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Introduction

The notion of topological gradient which has been rigorously formalized in [START_REF] Masmoudi | The topological asymptotic[END_REF][START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] for shape optimization problems has a wide range of applications : structural mechanics, optimal design, inverse analysis and more recently image processing [START_REF] Auroux | From restoration by topological gradient to medical image segmentation via an asymptotic expansion[END_REF][START_REF] Auroux | Image restoration and classification by topological asymptotic expansion[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF]. Roughly speaking the topological gradient approach performs as follows : let Ω be an open bounded set of R 2 and j(Ω) = J(Ω, u Ω ) be a cost function where u Ω is the solution of a given PDE on Ω. For small ǫ ≥ 0, let Ω ǫ = Ω\x 0 + ǫω where x 0 ∈ Ω and ω is a given subset of R 2 . The topological analysis provides an asymptotic expansion of j(Ω ǫ ) as ǫ → 0. In most cases it takes the form :

j(Ω ǫ ) = j(Ω) + ǫ 2 I(x 0 ) + o(ǫ 2 )
(1) I(x 0 ) is called the topological gradient at x 0 . Thus, in optimal design for example, if we want to minimize j(Ω ǫ ) it would be preferable to create holes at points x 0 where I(x 0 ) is "the most negative". In practice, we keep points x 0 where the topological gradient is less than a given negative threshold. In image processing the choice of the cost function is guided by the aimed application. For example for detection or segmentation problems, we have to choose a cost function which blows up in a neighbourhood of the structure we want to detect. Thus removing from the initial domain such a neighbourhood implies a large variation of the cost function and so a large topological gradient. In [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF] the method was applied for edge detection by studying the topological sensitivity of j(Ω) = Ω |∇u Ω | 2 dx where u Ω is the solution of a Laplace equation. For filament (or point) detection, the problematic is different. Indeed there is no jump of the image intensity across this type of structure which is of zero Lebesgue measure. Typically the intensity takes the value 1 on the fine structure and 0 elsewhere. It is known (see for example Steger [START_REF] Steger | An unbiased detector of curvilinear structures[END_REF]) that the gradient operator is not adapted since "it does not see" these structures. In this case we have to use a cost function defined from the Hessian matrix of a regularized version of the initial image. Inspired from the theory of thin plates ( [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], chapter 8), the main goal of this paper is to compute the topological gradient associated to the following model : if Ω denotes the image domain and if f is the initial grey values image (the data, possibly degraded) we search for u Ω as the solution of the fourth order PDE :

(P)      ∆ 2 u + u = f, in Ω B 1 (u) = 0, on ∂Ω B 2 (u) = 0, on ∂Ω (2)
where B 1 (u) and B 2 (u) are natural boundary conditions to be specified in the next section (in fact we will study a more general model). The cost function is then defined as:

J Ω (u) = Ω (∆u) 2 + 2(1 -ν) ∂ 2 u ∂x 1 ∂x 2 2 - ∂ 2 u ∂x 2 1 ∂ 2 u ∂x 2 2 (3) 
where 1 < ν < 0 is a parameter (the Poisson ratio). The link between u Ω and J Ω (u) is

u Ω = argmin u∈H 2 (Ω) J Ω (u) + u -f 2 L 2 (Ω)
Let us notice that for ν = 0 the cost function simplifies as J Ω (u) = Ω ∇ 2 u 2 2 . This latter cost function has been used in the numerical companion paper [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF] for detecting fine structures in 2D or 3D images (see also [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF]).

In this work we compute the topological gradient associated to [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] and [START_REF] Amstutz | The topological asymptotic for the Navier-Stokes equations[END_REF] when Ω ǫ = Ω\x 0 + ǫB(0, 1) and Ω ǫ = Ω\x 0 + ǫσ(n) where B(0, 1) is the unit ball of R 2 and σ(n) is a straight segment with normal n (a crack, see Figure 1). 

We warn the reader that the proofs are very technical and we only give the main steps. For the complete proofs and some results in 3D we refer the reader to [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF]. The numerical analysis of the model as well numerous examples will be given in [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF]. Most of the results of our work have been announced in [START_REF] Aubert | Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images[END_REF].

Remark 0.1. The study of topological sensitivity for fourth order operators is not new. In [START_REF] Amstutz | Topological asymptotic analysis of the Kirchhoff plate bending problem[END_REF], the authors in a different context, compute the topological gradient for the Kirchhoff plate bending in the case of a circular inclusion. Our model is simpler and we are able to give explicit expressions of the topological gradient both in the cases of circular inclusions and of cracks.

Remark 0.2. The link between the PDE and the cost function simplifies the topological gradient computation but it is easy to adapt the method for some other cost functions.

In the following, we denote by u m,Ω = u H m (Ω) (respectively |u| m,Ω = |u| H m (Ω) ) the norm (respectively the seminorm) on the Sobolev spaces H m (Ω) and u s,Γ the norm on the fractional Sobolev space H s (Γ) with Γ = ∂Ω.

The outline of the paper is as follows. In section 1 we define precisely the cost function and the variational problem. In section 2 (respectively section 3) we give the main steps of the computation of the topological gradient in the case of a circular inclusion (respectively of a crack). The paper ends with three appendices in which are developed details not given in section 2 and 3.

Definition of the cost function and variational model

In this section we specify the general cost function and the variational model we want to study. Before, we give a lemma explaining why the natural operator we have to use in the cost function for detecting points and curves in 2D must be of second order.

Detecting fine structures: what is the good operator?

We denote by D(R 2 ) the space of C ∞ -functions with compact support in R 2 and D ′ (R 2 ) the space of distributions on R 2 . We refer the reader to [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF] for the proof of the following lemma.

Lemma 1.1. Let ϕ : R 2 -→ R be a Lipschitz continuous function, and let (g h ) h>0 be a sequence of functions defined by

g h (x) = 1 θ 1 (h) e - ϕ 2 (x) θ 2 (h)
where θ i : R + -→ R + and lim

h→0 θ i (h) = 0 (i) Let a ∈ R 2 , by setting ϕ(x) = x -a , θ 1 (h) = πh and θ 2 (h) = h then g h -→ h→0 δ a , in D ′ (R 2 )
Besides we have

∇g h (a) = [0, 0] T , ∇ 2 g h (a) = - 2 πh 2 I where I denotes the identity in R 2 . (ii) Let Γ be a smooth closed curve or a smooth infinite curve of R 2 delimiting two sub-domains R 2 Γ -and R 2 Γ
+ forming a partition of R 2 . Let ϕ be the signed distance to Γ defined by :

ϕ(x) = dist(x, R 2 Γ -) -dist(x, R 2 Γ + ) We denote by R 2 Γ + (resp. R 2 Γ -), the sub-domain {ϕ > 0} (resp. {ϕ < 0}).
Taking the following scalings :

θ 1 (h) = √ πh and θ 2 (h) = h, we have g h -→ h→0 δ Γ , in D ′ (R 2 )
Besides for all x ∈ Γ we have

∇g h (x) = [0, 0] T , spec(∇ 2 g h (x)) = - 2 h 3/2 , 0
where spec(M ) denotes the eigenvalues of the matrix M. The associated eigenvectors to ∇ 2 g h on Γ are (∇ϕ(x), ∇ϕ(x) ⊥ ) where ∇ϕ(x) = n(x).

So this lemma shows heuristically that the gradient "does not see " fines structures in R 2 (points and filaments). On the other hand second derivatives are singular on these structures.

Definition of the cost function and the fourth order PDE

We give now the general cost function we are going to study. The cost function is more general than [START_REF] Amstutz | The topological asymptotic for the Navier-Stokes equations[END_REF]. It is defined by:

J Ω (u) = Ω (∆u) 2 + 2(1 -ν) ∂ 2 u ∂x 1 ∂x 2 2 - ∂ 2 u ∂x 2 1 ∂ 2 u ∂x 2 2 + γ|∇u| 2 dx, 0 < ν < 1, γ ≥ 0 (4) Remark 1.2.
(i) When γ = 0 we retrieve (3). (ii) We check easily that J Ω :

J Ω (u) ≥ (1 -ν)|u| 2 H 2 (Ω) + γ|u| 2 H 1 (Ω) , ∀u ∈ H 2 (Ω) (5) 
For small ǫ > 0, let (a)

Ω ǫ = Ω\{x 0 + ǫω} or (b) Ω ǫ = Ω\{x 0 + ǫσ(n)}, where x 0 ∈ Ω, ω = B(O, 1)
is the unit ball of R 2 and σ(n) is a straight segment centered at the origin and with normal n (a crack). We introduce the bilinear and linear forms:

a ǫ (u, v) = Ωǫ ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1 + γ∇u.∇v + uv l ǫ (v) = Ωǫ f v (6) 
Thanks to Lax-Milgram lemma, it is easy to prove that for ǫ ≥ 0 fixed there exists a unique

u ǫ ∈ H 2 (Ω ǫ ) such that a ǫ (u ǫ , v) = l ǫ (v), ∀v ∈ H 2 (Ω ǫ ) (7) 
This solution u ǫ necessarily satisfies the Euler equation:

(P ǫ )      ∆ 2 u ǫ -γ∆u ǫ + u ǫ = f, on Ω ǫ B 1 (u ǫ ) -γ∂ n u ǫ = 0, on ∂Ω ǫ B 2 (u ǫ ) = 0, on ∂Ω ǫ (8) 
where

B 1 (u) = ∂ n (∆u) -(1 -ν)∂ σ n 1 n 2 ∂ 2 u ∂x 2 1 - ∂ 2 u ∂x 2 2 -(n 2 1 -n 2 2 ) ∂ 2 u ∂x 1 ∂x 2 and B 2 (u) = ν∆u + (1 -ν) n 2 1 ∂ 2 u ∂x 2 1 + n 2 2 ∂ 2 u ∂x 2 2 + 2n 1 n 2 ∂ 2 u ∂x 1 ∂x 2 where f ∈ L 2 (Ω ǫ ); n = (n 1 , n 2 )
is the outward normal to the domain, and σ = (σ 1 , σ 2 ) is the tangent vector such that ( n, σ) forms an orthonormal basis.

Remark 1.3.

(i) When γ = 0, ( 7) is well-posed by using Gagliardo-Nirenberg inequalities [START_REF] Adams | Sobolev spaces. Pure and applied mathematics[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF]. The computation of the topological gradient is the same as in the case γ = 0. (ii) We have the following relation :

a ǫ (u, u) = J Ωǫ (u) + u 2 0,Ωǫ
We denote by P 1 the set of polynomial of degree less or equal than 1, and by C all constants not depending on ǫ. Finally, we will use the quotient space H m (Ω)/P 1 which is the set of H m (Ω) functions defined up to a polynomial of degree less or equal than 1. In the paper, we study independently the case of a domain perforated by a ball and the case of a cracked domain.

2.

