1 ) for all 1 ≤ k ≤ h+1 and let e k = d k d k+1 for all 1 ≤ k ≤ h. Let B = {θ = (θ 1 , . . . , θ h , θ h+1 ) | for all 1 ≤ k ≤ h, 0 ≤ θ k < e k }. Given θ ∈ B, we associate with x θ 0 G θ = x θ 0 G θ 1 1 . . . G θ h h the number fint(f, x θ 0 G θ , r) = θ 0 r 0 + r 1 θ 1 + • • • + r h θ h = θ • r (dot product). Given a nonzero element c θ (x)G θ , we set fint(f, c θ (x)G θ , r) = fint(f, x θ 0 G θ , r), where θ 0 = deg x (c θ (x)). Let α(x, y) be a nonzero polynomial of K[x, y] and assume that deg y α(x, y) < n. Write: α(x, y) = θ∈B c θ (x)G θ 1 1 • • • G θ h h . We set fint(f, α, r) = max{fint(f, c θ (x)G θ 1 1 . . . G θ h h )|c θ (x) = 0}. There is a unique monomial of α, say c θ 0 (x)G θ 0 1 1 • • • G θ 0 h h , such that fint(f, α, r) = fint(f, c θ 0 (x)G θ 0 1 1 • • • G θ 0 h h ). Let f = g d h h + α 1 g d h -1 h + • • • + α d h be
the expansion of f with respect to g h . We say that f is straight with respect to (g h , r) if the following conditions hold: [START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF]. Let f be as above. Let r 0 = n = d 1 . If a n (x) = 0, then y divides f , and thus f has at least two places at infinity. Suppose that a n (x) = 0. Set g 1 = y, r 1 = deg x a n (x), d 2 = gcd(r 0 , r 1 ), and

(1) fint(f, α d h , r) = r h d h , (2) fint(f, α i , r)) < id h for all 1 ≤ i ≤ d h -1.

The criterion

r 1 = r 0 d 2 , r 1 d 2 . Let g 2 = App d 2 (f ) and let f = g d 2 2 + α 2 2 g d 2 -2 2 + • • • + α 2 d 2
be the expansion of f with respect to g 2 . We set r 2 = fint(g 2 , α 2 d 2 , r 1 ) and d 3 = gcd(r 2 , d 2 ). We now restart with g 3 = App d 3 (f ), and so on. If d i = d i+1 for some i, then f has at least two places at infinity. Suppose that

d 1 > d 2 > . . . . There exists h ≥ 1 such that d h+1 = 1. For all 2 ≤ i ≤ h + 1 we set r i-1 = r 0 d i , r 1 d i , . . . , r i-1 d i
.

According to [START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF], the polynomial f = g h+1 has one place at infinity if and only if the following conditions hold:

(1) for all 1

≤ i ≤ h -1, r i d i > r i+1 d i+1 , (2) 
for all 1 ≤ i ≤ h, g i+1 is straight with respect to (g i , r i-1 ).

Examples 15. The implementation of SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity contains this criterion.

i) Let f (x, y) = (y 3 -x 2 ) 2 -y. We have r 0 = d 1 = 6, r 1 = 4, d 2 = 2, g 1 = y, g 2 = y 3 -x 2 . Now r 2 = fint(g 2 , y, (3, 2) 
) = 2, hence d 3 = 2, consequently f has at least two places at infinity.

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity((y^3-x^2)^2-y); Error, Error the polynomial is not irreductible or it has not a single place at infinity called from ...

ii) Let f (x, y) = (y 3 -x 2 ) 2 -x 5 y. We have

r 0 = d 1 = 6, r 1 = 4, d 2 = 2, g 1 = y, g 2 = y 3 -x 2 . Now r 2 = fint(g 2 , y, (3, 2) 
) = 17, hence d 3 = 1. Furthermore, the straightness condition is satisfied. However, r 1 d 1 = 24 < r 2 d 2 = 34, hence f has at least two places at infinity.

