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Statistical and entanglement entropy for black holes in quantum geometry
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We analyse the relationship between entanglement (or geometric) entropy with statistical me-
chanical entropy of horizon degrees of freedom when described in the framework of isolated horizons
in loop quantum gravity. We show that, once the relevant degrees of freedom are identified, the two
notions coincide. The key ingredient linking the two notions is the structure of quantum geometry
at Planck scale implied by loop quantum gravity, where correlations between the inside and outside
of the black hole are mediated by eigenstates of the horizon area operator.

PACS numbers: 04.70.Dy, 04.60.-m

In the semiclassical regime where an approximate no-
tion of black hole (BH) makes sense, horizon area is quan-
tized in loop quantum gravity (LQG) [1–3]. As a conse-
quence, the dimensionality of the surface Hilbert space,
compatible with a maximum macroscopic area, is finite
and grows exponentially with the area in the large area
limit [4, 5]. In other words, if one treats the horizon itself
as a thermodynamical system in equilibrium—justified in
the case of large semiclassical black holes—then the mi-
cro canonical entropy, in the ensemble of surface states, is
proportional to the macroscopic black hole area. The rel-
evant ensemble is the one defined by the horizon surface
states.
The standard loop quantum gravity counting yields

[6, 7]

Sstat =
γ0

γ G
GN

A

4GN~
(1)

where G is the UV value of the gravitational constant at
the fundamental scale, GN is the low energy Newton’s
constant, γ is the Immirzi parameter, and γ0 is a numer-
ical constant that appears in the asymptotic expression
of the number of states.
The above result is compatible with Bekenstein-

Hawking’s entropy only if one fixes

γ = γ0
GN

G
. (2)

The necessity of fixing γ in order to achieve consistency
with the semiclassical regime is puzzling. The reason is
that the Immirzi parameter is a topological coupling in
the gravity first order action not affecting the classical
equations of motion (like the θ parameter of Yang-Mills
theories [8, 9]). Therefore, in contrast with expression
(1), one would expect to find γG only in quantum correc-
tions of a leading term matching exactly the Bekenstein-
Hawking entropy (as the Immirzi parameter plays an
important role in the quantum theory where geometric
operators have discrete spectra in the fundamental area
ℓ2LQG = γG~).

One logical possibility [10] is to interpret equation (2)
as a renormalization condition fixing the relationship be-
tween GN and G. If that were the case, then the numer-
ical value γ0 would have to have a clear interpretation in

the renormalization group flow of gravity. However, due
to the completely combinatorial way in which γ0 arises
(which does not make reference to any dynamical notion)
it is so far unclear how such scenario could be realized.
There is however a recent new perspective that might

be helpful in resolving this question. The idea is that vac-
uum fluctuation in the non geometric sector (including
matter degrees of freedom) should be appropriately taken
into account in the computation of black hole entropy (as
we will argue in Section IB all degrees of freedom close
to the horizon must be accounted for). This is not so in
the treatment leading to (4) as only pure-geometry area
eigenvalues are counted while ignoring the degeneracy as-
sociated to other degrees of freedom (including matter).
Indeed by taking these degrees of freedom suitably into
account one obtains[11], for arbitrary values of γ,

Sstat =
A

4GN~
+ η

√
A√
γG~

(3)

where η a dimensionless constant that depends on the
punctures statistics. As expected the fundamental scale
γG~ appears only in the quantum corrections to the
Bekenstein-Hawking entropy.
The fundamental surface degrees of freedom associated

to matter fields are hard to describe in LQG. Thus vac-
uum fluctuations in the analysis leading to the previous
equation are accounted for by using (qualitative) infor-
mation provided by standard QFT on the black hole
background (in a spirit analogous to what is done in
cosmological situations [12]). In particular there is an
expected contribution to black hole entropy from the en-
tanglement entropy of quantum fields across the black
hole horizon [13]. In standard QFTs the result is

Sent = λ
A

GN~
+ corrections. (4)

with λ left undetermined due to UV divergences and
other ambiguities such as the species problem (concretely,
λ = λ0GN~ǫ−2 for λ0 a regularization dependent dimen-
sionless constant and ǫ a UV cut-off length).
In the analysis of [11] equation (3) follows from the

assumption that the degeneracy contribution to the area
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spectrum coming from vacuum fluctuations of non geo-
metric degrees of freedom is given by the exponential of
(4) with an undetermined λ (this justifies the term qual-

itative used above 1). In the perturbative quantum grav-
ity framework there are indications that the ambiguities
encoded in the value of λ disappear if the gravitational
degrees of freedom are correctly taken into account [18].
In the non perturbative framework, such possibility is re-
inforced in a completely independent way by the results
of [11] where consistency fixes λ = 1/4 up to quantum
corrections.

However, as just mentioned, in the argument that leads
to (3) one assumes that one can interpret the (exponen-
tial of the) entanglement entropy of quantum fields across
the horizon as a measure of the degeneracy of the area
spectrum of the horizon (including all the UV degrees
of freedom). This assumption necessitates a suitable re-
lationship between entanglement and statistical entropy.
Exploring and establishing the degree to which such rela-
tionship holds in the LQG treatment of BHs is one of the
aims of this work. Some aspects concerning this question
have been considered in previous literature (for a recent
discussion see [19]). Entanglement of apparent horizons
in toy theories have been considered in [20], regions of
spin network states have been studied in [21], and it is
an important part of the argument of [17].