Computation of the topological gradient in the case of the ball 2.1. Notations and statement of the problem Let x 0 ∈ Ω and B(O, 1) the unit ball. We define Ω ǫ = Ω\x 0 + ǫB(O, 1) with x 0 and ǫ chosen such that the perturbation does not touch the border. By denoting B = B(x 0 , 1) and

B ǫ = B(x 0 , ǫ) we have ∂Ω ǫ = ∂B ǫ ∪ Γ (Γ = ∂Ω).
Problem (P ǫ ) rewrites as

(P b ǫ )      ∆ 2 u ǫ -γ∆u ǫ + u ǫ = f, on Ω ǫ B 1 (u ǫ ) -γ∂ n u ǫ = 0, on ∂B ǫ ∪ Γ B 2 (u ǫ ) = 0, on ∂B ǫ ∪ Γ (9) 
Let v ∈ H 2 (Ω ǫ ), and u ǫ the solution of P b ǫ . By a classical regularity result, u ǫ ∈ H 4 (Ω ǫ ). Then by using integration by parts on Ω ǫ , and ( [9] p.376), we get from ( 7) and ( 8) :

Ωǫ f v = Ωǫ ∆ 2 u ǫ -γ∆u ǫ + u ǫ v = a ǫ (u ǫ , v) - Bǫ ((B 1 (u ǫ ) -γ∂ n u ǫ ) v -B 2 (u ǫ )∂ n v) + Γ ((B 1 (u ǫ ) -γ∂ n u ǫ ) v -B 2 (u ǫ )∂ n v)
To simplify notations we suppose that x 0 ≡ 0. Now to compute the topological gradient, we have to estimate the leading term when ǫ → 0 in the difference J ǫ (u ǫ ) -J 0 (u 0 ). Using equations satisfied by u ǫ and u 0 we have

J ǫ (u ǫ ) -J 0 (u 0 ) = Ωǫ (f -2u 0 )(u ǫ -u 0 ) - Ωǫ (u ǫ -u 0 ) 2 - Bǫ (f -u 0 )u 0 (10) 
Let us denote L ǫ : H 2 (Ω ǫ ) -→ R the linear map

L ǫ (u) = Ωǫ (f -2u 0 )u, ∀u ∈ H 2 (Ω ǫ ) (11) 
and

J ǫ = - Ωǫ (u ǫ -u 0 ) 2 - Bǫ (f -u 0 )u 0 (12) 
The first step for evaluating [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF] is to introduce v ǫ the unique solution of the adjoint problem (see [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] and [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF])

a ǫ (u, v ǫ ) = -L ǫ (u), ∀u ∈ H 2 (Ω ǫ ) (13) 
From ( 13) and [START_REF] Martin | Exact solution of a hypersingular integral equation[END_REF] we rewrite (10)

J ǫ (u ǫ ) -J 0 (u 0 ) = -a ǫ (u ǫ -u 0 , v ǫ ) + J ǫ = -l ǫ (v ǫ ) + a ǫ (u 0 , v ǫ ) + J ǫ = - Ωǫ f v ǫ + Ωǫ ∆ 2 u 0 -γ∆u 0 + u 0 v ǫ + ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) v ǫ -B 2 (u 0 )∂ n v ǫ + J ǫ = ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) v ǫ -B 2 (u 0 )∂ n v ǫ + J ǫ
Then we set w ǫ = v ǫv 0 , where v 0 is the solution [START_REF] Masmoudi | The topological asymptotic[END_REF] with ǫ = 0, (Ω 0 = Ω), thus we rewrite

J ǫ (u ǫ ) -J 0 (u 0 ) = ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) v 0 -B 2 (u 0 )∂ n v 0 + ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) w ǫ -B 2 (u 0 )∂ n w ǫ + J ǫ
Now we express the difference J ǫ (u ǫ ) -J 0 (u 0 ) as a sum of more simple terms.

For

ϕ 1 ∈ H 3/2 (∂B ǫ ), ϕ 2 ∈ H 1/2 (∂B ǫ ) let l ϕ1,ϕ2 ǫ ∈ H 2 (B ǫ ) the solution of the problem      ∆ 2 l ϕ1,ϕ2 ǫ = 0, on B ǫ l ϕ1,ϕ2 ǫ = ϕ 1 , on ∂B ǫ ∂ n l ϕ1,ϕ2 ǫ = ϕ 2 , on ∂B ǫ (14) 
For u ∈ H 2 (Ω ǫ ) we denote by l u ǫ the function l u,∂nu ǫ , and for ǫ = 1 by l ϕ1,ϕ2 the function l ϕ1,ϕ2

1

. The difference becomes :

J ǫ (u ǫ ) -J 0 (u 0 ) = ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) v 0 -B 2 (u 0 )∂ n v 0 + ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) l wǫ ǫ -B 2 (u 0 )∂ n l wǫ ǫ + J ǫ = L ǫ + K ǫ + J ǫ (15) 
where

K ǫ = ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) l wǫ ǫ -B 2 (u 0 )∂ n l wǫ ǫ , L ǫ = ∂Bǫ (B 1 (u 0 ) -γ∂ n u 0 ) v 0 -B 2 (u 0 )∂ n v 0 Let u 0 (x) = u 0 (x) -u 0 (0) -∇u 0 (0).x, it is straightforward that K ǫ = ∂Bǫ (B 1 ( u 0 ) -γ∂ n u 0 ) l wǫ ǫ -B 2 ( u 0 )∂ n l wǫ ǫ
Then integration by parts (see [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF] p.376) gives

K ǫ = Bǫ ∆ 2 u 0 l wǫ ǫ -b ǫ ( u 0 , l wǫ ǫ ) - Bǫ γ (∆u 0 l wǫ ǫ -∇u 0 .∇l wǫ ǫ )
where b ǫ (u, v) is the bilinear form associated to [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF] and defined by

b ǫ (u, v) = Bǫ ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1
Integration by parts again gives :

K ǫ = Bǫ ∆ 2 u 0 -γ∆u 0 l wǫ ǫ + γ∇u 0 .∇l wǫ ǫ - Bǫ ∆ 2 l wǫ ǫ =0 u 0 + ∂Bǫ B 1 (l wǫ ǫ ) u 0 -B 2 (l wǫ ǫ ) ∂ n u 0 (16) 
In a similar manner

L ǫ = Bǫ ∆ 2 u 0 -γ∆u 0 v 0 + γ∇u 0 .∇v 0 - Bǫ ∆ 2 v 0 u 0 + ∂Bǫ B 1 (v 0 ) u 0 -B 2 (v 0 )∂ n u 0 (17) 
We set F = (f -2u 0 ), thus we have in the distributional sense for ǫ → 0 :

∆ 2 v 0 -γ∆v 0 + v 0 = -F in D ′ (B ǫ ) (18) 
From ( 15), ( 16), [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] and [START_REF] Steger | An unbiased detector of curvilinear structures[END_REF] we get

L ǫ + K ǫ = Bǫ (f -u 0 ) v 0 + γ∇u 0 .∇v 0 + Bǫ (F -γ∆v 0 + v 0 ) u 0 + Bǫ ∆ 2 u 0 -γ∆u 0 l wǫ ǫ + γ∇u 0 .∇l wǫ ǫ + ∂Bǫ (B 1 (l wǫ ǫ ) + B 1 (v 0 )) u 0 - ∂Bǫ (B 2 (l wǫ ǫ ) + B 2 (v 0 )) ∂ n u 0 = Bǫ (f -u 0 ) v 0 + γ∇u 0 .∇v 0 + J A -J B + E 1 + E 2 + E 3 (19) 
where

J A = ∂Bǫ (B 1 (l wǫ ǫ ) + B 1 (v 0 )) u 0 , J B = ∂Bǫ (B 2 (l wǫ ǫ ) + B 2 (v 0 )) ∂ n u 0 E 1 = Bǫ (F -γ∆v 0 + v 0 ) u 0 , E 2 = Bǫ ∆ 2 u 0 -γ∆u 0 l wǫ ǫ , E 3 = Bǫ γ∇u 0 .∇l wǫ ǫ (20) 
In the next subsection, we will show that E 1 , E 2 and E 3 are ∽ o(ǫ 2 ) and that J A and J B are ∽ O(ǫ 2 ). Before we establish the asymptotic expansion of B 1 (v 0 ), B 2 (v 0 ) and w ǫ .

Estimates of

B 1 (v 0 )(x) and B 2 (v 0 )(x) for x ∈ ∂B ǫ
Proposition 2.1. Suppose v 0 regular, then when ǫ → 0 we have the following boundary expansions :

B 1 (v 0 )(ǫX) = - g 1 (X) ǫ + O(1) , B 2 (v 0 )(ǫX) = -g 2 (X) + O(ǫ)
where setting X = (cos(θ), sin(θ)) ∈ ∂B

g 1 (X) = g 1 (θ) = (1 -ν) ∂ 2 v 0 ∂x 2 1 (0) - ∂ 2 v 0 ∂x 2 2 (0) cos(2θ) + 2(1 -ν) ∂ 2 v 0 ∂x 1 ∂x 2 (0)sin(2θ) g 2 (X) = g 2 (θ) = - (1 + ν) 2 ∆v 0 (0) - (1 -ν) 2 ∂ 2 v 0 ∂x 2 1 (0) - ∂ 2 v 0 ∂x 2 2 (0) cos(2θ) -(1 -ν) ∂ 2 v 0 ∂x 1 ∂x 2 (0)sin(2θ)
Proof. It suffices to expand B 1 (v 0 )(ǫX) and B 2 (v 0 )(ǫX) around ǫ = 0 by using Taylor formula (see [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF] for details)

Asymptotic expansion of w ǫ

We recall that w ǫ = v ǫv 0 is the solution of :

(Q b ǫ )                ∆ 2 w ǫ -γ∆w ǫ + w ǫ = 0, on Ω ǫ B 1 (w ǫ ) -γ∂ n w ǫ = -B 1 (v 0 ) + γ∂ n v 0 , on ∂B ǫ B 2 (w ǫ ) = -B 2 (v 0 ), on ∂B ǫ B 1 (w ǫ ) -γ∂ n w ǫ = 0, on Γ B 2 (w ǫ ) = 0, on Γ (21) 
We denote by B ′ the exterior domain R 2 \B, and we introduce the weighted Sobolev space [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF] :

W 2 (B ′ ) = u, u (1 + r 2 )log(2 + r 2 ) ∈ L 2 (B ′ ), ∇u (1 + r 2 ) 1/2 log(2 + r 2 ) ∈ L 2 (B ′ ), ∇ 2 u ∈ L 2 (B ′ ) ( 22 
)
where r = |x|. We denote by W 2 (B ′ )/P 1 the set of functions W 2 (B ′ ) defined up to a polynomial of degree less or equal than 1. To estimate w ǫ , we introduce (see [START_REF] Amstutz | The topological asymptotic for the Navier-Stokes equations[END_REF][START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF]) the following exterior problem

(P ext )      ∆ 2 P = 0, on B ′ B 1 (P ) = g 1 , on ∂B B 2 (P ) = g 2 , on ∂B (23) 
where g 1 ∈ H -3/2 (∂B) and g 2 ∈ H -1/2 (∂B) are given in Proposition 2.1. From Theorem 5.3 (Appendix B), we deduce that problem (P ext ) admits a unique solution P ∈ W 2 (B ′ )/P 1 and P can be written as the sum of simple and double layers potential :

P (x) = ∂B λ 1 (y)E(x -y)dσ(y) + ∂B λ 2 (y)∂ ny (E(x -y))dσ(y)
where λ 1 and λ 2 are densities that we can determine in function of the boundary data; E(x) denotes the bilaplacian fundamental solution :

E(x) = - 1 8π |x| 2 log(|x|) (24) 
From Theorem 5.3 (Appendix B) and Proposition 2.1 we get

λ 1 = αcos(2θ) + βsin(2θ) , λ 2 = c + acos(2θ) + bsin(2θ) (25) 
where

a = -2 1 -ν 3 + ν ∂ 2 v 0 ∂x 2 1 (0) - ∂ 2 v 0 ∂x 2 1 (0) , b = -4 1 -ν 3 + ν ∂ 2 v 0 ∂x 1 ∂x 2 (0) , c = - 1 + ν 1 -ν ∆v 0 (0) α = 2a , β = 2b (26) 
Then from Lemma 5.6 (Appendix B), we prove that w ǫ = ǫ 2 P x ǫ + e ǫ with e ǫ 2,Ωǫ = O(-ǫ 2 log(ǫ)). In the next subsection we estimate J A , J B , E 1 , E 2 and E 3 .