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity((y^3-x^2)^2-x^5*y); Error, The polynomial does not have a single place at infinity or the leading coefficient in x is not a rational number called from ...

iii) Let f (x, y) = y 5 -x 4 + x 4 y. We have r 0 = d 1 = 5, r 1 = 4, d 2 = 1, but f is not straight with respect to (y, (5, 4)) because fint(f, x 4 , (5, 4)) = 20 > 4r 1 = 16, hence f has at least two places at infinity.

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(y^5-x^4+x^4*y); Error, The polynomial does not have a single place at infinity or the leading coefficient in x is not a rational number called from sv( arg [START_REF] Abhyankar | On the semigroup of a meromorphic curve, Part 1[END_REF] ) called from ...

iv) Let f (x, y) = ((y 3 -x 2 ) 2 -xy) 2 -(y 3 -x 2 ). We have r 0 = d 1 = 12, r 1 = 8, d 2 = 4, g 1 = y, g 2 = y 3 -x 2 . Now r 2 = fint(g 2 , y, (3, 2) 
) = 10, hence d 3 = 2 and g 3 = (y 3 -x 2 ) 2 -xy. Now r 3 = fint(g 3 , (y 3 -x 2 , y), (6, 4, 5)) = 5, hence d 3 = 1. Furthermore the straightness condition is satisfied for g 2 , g 3 and f . Since r 1 d 1 > r 2 d 2 > r 3 d 3 , we deduce that f has one place at infinity and Γ(f ) = 12, 8, 10, 5 .

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f,"all"); [ [START_REF] Rosales | Numerical Semigroups[END_REF][START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Fujimoto | Construction of affine plane curves with one place at infinity[END_REF][START_REF] Abhyankar | Newton Puiseux expansion and generalized Tschirnhausen ransformation[END_REF], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y ] ] 4. One place curves with a fixed genus

Let f = y n + a 1 (x)y n-1 + • • • + a n (x)
be a polynomial with one place at infinity and assume that a 1 (x) = 0 and also that deg x (a i (x)) < i for all 2 ≤ i ≤ n. Let r 0 = n, r 1 = deg x a n (x), r 2 , . . . , r h be the set of generators of Γ(f ) constructed as in Section 1. Let d 1 = n and for all 1 ≤ k ≤ h, let

d k+1 = gcd(r k , d k ) and e k = d k d k+1 . We have 1) for all 1 ≤ k ≤ h -1, r k d k > r k+1 d k+1 , 2) for all 1 ≤ k ≤ h, e k r k ∈ r 0 , . . . , r k-1 . If furthermore n = r 0 = d 1 > r 1 > d 2 > • • • > d h+1 = 1, then µ(App d 2 (f )) > 0 and (r 0 , . . . , r h ) is a δ-sequence. Conversely, given a sequence of coprime integers r = (r 0 , r 1 , . . . , r h ) ∈ N, if d 1 = n and d k+1 = gcd(r k , d k ), e k = d k d k+1
for all 1 ≤ k ≤ h and if Conditions 1) and 2) above are fulfilled, then there exists a polynomial f with one place at infinity such that Γ(f ) = r 0 , . . . , r h . If furthermore

r 0 = d 1 > r 1 > d 2 > • • • > d h+1 = 1, then there exists a polynomial f = y r 0 +a 2 (x)y r 0 -2 +• • •+a r 0 (x)
with rdeg(f ) = r 0 , deg x a r 0 (x) = r 1 , and Γ(f ) = r 0 , . . . , r h . The straightness of the set of generalized Newton polygons gives us that set all such polynomials. Set n = r 0 and r 1 = m and assume that n > m. We have the following algorithmic construction of these polynomials.