Finally, we would like to point out in this introduction
that there is a well know relationship between entangle-
ment entropy and Wald’s entropy [22] (for a review see
[23]). The present analysis deals with a similar ques-
tion but at the more fundamental Planckian level where
a statistical mechanical account of the thermodynamical
properties of BHs becomes available (including the fully
quantum treatment of gravitational contributions).

In Section I we will argue that the relevant degrees of
freedom both for entanglement and statistical mechanical
approaches to BH entropy are to be found on the local
Planckian vicinity of the BH horizon. In making this
case, we will revisit the results of [18], and gain new in-
sights by discussing their generalisation to eternal static
black holes in Section IA. In Section II we will briefly
review the quantum description of the BH horizon quan-
tum degrees of freedom in LQG. With this framework
at hand we will establish the sense in which entangle-
ment and statistical entropy are equivalent in quantum
geometry in Section III.

1 This type of holographic degeneracy appears naturally when con-
sidering the analytic continuation of the pure geometric degen-
eracy from real the Immirzi parameter γ to γ → ±i [14, 15]. The
same holographic behaviour of the number of degrees of freedom
available at the horizon surface is found from a conformal field
theoretical perspective for γ = ±i [16]. A relationship between
the termal nature of BH horizons and self dual variables seems
also valid according to similar analytic continuation arguments
[17].

I. WHY SURFACE DEGREES OF FREEDOM?

In this section we will discuss a common feature be-
tween the entanglement approach to black hole entropy
and the statistical mechanical approach followed in loop
quantum gravity: that the relevant correlations are the
UV correlations across the BH horizon in the first case;
that the relevant microstates are local excitation of the
horizon geometry and matter on the horizon in the sec-
ond case. In both cases a separation of scales is necessary
to isolate the relevant physics behind the notion of BH
entropy. Once this ingredient is incorporated to the anal-
ysis we will show that both approaches actually compute
the same thing: namely, the Boltzmann-Gibbs entropy
of the ensemble of surface microstates. Therefore, from
the appropriate perspective, BHs are standard thermo-
dynamical objects where the horizon plays the role of the
statistical mechanical system.

A. Long range correlation in entanglement entropy

Let us start with some discussion of the entanglement
approach. In particular we want to point out the influ-
ence of global features of the quantum state considered
when trying to compute the entanglement entropy asso-
ciated to the presence of a horizon.

The Rindler wedge with its family of uniformly ac-
celerated observers and associated Rindler horizon cap-
tures some of the physical aspects of black hole systems
in their infinite area limit. Entanglement entropy of the
Minkowski vacuum for the wedge is ill defined for the
UV problems mentioned above or exactly zero if one uses
the regularization prescription that is consistent with the
semiclassical Einstein’s equations compatible with the
flat background (i.e. for which 〈Tµν〉 = 0 [24]). We will
come back to this important point in Section IB. How-
ever, the changes in the entanglement entropy (relative
entropy [25]) under perturbations of the reduced density
matrix ρ = ρ0 + δρ turn out to be well defined [18] and
give

δSent = −Tr[(ρ0 + δρ) log(ρ+ δρ)]

= 2π

∫

Σ

δ〈Tµν〉χµdΣν

=
δA

4GN~
(5)

where χ is the corresponding boost killing vector field
(to which accelerated observers are tangent), Σ is an ar-
bitrary Cauchy surface of the Rindler wedge, and δA is
the change in the Rindler horizon area produced by the
back reaction of the perturbation. The second line follows
from the fact that, formally, the reduced density matrix
ρ0 obtained from the Minkowski pure state by tracing
out the degrees of freedom inaccesible to the Rindler ac-
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celerated observers takes the form

ρ0 =
exp(−2π

∫
Σ
T̂µνχ

µdΣν)

Z
. (6)

Conservation of the current δ〈Tµν〉χµ can be used to ex-
press the second line as the energy momentum flux of
the perturbation across the horizon. The Raychaudhuri
equations for the horizon generators—which are a con-
sequence of semiclassical Einsteins equations—imply the
final result. In this sense the above equation is semiclas-
sical and hence insensitive to the UV quantum gravity
physics (as expected for a relative entanglement entropy).
One might have naively expected an additive term δS∞

coming from the energy momentum flux to infinity in the
direction normal to the horizon. However, as this corre-
sponds to (a piece of) a single generator of I