Estimates of J

A , J B , E 1 , E 2 and E 3 Lemma 2.2. Let J A , J B , E 1 , E 2 and E 3 given in (20),

we have the following estimates

J A = ǫ 2 1 2 ∂B λ 1 (y)∇ 2 u 0 (0)y.ydσ(y) + o(ǫ 2 ) , J B = -ǫ 2 ∂B λ 2 (y)∇ 2 u 0 (0)y.ydσ(y) + o(ǫ 2 ) E 1 = O(ǫ 3 ) , E 2 = O(-ǫ 3 log(ǫ)) , E 3 = O(-ǫ 3 log(ǫ))
Proof. From the linearity of the solution of ( 14), by using the jump relations (46) given in Theorem 5.3 (Appendix B) and the asymptotic expansion of w ǫ we get

J A = ∂Bǫ B 1 (v 0 ) + B 1 (l ǫ 2 P ( x ǫ )+eǫ ǫ ) u 0 = ǫ ∂B B 1 (v 0 )(ǫX) + 1 ǫ B 1 (l P )(X) u 0 (ǫX)dσ(X) + F 1 = ǫ ∂B -g 1 (X) + B 1 (l P )(X) ǫ u 0 (ǫX)dσ(X) + F 1 + F 2 = ǫ ∂B -g 1 (X) + B 1 (l P )(X) ǫ ǫ 2 2 ∇ 2 u 0 (0)X.Xdσ(X) + F 1 + F 2 + F 3 = ǫ 2 1 2 ∂B λ 1 (y)∇ 2 u 0 (0)y.ydσ(y) + F 1 + F 2 + F 3
where

F 1 = ∂Bǫ B 1 (l eǫ ǫ ) u 0 , F 2 = ǫ ∂B B 1 (v 0 )(ǫX) + g 1 (X) ǫ u 0 (ǫX)dσ(X) F 3 = ∂B -g 1 (X) + B 1 (l P )(X) u 0 (ǫX) -ǫ 2 1 2 ∇ 2 u 0 (0)X.X dσ(X)
Let B r such as B B r ⊂ 1 ǫ Ω. By a change of variable, by using Lemma 5.2 (Appendix B), a Taylor expansion of u 0 (ǫX), the trace theorem applied on B r \B, a change of variable and Lemma 5.6 (Appendix B), the following estimate holds

F 1 = ǫ ∂B B 1 (l eǫ ǫ )(ǫX) u 0 (ǫX)dσ(X) = ǫ ∂B 1 ǫ 3 B 1 (l eǫ ǫ (ǫX)) u 0 (ǫX)dσ(X) ≤ C|l eǫ ǫ (ǫX)| 2,B = C|l eǫ(ǫX) | 2,B ≤ C e ǫ (ǫX) H 2 (Br\B)/P1 ≤ Cǫ|e ǫ | 2,Ωǫ ≤ Cǫ 3 log(ǫ)
From estimates given in Proposition 2.1, and by a Taylor expansion of u 0 (ǫX) at 0 we easily see that

F 2 = O(ǫ 3 ) , F 3 = O(ǫ 3 ) Similarly J B = ∂Bǫ B 2 (v 0 ) + B 2 l ǫ 2 P ( x ǫ )+eǫ ǫ ∂ n u 0 = ǫ ∂B B 2 (v 0 )(ǫX) + B 2 (l P )(X) ∂ n u 0 (ǫX)dσ(X) + F 4 = ǫ ∂B -g 2 (X) + B 2 (l P )(X) ∂ n u 0 (ǫX)dσ(X) + F 4 + F 5 = ǫ 2 ∂B -g 2 (X) + B 2 (l P )(X) ∇ 2 u 0 (0)X.ndσ(X) + F 4 + F 5 + F 6 = -ǫ 2 ∂B λ 2 (y)∇ 2 u 0 (0)y.ydσ(y) + F 4 + F 5 + F 6
where

F 4 = ∂Bǫ B 2 (l eǫ ǫ )∂ n u 0 , F 5 = ǫ ∂B (B 2 (v 0 )(ǫX) + g 2 (X)) ∂ n u 0 (ǫX)dσ(X) F 6 = ∂B -g 2 (X) + B 2 (l P )(X) ∂ n u 0 (ǫX) -ǫ 2 ∇ 2 u 0 (0)X.n dσ(X)
Similarly to the F 1 computation, and from a Taylor expansion of ∂ n u 0 (ǫX) we can prove that

F 4 = O(-ǫ 3 log(ǫ))
Then from estimates given in Proposition 2.1 and a Taylor expansion of ∂ n u 0 (ǫX) we obtain

F 5 = O(ǫ 3 ) , F 6 = O(ǫ 3 )
Thus, we deduce the estimates of J A and J B given in the lemma.

For E 1 , by using a change of variable, a Taylor expansion of u 0 (ǫX) and the definition of F given in [START_REF] Steger | An unbiased detector of curvilinear structures[END_REF], it is straightforward that

E 1 = O(ǫ 3 )
For E 2 , a change of variable, Lemma 5.2 (see Appendix B) with ǫ = 1, the trace theorem applied on B r \B, a change of variable again, and finally Lemma 5.6 (see Appendix B) lead to

E 2 = ǫ 2 B ∆ 2 u 0 (ǫX)l wǫ ǫ (ǫX) ≤ Cǫ 2 l wǫ(ǫX) 0,Br\B ≤ Cǫ 2 w ǫ (ǫX) 2,B ≤ Cǫ 2 w ǫ (ǫX) 0,Br\B + |w ǫ (ǫX)| 1,Br\B + |w ǫ (ǫX)| 2,Br\B ≤ Cǫ 2 1 ǫ w ǫ 0,Ωǫ + |w ǫ | 1,Ωǫ + ǫ|w ǫ | 2,Ωǫ ≤ Cǫ 3 log(ǫ)
where B B r ⊂ 1 ǫ Ω. Similarly for E 3 we have

E 3 =≤ Cǫ (|w ǫ | 1,Ωǫ + ǫ|w ǫ | 2,Ωǫ ) ≤ -Cǫ 3 log(ǫ)

Computation of the topological gradient in the case of the ball

From ( 15), ( 19) and using estimates given in Lemma 2.2 we have

J ǫ (u ǫ ) -J 0 (u 0 ) ǫ 2 = π (f (0) -u 0 (0)) v 0 (0) + γπ∇u 0 (0).∇v 0 (0) + 1 2 ∂B λ 1 (y)∇ 2 u 0 (0)y.ydσ(y) + ∂B λ 2 (y)∇ 2 u 0 (0)y.ydσ(y) + J ǫ ǫ 2 + o(1)
Using polar coordinates and from the expressions of λ 1 and λ 2 given in (25) and (26), we obtain

J ǫ (u ǫ ) -J 0 (u 0 ) ǫ 2 = π (f (0) -u 0 (0)) v 0 (0) + γπ∇u 0 (0).∇v 0 (0) + ∂ 2 u 0 ∂x 2 1 (0) - ∂ 2 u 0 ∂x 2 2 (0) ∂ 2 v 0 ∂x 2 1 (0) - ∂ 2 v 0 ∂x 2 2 (0) πa ′ + ∂ 2 u 0 ∂x 2 ∂x 1 (0) ∂ 2 v 0 ∂x 2 ∂x 1 (0)π4a ′ + πc ′ ∆u 0 (0)∆v 0 (0) + J ǫ ǫ 2 + o(1)
where

a ′ = -2 1 -ν 3 + ν , c ′ = - 1 + ν 1 -ν ,
From (12) and by using Lemma 5.6 applied to u ǫu 0 and a Taylor expansion of f and u 0 at 0 , we have

J ǫ = -πǫ 2 (f (0) -u 0 (0))u 0 (0) + o(ǫ 2 )
2.6. Conclusion : general expression for all x 0 ∈ Ω

The topological gradient of the cost function J ǫ in the case of the ball associated with P b ǫ given in ( 9) is for all point x 0 ∈ Ω :

I(x 0 ) = π (f (x 0 ) -u 0 (x 0 )) (v 0 (x 0 ) -u 0 (x 0 )) + γπ∇u 0 (x 0 ).∇v 0 (x 0 ) - 2π(1 -ν) 3 + ν ∂ 2 u 0 ∂x 2 1 (x 0 ) - ∂ 2 u 0 ∂x 2 2 (x 0 ) ∂ 2 v 0 ∂x 2 1 (x 0 ) - ∂ 2 v 0 ∂x 2 2 (x 0 ) + 4 ∂ 2 u 0 ∂x 2 ∂x 1 (x 0 ) ∂ 2 v 0 ∂x 2 ∂x 1 (x 0 ) - π(1 + ν) 1 -ν ∆u 0 (x 0 )∆v 0 (x 0 ) (27)
3. Study in the case of the crack

Notations and statement of the problem

For each smooth manifold Σ ⊂ Ω, we define the following spaces :

H 1/2 00 (Σ) = {u |Σ , u ∈ H 1/2 ( Σ), u | Σ\Σ = 0} , H 3/2 00 (Σ) = {u |Σ , u ∈ H 3/2 ( Σ), u | Σ\Σ = 0}
where Σ is a smooth closed manifold containing Σ and of the same dimension. We define on these spaces the following norms

u |Σ H 1/2 00 (Σ) = u H 1/2 ( Σ) , u |Σ H 3/2 00 (Σ) = u H 3/2 ( Σ) Now, let σ ⊂ Ω a C 1 -
manifold of dimension 1, with normal n and containing the origin. We denote by τ the tangent vector to the crack σ such as (n, τ ) forms an orthonormal basis. ∂τ denotes the differentiation along the vector τ and dτ stands for the curvilinear Lebesgue measure along σ. In this section we set the crack exterior domain, Λ = R 2 \σ. As for the ball we define the following weighted Sobolev space on Λ :

W 2 (Λ) = u, u (1 + r 2 )log(2 + r 2 ) ∈ L 2 (Λ), ∇u (1 + r 2 ) 1/2 log(2 + r 2 ) ∈ L 2 (Λ), ∇ 2 u ∈ L 2 (Λ)
where r = |x|. We denote by W 2 (Λ)/P 1 the space of W 2 (Λ) functions defined up to P 1 functions and by Ω ǫ the cracked domain Ω\x 0 + ǫσ. We assume that σ ǫ ∩ ∂Ω = ∅ and to simplify that x 0 ≡ 0. We set σ ǫ = {x, x ǫ ∈ σ}. Thus ∂Ω ǫ = σ ǫ ∪ Γ and the problem (P ǫ ) expresses as ǫ ∈ ω} and Ω ǫ = Ω\ ω ǫ (see Figure 2). Let v ∈ H 2 (Ω ǫ ) and u ǫ the solution of (P c ǫ ). Thanks to classical regularity result, we obtain that u ǫ ∈ H 4 (Ω ǫ ). With an integration by parts in Ω\ ω ǫ ∪ ω ǫ (see [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], p.376) the variational formulation of (P c ǫ ) is

(P c ǫ )      ∆ 2 u ǫ -γ∆u ǫ + u ǫ = f, on Ω ǫ B 1 (u ǫ ) -γ∂ n u ǫ = 0, on σ ǫ ∪ Γ B 2 (u ǫ ) = 0, on σ ǫ ∪ Γ (28) 
Ωǫ f v = Ωǫ ∆ 2 u ǫ -γ∆u ǫ + u ǫ v = a ǫ (u, v) - σǫ ((B 1 (u ǫ ) -γ∂ n u ǫ ) [v] -B 2 (u ǫ )[∂ n v]) + Γ (B 1 (u ǫ )v -B 2 (u ǫ )∂ n v) , ∀v ∈ H 2 (Ω ǫ )
where a ǫ (u, v) is given in ( 6) and where we set 2). To simplify, we assume that σ = {(s, 0), -1 < s < 1} (we place us in the local coordinate system of the crack).

