open science

A TOPOLOGICAL GRADIENT BASED MODEL FOR THE DETECTION OF FINE STRUCTURES IN 2D IMAGES

Gilles Aubert, Audric Drogoul

- To cite this version:

Gilles Aubert, Audric Drogoul. A TOPOLOGICAL GRADIENT BASED MODEL FOR THE DETECTION OF FINE STRUCTURES IN 2D IMAGES. 2014. hal-01016415v1

HAL Id: hal-01016415
https://hal.science/hal-01016415v1
Preprint submitted on 1 Jul 2014 (v1), last revised 9 Jan 2015 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A TOPOLOGICAL GRADIENT BASED MODEL FOR THE DETECTION OF FINE STRUCTURES IN 2D IMAGES

Gilles Aubert ${ }^{1}$ and Audric Drogoul ${ }^{1}$

Abstract

In this paper we describe a new approach for the detection of fine structures in an image. This approach is based on the computation of the topological gradient associated to a cost function defined from a regularization of the data (possibly noisy). We get this approximation by solving a fourth order PDE. The study of the topological sensitivity is made both in the cases of a circular inclusion and a crack.

Résumé. Dans ce papier on décrit une nouvelle approche pour la détection de structures fines dans une image. Cette approche est basée sur le calcul du gradient topologique associé à une fonction coût définie à partir des dérivées secondes d'une régularisation des données (éventuellement bruitées). Cette régularisation est obtenue via la résolution d'une EDP du quatrième ordre. L'étude de la sensibilité topologique est faite dans les cas d'une inclusion circulaire et d'un crack.

1991 Mathematics Subject Classification. 35J30, 49Q10, 49Q12, 94A08, 94A13.
December 9, 2013.

Introduction

The goal of this paper is to develop a topological gradient based method for the detection of fine structures in 2D images. This problem has various applications in medical, biological or satellite imaging. By fine structures in 2D we mean objects of dimension zero or one, i.e. points or filaments. This problem is quite different from the one of edge detection since for the later the grey level intensity has jumps across the edges and not for the former (see Figure 1).

If for edge detection the usual spatial gradient is classically used, it is inefficient for the detection of points or filaments. To illustrate this fact let us consider in 1 D the function $f(x)=0$ if $x \neq 0$ and $f(0)=1$. This function can be approximated by the function $f_{\epsilon}(x)=0$ if $|x| \geq \epsilon$ and $f_{\epsilon}(x)=\frac{2}{\epsilon^{3}}|x|^{3}-\frac{3}{\epsilon^{2}}|x|^{2}+1$ if $|x| \leq \epsilon$. We have $f_{\epsilon}^{\prime}(0)=0$ but $f_{\epsilon}^{\prime \prime}(0)=\frac{-6}{\epsilon^{2}}$, thus f_{ϵ}^{\prime} "does not see" 0 but $f_{\epsilon}^{\prime \prime}$ becomes singular at 0 . In fact, it is known ($[29],[22]$) that if we want to detect fine structures by using differential operator we must use at least second order operator. We will come back to this issue in the next section. The novelty of our approach is that we address the problem by using a topological gradient approach. Roughly speaking the topological gradient approach performs as follows : let Ω be an open bounded set of \mathbb{R}^{2} and $j(\Omega)=J\left(\Omega, u_{\Omega}\right)$ be a cost function where u_{Ω} is the solution of a given PDE. For small $\epsilon \geq 0$ let $\Omega_{\epsilon}=\Omega \backslash \overline{x_{0}+\epsilon \omega}$ where $x_{0} \in \Omega$ and ω is a given subset of \mathbb{R}^{2}.

[^0]

Figure 1. (a): An edge with a jump of the intensity I across the boundary of the object, (b) A filament without jump across it

The topological sensitivity provides an asymptotic expansion of $j\left(\Omega_{\epsilon}\right)$ as $\epsilon \rightarrow 0$. In most cases it takes the form:

$$
\begin{equation*}
j\left(\Omega_{\epsilon}\right)=j(\Omega)+\epsilon^{2} \mathcal{I}\left(x_{0}\right)+o\left(\epsilon^{2}\right) \tag{1}
\end{equation*}
$$

$\mathcal{I}\left(x_{0}\right)$ is called the topological gradient at x_{0}. Thus if we want to minimize $j\left(\Omega_{\epsilon}\right)$ it would be preferable to create holes at points x_{0} where $\mathcal{I}\left(x_{0}\right)$ is "the most negative".

Initially used in mechanic for crack detection [27] or engineering design, the notion of topological gradient has been recently applied in imaging problems such as the restoration, the segmentation or the classification of images ([7], [11], [8]). For example, for the restoration problem u_{Ω} is the solution of the Laplace equation and since the issue of the problem is to identify edges, the cost function is constructed from the spatial gradient of u_{Ω} and the most common choice is $J\left(\Omega, u_{\Omega}\right)=\int_{\Omega}\left|\nabla u_{\Omega}\right|^{2} d x$. As said before, for the detection of fine structures (i.e. discontinuities without jump across the structures) we have to construct models based on second order derivatives. Inspired from the theory of thin plates ([15], chapter 8) we have chosen the following model: if Ω denotes the image domain and if f is the initial grey values image (the data, possibly degraded) we compute u_{Ω} as the solution of the fourth order PDE:

$$
(\mathcal{P})\left\{\begin{align*}
\Delta^{2} u+u & =f, & \text { in } \Omega \tag{2}\\
B_{1}(u) & =0, & \text { on } \partial \Omega \\
B_{2}(u) & =0, & \text { on } \partial \Omega
\end{align*}\right.
$$

where $B_{1}(u)$ and $B_{2}(u)$ are natural boundary conditions to be specified in the next section (in fact we will study a more general model). The cost function is then defined as:

$$
\begin{equation*}
J_{\Omega}(u)=\int_{\Omega}(\Delta u)^{2}+2(1-\nu)\left(\left(\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right)^{2}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}}\right) \tag{3}
\end{equation*}
$$

where $1<\nu<0$ is a parameter (the Poisson ratio).
The main goal of the paper is to compute the topological gradient associated with (2) and (3) when $\Omega_{\epsilon}=$ $\Omega \backslash \overline{x_{0}+\epsilon B(0,1)}$ and $\Omega_{\epsilon}=\Omega \backslash \overline{x_{0}+\epsilon \sigma(n)}$ where $B(0,1)$ is the unit ball of \mathbb{R}^{2} and $\sigma(n)$ is a straight segment with normal n (a crack) (see Figure 2).

We warn the reader that the proofs are very technical and we only give the main steps. For the complete proofs we refer the reader to [14]. The numerical analysis of the model as well numerous examples will be given in a companion paper [13].

Remark 0.1. The study of topological sensitivity for fourth order operators is not new. In [4], the authors in a different context, compute the topological gradient for the Kirchhoff plate bending in the case of a circular

Figure 2
inclusion. Our model is simpler and we are able to give explicit expressions of the topological gradient both in the cases of circular inclusions and of cracks.

Other variational models have been proposed in the literature according to applications, see [19] for the detection of biological filaments or [25] for road network detection. In [6, 10] and [9] the authors propose a model for detecting objects of codimension two and one in 2D images. Their approach are inspired from Ginzburg-Landau models. A variational model involving second order differential operators is developed in [16] for detecting point-like singularities. There exists of course other approaches not based on variational calculus : the mathematical morphology [21, 32], stochastic methods $[17,30,31]$. Here filaments are defined as the realization of random processes. These methods are costly in terms of CPU time. Finally let us mention the wavelet approach $[5,12,18]$.
In the following, we denote by $\|u\|_{m, \Omega}=\|u\|_{H^{m}(\Omega)}$ (respectively $\left.|u|_{m, \Omega}=|u|_{H^{m}(\Omega)}\right)$ the norm (respectively the seminorm) on the Sobolev spaces $H^{m}(\Omega)$ and $\|u\|_{s, \Gamma}$ the norm on the fractional Sobolev space $H^{s}(\Gamma)$ with $\Gamma=\partial \Omega$.

The outline of the paper is as follows. In section 1 we define precisely the cost function and the variational problem. In section 2 (respectively section 3) we give the main steps of the calculation of the topological gradient in the case of a circular inclusion (respectively of a crack). The paper ends with three appendices in which are developed details not given in section 2 and 3 .

1. Definition of the cost function and variational model

In this section we specify the general cost function and the variational model we want to study. Before, we give a lemma explaining why the natural operator we have to use for detecting points and curves in 2D must be of second order.

1.1. Detecting fine structures: what is the good operator?

We denote by $\mathcal{D}\left(\mathbb{R}^{2}\right)$ the space of C^{∞} - functions with compact support in \mathbb{R}^{2} and $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ the space of distributions on \mathbb{R}^{2}. We refer the reader to [14] for the proof of the following Lemma.