+ (future
null infinity) the associated energy flux vanishes for a
regular perturbation (e.g. compact support on Σ). A
proof of such statement for massless scalar fields is given
in [24], section 5.1. On physical grounds one expects this
to be valid in general. However, we will see below that
this potential entropy flux at infinity becomes non trivial
when equation (5) is generalised to the black hole setting.
While it is true that a finite slab of proper width ℓ

outside a stationary BH horizon is locally isometric with
the corresponding slab of width ℓ of Rindler space-time
in the limit where the BH area A → ∞ while keeping ℓ
fixed [26]; the two space times are clearly not the same

globally in that limit. The difference is apparent when
one considers the spacetime conformal compactification
as in Figure 1. This is a key limitation of modelling black
hole physics with a Rindler spacetime in quantum field
theory where long range correlations can be important.
As mentioned, there is no entanglement entropy flow

term at infinity in the Rindler analysis: due to the global
structure of the Rindler horizon regular perturbations
cannot avoid crossing the horizon and register their en-
tropy content by an area change as in (5). However,
the situation completely changes in the context of BHs.
Notice first that the argument leading to (5) can be gen-
eralized in order to calculate perturbations to the entan-
glement entropy of the eternal static black hole in the
Hartle-Hawking vacuum. This is achieved by replacing
(6) with ρ0 = exp(−2πκ−1

∫
Σ
T̂µνχ

µdΣν) where χu is the
Killing field generating inertial time translations at infin-
ity (such simple generalization might not be available for
general stationary black holes where the analog of the
Hartle-Hawking vacuum does not exist [27]). However,
the BH generalization of (5) will contain a non vanishing
extra term accounting for the energy-momentum flow of
the perturbation at infinity, namely

δSBH
ent =

δA

4GN~
+ δS∞, (7)

where δS∞ is the entropy flow across future null and
timelike infinity I + ∪ i+.
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FIG. 1: On the left: Penrose diagram of Minkowski spacetime exhibiting a Rindler horizon. In the conformal compactification
the Rindler horizon is the past light cone of a point q ∈ I

+ and the future light cone of a point q′ ∈ I
− minus a single generator

of I
+ and I

− respectively. This global picture implies that, for suitable fields and in contrast with a BH horizon, the Rindler
horizon is a good initial value surface. The Rindler wedge corresponds here to region I. In the Rindler wedge portion of the
diagram, bold face letters II in contrast to simply I tell us that I is separated from the readers ‘view’ by the Rindler horizon.
On the right: The Penrose diagram of the eternal Schwarzschild BH, where radiation can escape to infinity without being
registered on the BH horizon. The shaded regions represent a perturbation that has compact support at a Cauchy surface of
region I: on the left, the energy flow of the perturbation cannot avoid crossing the Rindler horizon.

Thus equation (7) tells us two important pieces of information. The first one is that long range correla-
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tions contribute non trivially to entanglement entropy
but that these contributions are not related to BH en-
tropy. Notice that one can have δSent 6= 0 with a per-
turbation that does not affect the horizon surface (the
entanglement boundary) by arranging δ〈Tµν〉 to com-
pletely flow into I + without crossing the horizon. Long
range correlations—see equation (10)—which are present
in massless fields can produce entropy flow to null infinity
as well as to future timelike infinity (the classical coun-
terpart of these are the so-called tails). Massive fields
cannot produce entropy flow out to I +; however, for
suitable perturbations (unbounded states of the pertur-
bation) there are non trivial contributions to δS∞ from
the flow through i+. The term at infinity in (7) can be
written as2

δS∞ =
δE+

TH
, (8)

where δE+ is the amount of energy flow to future infinity
and TH = κ/(2π) is Hawking temperature. One can also
write (7) as

δSBH
ent =

δM

TH
=

δA

4GN~
+
δE+

TH
, (9)

where δM is the change in the ADM mass of the sys-
tem due to the perturbation. Thus, even thought it is
well known that bulk corrections exist in (4), the present
analysis makes their geometric origin and thermodynam-
ical meaning transparent.
All this implies that if one wants to describe black hole

entropy from the entanglement idea one has to have the
means of separating the bulk contributions to entangle-
ment from the genuine horizon contributions. The cri-
terion is locality: the term arising from the UV physics
close to the entanglement boundary are the ones to be
taken into account. Concretely, in standard QFT these
are the modes that produce a UV diverging contribution
or the ones that lead to a term proportional to the area.
As we will discuss further below, the same separation of
degrees of freedom is made in the statistical mechanical
account of BH entropy in LQG.

2 More generally, the flow of entropy across I + can also be given
a thermodynamical interpretation for stationary local observers
inside as follows: assume that one gives initial conditions for the
perturbation δρ on a Cauchy surface Σ for the exterior of the
static BH space-time. Assume that 〈δTµν 〉 = Tr[T̂µνδρ] has com-
pact support on Σ. Take a timelike hyper surface W defined by
r = r0 =constant intersecting Σ on a sphere with r0 sufficiently
large to contain the region where 〈δTµν 〉 6= 0. W represents
a family of stationary observers surrounding the BH. Then one

has that δSI
+

∞
= −δE/T where δE is the energy-momentum

flow across W , and T = TH/‖ξ‖ is the local temperature of the
Hartle-Hawking state as measured by the stationary observers at
W (with ‖ξ‖ the norm of the stationarity Killing field normalised
at infinity). This is the the standard thermodynamical entropy
flow of the perturbation across W as measured by these local
observers.