[v] = v + -v -the jump of v through σ ǫ and [∂ n v] = (∂ n v) + -(∂ n v) - the jump of ∂ n v (see Figure
We compute the topological gradient as in the case of the ball in evaluating the leading term in the asymptotic expansion of J ǫ (u ǫ ) -J 0 (u 0 ) when ǫ → 0. By using equations that u ǫ and u 0 verify, we have

J ǫ (u ǫ ) -J 0 (u 0 ) = Ωǫ (f -2u 0 )(u ǫ -u 0 ) - Ωǫ (u ǫ -u 0 ) 2 (29) 
We define L ǫ (u) as in [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF], and we set

J ǫ = - Ωǫ (u ǫ -u 0 ) 2 (30) 
As in [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF] and [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF], to evaluate (29), we introduce v ǫ the solution of the adjoint problem [START_REF] Masmoudi | The topological asymptotic[END_REF]. From ( 13) and (30) we rewrite (29)

J ǫ (u ǫ ) -J 0 (u 0 ) = -a ǫ (u ǫ -u 0 , v ǫ ) + J ǫ = -l ǫ (v ǫ ) + a ǫ (u 0 , v ǫ ) + J ǫ = - Ωǫ f v ǫ + Ωǫ ∆ 2 u 0 -γ∆u 0 + u 0 v ǫ + σǫ B 1 (u 0 )[v ǫ ] -B 2 (u 0 )[∂ n v ǫ ] + J ǫ = σǫ (B 1 (u 0 ) -γ∂ n u 0 ) [v ǫ ] -B 2 (u 0 )[∂ n v ǫ ] + J ǫ
Then we set w ǫ = v ǫv 0 where v 0 is solution of [START_REF] Masmoudi | The topological asymptotic[END_REF], with ǫ = 0. Thus, J ǫ (u ǫ ) -J 0 (u 0 ) rewrites as

J ǫ (u ǫ ) -J 0 (u 0 ) = σǫ (B 1 (u 0 ) -γ∂ n u 0 ) [w ǫ ] -B 2 (u 0 )[∂ n w ǫ ] + J ǫ = I A -I B + J ǫ (31) 
where

I A = σǫ (B 1 (u 0 ) -γ∂ n u 0 ) [w ǫ ] , I B = σǫ B 2 (u 0 )[∂ n w ǫ ] (32) 
In the next subsection, we show that I A and I B ∽ O(ǫ 2 ) and that J ǫ ∽ o(ǫ 2 ). We first establish the asymptotic expansion of B 1 (v 0 ), B 2 (v 0 ) and w ǫ .

Estimates of

B 1 (v 0 )(x) and B 2 (v 0 )(x) for x ∈ σ ǫ Proposition 3.1.
By assuming that v 0 is smooth, and by setting X = (s, 0) for -1 < s < 1, we have the following boundary expansions when ǫ → 0

B 1 (v 0 )(ǫX) = O(1) , B 2 (v 0 )(ǫX) = -g 2 (X) + O(ǫ)
where

g 2 (X) = - ∂ 2 v 0 ∂x 2 2 (0) -ν ∂ 2 v 0 ∂x 2 1 (0)
Proof. It is straightforward by using that ∂τ = -∂x 1 and ∂n = ∂x 2 .

Asymptotic expansion of w ǫ

We recall that

w ǫ = v ǫ -v 0 is the solution of (Q c ǫ )            ∆ 2 w ǫ -γ∆w ǫ + w ǫ = 0, on Ω ǫ B 1 (w ǫ ) -γ∂ n w ǫ = -B 1 (v 0 ) + γ∂ n v 0 , on σ ǫ B 2 (w ǫ ) = -B 2 (v 0 ), on σ ǫ B 1 (w ǫ ) -γ∂ n w ǫ = B 2 (w ǫ ) = 0, on Γ (33) 
To estimate w ǫ , we introduce the following exterior problem

(R ext )      ∆ 2 R = 0, on R 2 \σ B 1 (R) = g 1 , on σ B 2 (R) = g 2 , on σ (34) 
We easily verify that g 1 ∈ H 

R(x) = σ λ 1 (y)B 1,y (E(x -y))dτ (y) + σ λ 2 (y)B 2,y (E(x -y))dτ (y)
where is the principal Cauchy value. We have the following relations :

[R] = R + |σ -R - |σ = λ 1 , [∂ n R] = ∂ n R + |σ -∂ n R - |σ = -λ 2 (35) 
where

λ 1 (s) = 0 , λ 2 (s) = -4β (1 -ν)(3 + ν) 1 -s 2 , ∀(s, 0) ∈ σ β = ∂ 2 v 0 ∂x 2 2 (0) + ν ∂ 2 v 0 ∂x 2 1 (0) (36) 
By using Lemma 6.5 (Appendix B), we obtain

w ǫ = ǫ 2 R x ǫ + e ǫ (37) 
with e ǫ H 2 (Ωǫ) = O(-ǫ 2 log(ǫ)). In the next subsection we show that I A ∽ o(ǫ 2 ) and that I B ∽ O(ǫ 2 ).

Estimates of I

A and I B Lemma 3.2. Let I A and I B given in (32), then we have the following estimates

I A = O(ǫ 3 ) , I B = -ǫ 2 ξ σ λ 2 (X)dτ (X) + O(ǫ 3 ) with ξ = ∂ 2 u0 ∂x 2 2 (0) + ν ∂ 2 u0 ∂x 2 1 (0).
Proof. We assume that u 0 is smooth, thus from Proposition 3.1 we have

B 1 (u 0 )(ǫX) = O(1)
Let B ⊃ σ, from Lemma 6.1 (see Appendix C), and by using the equivalency of the H 2 (B\σ)-norm and the seminorm, with a change of variable, we get :

I A ≤ ǫ B 1 (u 0 )(ǫX) H 3/2 00 (σ) ′ w ǫ (ǫX) H 2 (B\σ)/P1 ≤ Cǫ|w ǫ (ǫX)| 2,B\σ ≤ Cǫ 2 |w ǫ | 2,
Ωǫ From Lemma 6.5 (see Appendix C), we have 35), ( 37) and (32), we express I B as

I A = O(ǫ 3 ) From (
I B = -ǫ 2 ξ σ λ 2 (X)dτ (X) + E 1 + E 2 (38) 
where

E 1 = ǫ σ (B 2 (u 0 )(ǫX) -ξ) [∂ n w ǫ (ǫX)]dτ (X) , E 2 = ǫ σ ξ[∂ n e ǫ (ǫX)]dτ (X) ξ = ∂ 2 u 0 ∂x 2 2 (0) + ν ∂ 2 u 0 ∂x 2 1 (0) (39) 
Similarly by using Proposition 3.1 and Lemma 6.5 we get

E 1 ≤ B 2 (u 0 )(ǫX) -ξ H 3/2 00 (σ) ′ w ǫ (ǫX) H 2 (B\σ)/P1 ≤ Cǫ 2 |w ǫ | 2,Ωǫ ≤ Cǫ 3 E 2 ≤ C e ǫ (ǫX) H 2 (B\σ)/P1 ≤ Cǫ|e ǫ | 2,Ωǫ ≤ Cǫ 3 log(ǫ)

Computation of the topological gradient in the case of the crack

From (29), and from estimates given in Lemma 3.2 we have

J ǫ (u ǫ ) -J 0 (u 0 ) ǫ 2 = ξ σ λ 2 (X)dτ (X) + J ǫ ǫ 2 + o(1)
By Lemma 6.5 applied to u ǫu 0 we deduce the estimate of I ǫ :

I ǫ = O(ǫ 4 (log(ǫ)) 2 )
By using the expression of λ 2 given in (36), we deduce the topological gradient at 0

I(0) = ξ σ λ 2 (X)dτ (X) = ξ 1 -1 -4β (1 -ν)(3 + ν) 1 -s 2 ds = -2πξβ (1 -ν)(3 + ν)
or more precisely

I(0, e y ) = - 2π (1 -ν)(3 + ν) ∂ 2 u 0 ∂x 2 2 (0) + ν ∂ 2 u 0 ∂x 2 1 (0) ∂ 2 v 0 ∂x 2 2 (0) + ν ∂ 2 v 0 ∂x 2 1 (0)
3.6. Conclusion : general expression for all point x 0 ∈ Ω

The topological gradient expression associated with the cost function J ǫ (u) and problem (P c ǫ ) given in (9) and in the case of a cracked domain Ω ǫ = Ω\x 0 + ǫσ(n) is :

I(x 0 , n) = - 2π (1 -ν)(3 + ν) ∇ 2 u 0 (x 0 )(n, n) + ν∇ 2 u 0 (x 0 )(τ, τ ) ∇ 2 v 0 (x 0 )(n, n) + ν∇ 2 v 0 (x 0 )(τ, τ )
where n ⊥ τ such that (τ, n) be an orthonormal basis. Then, if we want to minimize J ǫ (u ǫ ) we can define the topological gradient at x 0 as the min value of I(x 0 , n) (this definition should change according to the application : see [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF] for another definition adapted to a fine structure detection problem) :

I(x 0 ) = min n =1 I(x 0 , n) (40) 

Appendix A

In this Appendix we give a useful result for the study of exterior problems. We denote by the same letter O the exterior domain of the crack and of the ball. In the following, we denote by B r the ball of center 0 and of radius r. In the crack case, B denotes a ball containing strictly the crack (for example B = B η with η > 1) while in the ball's one B denotes the unit ball. We denote by W 2 (O) the weighted Sobolev space defined by (22) replacing B ′ by O. Lemma 4.1. Let u ∈ W 2 (O). We have the following inequality

u W 2 (O)/P1 ≤ C|u| 2,O
where C is a constant depending only on O.

Proof. Let η > 0 such as B = B η : 2 > η > 1 for the crack and η = 1 for the ball. Let ϕ ∈ C 2 ([0, +∞[), a real function defined by :

     ϕ = 0, for 0 ≤ t ≤ η 0 ≤ ϕ ≤ 1 for η ≤ t ≤ 2 ϕ = 1 for t ≥ 2
Let ψ(x) = ϕ(|x|), then uψ ∈ W 2 0 (B ′ ), where we recall that W 2 0 (B ′ ) is the closure in W 2 (B ′ ) (see ( 22)) of C ∞ (B ′ )-functions with compact support in B ′ .

On W 2 0 (B ′ ), thanks to Hardy inequality and to the ψ expression, we have

u W 2 (B ′ 2 ) ≤ uψ W 2 0 (B ′ ) ≤ C|ψu| 2,B ′
Now we bound from above |ψu| 2,B ′ :

|ψu| 2,B ′ ≤ |u| 2,B ′ 2 + |ψu| 2,B2\B ≤ |u| 2,B ′ 2 + ψ 2,B2\B u 2,B2\B ≤ |u| 2,B ′ 2 + C u 2,B2\B
Denoting by ω the crack or the unit ball and O = R 2 \ω, and using the equivalency of the W 2 (B 2 \ω)-norm with the H 2 (B 2 \ω)-norm we get

u W 2 (O) ≤ C u 2,B2\ω + C|u| 2,B ′ 2
Thanks to Deny-Lions Lemma ( [9], Lemma 5.2) we get

u W 2 (O)/P1 ≤ C u H 2 (B2\ω)/P1 + C|u| 2,B ′ 2 ≤ C|u| 2,O

Appendix B

In this section we develop some technical computations not given in section 2. We recall that B denotes the unit ball and B ′ the exterior domain. We recall the definition of the weighted Sobolev space W 2 (B ′ ) :

W 2 (B ′ ) = u, u (1 + r 2 )log(2 + r 2 ) ∈ L 2 (B ′ ), ∇u (1 + r 2 ) 1/2 log(2 + r 2 ) ∈ L 2 (B ′ ), ∇ 2 u ∈ L 2 (B ′ ) (22) 
with r = |x|.