• h = 1: f (x, y) = y n + a 1 x r 1 + ni+r 1 j<nm c ij x i y j , where a 1 ∈ K * . • h > 1: Let r h = r 0 d h , r 1 d h , . . . , r h-1 d h
. The sequence r h satisfies the same conditions as r. Let g be a polynomial with one place at infinity such that rdeg(g) = deg y g = n d h , deg x g = r 1 d h , and Γ(g) = r h . Let B = {θ = (θ 0 , . . . , θ h-1 ) | for all i = 1, . . . , h -1, θ i < e i } and let θ 0 be the unique element of B such that

r h d h = h-1 i=0 θ 0 i r i . We set f = g d h h + α 2 (x, y)g d h -2 h + • • • + α d h (x, y) + a h x θ 0 0 g θ 0 1 1 . . . g θ 0 h-1 h-1
, where for all 2 ≤ i ≤ d h , if α i (x, y) = 0 then deg y α i (x, y) < n d h . Furthermore, write α i (x, y) = θ∈B c θ (x)g θ 1 1 . . . g

θ h-1 h-1 . If c θ (x) = 0, then deg x c θ (x)r 0 + θ 1 r 1 + • • • + θ h-1 r h-1 < ir h .
Example 16. Let us compute a curve associated to the δ-sequence [START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF]. In order to see the recursive process, we set the information level of the numericalsgps package to 2.

gap> SetInfoLevel(InfoNumSgps,2); gap> CurveAssociatedToDeltaSequence( [START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF]); #I Temporal curve: y^3-x^2 #I Temporal curve: y^6-2*x^2*y^3+x^4-x y^6-2*x^2*y^3+x^4-x

Abhyankar semigroups with a given genus

Let g be a positive integer and let µ = 2g. There exists a numerical symmetric semigroup Γ and a system of generators of Γ such that the following conditions hold:

(1) µ is the conductor C(Γ) of Γ, (2) Γ = r 0 , r 1 , . . . , r h , r 0 > r 1 , and (r 0 , . . . , r 1 ) is a δ-sequence.

In particular, Γ = Γ(f ), where f ∈ K[x, y] is a polynomial with one place at infinity such that rdeg(f ) = r 0 . The simplest example of such a semigroup if µ + 1, 2 . Note that if Γ is such a semigroup, then µ ≥ 2(2 h -1) (see [START_REF] Assi | Deux remarques sur les racines approchées d'Abhyankar-Moh[END_REF]Proposition 6.7]). In particular h ≤ b = log 2 (g + 1). Let 1 ≤ h ≤ b.

In light of Proposition 4, if we denote by

µ h = C( r 0 /d h , . . . , r h-1 /d h ), then µ = d h µ h + (d h - 1)r h -d h + 1 = d h µ h + (r h -1)(d h -1) and gcd(r h , d h ) = d h+1 = 1.
• If h = 1, then µ = (r 0 -1)(r 1 -1). Since r 0 > r 1 , (r 1 -1) 2 < µ. Hence r 1 < √ µ + 1, which is less than or equal to µ -1 for all µ ≥ 4. Notice that µ cannot be 3, and the case µ = 2 is 3, 2 .

• For h > 1, d h µ h > 1 and d h ≥ 2. Consequently, r h -1 ≤ (r h -1)(d h -1) = µ -d h µ h < µ -1, whence r h < µ.
Observe also that µ -1 is the Frobenius number of Γ, and so r h = µ -1. This implies that for Γ = 3, 2 ,

2 ≤ r h ≤ µ -2.
Thus there are finitely many possible r h , and for each of these r h , (

d h -1)(r h -1) ≤ (d h -1)(r h - 1) + d h µ h = µ. Hence 2 ≤ d h ≤ µ r h -1 + 1.
For each pair r h and d h we find recursively the sequences r ′ 0 , . . . , r ′ h-1 with conductor µ h . This was the idea used to implement DeltaSequencesWithFrobeniusNumber.

Remark 17. From Lemma 3, int(f, f y ) = µ + r 0 -1 ≤ r 0 (r 0 -1) by Bézout's Theorem. Hence µ ≤ (r 0 -1) 2 , which implies that r 0 ≥ √ µ + 1.