Lemma 1.1. Let $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ a Lipschitz continuous function, and let $\left(g_{h}\right)_{h>0}$ a sequence of functions defined by

$$
g_{h}(x)=\frac{1}{\theta_{1}(h)} e^{-\frac{\varphi^{2}(x)}{\theta_{2}(h)}} \quad \text { where } \theta_{i}: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+} \text {and } \lim _{h \rightarrow 0} \theta_{i}(h)=0
$$

(i) Let $a \in \mathbb{R}^{2}$, by setting $\varphi(x)=\|x-a\|, \theta_{1}(h)=\pi h$ and $\theta_{2}(h)=h$ then

$$
g_{h} \underset{h \rightarrow 0}{\longrightarrow} \delta_{a}, \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)
$$

Besides we have

$$
\nabla g_{h}(a)=[0,0]^{T} \quad, \quad \nabla^{2} g_{h}(a)=-\frac{2}{\pi h^{2}} I
$$

where I denotes the identity in \mathbb{R}^{2}.
(ii) Let Γ a smooth closed curve or a smooth infinite curve of \mathbb{R}^{2} delimiting two sub-domains \mathbb{R}_{Γ}^{2-} and \mathbb{R}_{Γ}^{2+} forming a partition of \mathbb{R}^{2}. Let φ the signed distance to Γ defined by :

$$
\varphi(x)=\operatorname{dist}\left(x, \mathbb{R}_{\Gamma}^{2-}\right)-\operatorname{dist}\left(x, \mathbb{R}_{\Gamma}^{2+}\right)
$$

We denote by \mathbb{R}_{Γ}^{2+} (resp. \mathbb{R}_{Γ}^{2-}), the sub-domain $\{\varphi>0\}$ (resp. $\{\varphi<0\}$). Taking the following scalings $: \theta_{1}(h)=\sqrt{\pi h}$ and $\theta_{2}(h)=h$ we have

$$
g_{h} \underset{h \rightarrow 0}{\longrightarrow} \delta_{\Gamma}, \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)
$$

Besides for all $x \in \Gamma$ we have

$$
\nabla g_{h}(x)=[0,0]^{T} \quad, \quad \operatorname{spec}\left(\nabla^{2} g_{h}(x)\right)=\left\{-\frac{2}{h^{3 / 2}}, 0\right\}
$$

where $\operatorname{spec}(M)$ denotes the eigenvalues of the matrix M. The associated eigenvectors to $\nabla^{2} g_{h}$ on Γ are $\left(\nabla \varphi(x), \nabla \varphi(x)^{\perp}\right)$ where $\nabla \varphi(x)=n(x)$.
So this lemma shows that the gradient "does not see" fines structures in \mathbb{R}^{2} (points and filaments). On the other hand second derivatives are singular on these structures.

1.2. Definition of the cost function and the fourth order PDE

We give now the general cost function we are going to study. This cost function is more general than (3). It is defined by:

$$
\begin{equation*}
J_{\Omega}(u)=\int_{\Omega}(\Delta u)^{2}+2(1-\nu)\left(\left(\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right)^{2}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}}\right)+\gamma|\nabla u|^{2} d x, 0<\nu<1, \gamma \geq 0 \tag{4}
\end{equation*}
$$

Remark 1.2. (i) When $\gamma=0$ we retrieve (3).
(ii) We check easily that J_{Ω} :

$$
\begin{equation*}
J_{\Omega}(u) \geq(1-\nu)|u|_{H^{2}(\Omega)}^{2}+\gamma|u|_{H^{1}(\Omega)}^{2}, \forall u \in H^{2}(\Omega) \tag{5}
\end{equation*}
$$

For small $\epsilon>0$, let (a) $\Omega_{\epsilon}=\Omega \backslash \overline{\left\{x_{0}+\epsilon \omega\right\}}$ or (b) $\Omega_{\epsilon}=\Omega \backslash \overline{\left\{x_{0}+\epsilon \sigma(n)\right\}}$, where $x_{0} \in \Omega, \omega=B(O, 1)$ is the unit ball of \mathbb{R}^{2} and $\sigma(n)$ is a straight segment with normal n (a crack). We introduce the bilinear and linear forms:

$$
\begin{align*}
a_{\epsilon}(u, v) & =\int_{\Omega_{\epsilon}} \Delta u \Delta v+(1-\nu)\left(2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right)+\gamma \nabla u . \nabla v+u v \tag{6}\\
l_{\epsilon}(v) & =\int_{\Omega_{\epsilon}} f v
\end{align*}
$$

Thanks to Lax-Milgram lemma, it is easy to prove that for $\epsilon \geq 0$ fixed there exists a unique $u_{\epsilon} \in H^{2}\left(\Omega_{\epsilon}\right)$ such that

$$
\begin{equation*}
a_{\epsilon}\left(u_{\epsilon}, v\right)=l_{\epsilon}(v), \forall v \in H^{2}\left(\Omega_{\epsilon}\right) \tag{7}
\end{equation*}
$$

This solution u_{ϵ} necessarily satisfies the Euler equation:

$$
\left(\mathcal{P}_{\epsilon}\right)\left\{\begin{align*}
\Delta^{2} u_{\epsilon}-\gamma \Delta u_{\epsilon}+u_{\epsilon} & =f, \tag{8}\\
& \text { on } \Omega_{\epsilon} \\
B_{1}\left(u_{\epsilon}\right)-\gamma \partial_{n} u_{\epsilon} & =0,
\end{align*} \begin{array}{rl}
\text { on } \partial \Omega_{\epsilon} \\
B_{2}\left(u_{\epsilon}\right) & =0,
\end{array} \text { on } \partial \Omega_{\epsilon} .\right.
$$

where

$$
B_{1}(u)=\partial_{n}(\Delta u)-(1-\nu) \partial_{\sigma}\left(n_{1} n_{2}\left(\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}}\right)-\left(n_{1}^{2}-n_{2}^{2}\right) \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right)
$$

and

$$
B_{2}(u)=\nu \Delta u+(1-\nu)\left(n_{1}^{2} \frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}}+n_{2}^{2} \frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}}+2 n_{1} n_{2} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right)
$$

where $f \in L^{2}\left(\Omega_{\epsilon}\right) ; \vec{n}=\left(n_{1}, n_{2}\right)$ is the outside normal to the domain, and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}\right)$ is the tangent vector such that $(\vec{n}, \vec{\sigma})$ forms an orthonormal basis.
Remark 1.3. (i) When $\gamma=0,(7)$ is well-posed by using Gagliardo-Nirenberg inequalities [1, 24]. The calculus of the topological gradient is the same as in the case $\gamma \neq 0$.
(ii) The cost function $J_{\Omega_{\epsilon}}$ is the natural energy associated with the bilinear form a_{ϵ}.

We denote by \mathbb{P}_{1} the set of polynomial of degree less or equal than 1 , and by C all constants not depending on ϵ. Finally, we will use the quotient space $H^{m}(\Omega) / \mathbb{P}_{1}$ which is the set of $H^{m}(\Omega)$ functions defined up to a polynomial of degree less or equal than 1 . In the paper, we study independently the case of a domain perforated by a ball and the case of a cracked domain.

2. Computation of the topological gradient in the case of the ball

2.1. Notations and statement of the problem

Let $x_{0} \in \Omega$ and $B(O, 1)$ the unit ball. We define $\Omega_{\epsilon}=\Omega \backslash \overline{x_{0}+\epsilon B(O, 1)}$ with x_{0} and ϵ chosen such that the perturbation does not touch the border. By denoting $B=B\left(x_{0}, 1\right)$ and $B_{\epsilon}=B\left(x_{0}, \epsilon\right)$ we have $\partial \Omega_{\epsilon}=\partial B_{\epsilon} \cup \Gamma$ $(\Gamma=\partial \Omega)$.

Problem $\left(\mathcal{P}_{\epsilon}\right)$ rewrites as

Let $v \in H^{2}\left(\Omega_{\epsilon}\right)$, and u_{ϵ} the solution of $\left(\mathcal{P}_{\epsilon}^{b}\right)$. By a classical regularity result, $u_{\epsilon} \in H^{4}\left(\Omega_{\epsilon}\right)$. Then by using integration by parts on Ω_{ϵ}, and ([15] p.376), we get from (7) and (8) :

$$
\begin{aligned}
\int_{\Omega_{\epsilon}} f v & =\int_{\Omega_{\epsilon}}\left(\Delta^{2} u_{\epsilon}-\gamma \Delta u_{\epsilon}+u_{\epsilon}\right) v \\
& =a_{\epsilon}\left(u_{\epsilon}, v\right)-\int_{B_{\epsilon}}\left(\left(B_{1}\left(u_{\epsilon}\right)-\gamma \partial_{n} u_{\epsilon}\right) v-B_{2}\left(u_{\epsilon}\right) \partial_{n} v\right)+\int_{\Gamma}\left(\left(B_{1}\left(u_{\epsilon}\right)-\gamma \partial_{n} u_{\epsilon}\right) v-B_{2}\left(u_{\epsilon}\right) \partial_{n} v\right)
\end{aligned}
$$

To simplify notations we suppose that $x_{0} \equiv 0$.
Now to compute the topological gradient, we have to estimate the leading term when $\epsilon \rightarrow 0$ in the difference $J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)$. Using equations satisfied by u_{ϵ} and u_{0} we have

$$
\begin{equation*}
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)=\int_{\Omega_{\epsilon}}\left(f-2 u_{0}\right)\left(u_{\epsilon}-u_{0}\right)-\int_{\Omega_{\epsilon}}\left(u_{\epsilon}-u_{0}\right)^{2}-\int_{B_{\epsilon}}\left(f-u_{0}\right) u_{0} \tag{10}
\end{equation*}
$$

Let us denote $L_{\epsilon}: H^{2}\left(\Omega_{\epsilon}\right) \longrightarrow \mathbb{R}$ the linear map

$$
\begin{equation*}
L_{\epsilon}(u)=\int_{\Omega_{\epsilon}}\left(f-2 u_{0}\right) u, \forall u \in H^{2}\left(\Omega_{\epsilon}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{J}_{\epsilon}=-\int_{\Omega_{\epsilon}}\left(u_{\epsilon}-u_{0}\right)^{2}-\int_{B_{\epsilon}}\left(f-u_{0}\right) u_{0} \tag{12}
\end{equation*}
$$

The first step for evaluating (10) is to introduce v_{ϵ} the unique solution of the dual problem (see [2] and [28])

$$
\begin{equation*}
a_{\epsilon}\left(u, v_{\epsilon}\right)=-L_{\epsilon}(u), \forall u \in H^{2}\left(\Omega_{\epsilon}\right) \tag{13}
\end{equation*}
$$