Lemma 5.1. Let u ∈ H 2 (Ω), such as ∆ 2 u ∈ L 2 (Ω). Let Γ 1 a smooth closed curve such as Γ 1 ⊂ ∂Ω. We have the following inequality

B 1 (u) B 2 (u) H -3/2 (Γ1)×H -1/2 (Γ1) ≤ C|u| 2,Ω + ∆ 2 u 0,Ω
where

B 1 (u) B 2 (u) H -3/2 (Γ1)×H -1/2 (Γ1) = sup ϕ1 3/2,Γ 1 + ϕ2 1/2,Γ 1 =1 Γ1 B 1 (u)ϕ 1 -B 2 (u)ϕ 2
Proof. See [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF].

Lemma 5.2. Let ω ⊂ R 2 , ϕ 1 ∈ H 3/2 (∂ω) and ϕ 2 ∈ H 1/2 (∂ω), then there is a unique solution l ϕ1,ϕ2 ∈ H 2 (ω) of (see [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF] 

with ǫ = 1) :      ∆ 2 l ϕ1,ϕ2 = 0, on ω l ϕ1,ϕ2 = ϕ 1 , on ∂ω ∂ n l ϕ1,ϕ2 = ϕ 2
, on ∂ω and we have the following inequality

l ϕ1,ϕ2 2,ω ≤ C ϕ 1 3/2,∂ω + C ϕ 2 1/2,∂ω (41) 
Proof. See [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF].

The four first points of the following theorem are taken from ( [9] p.402 and p.417). Let f ∈ H s (∂B) and g ∈ H -s (∂B), we denote by f, g the scalar product on ∂B :

f, g = ∂B f gdτ Theorem 5.3. Let g 1 ∈ H -3/2 (∂B), g 2 ∈ H -1/2 (∂B), such as g 1 , 1 = 0 , g 1 , x 1 -g 2 , n 1 = 0 , g 1 , x 2 -g 2 , n 2 = 0
We consider the following exterior problem

(P ext )      ∆ 2 P = 0, on B ′ B 1 (P ) = g 1 , on ∂B B 2 (P ) = g 2 , on ∂B (42) 
(1) The problem (P ext ) given in (42) admits a unique solution in W 2 (B ′ )/P 1 and the map (g 1 , g 2 ) -→ P is continuous from H -3/2 (∂B) × H -1/2 (∂B) to W 2 (B ′ )/P 1 , where W 2 (B ′ )/P 1 is the space of W 2 (B ′ ) functions defined up to a polynomial function of degree less or equal than 1. (2) The solution P ∈ W 2 (B ′ )/P 1 of (42) expresses as the sum of simple and double layers potential :

P (x) = ∂B λ 1 (y)E(x -y)dσ(y) + ∂B λ 2 (y)∂ ny E(x -y)dσ(y), for x ∈ B ′ (43) 
(3) There exist a 0 , a 1 , a 2 ∈ R such as the densities λ 1 and λ 2 are given by the five following equations

- 1 2 λ 1 (x) + ∂B λ 1 (y)B 1,x (E(x -y))dσ(y) + ∂B λ 2 (y)B 1,x (∂ ny E(x -y)) dσ(y) + a 0 + a 1 x 1 + a 2 x 2 = g 1 (x) + 1 2 λ 2 (x) + ∂B λ 1 (y)B 2,x (E(x -y))dσ(y) + ∂B λ 2 (y)B 2,x (∂ ny E(x -y)) dσ(y) -a 1 n 1 (x) -a 2 n 2 (x) = g 2 (x) λ 1 , 1 = 0 λ 1 , x 1 + λ 2 , n 1 = 0 λ 1 , x 2 + λ 2
, n 2 = 0 (44) where x ∈ ∂B and denotes the principal Cauchy value.

The three last conditions of (44) express the following asymptotic behavior of P :

P (x) = a 0 + a 1 x 1 + a 2 x 2 + Alog(|x|) + O(1)
(4) For x ∈ ∂B, we set x = (cos(θ), sin(θ)) for θ ∈ [0, 2π[. Assuming that g 1 and g 2 take the form g 1 (x) = A 1 cos(2θ) + B 1 sin(2θ), and g 2 (x) = C 2 + A 2 cos(2θ) + B 2 sin(2θ) , then P (x) = O(log(|x|)) and then a 0 = a 1 = a 2 = 0. Thus λ 1 and λ 2 are given by :

λ 1 (x) = αcos(2θ) + βsin(2θ) λ 2 (x) = c + acos(2θ) + bsin(2θ) (45) 
with α = -8 A 1 + A 2 (1 + ν) (1 -ν)(3 + ν) , β = -8 B 1 + B 2 (1 + ν) (1 -ν)(3 + ν) a = 2 A 1 (1 + ν) + 4A 2 (1 -ν)(3 + ν) , b = 2 B 1 (1 + ν) + 4B 2 (1 -ν)(3 + ν) , c = 2 C 2 1 -ν
(5) Let l P defined by [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF] (for ǫ = 1) and the data g 1 and g 2 given in the fourth point ; then we have the following jump relations through ∂B for x ∈ ∂B

g 1 (x) -B 1 (l P )(x) = -λ 1 (x), x ∈ ∂B g 2 (x) -B 2 (l P )(x) = λ 2 (x), x ∈ ∂B (46) 
Remark 5.4. The choice of g 1 and g 2 in the fourth point comes from the boundaries data given in Proposition 2.1.

Proof. We introduce the bilinear form on

W 2 (B ′ )/P 1 b ′ (u, v) = B ′ ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1 , ∀u, v ∈ W 2 (B ′ )/P 1 and the linear form on W 2 (B ′ )/P 1 l ′ (v) = ∂B g 1 v -g 2 ∂ n v, ∀v ∈ W 2 (B ′ )/P 1
From (5), and Lemma 4.1, the coercivity of b ′ (u, v) is straightforward. Applying the trace theorem on B 2 \B, we deduce the continuity of l ′ (v) on W 2 (B ′ )/P 1 , which ends the proof of the first point.

The second and the third point are proven in ( [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], p.417).

Then by using the Green formula on B ′ , we get

P (x) = B ′ -∆ 2 E(x -y)P (y)dσ y = ∂B B 1,y (E(x -y))P (y)dσ y - ∂B B 2,y (E(x -y))∂ n P (y)dσ y + ∂B ∂ ny (E(x -y))B 2,y (P )(y)dσ y - ∂B E(x -y)B 1,y (P )(y)dσ y = A -B + C -D
We remark that with the values of g 1 and g 2 given in the fourth point we have the following relations : We deduce that P (x) = O(log(|x|)) when x → ∞ and then a 0 = a 1 = a 2 = 0.

g 1 , 1 = 0 g 1 , x 1 = g 1 , n 1 = g 1 , x 2 = g 1 , n 2 = 0 g 2 , x 1 = g 2 , n 1 = g 2 , x 2 = g 2 , n 2 = 0 ( 
To determinate λ 1 and λ 2 we first compute kernels associated with the integral equations.

From ( [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF],pp 390-392), by setting x = (cos(ϕ), sin(ϕ)) and y = (cos(θ), sin(θ)), we have

B 2,x (E(x -y)) = - 1 8π ((1 + ν)log (2(1 -cos(ϕ -θ)) + (1 + 3ν) + (1 -ν)(1 -cos(ϕ -θ))) B 2,x ∂ ny (E(x -y)) = - ν 4π + 1 -ν 8π cos(ϕ -θ) B 1,x (E(x -y)) = - 1 4π - 1 -ν 8π cos(ϕ -θ) B 1,x ∂ ny (E(x -y)) = - 1 -ν 8π cos(ϕ -θ) + 1 + ν 8π (1 -cos(ϕ -θ))
To simplify notations, we denote by λ 1 (θ) = λ 1 (cos(θ), sin(θ)) and λ 2 (θ) = λ 2 (cos(θ), sin(θ)) the densities λ 1 and λ 2 evaluated on the unit circle. Equations given in the third point of the Theorem 5.3 express as (Eq.1)

         - 1 2 λ 1 (ϕ) + 2π 0 - 1 4π - 1 -ν 8π cos(ϕ -θ) λ 1 (θ)dθ + 2π 0 - 1 -ν 8π cos(ϕ -θ) + 1 + ν 8π (1 -cos(ϕ -θ)) λ 2 (θ)dθ = A 1 cos(2ϕ) + B 1 sin(2ϕ) (Eq.2)          1 2 λ 2 (ϕ) + 2π 0 - 1 8π ((1 + ν)log (2(1 -cos(ϕ -θ)) + (1 + 3ν) + (1 -ν)(1 -cos(ϕ -θ))) λ 1 (θ)dθ + 2π 0 - ν 4π + 1 -ν 8π cos(ϕ -θ) λ 2 (θ)dθ = C 2 + A 2 cos(2ϕ) + B 2 sin(2ϕ)
The only singular kernel is

1+ν 8π(1-cos(ϕ-θ)) = O |θ -ϕ| 2 associated with B 1,x ∂ ny (E(x -y)) . We remark that B 1,x ∂ ny (E(x -y)) = ∂ nx (B 1,y (E(x -y))). We deduce that ∂B B 1,x ∂ ny (E(x -y)) dσ(y) = ∂ nx ∂B B 1,y (E(x -y)) dσ(y) = ∂ nx - 1 2 = 0
We can rewrite the left term of (Eq.1) as :

2π 0 - 1 -ν 8π cos(ϕ -θ) + 1 + ν 8π (1 -cos(ϕ -θ)) (λ 2 (θ) -λ 2 (ϕ)) dθ
Then we are searching for the form of the solutions. First 2π 0 λ 1 (θ)dθ = 0 and according to the fourth point, g 1 ∈ span(cos(2θ), sin(2θ)) and g 2 ∈ span(1, cos(2θ), sin(2θ)) so regarding the kernels forms, it is legitimate to search λ 1 and λ 2 as

λ 1 (θ) = αcos(2θ) + βsin(2θ) , λ 2 (θ) = acos(2θ) + bsin(2θ) + c
Let f continuous on [0, 2π], we define the following improper integral :

I(f )(ϕ) = 2π 0 f (θ)-f (ϕ)
1-cos(θ-ϕ) dθ where by definition :

2π 0 = lim ǫ→0 ϕ-ǫ 0 + 2π ϕ+ǫ .
Then we compute the two following improper integrals :

I(cos(2θ))(ϕ) = -4πcos(2ϕ) , I(sin(2θ))(ϕ) = -4πsin(2ϕ) (49) 
We rewrite (Eq.1) as

- 1 2 (αcos(2ϕ) + βsin(2ϕ)) + 2π 0 - 1 4π - 1 -ν 8π cos(ϕ -θ) (αcos(2θ) + βsin(2θ)) dθ + 2π 0 - 1 -ν 8π cos(ϕ -θ) + 1 + ν 8π (1 -cos(ϕ -θ)) (a(cos(2θ) -cos(2ϕ)) + b(sin(2θ) -sin(2ϕ))) dθ = A 1 cos(2ϕ) + B 1 sin(2ϕ)
From (49),we obtain the following equation :

- 1 2 (αcos(2ϕ) + βsin(2ϕ)) + 1 + ν 8π (-4πacos(2ϕ) -4πbsin(2ϕ)) = A 1 cos(2ϕ) + B 1 sin(2ϕ)
Identifying each term in front of cosinus and sinus we get

Eq.1

     - 1 + ν 2 a - α 2 = A 1 - 1 + ν 2 b - β 2 = B 1 (50) 
Similarly, equation (Eq.2) rewrites as

Eq.2              1 -ν 2 c = C 2 a 2 + 1 + ν 8 α = A 2 b 2 + 1 + ν 8 β = B 2 (51) 
Solving Eq.1 and Eq.2 we obtain the expression of λ 1 and λ 2 given in (45), which ends the proof of the fourth point.