The second indication from the perturbative result
(5)—the main message of [18]—is that the inclusion of
the gravitational degrees of freedom renders entangle-
ment entropy finite and free from its usual regulariza-
tion ambiguities and the species problem. This second
conclusion is validated in the non perturbative by the
analysis of [11] (given the relationship between entangle-
ment and the number of surface microstates advocated
here). The argument shows how the equations of state of
the quantum horizon imply that the undetermined (UV
divergent) constant λ (of equation (4)) is finite an takes
the value λ = 1/4 (up to quantum corrections) in the
semiclassical regime. As suggested in [18], gravitational
effects resolve the ambiguity of the standard QFT en-
tanglement account. However, as mentioned before, one
key assumption in [11] is that the equation (4) can be
directly interpreted as degeneracy of the area spectrum
of the quantum horizon D(A) = exp(λA/(GN~)) due to
non-geometric degrees of freedom. Before arguing that
this is indeed correct let us discuss the question of the
localisation of the relevant degrees of freedom accounting
for BH entropy.

B. From the statistical mechanics perspective the

relevant degrees of freedom are localised at the

horizon

Mixed states do not exist in nature. However, the con-
cept is the key mathematical tool for the description of
systems in statistical mechanics which in turn is the fun-
damental basis of thermodynamics. One of its keystones
in the construction is the introduction of a notion of
coarse graining producing exact physical laws for macro-
scopic variables by treating microscopic details proba-
bilistically. Statistical mechanics becomes useful in those
situations where one can concentrate on suitable average
quantities assumed to take well defined values up to (typ-
ically) small fluctuations whose exact details are ignored.
The states of such systems are mathematically modelled
by a statistical mixture of microstates (in a suitably de-
fined ensemble) in quantum statistical mechanics. It is
in terms of the latter that the notion of thermodynamic
entropy becomes non trivial and meaningful.
Stationary black holes are, in a suitable sense, equilib-

rium statistical mechanical systems. As stationary space
times they represent the final stage of gravitational col-
lapse which is completely described, according to the no-
hair theorem, by members of the Kerr-Newman family
labelled by only three macroscopic parameters: the mass
M , the angular momentum J , and the electromagnetic
charge Q. These three macroscopic parameters are the
coarse graining variables for the thermodynamical de-
scription of BHs.
The microstates are to be found in the local Planckian

details of fields at the BH horizon. Stationary observers
outside of the BH have causal access to the local degrees
of freedom of matter and space-time as they crossed the
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forming BH horizon. These degrees of freedom are en-
tirely registered on the horizon; as a null surface whose
domain of dependence is the interior of the BH. However,
they are (infinitely) redshifted to late stationary outside

observers who are, in this way, only sensitive to their UV
or Planckian structure. The many different initial condi-
tions leading to the formation of a black with the same
M , J and Q are ironed out by this infinite redshift and
become inaccessible in practice to macroscopic observers
(much like the phase space position of molecules in a gas
in thermal equilibrium). Moreover, because of the red-
shift factor vanishing at the horizon, these excitations
appear as horizon surface degrees of freedom for (late)
stationary outside observers. The latter include both the
Planckian geometric as well as matter excitations (‘vac-
uum fluctuations’). These are the micro states in the
statistical mechanical description of BHs; they are, by
the above argument, fundamentally quantum in nature,
and they are localised at the BH horizon.
The thermal system is the horizon itself. This view is

complemented by the fact that Hawking’s effect of BH
radiation is entirely due to the near horizon geometry in
stationary BHs (for a concrete example see [28]).

1. A perspective on information loss in BH systems

According to the perspective advocated here (aiming
at the statistical mechanical description of BH thermo-
dynamics), a system producing a BH by gravitational
collapse is to be described by a mixed state initially. The
coarse graining variables are the final parameters M,J ,
and Q of a stationary BH, 3 while the large number of
different initial conditions leading to it at late times are
the microstates. As argued the latter are Planckian in
nature and involve both matter as well as gravitational
degrees of freedom.
In this context, dynamical evolution from the initially

mixed-state need not to purify it in the late future. Even
if the standard semiclassical expectation is correct and
one ends up with a final state made purely of the thermal
radiation emitted during BH evaporation, this will not
represent by itself a paradox. In fact if the evolution is
unitary one would expect the initial entropy of the mixed
state on I− simply to match that of the final state at
I +.
However, this is not yet satisfactory to clarify the fate

of information ‘falling behind the BH event horizon’.
This is so because one can set up a thought scenario
where the initial state is indeed pure (one of the mi-
crostates leading to the formation of the macroscopic BH

3 As, in the context of the information loss paradox discussion,
the system is analyzed until complete evaporation of the BH to
Hawking radiation; here M,J , and Q are the values of these
parameters long time after the collapse but before back reaction
of the hawking radiation starts being important.

in late times). However, as mentioned above, this would
necessitate the specification of Planckian degrees of free-
dom; therefore, the use of a quantum dynamical evolu-
tion that can only be described in a fully background in-
dependent manner (semiclassical arguments are just not
the right language to describe the question of unitarity).
If evolution is unitary 4 the end result would look—from
the semiclassical perspective—as a thermal state for con-
tinuum field excitations (particles of QFT) but it would
remain pure due to the correlations with the Planckian
gravitational degrees of freedom that remain hidden to
low energy (coarse) observers. If evolution is unitary a
detailed account on how the correlations leak out of ‘the
BH region’ during the long history of BH formation and
subsequent evaporation would have to be given in the
framework of the quantum theory. However, we have
seen in the discussion of the present paper that non-local
correlations are relevant in the discussion of entangle-
ment between the inside and the outside of the horizon.
It seems to us that here is no need to invoke other sources
of non-locality such as the constraint structure of gravity
as advocated in a proposal aiming at preserving unitarity
in the much stronger sense of the ADS-CFT framework
see [30].