From (13) and (12) we rewrite (10)

$$
\begin{aligned}
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right) & =-a_{\epsilon}\left(u_{\epsilon}-u_{0}, v_{\epsilon}\right)+\mathcal{J}_{\epsilon}=-l_{\epsilon}\left(v_{\epsilon}\right)+a_{\epsilon}\left(u_{0}, v_{\epsilon}\right)+\mathcal{J}_{\epsilon} \\
& =-\int_{\Omega_{\epsilon}} f v_{\epsilon}+\int_{\Omega_{\epsilon}}\left(\Delta^{2} u_{0}-\gamma \Delta u_{0}+u_{0}\right) v_{\epsilon}+\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) v_{\epsilon}-B_{2}\left(u_{0}\right) \partial_{n} v_{\epsilon}+\mathcal{J}_{\epsilon} \\
& =\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) v_{\epsilon}-B_{2}\left(u_{0}\right) \partial_{n} v_{\epsilon}+\mathcal{J}_{\epsilon}
\end{aligned}
$$

Then we set $w_{\epsilon}=v_{\epsilon}-v_{0}$, where v_{0} is the solution of (13) with $\epsilon=0,\left(\Omega_{0}=\Omega\right)$, thus we rewrite

$$
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)=\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) v_{0}-B_{2}\left(u_{0}\right) \partial_{n} v_{0}+\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) w_{\epsilon}-B_{2}\left(u_{0}\right) \partial_{n} w_{\epsilon}+\mathcal{J}_{\epsilon}
$$

Now we express the difference $J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)$ as a sum of more simple terms.
For $\varphi_{1} \in H^{3 / 2}\left(\partial \omega_{\epsilon}\right), \varphi_{2} \in H^{1 / 2}\left(\partial \omega_{\epsilon}\right)$ let $l_{\epsilon}^{\varphi_{1}, \varphi_{2}} \in H^{2}\left(\omega_{\epsilon}\right)$ the solution of the problem

$$
\left\{\begin{align*}
\Delta^{2} l_{\epsilon}^{\varphi_{1}, \varphi_{2}} & =0, \text { on } B_{\epsilon} \tag{14}\\
l_{\epsilon}^{\varphi_{1}, \varphi_{2}} & =\varphi_{1}, \text { on } \partial B_{\epsilon} \\
\partial_{n} l_{\epsilon}^{\varphi_{1}, \varphi_{2}} & =\varphi_{2}, \text { on } \partial B_{\epsilon}
\end{align*}\right.
$$

For $u \in H^{2}\left(\Omega_{\epsilon}\right)$ we denote by l_{ϵ}^{u} the function $l_{\epsilon}^{u, \partial_{n} u}$, and for $\epsilon=1$ by $l^{\varphi_{1}, \varphi_{2}}$ the function $l_{1}^{\varphi_{1}, \varphi_{2}}$. The difference becomes :

$$
\begin{align*}
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right) & =\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) v_{0}-B_{2}\left(u_{0}\right) \partial_{n} v_{0}+\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) l_{\epsilon}^{w_{\epsilon}}-B_{2}\left(u_{0}\right) \partial_{n} l_{\epsilon}^{w_{\epsilon}}+\mathcal{J}_{\epsilon} \\
& =\mathcal{L}_{\epsilon}+\mathcal{K}_{\epsilon}+\mathcal{J}_{\epsilon} \tag{15}
\end{align*}
$$

where

$$
\mathcal{K}_{\epsilon}=\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) l_{\epsilon}^{w_{\epsilon}}-B_{2}\left(u_{0}\right) \partial_{n} l_{\epsilon}^{w_{\epsilon}} \quad, \quad \mathcal{L}_{\epsilon}=\int_{\partial B_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right) v_{0}-B_{2}\left(u_{0}\right) \partial_{n} v_{0}
$$

Let $\widetilde{u_{0}}(x)=u_{0}(x)-u_{0}(0)-\nabla u_{0}(0) \cdot x$, it is straightforward that

$$
\mathcal{K}_{\epsilon}=\int_{\partial B_{\epsilon}}\left(B_{1}\left(\widetilde{u_{0}}\right)-\gamma \partial_{n} u_{0}\right) l_{\epsilon}^{w_{\epsilon}}-B_{2}\left(\widetilde{u_{0}}\right) \partial_{n} l_{\epsilon}^{w_{\epsilon}}
$$

Then integration by parts (see [15] p.376) gives

$$
\mathcal{K}_{\epsilon}=\int_{B_{\epsilon}} \Delta^{2} \widetilde{u_{0}} l_{\epsilon}^{w_{\epsilon}}-b_{\epsilon}\left(\widetilde{u_{0}}, l_{\epsilon}^{w_{\epsilon}}\right)-\int_{B_{\epsilon}} \gamma\left(\Delta u_{0} l_{\epsilon}^{w_{\epsilon}}-\nabla u_{0} . \nabla l_{\epsilon}^{w_{\epsilon}}\right)
$$

where $b_{\epsilon}(u, v)$ is the bilinear form associated to (14) and defined by

$$
b_{\epsilon}(u, v)=\int_{B_{\epsilon}} \Delta u \Delta v+(1-\nu)\left(2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right)
$$

Integration by parts again gives :

$$
\begin{equation*}
\mathcal{K}_{\epsilon}=\int_{B_{\epsilon}}\left(\Delta^{2} u_{0}-\gamma \Delta u_{0}\right) l_{\epsilon}^{w_{\epsilon}}+\gamma \nabla u_{0} \cdot \nabla l_{\epsilon}^{w_{\epsilon}}-\int_{B_{\epsilon}} \underbrace{\Delta^{2} l_{\epsilon}^{w_{\epsilon}}}_{=0} \widetilde{u_{0}}+\int_{\partial B_{\epsilon}} B_{1}\left(l_{\epsilon}^{w_{\epsilon}}\right) \widetilde{u_{0}}-B_{2}\left(l_{\epsilon}^{w_{\epsilon}}\right) \partial_{n} \widetilde{u_{0}} \tag{16}
\end{equation*}
$$

In a similar manner

$$
\begin{equation*}
\mathcal{L}_{\epsilon}=\int_{B_{\epsilon}}\left(\Delta^{2} u_{0}-\gamma \Delta u_{0}\right) v_{0}+\gamma \nabla u_{0} \cdot \nabla v_{0}-\int_{B_{\epsilon}} \Delta^{2} v_{0} \widetilde{u_{0}}+\int_{\partial B_{\epsilon}} B_{1}\left(v_{0}\right) \widetilde{u_{0}}-B_{2}\left(v_{0}\right) \partial_{n} \widetilde{u_{0}} \tag{17}
\end{equation*}
$$

We set $F=\left(f-2 u_{0}\right)$, thus we have in the distributional sense for $\epsilon \rightarrow 0$:

$$
\begin{equation*}
\Delta^{2} v_{0}-\gamma \Delta v_{0}+v_{0}=-F \text { in } \mathcal{D}^{\prime}\left(B_{\epsilon}\right) \tag{18}
\end{equation*}
$$

From (15), (16), (17) and (18) we get

$$
\begin{align*}
\mathcal{L}_{\epsilon}+\mathcal{K}_{\epsilon} & =\int_{B_{\epsilon}}\left(f-u_{0}\right) v_{0}+\gamma \nabla u_{0} \cdot \nabla v_{0}+\int_{B_{\epsilon}}\left(F-\gamma \Delta v_{0}+v_{0}\right) \widetilde{u_{0}}+\int_{B_{\epsilon}}\left(\Delta^{2} u_{0}-\gamma \Delta u_{0}\right) l_{\epsilon}^{w_{\epsilon}} \\
& +\gamma \nabla u_{0} \cdot \nabla l_{\epsilon}^{w_{\epsilon}}+\int_{\partial B_{\epsilon}}\left(B_{1}\left(l_{\epsilon}^{w_{\epsilon}}\right)+B_{1}\left(v_{0}\right)\right) \widetilde{u_{0}}-\int_{\partial B_{\epsilon}}\left(B_{2}\left(l_{\epsilon}^{w_{\epsilon}}\right)+B_{2}\left(v_{0}\right)\right) \partial_{n} \widetilde{u_{0}} \tag{19}\\
& =\int_{B_{\epsilon}}\left(f-u_{0}\right) v_{0}+\gamma \nabla u_{0} \cdot \nabla v_{0}+J_{A}-J_{B}+\mathcal{E}_{1}+\mathcal{E}_{2}+\mathcal{E}_{3}
\end{align*}
$$

where

$$
\begin{align*}
J_{A}=\int_{\partial B_{\epsilon}}\left(B_{1}\left(l_{\epsilon}^{w_{\epsilon}}\right)+B_{1}\left(v_{0}\right)\right) \widetilde{u_{0}} \quad, \quad J_{B}=\int_{\partial B_{\epsilon}}\left(B_{2}\left(l_{\epsilon}^{w_{\epsilon}}\right)+B_{2}\left(v_{0}\right)\right) \partial_{n} \widetilde{u_{0}} \tag{20}\\
\mathcal{E}_{1}=\int_{B_{\epsilon}}\left(F-\gamma \Delta v_{0}+v_{0}\right) \widetilde{u_{0}} \quad, \quad \mathcal{E}_{2}=\int_{B_{\epsilon}}\left(\Delta^{2} u_{0}-\gamma \Delta u_{0}\right) l_{\epsilon}^{w_{\epsilon}} \quad, \quad \mathcal{E}_{3}=\int_{B_{\epsilon}} \gamma \nabla u_{0} \cdot \nabla l_{\epsilon}^{w_{\epsilon}}
\end{align*}
$$

In the next subsection, we will show that $\mathcal{E}_{1}, \mathcal{E}_{2}$ and \mathcal{E}_{3} are $\sim o\left(\epsilon^{2}\right)$ and that J_{A} and J_{B} are $\sim O\left(\epsilon^{2}\right)$. Before we establish the asymptotic expansion of $B_{1}\left(v_{0}\right), B_{2}\left(v_{0}\right)$ and w_{ϵ}.