For the fifth point, let l P defined by ( 14) (with ǫ = 1). Thanks to the continuity of simple and double layers (see [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], p.384), we have

l P (x) = ∂B λ 1 (y)E(x -y)dσ(y) + ∂B λ 2 (y)∂ ny E(x -y)dσ(y), for x ∈ B
Using again jump relations given in ( [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], p.385), we obtain for x ∈ ∂B

B 1 (l P )(x) = 1 2 λ 1 (x) + ∂B λ 1 (y)B 1,x (E(x -y))dσ(y) + ∂B λ 2 (y)B 1,x ∂ ny E(x -y) dσ(y) B 2 (l P )(x) = - 1 2 λ 2 (x) + ∂B λ 1 (y)B 2,x (E(x -y))dσ(y) + ∂B λ 2 (y)B 2,x ∂ ny E(x -y) dσ(y) (52) 
Finally, by using (52) and the two first equations of (44) and by setting a 0 = a 1 = a 2 = 0, we get the last point of the theorem.

Lemma 5.5. Let P the solution of (P ext ) given in (23). We have the following asymptotic behavior as |x| → ∞ :

|P (x)| ≤ Clog(|x|) , |∇P (x)| ≤ C |x| , |∇ 2 P (x)| ≤ C |x| 2 P x ǫ 0,Ωǫ = O(-log(ǫ)) , P x ǫ 1,Ωǫ = O -log(ǫ) , P x ǫ 2,Ωǫ = O 1 ǫ
Proof. P (x) is given by

P (x) = ∂B λ 1 (y)E(x -y)dσ(y) + ∂B λ 2 (y)∂ ny (E(x -y)) dσ(y)
With the boundary data g 1 and g 2 given in the last point of Theorem 5.3, λ 1 and λ 2 verify the following relations

λ 1 , 1 = 0 λ 1 , x 1 = λ 1 , n 1 = λ 1 , x 2 = λ 1 , n 2 = 0 λ 2 , x 1 = λ 2 , n 1 = λ 2 , x 2 = λ 2 , n 2 = 0 (53) 
A Taylor expansion of P at x and (53) give the first inequality. The two others inequalities are straightforward if we differentiate the expression of P in interchanging integral and derivatives. Then using again a Taylor expansion at x, and by taking |x| -→ ∞, we get the result. To estimate the L 2 (Ω ǫ )-norms of the derivatives of P , we choose two large positive reals a and D and a small positive real ǫ such that B ⊂ B a ⊂ 1 ǫ Ω ⊂ 1 ǫ B D . Thus we have :

P x ǫ 2 0,Ωǫ = Ωǫ P x ǫ 2 dx = ǫ 2 1 ǫ Ω\B P (y) 2 dy ≤ ǫ 2 Ba\B P (y) 2 dy + 1 ǫ B D \Ba P (y) 2 dy ≤ Cǫ 2 + Cǫ 2 D/ǫ a log(r) 2 rdr = Cǫ 2 + Cǫ 2 log(r) r 2 2 (log(r) -1) + r 2 4 D ǫ a ≤ Clog(ǫ) 2
which is the first estimate. The computation of the second and the third norm estimate are similar.

Lemma 5.6. Let w ǫ given in (21) and P the solution of (P ext ) the exterior problem given in (23), then we have the following asymptotic expansion when ǫ → 0 :

w ǫ = ǫ 2 P x ǫ + e ǫ with e ǫ 2,Ωǫ = O(ǫ 2 log(ǫ)) , w ǫ 0,Ωǫ = O(-ǫ 2 log(ǫ)) |w ǫ | 1,Ωǫ = O -ǫ 2 log(ǫ) , |w ǫ | 2,Ωǫ = O(ǫ)
Proof. e ǫ is solution of the following problem

(E ǫ )                                ∆ 2 e ǫ -α∆e ǫ + e ǫ = α∆P x ǫ -ǫ 2 P x ǫ on Ω ǫ B 1 (e ǫ ) -γ∂ n e ǫ = -B 1 (v 0 ) - 1 ǫ g 1 x ǫ -γ∂ n v 0 = ϕ 1 (x) = O(1), on ∂B ǫ B 2 (e ǫ ) = -B 2 (v 0 ) -g 2 x ǫ = ϕ 2 (x) = O(x), on ∂B ǫ B 1 (e ǫ ) -γ∂ n e ǫ = - 1 ǫ B 1 (P ) x ǫ = φ 1 (x) = O ǫ 2 |x| 3 , on Γ B 2 (e ǫ ) = -B 2 (P ) x ǫ = φ 2 (x) = O ǫ 2 |x| 2 , on Γ (54) 
where the expressions of g 1 and g 2 are :

g 1 (X) = A 1 cos(2θ) + B 1 sin(2θ) , g 2 (X) = C 2 + A 2 cos(2θ) + B 2 sin(2θ)
with X = (cos(θ), sin(θ)) and where

A 1 = (1 -ν) ∂ 2 v 0 ∂x 2 1 (0) - ∂ 2 v 0 ∂x 2 1 (0) , B 1 = 2(1 -ν) ∂ 2 v 0 ∂x 1 ∂x 2 (0) 
A 2 = - 1 -ν 2 ∂ 2 v 0 ∂x 2 1 (0) - ∂ 2 v 0 ∂x 2 2 (0) , B 2 = -(1 -ν) ∂ 2 v 0 ∂x 1 ∂x 2 (0) , C 2 = - 1 + ν 2 ∆v 0 (0)
The variational formulation of problem (54) is : find e ǫ ∈ H 2 (Ω ǫ ) such as

a ǫ (e ǫ , v) = Ωǫ -ǫ 2 P x ǫ + γ∆P x ǫ v + ∂Bǫ ϕ 1 v -ϕ 2 ∂ n v + Γ -φ 1 v + φ 2 ∂ n v
We integrate by parts the second terms in the right hand side part of the above equality

Ωǫ ∆P x ǫ v = Γ ǫ∂ n P x ǫ v -ǫ 2 P x ǫ ∂ n v - ∂Bǫ ǫ∂ n P x ǫ v + ǫ 2 P x ǫ ∂ n v + Ωǫ ǫ 2 P x ǫ ∆v
Let b ǫ the bilinear form associated with the leading operator of (54) such as for all u, v ∈ H

2 (Ω ǫ ) b ǫ (u, v) = Ωǫ ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1 ( 55 
)
Then we split the error into the sum e ǫ = e 1 ǫ + e 2 ǫ , where

• e 1 ǫ ∈ 2 (Ω ǫ )/P 1 is defined by b ǫ (e 1 ǫ , v) = l 1 ǫ (v), ∀v ∈ H 2 (Ω ǫ )/P 1 with l 1 ǫ (v) = ∂Bǫ ϕ 1 -ǫ∂ n P x ǫ v + ∂Bǫ -ϕ 2 + ǫ 2 P x ǫ ∂ n v
We can show (as for the Poincaré inequality (see [START_REF] Ruiz | A note on the uniformity of the constant in the Poincaré inequality[END_REF])), that there exists C independent of ǫ such as the following inequality holds :

u H 2 (Ωǫ)/P1 ≤ C|u| 2,Ωǫ , ∀u ∈ H 2 (Ω ǫ )/P 1 (56) 
We deduce the coercivity of b ǫ on this space with a constant not depending on ǫ :

b ǫ (u, u) ≥ (1 -ν)|u| 2 2,Ωǫ ≥ C u 2 H 2 (Ωǫ)/P1
Thanks to the trace theorem applied on Ω ǫ , the continuity of l 1 ǫ on H 2 (Ω ǫ )/P 1 is then straightforward.

• e 2 ǫ ∈ H 2 (Ω ǫ ) is defined by a ǫ (e 2 ǫ , v) = l 2 ǫ (v), ∀v ∈ H 2 (Ω ǫ ) with l 2 ǫ (v) = Ωǫ -ǫ 2 P x ǫ + γ∆e 1 ǫ -e 1 ǫ v + γǫ 2 P x ǫ ∆v + Γ -φ 1 + γǫ∂ n P x ǫ v + φ 2 -γǫ 2 P x ǫ ∂ n v
The coercivity of a ǫ on H 2 (Ω ǫ ) is known (see [START_REF] Aubert | Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images[END_REF]) and as for b ǫ the constant do not depend on ǫ; the continuity of l 2 ǫ on H 2 (Ω ǫ ) is easily checked using the trace theorem on Ω ǫ . Now let us estimate e 1 ǫ H 2 (Ωǫ)/P1 and e 2 ǫ 2,Ωǫ with respect to ǫ.

By considering the variational form of e 1 ǫ , by taking as test function v = e 1 ǫ and by using a change of variable we have

(1 -ν)|e 1 ǫ | 2 2,Ωǫ ≤ b ǫ (e 1 ǫ , e 1 ǫ ) = ǫ ∂B (ϕ 1 (ǫX) -ǫ∂ n P (X)) e 1 ǫ (ǫX) + ǫ ∂B -ϕ 2 (ǫX) + ǫ 2 P (X) ∂ n e 1 ǫ (ǫX) ≤ ǫ ϕ 1 (ǫX) -3/2,∂B + ǫ 2 ∂ n P -3/2,∂B e 1 ǫ (ǫX) H 3/2 (∂B)/P1 + ϕ 2 (ǫX) -1/2,∂B + ǫ 2 P -1/2,∂B ∂ n e 1 ǫ (ǫX) H 1/2 (∂B)/P1
Let r > 0 such as B B r ⊂ 1 ǫ Ω. The trace theorem on B r \B, the Deny-Lions inequality ( [9], Lemma 5.2) and a change of variable give :

|e 1 ǫ | 2 2,Ωǫ ≤ C ǫ ϕ 1 (ǫX) -3/2,∂B + ǫ 2 ∂ n P -3/2,∂B e 1 ǫ (ǫX) H 2 (Br\B)/P1 + C ϕ 2 (ǫX) -1/2,∂B + ǫ 2 P -1/2,∂B e 1 ǫ (ǫX) H 2 (Br\B)/P1 ≤ C ǫ ϕ 1 (ǫX) -3/2,∂B + ǫ 2 ∂ n P -3/2,∂B |e 1 ǫ (ǫX)| 2,Br\B + C ϕ 2 (ǫX) -1/2,∂B + ǫ 2 P -1/2,∂B |e 1 ǫ (ǫX)| 2,Br\B ≤ Cǫ ǫ ϕ 1 (ǫX) -3/2,∂B + ǫ 2 ∂ n P -3/2,∂B |e 1 ǫ | 2,Ωǫ + Cǫ ϕ 2 (ǫX) -1/2,∂B + ǫ 2 P -1/2,∂B |e 1 ǫ | 2,Ωǫ
Using that ϕ 1 (ǫX) = O(1) and ϕ 2 (ǫX) = O(ǫ) we get

e 1 ǫ H 2 (Ωǫ)/P1 = O(ǫ 2 ) (57) 
With a similar reasoning for e 2 ǫ , from its variational formulation we obtain The trace theorem applied on Ω\B r , the estimates ǫ is defined up to a function in P 1 , and thanks to the Deny-Lions inequality given in (56), we have e ǫ 2,Ωǫ ≤ e 1 ǫ H 2 (Ωǫ)/P1 + e 2 ǫ 2,Ωǫ ≤ Cǫ 2 log(ǫ) which is the first estimate . For the L 2 (Ω ǫ )-norm estimates of w ǫ , ∇w ǫ and ∇ 2 w ǫ , we must use that w ǫ = ǫ 2 P x ǫ + e ǫ , differentiate it, take the norm and use Lemma 5.5 and the previous estimate of e ǫ 2,Ωǫ .