The scenario described here seems quite plausible in
the framework LQG, where even flat space time is ex-
pected to arise as very intricate linear combinations of
polymer like quantum excitations. In such framework,
the very notion of Minkowski is only approximate, i.e.,
arising in a suitable coarse grained sense [31–33]. Thus
many different microstates will be classified as flat space-
time by low energy (standard QFT) observers for which
Planckian details and correlations with the fundamental
degrees of freedom remain hidden.

The picture proposed here is quite the analog of that
of burning an encyclopaedia: information before and af-
ter is the same due to unitarity. Before burning we have
the books in the atmosphere in some initial state. After
burning the information remains in the correlations of the
individual molecules of hot gas produced by the combus-
tion. If we wait even longer, then the air in the atmo-
sphere seems to recover its initial state which of course
is not the same due to the everlasting correlations of the
microscopic degrees of freedom. Observers that are not
capable of reading these correlations must accept with
resignation that information is (practically) lost.

4 The possibility that information is lost to outside observers by
quantum gravity in the context of gravitational collapse cannot
be ruled out and does not represent any inconsistency with local
unitarity [29]. In order to a quantum gravity dynamical descrip-
tion of the fate of the classical BH singularity is mandatory.
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C. Black hole entropy as entanglement entropy:

the relevant correlations are also the local ones

across the horizon

In quantum field theory vacuum correlations at space-
like separated points in 3+1 dimensions diverge quadrat-
ically in the geodesic distance d(x, y) separating them,
namely

〈φ(~x)φ(~y)〉 ≈ 1

|d(x, y)|2 . (10)

As a consequence of the local nature of correlations en-
tanglement entropy in 3 + 1 dimension (when calculated
in standard QFT) diverges quadratically with the cut-off
scale ǫ and is hence proportional to the boundary surface
area A:

Sent = λ0
A

ǫ2
+ corrections, (11)

where λ0 is a regularisation dependent factor. The previ-
ous equation is the main motivation to view entanglement
entropy as a possible candidate for an account BH en-
tropy [13]. It can be proved rigorously for ground states
of lattice systems with suitable interactions mimicking
QFT systems [34]. Despite of the fact that entanglement
entropy is not really well defined in the standard QFT
scenario, entropy difference between two quantum states
(relative entropy) is well defined and satisfies important
properties [25, 35]. However, a description of entangle-
ment entropy across the horizon in view of a fundamen-
tal explanation of BH entropy cannot be based on the
concept of relative entropy in a background independent
approach as the one of LQG. This is thus because relative
entropy is insensitive to the UV physics that we have ar-
gued encodes the relevant degrees of freedom behind BH
entropy. Thus, for the problem at hand, one necessitates
a full quantum gravity formulation, or UV completion,
that eliminates the ambiguities of entanglement entropy
referred to above 5 . In what follows we describe what
quantum geometry and LQG tell us about entanglement
from the UV structure close to the BH horizon.

II. ACCOUNTING FOR SURFACE DEGREES

OF FREEDOM IN LOOP QUANTUM GRAVITY

In this section we describe the isolated horizon model
for the black hole horizon surface degrees of freedom. We

5 One would expect that gravitational effects would modify cor-
relations at the microscopic scales. Interestingly if one bounds
the correlations (10) by ℓ−2

Pl
then the Hawking effect is not af-

fected in the large BH limit [36]. Such bound for correlations are
confirmed by spherically symmetric model calculations in LQG
[37] 6. Here we are assuming that the fundamental discreteness
predicted by LQG must be compatible with Lorentz invariance
as enforced on physical grounds by the constraints raised in [38]
and rediscussed from an independent perspective in [39].

will also show that the entanglement entropy of these
degrees of freedom coincides in a suitable sense with the
micro canonical entropy of the ensemble defined by the
surface micro states.

Statistical mechanics of the Horizon degrees of

freedom

Isolated horizons [40] is the standard mathematical
framework for the statistical mechanical treatment of
quantum black holes in LQG. The notion is an ideali-
sation that allows to represent a suitable quasi-local defi-
nition of BH horizons in equilibrium by an infinite dimen-
sional phase space to be quantized. While such frame-
work might not capture all the physics associated to BHs
in quantum gravity (in particular due to its local nature
it is unclear how to encode in the formalism the long
range correlations that are important in the description
of certain quantum processes), it is expected to describe
the local microscopic degrees of freedom necessary for
the statistical mechanical account of semiclassical black
holes.
The presentation of the basic geometric idea will be

enough for the purposes of this letter. The basic idea be-
hind isolated horizons can be understood from the per-
spective of the initial value problem of general relativity
in terms of characteristic data on null surfaces. One con-
siders a null surface ∆ with topology S2 × [0, 1] ⊂ R and
a transversal null surface δ as shown in Figure 3. For
simplicity here we concentrate on the spherically sym-
metric case (distortion and rotation can be included [41]
but this is not central to the argument presented here).
Concretely, if one puts the characteristic data cor-