2.2. Estimates of $B_{1}\left(v_{0}\right)(x)$ and $B_{2}\left(v_{0}\right)(x)$ for $x \in \partial B_{\epsilon}$

Proposition 2.1. Suppose v_{0} regular, then when $\epsilon \rightarrow 0$ we have the following boundary expansions :

$$
B_{1}\left(v_{0}\right)(\epsilon X)=-\frac{g_{1}(X)}{\epsilon}+O(1) \quad, \quad B_{2}\left(v_{0}\right)(\epsilon X)=-g_{2}(X)+O(\epsilon)
$$

where setting $X=(\cos (\theta), \sin (\theta)) \in \partial B$

$$
\begin{aligned}
& g_{1}(X)=g_{1}(\theta)=(1-\nu)\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)\right) \cos (2 \theta)+2(1-\nu) \frac{\partial^{2} v_{0}}{\partial x_{1} \partial x_{2}}(0) \sin (2 \theta) \\
& g_{2}(X)=g_{2}(\theta)=-\frac{(1+\nu)}{2} \Delta v_{0}(0)-\frac{(1-\nu)}{2}\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)\right) \cos (2 \theta)-(1-\nu) \frac{\partial^{2} v_{0}}{\partial x_{1} \partial x_{2}}(0) \sin (2 \theta)
\end{aligned}
$$

Proof. It suffices to expand $B_{1}\left(v_{0}\right)(\epsilon X)$ and $B_{2}\left(v_{0}\right)(\epsilon X)$ around $\epsilon=0$ by using Taylor formula (see [14] for details)

2.3. Asymptotic expansion of w_{ϵ}

We recall that $w_{\epsilon}=v_{\epsilon}-v_{0}$ is the solution of :

$$
\left(\mathcal{Q}_{\epsilon}^{b}\right)\left\{\begin{align*}
\Delta^{2} w_{\epsilon}-\gamma \Delta w_{\epsilon}+w_{\epsilon} & =0, \text { on } \Omega_{\epsilon} \tag{21}\\
B_{1}\left(w_{\epsilon}\right)-\gamma \partial_{n} w_{\epsilon} & =-B_{1}\left(v_{0}\right)+\gamma \partial_{n} v_{0}, \text { on } \partial B_{\epsilon} \\
B_{2}\left(w_{\epsilon}\right) & =-B_{2}\left(v_{0}\right), \text { on } \partial B_{\epsilon} \\
B_{1}\left(w_{\epsilon}\right)-\gamma \partial_{n} w_{\epsilon} & =0, \text { on } \Gamma \\
B_{2}\left(w_{\epsilon}\right) & =0, \text { on } \Gamma
\end{align*}\right.
$$

We denote by B^{\prime} the exterior domain $\mathbb{R}^{2} \backslash \bar{B}$, and we introduce the weighted Sobolev space :

$$
W^{2}\left(B^{\prime}\right)=\left\{u, \frac{u}{r^{2} \log (r)} \in L^{2}\left(B^{\prime}\right), \frac{\nabla u}{r \log (r)} \in L^{2}\left(B^{\prime}\right), \nabla^{2} u \in L^{2}\left(B^{\prime}\right)\right\}
$$

where $r=|x|$. The weights given here are classical, and can be replaced by weights whose asymptotic behavior is the same [23]. We denote by $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$ the set of functions $W^{2}\left(B^{\prime}\right)$ defined up to a polynomial of degree less or equal than 1. To estimate w_{ϵ}, we introduce (see $[3,28]$) the following exterior problem

$$
\left(\mathcal{P}_{\text {ext }}\right)\left\{\begin{align*}
\Delta^{2} P & =0, \text { on } B^{\prime} \tag{22}\\
B_{1}(P) & =g_{1}, \text { on } \partial B \\
B_{2}(P) & =g_{2}, \text { on } \partial B
\end{align*}\right.
$$

where $g_{1} \in H^{-3 / 2}(\partial B)$ and $g_{2} \in H^{-1 / 2}(\partial B)$ are given in Proposition 2.1. From Theorem 5.3 (Appendix B), we deduce that problem $\left(\mathcal{P}_{\text {ext }}\right)$ admits a unique solution $P \in W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$ and P can be written as the sum of simple and double layers potential :

$$
P(x)=\int_{\partial B} \lambda_{1}(y) E(x-y) d \sigma_{y}+\int_{\partial B} \lambda_{2}(y) \partial_{n_{y}}(E(x-y)) d \sigma_{y}
$$

where λ_{1} and λ_{2} are densities that we can determine in function of the boundary data; $E(x)$ denotes the bilaplacian fundamental solution :

$$
\begin{equation*}
E(x)=-\frac{1}{8 \pi}|x|^{2} \log (|x|) \tag{23}
\end{equation*}
$$

From Theorem 5.3 (Appendix B) and Proposition 2.1 we get

$$
\begin{equation*}
\lambda_{1}=\alpha \cos (2 \theta)+\beta \sin (2 \theta) \quad, \quad \lambda_{2}=c+a \cos (2 \theta)+b \sin (2 \theta) \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& a=-2 \frac{1-\nu}{3+\nu}\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)\right) \quad, \quad b=-4 \frac{1-\nu}{3+\nu} \frac{\partial^{2} v_{0}}{\partial x_{1} \partial x_{2}}(0) \quad, \quad c=-\frac{1+\nu}{1-\nu} \Delta v_{0}(0) \tag{25}\\
& \alpha=2 a \quad, \quad \beta=2 b
\end{align*}
$$

Then from Lemma 5.6 (Appendix B), we prove that $w_{\epsilon}=\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+e_{\epsilon}$ with $\left\|e_{\epsilon}\right\|_{2, \Omega_{\epsilon}}=O\left(-\epsilon^{2} \log (\epsilon)\right)$. In the next subsection we estimate $J_{A}, J_{B}, \mathcal{E}_{1}, \mathcal{E}_{2}$ and \mathcal{E}_{3}.

2.4. Estimates of $J_{A}, J_{B}, \mathcal{E}_{1}, \mathcal{E}_{2}$ and \mathcal{E}_{3}

Lemma 2.2. Let $J_{A}, J_{B}, \mathcal{E}_{1}, \mathcal{E}_{2}$ and \mathcal{E}_{3} given in (20), we have the following estimates

$$
\begin{aligned}
& J_{A}=\epsilon^{2} \frac{1}{2} \int_{\partial B} \lambda_{1}(y) \nabla^{2} u_{0}(0) y \cdot y+o\left(\epsilon^{2}\right) \quad, \quad J_{B}=-\epsilon^{2} \int_{\partial B} \lambda_{2}(y) \nabla^{2} u_{0}(0) y . y+o\left(\epsilon^{2}\right) \\
& \mathcal{E}_{1}=O\left(\epsilon^{3}\right) \quad, \quad \mathcal{E}_{2}=O\left(-\epsilon^{3} \log (\epsilon)\right) \quad, \quad \mathcal{E}_{3}=O\left(\epsilon^{3} \sqrt{-\log (\epsilon)}\right)
\end{aligned}
$$

Proof. From the linearity of the solution of (14), by using the jump relations (46) given in Theorem 5.3 (Appendix B) and the asymptotic expansion of w_{ϵ} we get

$$
\begin{aligned}
J_{A} & =\int_{\partial B_{\epsilon}}\left(B_{1}\left(v_{0}\right)+B_{1}\left(l_{\epsilon}^{\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+e_{\epsilon}}\right)\right) \widetilde{u_{0}}=\epsilon \int_{\partial B}\left(B_{1}\left(v_{0}\right)(\epsilon X)+\frac{1}{\epsilon} B_{1}\left(l^{P}\right)(X)\right) \widetilde{u_{0}}(\epsilon X) d \sigma_{X}+\mathcal{F}_{1} \\
& =\epsilon \int_{\partial B} \frac{-g_{1}(X)+B_{1}\left(l^{P}\right)(X)}{\epsilon} \widetilde{u_{0}}(\epsilon X) d \sigma_{X}+\mathcal{F}_{1}+\mathcal{F}_{2} \\
& =\epsilon \int_{\partial B} \frac{-g_{1}(X)+B_{1}\left(l^{P}\right)(X)}{\epsilon} \frac{\epsilon^{2}}{2} \nabla^{2} u_{0}(0) X \cdot X d \sigma_{X}+\mathcal{F}_{1}+\mathcal{F}_{2}+\mathcal{F}_{3} \\
& =\epsilon^{2} \frac{1}{2} \int_{\partial B} \lambda_{1}(y) \nabla^{2} u_{0}(0) y \cdot y+\mathcal{F}_{1}+\mathcal{F}_{2}+\mathcal{F}_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{F}_{1}=\int_{\partial B_{\epsilon}} B_{1}\left(l_{\epsilon}^{e_{\epsilon}}\right) \widetilde{u_{0}} \quad, \quad \mathcal{F}_{2}=\epsilon \int_{\partial B}\left(B_{1}\left(v_{0}\right)(\epsilon X)+\frac{g_{1}(X)}{\epsilon}\right) \widetilde{u_{0}}(\epsilon X) \\
& \mathcal{F}_{3}=\int_{\partial B}\left(-g_{1}(X)+B_{1}\left(l^{P}\right)(X)\right)\left(\widetilde{u_{0}}(\epsilon X)-\epsilon^{2} \frac{1}{2} \nabla^{2} u_{0}(0) X . X\right) d \sigma_{X}
\end{aligned}
$$