Example 18. It may happen that several δ-sequences generate the same numerical semigroup. This is why in general there are more δ-sequences than Abhyankar semigroups for a fixed genus.

gap> l:=DeltaSequencesWithFrobeniusNumber( 13); [ [START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF][START_REF]GAP -Groups, Algorithms, and Programming[END_REF], [START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF], [START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF], [START_REF] Delgado | numericalsgps": a gap package on numerical semigroups[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Newton Puiseux expansion and generalized Tschirnhausen ransformation[END_REF], [START_REF] Fujimoto | Construction of affine plane curves with one place at infinity[END_REF][START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF][START_REF] Assi | Deux remarques sur les racines approchées d'Abhyankar-Moh[END_REF], [START_REF] Rosales | Numerical Semigroups[END_REF][START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF], [START_REF] Rosales | Numerical Semigroups[END_REF][START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Abhyankar | Algorithmic Algebraic Geometry[END_REF] The following plotting compares the number of Abhyankar semigroups with given genus with other well known families of complete intersection numerical semigroups. Let Γ be a semigroup with conductor µ = 2g and let f be a polynomial with one place at infinity such that Γ(f ) = Γ. Let (f -λ) λ∈K be the pencil of polynomials defined by f . Given an element F = f -λ 0 of the pencil, if µ ∞ denotes the local Milnor number of F at the point at infinity, then we have µ + µ ∞ = (r 0 -1)(r 0 -2). Also, if g denotes the genus of the curve V(F ), then 2g + p∈V(F ) µ p + r p -1 + µ ∞ = (r 0 -1)(r 0 -2), where µ p (respectively r p ) denotes the Milnor number (respectively the number of places) at p. If the curve V(F ) is nonsingular in K 2 , then 2g + µ ∞ = (r 0 -1)(r 0 -2) = µ + µ ∞ , hence µ = 2g. In particular g is the geometric genus of a nonsingular element of the pencil (f -λ) λ∈K .

Embedding of one place curves in the affine plane

Let f (x, y) be a nonzero polynomial of K[x, y] and let A(f ) = K[x, y]/(f ). Given another polynomial g, we say that f and g are isomorphic if the two K-algebras A(f ) and A(g) are isomorphic. We say that f is equivalent to g if g = σ(f ) for some automorphism σ of K[x, y]. Then the following natural question arises: which isomorphic polynomials are equivalent?

Suppose that f has one place at infinity and let g be a polynomial with one place at infinity. It follows from Theorem 14 that if f is equivalent to g, then f and g have the same δ-sequence. The converse being not true in general.

Let

x(t) = t n + c 1 t n-1 + • • • + c n , y(t) = t m + c ′ 1 t m-1 + • • • + c ′ m be two polynomials of K[t]. Suppose that n > m > gcd(n, m) and let f (x, y) = y n + a 1 (x)y n-1 + • • • + a n (x)
be the y-monic generator of the kernel of the map φ : K[x, y] → K[t], φ(x) = x(t) and φ(y) = y(t) (there is such a generator because the curve has a single place at infinity). Then f has one place at infinity and A(f ) ∼ = K[x(t), y(t)]. Let g be another curve with one place at infinity. Then f is isomorphic to g if and only if A(g) ∼ = K[x 1 (t), y 1 (t))] ∼ = K[x(t), y(t)]. We have the following result.

Proposition 19. Let x(t), y(t), x 1 (t), y 1 (t) ∈ K[t] and let f (respectively g) be the y-monic generator of the map φ : K

[x, y] → K[t], φ(x) = x(t) and φ(y) = y(t) (respectively ψ : K[x, y] → K[t], ψ(x) = x 1 (t), ψ(y) = y 1 (t)). If A(f ) ∼ = K[x(t), y(t)] ∼ = A(g) ∼ = K[x 1 (t), y 1 (t)], then Γ(f ) = Γ(g).
Proof. The fact that x(t), y(t) ∈ K[x 1 (t), y 1 (t)] implies that there exist P (x, y), Q(x, y) such that x(t) = P (x 1 (t), y 1 (t)) and y

(t) = Q(x 1 (t), y 1 (t)). Let a ∈ Γ(f ) and let h ∈ K[x, y] be such that int(f, h) = deg t h(x(t), y(t)) = a. If h 1 (x, y) = h(P (x, y), Q(x, y)), then h 1 (x 1 (t), y 1 (t)) = h(P (x 1 (t), y 1 (t)), Q(x 1 (t), y 1 (t)) = h(x(t), y(t))
and deg t h 1 (x 1 (t), y 1 (t)) = a = int(g, h 1 ), whence a ∈ Γ(g). We prove in a similar way that Γ(g) is contained in Γ(f ).