responding to the Schwarzschild horizon with area A
on ∆ and then completes the characteristic data with
suitable Schwarzschild data on δ, then one recovers the
Schwarzschild geometry as the unique solution of Ein-
steins equations (up to diffeomorphisms) in the domain
of dependence of ∆∪δ. This is a single point in the phase
space ΓA of spherically symmetric isolated horizons. The
infinite dimensional phase space ΓA is given by the set
of solutions of Einstein’s equations obtained by keeping
the previous data fixed on ∆ while setting arbitrary free
characteristic data on δ. By fixing Schwarzschild data
with (macroscopic) horizon area A on ∆ the definition
introduces the coarse graining that is the cornerstone of
the thermodynamical description.
The phase space ΓA can be quantised according to

the standard canonical prescription once appropriate fun-
damental extended field variables are chosen [42]. The
Hilbert space H of the system splits into two factors ac-
cording to H = H∆⊗Hout, where H∆ is the a boundary
Hilbert space (describing the degrees of freedom of the
isolated horizon), and Hout is the exterior volume Hilbert
space (describing the physical degrees of freedom in the
exterior of the BH horizon). The latter is defined by so-
lutions of the dynamical constraints in the bulk which
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are assumed to be expressible in terms of suitable com-
binations of spin network states (including matter field
configurations supported on them). The Hilbert space
H∆ can be shown to be given by an SU(2) Chern-Simons
Hilbert space of a sphere S2 with an arbitrary number
of sources labelled by spins [43]7. Physical states satisfy
a boundary constraint imposing the spins of the Chern-
Simons sources to match the spins of the open links of
bulk spin network states in Hout [5].
The physical states described above are eigenstates

of the IH horizon area operator Â∆ whose eigenvalues
(being Â∆ local) depend only on the spins labelling
the Chern-Simons states (or equivalently the puncturing
links of the bulk spinnetworks). More precisely, if {jp}
denote the ensemble of spins at punctures labelled by an
index p then

Â∆ |ψ{jp}
out 〉 = 8πγℓ2Pl

∑

p

√
jp(jp + 1) |ψ{jp}

out 〉 (12)

where |ψ{jp}
out 〉 ∈ H∆ ⊗ Hout and the subindex out

schematically denotes all the quantum numbers corre-
sponding to labels of a complete basis of local observables
in the outside. Notice that these include the quantum
numbers describing not only the space-time geometry but
also the matter degrees of freedom. The parameter γ is
the Immirzi parameter. Entropy of the isolated Horizon
is defined (in the microcanonical) approach as

SBH = log(NA) (13)

where NA spin configurations satisfying the restriction.

A− δ ≤ 8πγℓ2Pl

∑

p

√
jp(jp + 1) ≤ A+ δ . (14)

Notice that one is only counting horizon surface degrees
of freedom that are compatible with the coarse graining
condition defined by the macroscopic area A that defines
the isolated horizon.

Correlations across isolated horizons

A key point is that one could follow a similar proce-
dure and construct the inside physical states. Starting
from the phase space Γ′

A of the inside isolated horizon—
defined now in terms of the same characteristic data on ∆
and independent free data on δ′ (see Figure 3). One can
thus define a Hilbert space H ′ = Hin ⊗ H∆ and, going
through the very same prescription, obtain the physical
states describing the fields on the inside of the isolated

horizon. Such states can be denoted |ψ{jp}
in 〉 ∈ Hin⊗H∆

7 For a proposal of an intrinsic derivation of the BH physical states
from the full theory see [44].

in analogy with the previous notation for outside physical
states. The horizon constraints imply that the number of
punctures with their spins arriving at ∆ from the inside

match the number of punctures with their spin arriving
at ∆ from the outside. This implies that the physical
states describing a neighbouring four dimensional region
of an isolated horizon ∆ can be graphically represented
as in Figure 2, where the links connecting the inside with
the outside are spin network edges labelled by spins that
are not explicitly written for notational simplicity.

PSfrag replacements

inside outside

∆

FIG. 2: The isolated horizon quantisation allows for correla-
tions to be mediated only through the links of spin-networks
crossing the horizon. This implies the equivalence between
entanglement and statistical mechanical entropy.

At this stage it will be convenient to adopt a more
compact notation

|ψ{jp}
in 〉 −→ |ψa

in〉
|ψ{jp}

out 〉 −→ |ψa
out〉 (15)

where the single multy-index a labels eigenvalues of the
area and replaces the ensemble {jp}. Then a state de-
scribing a four dimensional region of the space-time con-
taining the horizon compatible with the coarse graining
condition (14) can be written as follows

|Ψ〉 =
∑

a

αa |ψa
in〉 |ψa

out〉, (16)

where |ψa
in〉 and |ψa

out〉 denote physical states compatible
with the boundary data a, and describing interior and
in the exterior state of matter and geometry of the BH
respectively and the αa are coefficients.
The expression (16) of the physical state follows di-

rectly from the definition of the isolated horizon quan-
tization. The form of this equation implies that corre-
lations between the outside and the inside at Planckian
scales are mediated by the spin-network links punctur-
ing the separating boundary. The isolated horizon treat-
ment restricts the vacuum correlations to be ultra-local
at Planck scale8.