C
φ 1 = O ǫ 2 |x| 3 , φ 2 = O ǫ 2

Appendix C

Let σ a smooth manifold that we extend to a smooth closed curve σ. We denote by ω the domain such as ∂ ω = σ (see Figure 2(a)).

(2) The solution of (58) expresses as the sum of double and triple layers potential :

R(x) = σ λ 1 (y)B 1 (E(x -y))dτ (y) + σ λ 2 (y)B 2 (E(x -y))dτ (y), for x ∈ Λ ( 59 
)
(3) The following jump relations through σ hold :

[R] = R + |σ -R - |σ = λ 1 [∂ n R] = ∂ n R + |σ -∂ n R - |σ = -λ 2 (60) 
(4) The densities λ 1 and λ 2 are given by the two following equations :

g 1 (x) = σ λ 1 (y)B 1,x B 1,y (E(x -y))dτ (y) + σ λ 2 (y)B 1,x B 2,y (E(x -y))dτ (y) (61a) g 2 (x) = σ λ 1 (y)B 2,x B 1,y (E(x -y))dτ (y) + σ λ 2 (y)B 2,x B 2,y (E(x -y))dτ (y) (61b)
where denotes the principal Cauchy value. ( 5) For σ = {(s, 0) × {0}, -1 < s < 1}, g 1 (x) = 0, and g 2 (x) = V (with V a constant), λ 1 and λ 2 are given by

λ 1 (s) = 0, ∀(s, 0) ∈ σ λ 2 (s) = 4 (1 -ν)(3 + ν) V 1 -s 2 , ∀(s, 0) ∈ σ (62) 
Proof. We denote by ω ′ the exterior domain ω ′ = R 2 \ ω.

We introduce the two following spaces

H 2 (∆ 2 , ω) = u ∈ H 2 ( ω), ∆ 2 u ∈ L 2 ( ω) , W 2 (∆ 2 , ω ′ ) = u ∈ W 2 ( ω ′ ), r 2 log(r)∆ 2 u ∈ L 2 ( ω ′ )
where W 2 ( ω ′ ) is defined by (22) replacing B by ω. We define the following bilinear forms :

a(u, v) = ω ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1 a ′ (u, v) = ω ′ ∆u∆v + (1 -ν) 2 ∂ 2 u ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 u ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 u ∂x 2 2 ∂ 2 v ∂x 2 1
Considering that u ∈ H 2 (∆ 2 , ω), the Green formula applied on ω gives

a(u, v) = ω ∆ 2 uv - ∂ ω (B 1 (u)v -B 2 (u)∂ n v) , ∀v ∈ H 2 ( ω)
By the same reasoning on u ∈ W 2 (∆ 2 , ω ′ ) we have

a ′ (u, v) = ω ′ ∆ 2 uv + ∂ ω (B 1 (u)v -B 2 (u)∂ n v)
Then we introduce the space

K = u ∈ H 2 (∆ 2 , ω)/P 1 × W 2 (∆ 2 , ω ′ )/P 1 , supp(∆ 2 u) = σ, [B 1 (u)] σ = [B 2 (u)] σ = 0, [u] σ\σ = [∂ n u] σ\σ = 0
and by using the regularity of H 2 loc (Λ) functions, K rewrites as

K = u ∈ W 2 (∆ 2 , Λ)/P 1 , supp(∆ 2 u) = σ, [B 1 (u)] σ = [B 2 (u)] σ = 0 (R ext ) reformulates as find R ∈ K such as B 1 (R) = g 1 and B 2 (R) = g 2 on σ (R ext )
and the variational formulation of (R ext ) is : find R ∈ K such as

a(R, v) = l(v) , ∀v ∈ K where a(R, v) = Λ ∆R∆v + (1 -ν) 2 ∂ 2 R ∂x 1 ∂x 2 ∂ 2 v ∂x 1 ∂x 2 - ∂ 2 R ∂x 2 1 ∂ 2 v ∂x 2 2 - ∂ 2 R ∂x 2 2 ∂ 2 v ∂x 2 1 l(v) = σ g 1 [v] -g 2 [∂ n v]
Problem (R ext ) admits a unique solution in K. Indeed, it is coercive on K : first we have

a(u, u) ≥ (1 -ν)|u| 2 W 2 (Λ) , ∀u ∈ K (63)
and from Lemma 4.1 we have :

u K = u W 2 (Λ)/P1 ≤ C(Λ)|u| W 2 (Λ)
which gives the proof of the coercivity of a(u, v) on K. After that the problem is continuous on K : applying Lemma 6.1, we obtain

|l(v)| ≤ C g 1 H 3/2 00 (σ) ′ + g 2 H 1/2 00 (σ) ′ v W 2 (Λ)/P1 (64) 
which implies the continuity of l(v) on K. From (63) and (64) we deduce the continuity of the map (g 1 , g 2 ) → R from H

3/2 00 (σ) ′ × H 3/2 00 (σ) ′ into W 2 (Λ)/P 1 . Then as K is a closed subspace of W 2 (Λ)/P 1 which is an Hilbert space, we deduce that it is an Hilbert space too. Thanks to Lax-Milgram's theorem, we get the well-possedness of problem (R ext ). Thus we define the following isomorphism

J 0 : (g 1 , g 2 ) -→ R H 3/2 00 (σ) ′ × H 1/2 00 (σ) ′ -→ K
Let us consider the following problem : for (q 1 , q 2 ) ∈ H

3/2 00 (σ) × H 1/2 00 (σ) find Q ∈ K such as [Q] = q 1 and [∂ n Q] = q 2 (Q ext ) Let v ∈ K, we have a(u, v) = Λ ∆ 2 vu + σ B 1 (v)[u] -B 2 (v)[∂ n u]
The variational formulation of (Q ext ) is : find

Q ∈ K such as a(Q, v) = l ′ (v) , ∀v ∈ K where l ′ (v) = σ q 1 B 1 (v) - σ q 2 B 2 (v)
In the same way as for problem (R ext ), we show the coercivity of problem (Q ext ). From Lemma 6.2,

l ′ (v) ≤ C( q 1 H 3/2 00 (σ) + q 2 H 1/2 00 (σ) )|v| H 2 (B\σ)
From the equivalency of W 2 (Λ)/P 1 -norm and seminorm, we deduce the continuity of the map l ′ (v) on K. Thanks to Lax-Milgram theorem we obtain the well-possedness of problem (Q ext ). Thus we can define the isomorphism

J 1 : (q 1 , q 2 ) -→ Q H 3/2 00 (σ) × H 1/2 00 (σ) -→ K We denote by J = J -1 1 • J 0 the isomorphism J : (g 1 , g 2 ) -→(q 1 , q 2 ) H 3/2 00 (σ) ′ × H 1/2 00 (σ) ′ -→ H 3/2 00 (σ) × H 1/2 00 (σ)
Now, let ū defined by

ū(x) = σ λ 1 (y)B 1,y E(x -y)dτ (y) + σ λ 2 (y)B 2,y E(x -y)dτ (y) = ∂ ω λ 1 (y)B 1,y E(x -y)dτ (y) + ∂ ω λ 2 (y)B 2,y E(x -y)dτ (y) where x ∈ Λ and λ 1 ∈ H 3/2 00 (σ), λ 2 ∈ H 1/2 00 (σ) and λ i ∈ H 3/2-(i-1) ( σ) defined by λ i = λ i , on σ 0, on σ\σ for i ∈ {1, 2}
. Firstly, ū is biharmonic. Indeed for x ∈ Λ and y ∈ σ the maps y → B 1,y E(xy) and

y → B 2,y E(x -y) are C ∞ (σ). Besides ∆ 2 x B 1,y E(x -y) = B 1,y ∆ 2 x E(x -y) = 0 and ∆ 2 x B 2,y E(x -y) = B 2,y ∆ 2 x E(x -y) = 0
Then by using the regularity of y → B 1,y E(xy) and of y → B 2,y E(xy) we can interchange the integral and bilaplacian operators which leads to the following equation :

∆ 2 ū(x) = 0, ∀x ∈ Λ
Besides for |x| → ∞, a Taylor expansion at x gives ū(x) = O (log(|x|)). A twice differentiation of ū and a Taylor expansion at point x of ū, show that ū ∈ W 2 (Λ). Considering ū as an element of W 2 (Λ)/P 1 , we get ū ∈ K. By using jump relations given in ( [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], pp.385-386) we have

B 1,x ( ū)(x) = σ λ 1 (y)B 1,x B 1,y E(x -y)dτ (y) + σ λ 2 (y)B 1,x B 2,y E(x -y)dτ (y) B 2,x ( ū)(x) = σ λ 2 (y)B 2,x B 1,y E(x -y)dτ (y) + σ λ 2 (y)B 2,x B 2,y E(x -y)dτ (y) (65) 
We show now that these two boundary integral equations describe the isomorphism J -1 . Indeed by using ( [9], p.384), we get

ū± (x) = ±λ 1 (x) + σ λ 1 (y)B 1,y E(x -y)dτ (y) + σ λ 2 (y)B 2,y E(x -y)dτ (y) ū± (x) = ∓λ 2 (x) + σ λ 1 (y)∂ nx B 1,y E(x -y)dτ (y) + σ λ 2 (y)∂ nx B 2,y E(x -y)dτ (y) Then by difference [ ū] = λ 1 , [∂ n ū] = -λ 2 As J 1 is an isomorphism, if we set λ 1 = [R] and λ 2 = [∂ n R],
we get ū = R. Thus (65) with B 1 ( ū) = g 1 and B 2 ( ū) = g 2 defines the isomorphism J -1 . This ends the proof of the second, third and fourth points of the theorem. Now we must solve the two boundary integral equations (61) in order to prove the fifth point. We first compute the kernels in the simple case of a straight crack : we set n = (0, 1), x = (s, 0), and y = (t, 0) ∈ σ and so :

B 1,x (B 1,y (E(x -y))) = - 3(-1 + ν)(3 + ν) 2π(s -t) 4 B 2,x (B 1,y (E(x -y))) = B 1,x (B 2,y (E(x -y))) = 0 B 2,x (B 2,y (E(x -y))) = (-1 + ν)(3 + ν) 4π(s -t) 2
Integral equations (61a) and (61b) rewrite as

0 = g 1 (x) = - 1 -1 λ 1 (t) 3(-1 + ν)(3 + ν) 2π(s -t) 4 dt V = g 2 (x) = 1 -1 λ 2 (t) (-1 + ν)(3 + ν) 4π(s -t) 2 dt
These two equations are uncoupled. For the first one the choice λ 1 = 0 is a solution, and by uniqueness it is the solution of (61a). For the second equation, we define the function :

g(s) = 1 π 1 -1 λ 2 (t) s -t , -1 < s < 1
We remark that (61b) rewrites as

g ′ (s) = - 4 (-1 + ν)(3 + ν) V = A
Then we get g(s) = As + B with B an arbitrary constant that we can take equal to 0. From [START_REF] Martin | Exact solution of a hypersingular integral equation[END_REF], λ 2 is given by the following formula

λ 2 (s) = - 1 π 1 -1 1 -t 2 1 -s 2 At s -t dt + C √ 1 -s 2 = - 1 π √ 1 -s 2 1 1 √ 1 -t 2 s -t (A(t -s) + As) dt + C √ 1 -s 2 = -A π √ 1 -s 2 s 1 -1 √ 1 -t 2 s -t dt - 1 -1 1 -t 2 dt + C √ 1 -s 2 = -A π √ 1 -s 2 s 2 π - π 2 + C √ 1 -s 2 = A 1 -s 2
where we set C = A/2 in order to verify λ 2 (-1) = λ 2 (1) = 0 (ie λ 2 ∈ H Proof. From the expression of R given in Theorem 6.3 and by using a Taylor expansion at point x and taking |x| → +∞, we get the first inequality. For the second and the third ones, we must differentiate the expression of R ∈ C ∞ (R 2 \σ), interchange integral and derivative, and use a Taylor expansion around x. We refer to Lemma 5.5 for the proof of the three last estimates.