Example 20. Isomorphic does not imply equivalent for polynomial curves. Let z(t) = t 3 -a, a = 0, x(t) = tz(t) = t 4 -at, and y(t) = z(t) 2 + a 2 z(t). We have x(t) 3 = t 3 z(t) 3 = z(t) 4 + az(t) 3 . We shall prove that K[x(t), y(t)] = K[x(t), z(t)]. The first inclusion is clear. Also, y(t) 2 = z(t) 4 + az(t) 2 + a 2 4 z(t) 2 = x(t) 3 + a 2 4 y(t) -a 3 8 z(t), whence a 3 8 z(t) = y(t) 2 -x(t) 3 -a 2 4 y(t) ∈ K[x(t), y(t)]. Let f (respectively g) be the y-monic generator of the map φ : K[x, y] → K[t], φ(x) = x(t) and φ(y) = y(t) (respectively ψ : K[x, y] → K[t], ψ(x) = x(t), ψ(y) = z(t)). Then f (x, y) = 1 2 a 2 x 3 y -1 2 a 2 y 3 + x 6 -2x 3 y 2 +y 4 + 1 16 a 4 x 3 = y 3 -x 2 -1 4 a 2 2 + 1 2 a 2 x 3 y + 1 16 a 4 x 3 -1 2 a 2 x 2 -1 16 a 4 and g(x, y) = y 4 +ay 3 -x 3 . Hence Γ(f ) = Γ(r(f )) = 6, 4, 3 and Γ(g) = Γ(r(g)) = 4, 3 . By Theorem 14, f is not equivalent to g.

This example provides a counter example for the conjecture stated in [START_REF] Shpilrain | Embeddings of Curves in the Plane[END_REF]. If g is another one place curve such that A(f ) is isomorphic to A(g), then Γ(f ) = Γ(g).

Hence the number of nonequivalent embeddings of f is bounded by the number of semigroups Γ = r 0 , r 1 , . . . , r h such that:

(1) Γ = Γ(f ), (2) Γ = r 0 , r 1 , . . . , r h and (r 0 , r 1 , . . . , r h ) is a δ-sequence.

Example 22. Let f (x, y) be such that Γ(f ) = 7, 6 . We have µ(f ) = 30. Let h = 2 and let Γ = r 0 , r 1 , r 2 with the Properties (1) and (2). Since 7 is a prime number, r 0 > 7. Hence r 0 ∈ 7, 6 . Furthermore, r 2 is either 6 or 7. If r 2 = 6, then d 2 = 7. Thus µ(f ) = 30 = µ 2 d 2 + (d 2 -1)(r 2 -1) = 7µ 2 + 30, and µ 2 = 0. In particular (r 0 , 7, 6) is not reduced. Finally r 2 = 7 and d 2 = 2, 3. This gives us the following solutions: δ 1 = (14, 6, 7), and δ 2 = (21, 6, 7). Note that if f (x, y) = y 7 -x 6 -x, g(x, y) = (y 7 -x 3 ) 2 -x, h(x, y) = (y 7 -x 2 ) 3 -x, then A(f ), A(g), and A(h) are isomorphic (though they are not equivalent since their associated δ-sequences are different). We can perform this task with our GAP implementation.