Let B_{r} such as $B \varsubsetneqq B_{r} \subset \frac{1}{\epsilon} \Omega$. By a change of variable, by using Lemma 5.2 (Appendix B), a Taylor expansion of $\widetilde{u_{0}}(\epsilon X)$, the trace theorem applied on $B_{r} \backslash \bar{B}$, a change of variable and Lemma 5.6 (Appendix B), the following estimate holds

$$
\begin{aligned}
\mathcal{F}_{1} & =\epsilon \int_{\partial B} B_{1}\left(l_{\epsilon}^{e_{\epsilon}}\right)(\epsilon X) \widetilde{u_{0}}(\epsilon X) d \sigma_{X}=\epsilon \int_{\partial B} \frac{1}{\epsilon^{3}} B_{1}\left(l_{\epsilon}^{e_{\epsilon}}(\epsilon X)\right) \widetilde{u_{0}}(\epsilon X) d \sigma_{X} \\
& \leq C\left|l_{\epsilon}^{e_{\epsilon}}(\epsilon X)\right|_{2, B}=C\left|l^{e_{\epsilon}(\epsilon X)}\right|_{2, B} \leq C\left\|e_{\epsilon}(\epsilon X)\right\|_{H^{2}\left(B_{r} \backslash \bar{B}\right) / \mathbb{P}_{1}} \leq C \epsilon\left|e_{\epsilon}\right|_{2, \Omega_{\epsilon}} \leq C \epsilon^{3} \log (\epsilon)
\end{aligned}
$$

From estimates given in Proposition 2.1, and by a Taylor expansion of $\widetilde{u_{0}}(\epsilon X)$ at 0 we easily see that

$$
\mathcal{F}_{2}=O\left(\epsilon^{3}\right) \quad, \quad \mathcal{F}_{3}=O\left(\epsilon^{3}\right)
$$

Similarly

$$
\begin{aligned}
J_{B} & =\int_{\partial B_{\epsilon}}\left(B_{2}\left(v_{0}\right)+B_{2}\left(l_{\epsilon}^{\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+e_{\epsilon}}\right)\right) \partial_{n} \widetilde{u_{0}}=\epsilon \int_{\partial B}\left(B_{2}\left(v_{0}\right)(\epsilon X)+B_{2}\left(l^{P}\right)(X)\right) \partial_{n} \widetilde{u_{0}}(\epsilon X) d \sigma_{X}+\mathcal{F}_{4} \\
& =\epsilon \int_{\partial B}\left(-g_{2}(X)+B_{2}\left(l^{P}\right)(X)\right) \partial_{n} \widetilde{u_{0}}(\epsilon X) d \sigma_{X}+\mathcal{F}_{4}+\mathcal{F}_{5} \\
& =\epsilon^{2} \int_{\partial B}\left(-g_{2}(X)+B_{2}\left(l^{P}\right)(X)\right) \nabla^{2} u_{0}(0) X . n d \sigma_{X}+\mathcal{F}_{4}+\mathcal{F}_{5}+\mathcal{F}_{6} \\
& =-\epsilon^{2} \int_{\partial B} \lambda_{2}(y) \nabla^{2} u_{0}(0) y \cdot y+\mathcal{F}_{4}+\mathcal{F}_{5}+\mathcal{F}_{6}
\end{aligned}
$$

where

$$
\begin{array}{r}
\mathcal{F}_{4}=\int_{\partial B_{\epsilon}} B_{2}\left(l_{\epsilon}^{e_{\epsilon}}\right) \partial_{n} \widetilde{u_{0}}, \quad \mathcal{F}_{5}=\epsilon \int_{\partial B}\left(B_{2}\left(v_{0}\right)(\epsilon X)+g_{2}(X)\right) \partial_{n} \widetilde{u_{0}}(\epsilon X) d \sigma_{X} \\
\mathcal{F}_{6}=\int_{\partial B}\left(-g_{2}(X)+B_{2}\left(l^{P}\right)(X)\right)\left(\partial_{n} \widetilde{u_{0}}(\epsilon X)-\epsilon^{2} \nabla^{2} u_{0}(0) X . n\right) d \sigma_{X}
\end{array}
$$

Thanks to a similar calculus of \mathcal{F}_{1} one's, and from a Taylor expansion of $\partial_{n} \widetilde{u_{0}}(\epsilon X)$ we can prove that

$$
\mathcal{F}_{4}=O\left(-\epsilon^{3} \log (\epsilon)\right)
$$

Then from estimates given in Proposition 2.1 and a Taylor expansion of $\partial_{n} \widetilde{u_{0}}(\epsilon X)$ we obtain

$$
\mathcal{F}_{5}=O\left(\epsilon^{3}\right) \quad, \quad \mathcal{F}_{6}=O\left(\epsilon^{3}\right)
$$

Thus, we deduce the estimates of J_{A} and J_{B} given in the lemma.
For \mathcal{E}_{1}, by using a change of variable, a Taylor expansion of $\widetilde{u_{0}}(\epsilon X)$ and the definition of F given in (18), it is straightforward that

$$
\mathcal{E}_{1}=O\left(\epsilon^{3}\right)
$$

For \mathcal{E}_{2}, a change of variable, Lemma 5.2 (see Appendix B) with $\epsilon=1$, the trace theorem applied on $B_{r} \backslash \bar{B}$, a change of variable again, and finally Lemma 5.6 (see Appendix B) lead to

$$
\begin{aligned}
\mathcal{E}_{2} & =\epsilon^{2} \int_{B} \Delta^{2} u_{0}(\epsilon X) l_{\epsilon}^{w_{\epsilon}}(\epsilon X) \leq C \epsilon^{2}\left\|l^{w_{\epsilon}(\epsilon X)}\right\|_{0, B_{r} \backslash \bar{B}} \leq C \epsilon^{2}\left\|w_{\epsilon}(\epsilon X)\right\|_{2, B} \\
& \leq C \epsilon^{2}\left(\left\|w_{\epsilon}(\epsilon X)\right\|_{0, B_{r} \backslash \bar{B}}+\left|w_{\epsilon}(\epsilon X)\right|_{1, B_{r} \backslash \bar{B}}+\left|w_{\epsilon}(\epsilon X)\right|_{2, B_{r} \backslash \bar{B}}\right) \\
& \leq C \epsilon^{2}\left(\frac{1}{\epsilon}\left\|w_{\epsilon}\right\|_{0, \Omega_{\epsilon}}+\left|w_{\epsilon}\right|_{1, \Omega_{\epsilon}}+\epsilon\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}}\right) \leq C \epsilon^{3} \log (\epsilon)
\end{aligned}
$$

where $B \nsubseteq B_{r} \subset \frac{1}{\epsilon} \Omega$. Similarly for \mathcal{E}_{3} we have

$$
\mathcal{E}_{3}=\leq C \epsilon\left(\left|w_{\epsilon}\right|_{1, \Omega_{\epsilon}}+\epsilon\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}}\right) \leq C \epsilon^{3} \sqrt{-\log (\epsilon)}
$$

2.5. Calculus of the topological gradient in the case of the ball

From (15), (19) and using estimates given in Lemma 2.2 we have

$$
\begin{aligned}
\frac{J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)}{\epsilon^{2}} & =\pi\left(f(0)-u_{0}(0)\right) v_{0}(0)+\gamma \pi \nabla u_{0}(0) \cdot \nabla v_{0}(0) \\
& +\frac{1}{2} \int_{\partial B} \lambda_{1}(y) \nabla^{2} u_{0}(0) y \cdot y+\int_{\partial B} \lambda_{2}(y) \nabla^{2} u_{0}(0) y \cdot y+\frac{\mathcal{J}_{\epsilon}}{\epsilon^{2}}+o(1)
\end{aligned}
$$

Using polar coordinates and from the expressions of λ_{1} and λ_{2} given in (24) and (25), we obtain

$$
\begin{aligned}
\frac{J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)}{\epsilon^{2}} & =\pi\left(f(0)-u_{0}(0)\right) v_{0}(0)+\gamma \pi \nabla u_{0}(0) . \nabla v_{0}(0) \\
& +\left(\frac{\partial^{2} u_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} u_{0}}{\left(\partial x_{2}\right)^{2}}(0)\right)\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)\right) \pi a^{\prime} \\
& +\frac{\partial^{2} u_{0}}{\partial x_{2} \partial x_{1}}(0) \frac{\partial^{2} v_{0}}{\partial x_{2} \partial x_{1}}(0) \pi 4 a^{\prime}+\pi c^{\prime} \Delta u_{0}(0) \Delta v_{0}(0)+\frac{\mathcal{J}_{\epsilon}}{\epsilon^{2}}+o(1)
\end{aligned}
$$

where

$$
a^{\prime}=-2 \frac{1-\nu}{3+\nu} \quad, \quad c^{\prime}=-\frac{1+\nu}{1-\nu}
$$

From (12) and by using Lemma 5.6 applied to $u_{\epsilon}-u_{0}$ and a Taylor expansion of f and u_{0} at 0 , we have

$$
\mathcal{J}_{\epsilon}=-\pi \epsilon^{2}\left(f(0)-u_{0}(0)\right) u_{0}(0)+o\left(\epsilon^{2}\right)
$$

2.6. Conclusion : general expression for all $x_{0} \in \Omega$

The topological gradient of the cost function J_{ϵ} in the case of the ball associated with $\left(\mathcal{P}_{\epsilon}^{b}\right)$ given in (9) is for all point $x_{0} \in \Omega$:

$$
\begin{align*}
\mathcal{I}\left(x_{0}\right) & =\pi\left(f\left(x_{0}\right)-u_{0}\left(x_{0}\right)\right)\left(v_{0}\left(x_{0}\right)-u_{0}\left(x_{0}\right)\right)+\gamma \pi \nabla u_{0}\left(x_{0}\right) \cdot \nabla v_{0}\left(x_{0}\right) \\
& -\frac{2 \pi(1-\nu)}{3+\nu}\left(\left(\frac{\partial^{2} u_{0}}{\left(\partial x_{1}\right)^{2}}\left(x_{0}\right)-\frac{\partial^{2} u_{0}}{\left(\partial x_{2}\right)^{2}}\left(x_{0}\right)\right)\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}\left(x_{0}\right)-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}\left(x_{0}\right)\right)+4 \frac{\partial^{2} u_{0}}{\partial x_{2} \partial x_{1}}\left(x_{0}\right) \frac{\partial^{2} v_{0}}{\partial x_{2} \partial x_{1}}\left(x_{0}\right)\right) \\
& -\frac{\pi(1+\nu)}{1-\nu} \Delta u_{0}\left(x_{0}\right) \Delta v_{0}\left(x_{0}\right) \tag{26}
\end{align*}
$$