8 The heart of the point raised here might be related to properties
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PSfrag replacements

δ′ ∆

δ

FIG. 3: A set of null surfaces with a non trivial domain of
dependence containing the isolated horizon ∆.

As described above, the bulk degrees of freedom in the
isolated horizon framework consist of entirely outgoing
modes of gravitational and matter radiation. By bulk de-
grees of freedom here we mean those that are controlled
by the Hamiltonian and diffeomorphism constraints on
the interior of δ. These bulk degrees of freedom are ig-
nored in the computation of BH entropy; such prescrip-
tion is well justified physically by the discussion of the
physics of gravitational collapse. However, notice that
they are exactly of the same nature of those excitations
leading to long range correlation contributions to the en-
tanglement entropy in (7). The separation of degrees of
freedom necessary in the entanglement account of BH en-
tropy and the one provided by the IH prescription are in
this way compatible with each other.

III. ENTANGLEMENT ENTROPY VS.

STATISTICAL MECHANICAL ENTROPY

Now we can compute the entanglement entropy associ-
ated to the local surface correlations across the horizon.
We will do this first in the case of a pure state of the form
(16). We will show that it is bounded by the micro canon-
ical entropy (13); however, its precise value depends (as
should be expected) on the values of the coefficients αa.
As argued above the nature of the BH collapse is such
that the αa encode details of the microphysics that be-
comes unavailable in the coarse grained setting where the
notion of BH entropy makes sense. Such ignorance of
the microphysics leading to the macroscopic BH requires
the introduction of an statistical mixture or mixed state.
When this is done then the entanglement entropy of the
physically appropriate mixed state is equal to the micro
canonical entropy in LQG.

1. Pure state entanglement entropy

We start from (16) and assume states to be normalized
as follows: 〈ψa

out|ψa
out〉 = 1, 〈ψa

in|ψa
in〉 = 1, and 〈Ψ|Ψ〉 =

of tensor network states and related notions where area law for
entanglement entropy holds by construction. For a review and
references see [34].

1. The pure state density matrix is

ρ = |Ψ〉〈Ψ| =
∑

a,a′

αaᾱ
′
a |ψa

in〉 |ψa
out〉 〈ψa′

in| 〈ψa′

out| (17)

The reduced density matrix, obtained by tracing over the
inside degrees of freedom, becomes

ρout ≡
∑

i,a

〈a, i|Ψ〉〈Ψ|a, i〉

=
∑

a,i

|αa|2βiaβ̄ia |ψa
out〉〈ψa

out| (18)

where βia ≡ 〈a, i|ψa
in〉. From this one gets

ρout =
∑

a

pa|ψa
out〉〈ψa

out|,

with pa = |αa|2. The question now is what are the correct
physical values of the probabilities pa? In the present
context where we started from a pure state (17) the only
thing we can say is that the (pure state) entanglement
entropy

Sout ≡ −Tr[ρout log(ρout)] ≤ log(NA) = SBH , (19)

i.e. it is bounded by the micro-canonical entropy (13).
The equivalence can be achieved if the physical states
(pure states) describing a semiclassical black hole would
have nearly to equal values of the probabilities pa = |αa|2
in the set of a satisfying (14).
The approximate equiprobability condition is certainly

plausible considering that the recovering of semiclassical
states compatible with the low energy continuum limit
would require the contribution of the vast ensemble of
eigenstates of the horizon area operator. Contributions
might turn out to be approximately homogeneous in the
range (14). Unfortunately, details on the way in which
the continuum limit is to be recovered in the LQG frame-
work are hard to quantify at present in the framework.
However, we will argue in the following subsection that
this perhaps not necessary.

2. Mixed states entanglement entropy

As we have argued in the introduction the coarse
grained physics of the horizon is insensitive to the Planck-
ian details that distinguish the different pure (micro)
states producing black holes with a definite final value
of their extensive parameters. In such context the idea
of reproducing the quantum state (as a pure state) re-
flecting the low energy properties of the suitable vacuum
is unrealistic (as it would be to established the phase
space coordinates of 1023 particles in a gas in equilibrium
inside a box). As discussed before the only available in-
formation on the state producing the black hole is coarse
grained (low resolution) information. In such context the
best one can do is to define a density matrix describing
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a mixed state corresponding to the statistical mixture
of all the micro states—each of which would correspond
to a distinguished initial pure state of matter and fields
before collapse—satisfying our coarse graining criterion.
Consequently instead of (17) we take

ρ =
∑

a,a′

paa′ |ψa
in〉 |ψa

out〉 〈ψa′

in| 〈ψa′

out| (20)

as our starting point. Here paa′ is a positive definite
matrix of coefficients describing the statistical mixture
of states of the form (16). The reduced density matrix
becomes

ρout ≡
∑

i,a

〈a, i|ρ|a, i〉

=
∑

a,i

paa |ψa
out〉〈ψa

out| (21)

which, as a result of the partial trace, only depends on the
diagonal elements paa. The assumption of ergodicity (ex-
pected in a system with such huge number of microscopic
degrees of freedom in equilibrium) together with the idea
that horizon area is the correct coarse graining observ-
able naturally selects a paa independent of the particu-
lar eigenvalue within the range (14), hence paa = N

−1
A .