gap> s:=NumericalSemigroup(6,7); <Modular numerical semigroup satisfying 7x mod 42 <= x > gap> FrobeniusNumber(s); 29 gap> DeltaSequencesWithFrobeniusNumber(29); [ [START_REF] Assi | Deux remarques sur les racines approchées d'Abhyankar-Moh[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF], [START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF]19 ], [START_REF] Delgado | numericalsgps": a gap package on numerical semigroups[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF][START_REF] Shpilrain | Embeddings of Curves in the Plane[END_REF], [START_REF] Fujimoto | Construction of affine plane curves with one place at infinity[END_REF][START_REF] Abhyankar | Embedding of the line in the plane[END_REF]15 ], [START_REF]GAP -Groups, Algorithms, and Programming[END_REF][START_REF] Abhyankar | Irreducibility criterion for germs of analytic functions of two complex variables[END_REF], [START_REF] Rosales | Numerical Semigroups[END_REF][START_REF] Assi | Meromorphic plane curves[END_REF][START_REF] Fujimoto | Construction of affine plane curves with one place at infinity[END_REF]15 ], [START_REF] Rosales | Numerical Semigroups[END_REF][START_REF] Assi | Meromorphic plane curves[END_REF]14,[START_REF]GAP -Groups, Algorithms, and Programming[END_REF], [START_REF] Rosales | Numerical Semigroups[END_REF][START_REF] Delgado | numericalsgps": a gap package on numerical semigroups[END_REF][START_REF] Assi | Deux remarques sur les racines approchées d'Abhyankar-Moh[END_REF] 

  Now our assertion results by induction on k = 1, . . . , h. Corollary 11. Let the hypotheses be as in Lemma 9. Define σ 0

  ) If σ(y) = ay + h(x) with a ∈ K * and deg x h(x) ≥ 1, then deg y f = n < r1 = deg x f and n divides r1 . (3) If σ(y) = h(y) + ax with a ∈ K * and deg y h(y) = p ≥ 2, then r1 = deg x f = n divides deg y f = pn.

  , [ 15, 2 ], [ 15, 6, 2 ], [ 15, 10, 2 ] ] gap> Length(l); 10 gap> Length(Set(l,NumericalSemigroup)); 5 Next figure plots the number of Abhyankar semigroups and δ-sequences.

  Remark 21. (i) Let f (x, y) = 1 -xy and g(x, y) = 1 -xy k , k ≥ 2. Let C 1 : f = 0, C k : g = 0,and let φ :C 1 → C k , φ(a, b) = (a k , b) and ψ : C k → C 1 , ψ(c, d) = (cd k-1 , d). We have ψ • φ(a, b) = ψ(a k , b) = (a k b k-1 , b) = ((ab) k-1 a, b) = (a, b) and φ • ψ(c, d) = φ(cd k-1 , d) = (c k d k(k-1) , d) = (c(cd k ) k-1 , d) = (c, d).Hence C 1 and C k are isomorphic. Clearly C 1 and C k are not equivalent. Thus we have infinitely many inequivalent embeddings of C 1 in the affine plane. Note that C 1 (respectively C k ) has two places at infinity. (ii) Let f (x, y) be a plane curve with one place at infinity and let r(f ) = y n +a 2 (x)y n-2 +• • •+a n (x).

  , [ 14, 4, 19 ], [ 14, 6, 7 ], [ 15, 6, 10 ], [ 15, 10, 6 ], [ 16, 3 ], [ 16, 6, 3 ], [ 16, 12, 3 ], [ 16, 12, 6, 3 ], [ 18, 4, 15 ], [ 18, 12, 9, 7 ],[ 18, 12, 15, 4 ], [ 21, 6, 7 ], [ 22, 4, 11 ], [ 24, 16, 3 ], [ 24, 16, 6, 3 ], [ 24, 16, 12, 3 ], [ 24, 16, 12, 6, 3 ], [ 27, 6, 4 ], [ 31, 2 ] ] gap> Filtered(last, gs->NumericalSemigroup(gs)=s); [ [ 7, 6 ], [ 14, 6, 7 ], [ 21, 6, 7 ] ]
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In general, given f , this procedure gives us the δ-sequences of the candidates g such that A(f ) ∼ = A(g).