3. STUDY IN THE CASE OF THE CRACK

3.1. Notations and statement of the problem

For each smooth manifold $\Sigma \subset \Omega$, we define the following spaces :

$$
H_{00}^{1 / 2}(\Sigma)=\left\{u_{\mid \Sigma}, u \in H^{1 / 2}(\widetilde{\Sigma}), u_{\mid \widetilde{\Sigma} \backslash \bar{\Sigma}}=0\right\} \quad, \quad H_{00}^{3 / 2}(\Sigma)=\left\{u_{\mid \Sigma}, u \in H^{3 / 2}(\widetilde{\Sigma}), u_{\mid \widetilde{\Sigma} \backslash \bar{\Sigma}}=0\right\}
$$

where $\widetilde{\Sigma}$ is a closed manifold containing Σ and of the same dimension.
We define on these spaces the following norms

$$
\left\|u_{\mid \Sigma}\right\|_{H_{00}^{1 / 2}(\Sigma)}=\|u\|_{H^{1 / 2}(\widetilde{\Sigma})} \quad, \quad\left\|u_{\mid \Sigma}\right\|_{H_{00}^{3 / 2}(\Sigma)}=\|u\|_{H^{3 / 2}(\widetilde{\Sigma})}
$$

Now, let $\sigma \subset \Omega$ a C^{1}-manifold of dimension 1 , with normal n and containing the origin. When the situation is ambiguous we denote by $\vec{\sigma}$ the tangent vector to the crack σ such as $(\vec{n}, \vec{\sigma})$ forms an orthonormal basis. $\partial \sigma$ denotes the differentiation along the vector $\vec{\sigma}$. In this section we set the crack exterior domain, $\Lambda=\mathbb{R}^{2} \backslash \bar{\sigma}$. As for the ball we define the following weighted Sobolev space on Λ :

$$
W^{2}(\Lambda)=\left\{u, \frac{u}{r^{2} \log (r)} \in L^{2}(\Lambda), \frac{\nabla u}{r \log (r)} \in L^{2}(\Lambda), \nabla^{2} u \in L^{2}(\Lambda)\right\}
$$

where $r=|x|$. We denote by $W^{2}(\Lambda) / \mathbb{P}_{1}$ the space of $W^{2}(\Lambda)$ functions defined up to \mathbb{P}_{1} functions and by Ω_{ϵ} the cracked domain $\Omega \backslash \overline{x_{0}+\epsilon \sigma}$. We assume that $\sigma_{\epsilon} \cap \partial \Omega=\emptyset$ and to simplify that $x_{0} \equiv 0$. We set $\sigma_{\epsilon}=\left\{x, \frac{x}{\epsilon} \in \sigma\right\}$.

Thus $\partial \Omega_{\epsilon}=\sigma_{\epsilon} \cup \Gamma$ and the problem $\left(\mathcal{P}_{\epsilon}\right)$ expresses as

$$
\left(\mathcal{P}_{\epsilon}^{c}\right)\left\{\begin{align*}
\Delta^{2} u_{\epsilon}-\gamma \Delta u_{\epsilon}+u_{\epsilon} & =f, \text { on } \Omega_{\epsilon} \tag{27}\\
B_{1}\left(u_{\epsilon}\right)-\gamma \partial_{n} u_{\epsilon} & =0, \text { on } \sigma_{\epsilon} \cup \Gamma \\
B_{2}\left(u_{\epsilon}\right) & =0, \text { on } \sigma_{\epsilon} \cup \Gamma
\end{align*}\right.
$$

Figure 3. Extension of the crack in a smooth closed curve
Let $\widetilde{\sigma}$ a smooth closed curve of same dimension as σ such as $\sigma \subset \widetilde{\sigma}$, and let $\widetilde{\omega}$ the sub-domain of \mathbb{R}^{2}, such as $\partial \widetilde{\omega}=\widetilde{\sigma}$; we denote by $\widetilde{\omega_{\epsilon}}=\left\{x, \frac{x}{\epsilon} \in \widetilde{\omega}\right\}$ and $\widetilde{\Omega_{\epsilon}}=\Omega \backslash \widetilde{\omega_{\epsilon}}$ (see Figure 3). Let $v \in H^{2}\left(\Omega_{\epsilon}\right)$ and u_{ϵ} the solution of $\left(P_{\epsilon}^{c}\right)$. Thanks to classical regularity result, we obtain that $u_{\epsilon} \in H^{4}\left(\Omega_{\epsilon}\right)$. With an integration by parts in $\Omega \backslash \overline{\omega_{\epsilon}} \cup \widetilde{\omega_{\epsilon}}$ (see [15], p.376) the variational formulation of $\left(\mathcal{P}_{\epsilon}^{c}\right)$ is

$$
\begin{aligned}
\int_{\Omega_{\epsilon}} f v & =\int_{\Omega_{\epsilon}}\left(\Delta^{2} u_{\epsilon}-\gamma \Delta u_{\epsilon}+u_{\epsilon}\right) v \\
& =a_{\epsilon}(u, v)-\int_{\sigma_{\epsilon}}\left(\left(B_{1}\left(u_{\epsilon}\right)-\gamma \partial_{n} u_{\epsilon}\right)[v]-B_{2}\left(u_{\epsilon}\right)\left[\partial_{n} v\right]\right)+\int_{\Gamma}\left(B_{1}\left(u_{\epsilon}\right) v-B_{2}\left(u_{\epsilon}\right) \partial_{n} v\right), \forall v \in H^{2}\left(\Omega_{\epsilon}\right)
\end{aligned}
$$

where $a_{\epsilon}(u, v)$ is given in (6) and where we set $[v]=v^{+}-v^{-}$the jump of v through σ_{ϵ} and $\left[\partial_{n} v\right]=\left(\partial_{n} v\right)^{+}-\left(\partial_{n} v\right)^{-}$ the jump of $\partial_{n} v$ (see Figure 3). To simplify, we assume that $\sigma=\{(s, 0),-1<s<1\}$.

We calculate the topological gradient as in the case of the ball in evaluating the leading term in the asymptotic expansion of $J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)$ when $\epsilon \rightarrow 0$. By using equations that u_{ϵ} and u_{0} verify, we have

$$
\begin{equation*}
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)=\int_{\Omega_{\epsilon}}\left(f-2 u_{0}\right)\left(u_{\epsilon}-u_{0}\right)-\int_{\Omega_{\epsilon}}\left(u_{\epsilon}-u_{0}\right)^{2} \tag{28}
\end{equation*}
$$

We define $L_{\epsilon}(u)$ as in (11), and we set

$$
\begin{equation*}
\mathcal{J}_{\epsilon}=-\int_{\Omega_{\epsilon}}\left(u_{\epsilon}-u_{0}\right)^{2} \tag{29}
\end{equation*}
$$

As in [2] and [28], to evaluate (28), we introduce v_{ϵ} the solution of the dual problem (13). From (13) and (29) we rewrite (28)

$$
\begin{aligned}
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right) & =-a_{\epsilon}\left(u_{\epsilon}-u_{0}, v_{\epsilon}\right)+\mathcal{J}_{\epsilon}=-l_{\epsilon}\left(v_{\epsilon}\right)+a_{\epsilon}\left(u_{0}, v_{\epsilon}\right)+\mathcal{J}_{\epsilon} \\
& =-\int_{\Omega_{\epsilon}} f v_{\epsilon}+\int_{\Omega_{\epsilon}}\left(\Delta^{2} u_{0}-\gamma \Delta u_{0}+u_{0}\right) v_{\epsilon}+\int_{\sigma_{\epsilon}} B_{1}\left(u_{0}\right)\left[v_{\epsilon}\right]-B_{2}\left(u_{0}\right)\left[\partial_{n} v_{\epsilon}\right]+\mathcal{J}_{\epsilon} \\
& =\int_{\sigma_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right)\left[v_{\epsilon}\right]-B_{2}\left(u_{0}\right)\left[\partial_{n} v_{\epsilon}\right]+\mathcal{J}_{\epsilon}
\end{aligned}
$$

Then we set $w_{\epsilon}=v_{\epsilon}-v_{0}$ where v_{0} is solution of (13), with $\epsilon=0$. Thus, $J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)$ rewrites as

$$
\begin{equation*}
J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)=\int_{\sigma_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right)\left[w_{\epsilon}\right]-B_{2}\left(u_{0}\right)\left[\partial_{n} w_{\epsilon}\right]+\mathcal{J}_{\epsilon}=I_{A}-I_{B}+\mathcal{J}_{\epsilon} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{A}=\int_{\sigma_{\epsilon}}\left(B_{1}\left(u_{0}\right)-\gamma \partial_{n} u_{0}\right)\left[w_{\epsilon}\right] \quad, \quad I_{B}=\int_{\sigma_{\epsilon}} B_{2}\left(u_{0}\right)\left[\partial_{n} w_{\epsilon}\right] \tag{31}
\end{equation*}
$$

In the next subsection, we show that I_{A} and $I_{B} \backsim O\left(\epsilon^{2}\right)$ and that $\mathcal{J}_{\epsilon} \backsim o\left(\epsilon^{2}\right)$. We first establish the asymptotic expansion of $B_{1}\left(v_{0}\right), B_{2}\left(v_{0}\right)$ and w_{ϵ}.
3.2. Estimates of $B_{1}\left(v_{0}\right)(x)$ and $B_{2}\left(v_{0}\right)(x)$ for $x \in \sigma_{\epsilon}$

Proposition 3.1. By assuming that v_{0} is smooth, and by setting $X=(s, 0)$ for $-1<s<1$, we have the following boundary expansions when $\epsilon \rightarrow 0$

$$
B_{1}\left(v_{0}\right)(\epsilon X)=O(1) \quad, \quad B_{2}\left(v_{0}\right)(\epsilon X)=-g_{2}(X)+O(\epsilon)
$$

where

$$
g_{2}(X)=-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)-\nu \frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)
$$

Proof. It is straightforward by using that $\partial \sigma=-\partial x_{1}$ and $\partial n=\partial x_{2}$.