From this is follows that

Sout = SBH . (22)

Moreover, if a notion of local energy is available for
those observers that are stationary with respect to the
horizon one can find the equivalence with a canonical
ensemble description. Assuming that the horizon is in
thermal equilibrium with the outside for such observers,
then the previous equiprobability criterion leads to the
Boltzman probabilities pa = Z−1 exp(−βEa) where β is
inverse temperature and Ea is the corresponding energy
eigenvalue. The Hamiltonian is the one generating a time
flow with respect to which the system is in local equilib-
rium [45]. This is precisely the area Hamiltonian intro-
duced in [26]. In such case we recover the canonical en-
semble standard expression of the entropy. The structure
of physical states at the Planck scale and the semiclassi-
cal input of the previous section imply that entanglement
entropy is just the same as statistical mechanical entropy
in LQG.

Long range correlations

Equation (16) is central for establishing the relation-
ship between statistical and entanglement entropy in the
framework of loop quantum gravity. As argued, this is
a consequence of the IH boundary condition (notice that
the restriction imposed here on short range correlations
are similar to those imposed in recent treatments [46] or
[47], yet they are weaker in the sense that correlations in
the UV are defined at a single horizon puncture). The

question that remains is wether such condition is compat-
ible with the form of inside-outside correlations expected
in semiclassical states describing the near horizon geom-
etry.
Even thought it would be necessary to leave the frame-

work of quantum isolated horizons in order to describe
situations where the bulk physics is relevant and in-out

exchanges are allowed, it seems reasonable to expect that
the dominant contributions to BH entropy (coming from
the UV correlations close to the horizon) should be cor-
rectly captured by the present treatment. As argued in
Section I, long range correlations contribute to changes
in entanglement entropy that can correctly be accounted
for by the notion of relative entropy which is insensitive
to the UV structure of spacetime.
The description of BH entropy from the entanglement

perspective necessarily requires a separation of scales
where UV correlations close to the horizon dominate over
IR long range correlations. Such separation of scales is
natural from the classical physics of gravitational col-
lapse, and the definition of the coarse graining that as-
sociates micro states to Planckian details of the hori-
zon physics. Quantum isolated horizons are designed to
model these fundamental excitations of the horizon de-
grees of freedom. They provide at the same time the
natural separation of scales and the UV structure of ge-
ometry near the horizon.

IV. DISCUSSION

We have illustrated how, by generalising the discussion
of [18] to static black hole backgrounds, without the ap-
propriate separation of degrees of freedom, entanglement
entropy contains bulk terms which in perturbation the-
ory represent leakage of entropy at infinity. Even when
these flow terms can be interpreted thermodynamically
in a suitable sense (see eq. (9) and footnote 2) they are
not associated to BH entropy. This is not surprising as
it is well know that entanglement across the horizon has
bulk contributions which strongly depend on the nature
of the quantum state considered due to long range corre-
lations which are unrestricted in QFT. For the entangle-
ment approach to black hole entropy is essential to have
the means to separate the wheat of local UV contribu-
tions across the BH horizon from the straw of long range
correlations.
Another important aspect is that relative entropy (for

perturbations of the vacuum state) is by definition in-
sensitive to the UV microphysics that we expect to be
at the root of a fundamental account for BH entropy. A
counterpart of this is the fact that changes of entangle-
ment entropy and changes in the horizon law are related
by the use of the semiclassical Einsteins equations where
geometry remains classical (low energy physics governs
the relationship (5)). The fact that the inclusion of
the (semiclassical) gravitational coupling eliminates the
species problem in a thermodynamical sense. This is an
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encouraging indication which needs to be realized at the
fundamental level (statistically) by the description of the
would-be-divergent UV contributions of matter and its
background independent coupling to geometry in quan-
tum gravity.
The framework of quantum isolated horizon accounts

for the UV excitations of the horizon geometric and non
geometric degrees of freedom (including matter). These
are the micro states in an ensemble defined by the macro-
scopic parameters associated to a stationary semiclassi-
cal horizon. Once the appropriate physical UV degrees
of freedom are identified, entanglement entropy and sta-
tistical mechanical entropy are the same. Conversely, the
physical states selected by the isolated horizon boundary
condition present inside-outside correlations leading to
the maximum entanglement of the geometric degrees of
freedom (under the standard assumption of equal prob-
ability distribution for states satisfying (14)). In such
situation entanglement entropy coincides with the loga-
rithm of the number of micro states compatible with the
coarse graining macroscopic parameters that define the
statistical ensemble.
The present discussion naturally leads to a possibly

clarifying perspective on the information loss discussion.

In Section IB 1 we described this perspective based on
the possibility of having purifying correlations between
the low energy degrees of freedom of continuous fields and
the UV discrete gravitational degrees of freedom that are
hidden to standard low energy semiclassical observers.
Such possibility is allowed by quantum gravity theories
where continuum physics is only recovered under appro-
priate coarse graining of local observables. This view is
complementary to the one expressed in [48] where the
fate of classical singularities in quantum gravity is a key
element of the discussion.
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