Lemma 6.5. Let be w ǫ the solution of problem (Q c ǫ ) given in (33), and R the solution of the exterior problem (R ext ) given in (34), then we have the following asymptotic expansion : (0) = -β for X ∈ σ.

w ǫ = ǫ 2 R x ǫ + e ǫ
The variational formulation of problem (E ǫ ) given in (66) is : find e ǫ ∈ H 2 (Ω ǫ ) such as

a ǫ (e ǫ , v) = Ωǫ γ∆R x ǫ v -ǫ 2 R x ǫ v + σǫ ϕ 1 [v] -ϕ 2 [∂ n v] - Γ (φ 1 v -φ 2 ∂ n v) , ∀v ∈ H 2 (Ω ǫ )
Integrating by parts the first term of a ǫ (e ǫ , v) gives

Ωǫ ∆R x ǫ v = ǫ Γ ∂ n R x ǫ v -ǫ σǫ ∂ n R x ǫ v -ǫ 2 Γ R x ǫ ∂ n v + ǫ 2 σǫ R x ǫ ∂ n v + Ωǫ ǫ 2 R x ǫ ∆v
The variational formulation of (E ǫ ) rewrites as :

a ǫ (e ǫ , v) = ǫ Γ ∂ n R x ǫ v -ǫ σǫ ∂ n R x ǫ v -ǫ 2 Γ R x ǫ ∂ n v + ǫ 2 σǫ R x ǫ ∂ n v + Ωǫ ǫ 2 R x ǫ ∆v -ǫ 2 R x ǫ v + σǫ ϕ 1 [v] -ϕ 2 [∂ n v] - Γ (φ 1 v -φ 2 ∂ n v) , ∀v ∈ H 2 (Ω ǫ )
We split e ǫ in the distributionnal sense into the sum e ǫ = e 1,+ ǫ + e 1,- ǫ + e 2 ǫ with • e 1,± ǫ ∈ H 2 (Ω ǫ )/P 1 defined by b ǫ (e 1,± ǫ , v) = l 1,± ǫ (v), ∀v ∈ H 2 (Ω ǫ )/P 1 , where b ǫ is given in (55) and

l 1,± ǫ (v) = -γǫ σǫ ∂ n R x ǫ v ± + γǫ 2 σǫ R x ǫ ∂ n v ±
where we recall that for x ∈ σ ǫ , u(x) ± are the right and left limit values (see Figure 2). We check easily that each problem defining the solution e 

ǫ v - Γ (φ 1 v -φ 2 ∂ n v) + σǫ ϕ 1 [v] -ϕ 2 [∂ n v],∀v ∈ H 2 (Ω ǫ )
As for e 1,± ǫ , we can show that e 2 ǫ is well defined. Now let us estimate e 1,± ǫ H 2 (Ωǫ)/P1 and e 2 ǫ 2,Ωǫ . A change of variable, the trace theorem on B\ ω, the equivalency of H 2 (B\ ω)/P 1 -norm and seminorm and a change of variable again lead to We deduce that |e 1,+ ǫ | 2,Ωǫ = O(ǫ 3 ). In the same way, applying the trace theorem on ω we get |e 1,- ǫ | 2,Ωǫ = O(ǫ 3 ).

As e 1,± ǫ is defined up to a polynomial of degree less or equal than 1, and from Lemma 6.1 and the estimates φ 

  (a) σ ⊃ σ and ω (b) σǫ, σǫ, ωǫ and Ωǫ
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 2 Figure 2. Extension of the crack in a smooth closed curve Let σ a smooth closed curve of same dimension as σ such as σ ⊂ σ, and let ω the sub-domain of R 2 , such as ∂ ω = σ; we denote by ω ǫ = {x, xǫ ∈ ω} and Ω ǫ = Ω\ ω ǫ (see Figure2). Let v ∈ H 2 (Ω ǫ ) and u ǫ the solution of (P c ǫ ). Thanks to classical regularity result, we obtain that u ǫ ∈ H 4 (Ω ǫ ). With an integration by parts in Ω\ ω ǫ ∪ ω ǫ (see[START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF], p.376) the variational formulation of (P c ǫ ) is

  47)Computing B 1,y (E(xy)) and B 2,y (E(xy)) for y ∈ ∂B and when |x| → ∞ we show thatA = ∂B B 1,y (E(xy))P (y)dy = O (log(|x|)) , B = ∂B B 2,y (E(xy))∂ n P (y)dy = O (log(|x|))For C and D, we use a Taylor expansion of E(xy) and ∂ ny (E(xy)) at 0, and we assume that |x| → ∞E(xy) = E(x)y.∇E(x) + 1 2 y.∇ 2 E(x)y + O 1 |x| ∂ ny E(xy) = ∇E(x).n y -∇ 2 E(x)y.n y + O 1 |x|(48)Using the estimates ∇ 2 E(x) = O(log(|x|)), (48) and the relations (47) we have C = ∂B ∂ ny (E(xy))B 2,y (P )(y)dy = O(log(|x|)) D = ∂B E(xy)B 1,y (P )(y)dy = O(log(|x|))

|x| 2 and e 1 ǫ H 2 ( 2 ǫ 2 ,

 1222 Ωǫ)/P1 = O(ǫ 2 ), and Lemma 5.5 give : e Ωǫ = O(-ǫ 2 log(ǫ)) Coming back to e ǫ since e 1

1 / 2 00 2 for

 122 (σ)). This ends the proof of the theorem. Lemma 6.4. Let R be the solution of the exterior problem (R) given in (58), we have the following asymptotic behavior :for |x| → ∞ |R(x)| ≤ Clog(|x|) , |∇R(x)| ≤ C |x| , |∇ 2 R(x)| ≤ C |x|

with e ǫ 2 ,-

 2 Ωǫ = O(-ǫ 2 log(ǫ)) |w ǫ | 2,Ωǫ = O(ǫ)Proof. e ǫ solves the following problem(E ǫ )                                    ∆ 2 e ǫ -γ∆e ǫ + e ǫ = γ∆R x ǫ ǫ 2 R x ǫ on Ω ǫ B 1 (e ǫ ) -γ∂ n e ǫ = -B 1 (v 0 ) -γ∂ n v 0 = ϕ 1 (x) = O(1), on σ ǫ B 2 (e ǫ ) = -B 2 (v 0 )g 2 x ǫ = ϕ 2 (x) = O(x), on σ ǫ B 1 (e ǫ ) -γ∂ n e ǫ = -

a ǫ (e 2 ǫ

 2 , v) = a ǫ (e ǫe 1,+ ǫ e 1,- ǫ , v) = -

C|e 1,+ ǫ | 2 2 ,= -ǫ 2 σ

 22 Ωǫ ≤ b ǫ (e 1,+ ǫ , e 1,+ ǫ ) = -ǫ σǫ ∂ n R(X)e

2 ǫ 2 2,Ωǫ ≤ a ǫ (e 2 ǫ , e 2 ǫ ) ≤ ǫ 2 +L 2 (+ φ 1 - 3 / 2 ,Γ e 2 ǫ 3 / 2 ,Γ + φ 2 - 1 / 2 ,Γ ∂ n e 2 ǫ 1 / 2 H 2 (

 2222132322122122 1 -3/2,Γ = O(ǫ 2 ), φ 2 -1/2,Γ = O(ǫ 2 ), |ϕ 1 (ǫX)| = O(1), |ϕ 2 (ǫX)| = O(ǫ) and |e 1,± ǫ | 2,Ωǫ = O(ǫ 3) and a change of variable we haveC e γ |e 1,+ ǫ | H 1 (Ωǫ)/P1 + |e 1,- ǫ | H 1 (Ωǫ)/P1 |e 2 ǫ | 1,Ωǫ + e 1,+ ǫ Ωǫ)/P1 + e 1,- ,Γ + ǫ ϕ 1 (ǫX) H 3/2 00 (σ) ′ |e 2 ǫ (ǫX)| 2,B\σ + ϕ 2 (ǫX) H 1/2 00 (σ) ′ |e 2 ǫ (ǫX)| 2,B\σ ≤ C -ǫ 2 log(ǫ) + Cǫ 3 + Cǫ 2 + Cǫ 2 e 2 ǫ 2,ΩǫWe deduce that e 2 ǫ 2,Ωǫ = O -ǫ 2 log(ǫ)We come back to e ǫ : as e 1,± ǫ is defined up to a polynomial of degree less or equal than 1 and thanks to the Deny-Lions inequality given in (56) we havee ǫ 2,Ωǫ ≤ e 1,+ ǫ H 2 (Ωǫ)/P1 + e 1,- ǫ Ωǫ)/P1 + e 2 ǫ H 2 (Ωǫ) = O(-ǫ 2 log(ǫ))Finally, to estimate |w ǫ | 2,Ωǫ we use Lemma 6.4 :|w ǫ | 2,Ωǫ ≤ ǫ 2 R x ǫ 2,Ωǫ + |e ǫ | 2,Ωǫ ≤ Cǫ + Cǫ 2 log(ǫ) ≤ Cǫwhich ends the proof.

  1,± ǫ is well defined on H 2 (Ω ǫ )/P 1 . • e 2 ǫ ∈ H 2 (Ω ǫ ) is defined by the variational form :

  Cǫ 2 e 1,+ ǫ (ǫX)H 3/2 00 (σ)/P1 + Cǫ 3 ∂ n e 1,+ ǫ (ǫX) H 1/2 00 (σ)/P1 ≤ Cǫ 2 |e 1,+ ǫ (ǫX) H 3/2 (∂ ω)/P1 + Cǫ 3 ∂ n e 1,+ ǫ (ǫX) H 1/2 (∂ ω)/P1 ≤ ǫ 2 e 1,+ ǫ (ǫX) H 2 (B\ ω)/P1 ≤ Cǫ 2 |e 1,+ ǫ (ǫX)| 2,B\ ω ≤ Cǫ 3 |e 1,+ ǫ | 2,Ωǫ
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We recall the definitions of H 1/2 00 (σ) and H 3/2 00 (σ) :

and we introduce the weighted Sobolev space

where r = |x| and Λ = R 2 \σ.

In the sequel, B denotes the ball containing strictly the crack σ and its extension σ (for example B = B η with η > 1) and such as B ⊂ Ω ǫ for small ǫ.

′ , then we have the following inequality

Proof. By using the definition of the H 3/2 00 (σ)-norm and by splitting the jump of v across σ, we have for any smooth function ψ :

Then by using the trace theorem applied to (v + + ψ) on B\ ω and v -+ ψ on ω, we have

By taking the infimum with respect to ψ ∈ P 1 and from the Deny-Lions inequality the first inequality holds. The second one is proved in the same manner.

Proof. See [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF].

Then we introduce the exterior problem :

where g 1 ∈ H