3.3. Asymptotic expansion of w_{ϵ}

We recall that $w_{\epsilon}=v_{\epsilon}-v_{0}$ is the solution of

$$
\left(\mathcal{Q}_{\epsilon}^{c}\right)\left\{\begin{align*}
\Delta^{2} w_{\epsilon}-\gamma \Delta w_{\epsilon}+w_{\epsilon} & =0, \text { on } \Omega_{\epsilon} \tag{32}\\
B_{1}\left(w_{\epsilon}\right)-\gamma \partial_{n} w_{\epsilon} & =-B_{1}\left(v_{0}\right)+\gamma \partial_{n} v_{0}, \text { on } \sigma_{\epsilon} \\
B_{2}\left(w_{\epsilon}\right) & =-B_{2}\left(v_{0}\right), \text { on } \sigma_{\epsilon} \\
B_{1}\left(w_{\epsilon}\right)-\gamma \partial_{n} w_{\epsilon} & =B_{2}\left(w_{\epsilon}\right)=0, \text { on } \Gamma
\end{align*}\right.
$$

To estimate w_{ϵ}, we introduce the following exterior problem

$$
\left(\mathcal{R}_{e x t}\right)\left\{\begin{align*}
\Delta^{2} R & =0, \text { on } \mathbb{R}^{2} \backslash \bar{\sigma} \tag{33}\\
B_{1}(R) & =g_{1}, \text { on } \sigma \\
B_{2}(R) & =g_{2}, \text { on } \sigma
\end{align*}\right.
$$

We easily verify that $g_{1} \in\left(H_{00}^{3 / 2}(\sigma)\right)^{\prime}$ and $g_{2} \in\left(H_{00}^{1 / 2}(\sigma)\right)^{\prime}$. Using Theorem 6.3 given in Appendix C, we deduce that problem $\left(\mathcal{R}_{\text {ext }}\right)$ admits a unique solution $R \in W^{2}(\Lambda) / \mathbb{P}_{1}$ which is a sum of third and fourth layers potential

$$
R(x)=\oint_{\sigma} \lambda_{1}(y) B_{1, y}(E(x-y)) d \sigma_{y}+\oint_{\sigma} \lambda_{2}(y) B_{2, y}(E(x-y)) d \sigma_{y}
$$

where \oint is the principal Cauchy value. We have the following relations :

$$
\begin{equation*}
[R]=R_{\mid \sigma}^{+}-R_{\mid \sigma}^{-}=\lambda_{1} \quad, \quad\left[\partial_{n} R\right]=\partial_{n} R_{\mid \sigma}^{+}-\partial_{n} R_{\mid \sigma}^{-}=-\lambda_{2} \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
\lambda_{1}(s) & =0 \quad, \quad \lambda_{2}(s)=\frac{-4 \beta}{(1-\nu)(3+\nu)} \sqrt{1-s^{2}} \quad, \quad \forall(s, 0) \in \sigma \\
\beta & =\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)+\nu \frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0) \tag{35}
\end{align*}
$$

By using Lemma 6.5 (Appendix B), we obtain

$$
\begin{equation*}
w_{\epsilon}=\epsilon^{2} R\left(\frac{x}{\epsilon}\right)+e_{\epsilon} \tag{36}
\end{equation*}
$$

with $\left\|e_{\epsilon}\right\|_{H^{2}\left(\Omega_{\epsilon}\right)}=O\left(-\epsilon^{2} \log (\epsilon)\right)$. In the next subsection we show that $I_{A} \backsim o\left(\epsilon^{2}\right)$ and that $I_{B} \backsim O\left(\epsilon^{2}\right)$.

3.4. Estimates of I_{A} and I_{B}

Lemma 3.2. Let I_{A} and I_{B} given in (31), then we have the following estimates

$$
I_{A}=O\left(\epsilon^{3}\right) \quad, \quad I_{B}=-\epsilon^{2} \xi \int_{\sigma} \lambda_{2}(X) d \sigma_{X}+O\left(\epsilon^{3}\right)
$$

with $\xi=\frac{\partial^{2} u_{0}}{\left(\partial x_{2}\right)^{2}}(0)+\nu \frac{\partial^{2} u_{0}}{\left(\partial x_{1}\right)^{2}}(0)$.
Proof. We assume that u_{0} is smooth, thus from Proposition 3.1 we have

$$
B_{1}\left(u_{0}\right)(\epsilon X)=O(1)
$$

Let $B \supset \sigma$, from Lemma 6.1 (see Appendix C), and by using the equivalency of the $H^{2}(B \backslash \bar{\sigma})$-norm and the seminorm, with a change of variable, we get :

$$
I_{A} \leq \epsilon\left\|B_{1}\left(u_{0}\right)(\epsilon X)\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\left\|w_{\epsilon}(\epsilon X)\right\|_{H^{2}(B \backslash \bar{\sigma}) / \mathbb{P}_{1}} \leq C \epsilon\left|w_{\epsilon}(\epsilon X)\right|_{2, B \backslash \bar{\sigma}} \leq C \epsilon^{2}\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}}
$$

From Lemma 6.5 (see Appendix C), we have

$$
I_{A}=O\left(\epsilon^{3}\right)
$$

From (34), (36) and (31), we express I_{B} as

$$
\begin{equation*}
I_{B}=-\epsilon^{2} \xi \int_{\sigma} \lambda_{2}(X) d \sigma_{X}+\mathcal{E}_{1}+\mathcal{E}_{2} \tag{37}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{E}_{1} & =\epsilon \int_{\sigma}\left(B_{2}\left(u_{0}\right)(\epsilon X)-\xi\right)\left[\partial_{n} w_{\epsilon}(\epsilon X)\right] d \sigma_{X} \quad, \quad \mathcal{E}_{2} \quad=\epsilon \int_{\sigma} \xi\left[\partial_{n} e_{\epsilon}(\epsilon X)\right] \\
\xi & =\frac{\partial^{2} u_{0}}{\left(\partial x_{2}\right)^{2}}(0)+\nu \frac{\partial^{2} u_{0}}{\left(\partial x_{1}\right)^{2}}(0) \tag{38}
\end{align*}
$$

Similarly by using Proposition 3.1 and Lemma 6.5 we get

$$
\begin{aligned}
& \mathcal{E}_{1} \leq\left\|B_{2}\left(u_{0}\right)(\epsilon X)-\xi\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\left\|w_{\epsilon}(\epsilon X)\right\|_{H^{2}(B \backslash \bar{\sigma}) / \mathbb{P}_{1}} \leq C \epsilon^{2}\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}} \leq C \epsilon^{3} \\
& \mathcal{E}_{2} \leq C\left\|e_{\epsilon}(\epsilon X)\right\|_{H^{2}(B \backslash \bar{\sigma}) / \mathbb{P}_{1}} \leq C \epsilon\left|e_{\epsilon}\right|_{2, \Omega_{\epsilon}} \leq C \epsilon^{3} \log (\epsilon)
\end{aligned}
$$

3.5. Calculus of the topological gradient in the case of the crack

From (28), and from estimates given in Lemma 3.2 we have

$$
\frac{J_{\epsilon}\left(u_{\epsilon}\right)-J_{0}\left(u_{0}\right)}{\epsilon^{2}}=\xi \int_{\sigma} \lambda_{2}(X) d \sigma_{X}+\frac{\mathcal{J}_{\epsilon}}{\epsilon^{2}}+o(1)
$$

By Lemma 6.5 applied to $u_{\epsilon}-u_{0}$ we deduce the estimate of \mathcal{I}_{ϵ} :

$$
\mathcal{I}_{\epsilon}=O\left(\epsilon^{4}(\log (\epsilon))^{2}\right)
$$

By using the expression of λ_{2} given in (35), we deduce the topological gradient at 0

$$
\mathcal{I}(0)=\xi \int_{\sigma} \lambda_{2}(X) d \sigma_{X} \quad=\xi \int_{-1}^{1} \frac{-4 \beta}{(1-\nu)(3+\nu)} \sqrt{1-s^{2}} d s=\frac{-2 \pi \xi \beta}{(1-\nu)(3+\nu)}
$$

or more precisely

$$
\mathcal{I}\left(0, e_{y}\right)=-\frac{2 \pi}{(1-\nu)(3+\nu)}\left(\frac{\partial^{2} u_{0}}{\left(\partial x_{2}\right)^{2}}(0)+\nu \frac{\partial^{2} u_{0}}{\left(\partial x_{1}\right)^{2}}(0)\right)\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)+\nu \frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)\right)
$$

3.6. Conclusion : general expression for all point $x_{0} \in \Omega$

The topological gradient expression associated with the cost function J_{ϵ} and problem $\left(\mathcal{P}_{\epsilon}^{c}\right)$ given in (9) in the case of the crack is for all $x_{0} \in \Omega$:

$$
\begin{equation*}
\mathcal{I}\left(x_{0}\right)=\min _{\|n\|=1} \mathcal{I}\left(x_{0}, n\right) \tag{39}
\end{equation*}
$$

with

$$
\mathcal{I}\left(x_{0}, n\right)=-\frac{2 \pi}{(1-\nu)(3+\nu)}\left(\nabla^{2} u_{0}\left(x_{0}\right)(n, n)+\nu \nabla^{2} u_{0}\left(x_{0}\right)(\tau, \tau)\right)\left(\nabla^{2} v_{0}\left(x_{0}\right)(n, n)+\nu \nabla^{2} v_{0}\left(x_{0}\right)(\tau, \tau)\right)
$$

where $n \perp \vec{\sigma}$ and $\tau=-n^{\perp}=-\vec{\sigma}$ with (τ, n) an orthonormal basis. We define the topological gradient at x_{0} as the min value of $\mathcal{I}\left(x_{0}, n\right)$.

4. Appendix A

In this Appendix we give a useful result for the study of exterior problems. We denote by the same letter \mathcal{O} the domain exterior of the crack and of the ball. In the following, we denote by B_{r} the ball of center 0 and of radius r. In the crack's case, B denotes the ball containing strictly the crack (for example $B=B_{\eta}$ with $\eta>1$) while in the ball's one B denotes the unit ball.
Lemma 4.1. Let $u \in W^{2}(\mathcal{O})$. We have the following inequality

$$
\|u\|_{W^{2}(\mathcal{O}) / \mathbb{P}_{1}} \leq C|u|_{2, \mathcal{O}}
$$

where C is a constant depending only on \mathcal{O}.
Proof. Let $\eta>0$ such as $B=B_{\eta}: 2>\eta>1$ for the crack and $\eta=1$ for the ball. Let $\varphi \in C^{2}([0,+\infty[)$, a real function defined by :

$$
\begin{array}{lr}
\varphi=0, & \text { for } 0 \leq t \leq \eta \\
0 \leq \varphi \leq 1 & \text { for } \eta \leq t \leq 2 \\
\varphi=1 & \text { for } t \geq 2
\end{array}
$$

Let $\psi(x)=\varphi(|x|)$, then $u \psi \in W_{0}^{2}\left(B^{\prime}\right)$, where we recall that $W_{0}^{2}\left(B^{\prime}\right)$ is the closure in $W^{2}\left(B^{\prime}\right)$ (see (40)) of $C^{\infty}\left(B^{\prime}\right)$-functions with compact support in B^{\prime}.

On $W_{0}^{2}\left(B^{\prime}\right)$, thanks to Hardy inequality and to the ψ expression, we have

$$
\|u\|_{W^{2}\left(B_{2}^{\prime}\right)} \leq\|u \psi\|_{W_{0}^{2}\left(B^{\prime}\right)} \leq C|\psi u|_{2, B^{\prime}}
$$

Now we bound from above $|\psi u|_{2, B^{\prime}}$:

$$
|\psi u|_{2, B^{\prime}} \leq|u|_{2, B_{2}^{\prime}}+|\psi u|_{2, B_{2} \backslash \bar{B}} \leq|u|_{2, B_{2}^{\prime}}+\|\psi\|_{2, B_{2} \backslash \bar{B}}\|u\|_{2, B_{2} \backslash \bar{B}} \leq|u|_{2, B_{2}^{\prime}}+C\|u\|_{2, B_{2} \backslash \bar{B}}
$$

Denoting by ω the crack or the unit ball and $\mathcal{O}=\mathbb{R}^{2} \backslash \bar{\omega}$, and using the equivalency of the $W^{2}\left(B_{2} \backslash \bar{\omega}\right)$-norm with the $H^{2}\left(B_{2} \backslash \bar{\omega}\right)$-norm (up to a change of weights to avoid problems at 0) we get

$$
\|u\|_{W^{2}(\mathcal{O})} \leq C\|u\|_{2, B_{2} \backslash \bar{\omega}}+C|u|_{2, B_{2}^{\prime}}
$$

Thanks to Deny-Lions Lemma ([15], Lemma 5.2) we get

$$
\|u\|_{W^{2}(\mathcal{O}) / \mathbb{P}_{1}} \leq C\|u\|_{H^{2}\left(B_{2} \backslash \bar{\omega}\right) / \mathbb{P}_{1}}+C|u|_{2, B_{2}^{\prime}} \leq C|u|_{2, \mathcal{O}}
$$

5. Appendix B

In this section we develop some technical calculus missing in section 2 . We recall that B denotes the unit ball and B^{\prime} the exterior domain. We give the definition of the weighted Sobolev space on B^{\prime} :

$$
\begin{equation*}
W^{2}\left(B^{\prime}\right)=\left\{u, \frac{u}{r^{2} \log (r)} \in L^{2}\left(B^{\prime}\right), \frac{\nabla u}{r \log (r)} \in L^{2}\left(B^{\prime}\right), \nabla^{2} u \in L^{2}\left(B^{\prime}\right)\right\} \tag{40}
\end{equation*}
$$

with $r=|x|$.
Lemma 5.1. Let $u \in H^{2}(\Omega)$, such as $\Delta^{2} u \in L^{2}(\Omega)$. Let Γ_{1} a smooth closed curve such as $\Gamma_{1} \subset \partial \Omega$. We have the following inequality

$$
\binom{B_{1}(u)}{B_{2}(u)}_{H^{-3 / 2}\left(\Gamma_{1}\right) \times H^{-1 / 2}\left(\Gamma_{1}\right)} \leq C|u|_{2, \Omega}+\left\|\Delta^{2} u\right\|_{0, \Omega}
$$

where

$$
\binom{B_{1}(u)}{B_{2}(u)}_{H^{-3 / 2}\left(\Gamma_{1}\right) \times H^{-1 / 2}\left(\Gamma_{1}\right)}=\sup _{\left\|\varphi_{1}\right\|_{3 / 2, \Gamma_{1}}+\left\|\varphi_{2}\right\|_{1 / 2, \Gamma_{1}}=1} \int_{\Gamma_{1}} B_{1}(u) \varphi_{1}-B_{2}(u) \varphi_{2}
$$

Proof. See [14].

Lemma 5.2. Let $\omega \subset \mathbb{R}^{2}, \varphi_{1} \in H^{3 / 2}(\partial \omega)$ and $\varphi_{2} \in H^{1 / 2}(\partial \omega)$, then there is a unique solution $l^{\varphi_{1}, \varphi_{2}} \in H^{2}(\omega)$ of (see (14) with $\epsilon=1$):

$$
\left\{\begin{aligned}
\Delta^{2} l^{\varphi_{1}, \varphi_{2}} & =0, \text { on } \omega \\
l^{\varphi_{1}, \varphi_{2}} & =\varphi_{1}, \text { on } \partial \omega \\
\partial_{n} l^{\varphi_{1}, \varphi_{2}} & =\varphi_{2}, \text { on } \partial \omega
\end{aligned}\right.
$$

and we have the following inequality

$$
\begin{equation*}
\left\|l^{\varphi_{1}, \varphi_{2}}\right\|_{2, \omega} \leq C\left\|\varphi_{1}\right\|_{3 / 2, \partial \omega}+C\left\|\varphi_{2}\right\|_{1 / 2, \partial \omega} \tag{41}
\end{equation*}
$$

Proof. See [14].

The four first points of the following theorem are taken from ([15] p. 402 and p.417). Let $f \in H^{s}(\partial B)$ and $g \in H^{-s}(\partial B)$, we denote by $<f, g>$ the scalar product on ∂B :

$$
<f, g>=\int_{\partial B} f g d \sigma
$$

Theorem 5.3. Let $g_{1} \in H^{-3 / 2}(\partial B), g_{2} \in H^{-1 / 2}(\partial B)$, such as

$$
<g_{1}, 1>=0 \quad, \quad<g_{1}, x_{1}>-<g_{2}, n_{1}>\quad=0 \quad, \quad<g_{1}, x_{2}>-<g_{2}, n_{2}>=0
$$

We consider the following exterior problem

$$
\left(\mathcal{P}_{\text {ext }}\right)\left\{\begin{align*}
\Delta^{2} P & =0, \text { on } B^{\prime} \tag{42}\\
B_{1}(P) & =g_{1}, \text { on } \partial B \\
B_{2}(P) & =g_{2}, \text { on } \partial B
\end{align*}\right.
$$

(1) The problem $\left(\mathcal{P}_{\text {ext }}\right)$ given in (42) admits a unique solution in $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$ and the map
$\left(g_{1}, g_{2}\right) \longmapsto P$ is continuous from $H^{-3 / 2}(\partial B) \times H^{-1 / 2}(\partial B)$ to $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$, where $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$ is the space of $W^{2}\left(B^{\prime}\right)$ functions defined up to a polynomial function of degree less or equal than 1.
(2) The solution $P \in W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$ of (42) expresses as the sum of simple and double layers potential:

$$
\begin{equation*}
P(x)=\int_{\partial B} \lambda_{1}(y) E(x-y) d s(y)+\int_{\partial B} \lambda_{2}(y) \partial_{n_{y}} E(x-y) d s(y), \text { for } x \in B^{\prime} \tag{43}
\end{equation*}
$$

(3) There exist $a_{0}, a_{1}, a_{2} \in \mathbb{R}$ such as the densities λ_{1} and λ_{2} are given by the five following equations

$$
\begin{align*}
-\frac{1}{2} \lambda_{1}(x)+\int_{\partial B} \lambda_{1}(y) B_{1, x}(E(x-y)) d \sigma(y)+\oint_{\partial B} \lambda_{2}(y) B_{1, x}\left(\partial_{n y} E(x-y)\right) d \sigma(y)+a_{0}+a_{1} x_{1}+a_{2} x_{2} & =g_{1}(x) \\
+\frac{1}{2} \lambda_{2}(x)+\int_{\partial B} \lambda_{1}(y) B_{2, x}(E(x-y)) d \sigma(y)+\int_{\partial B} \lambda_{2}(y) B_{2, x}\left(\partial_{n y} E(x-y)\right) d \sigma(y)-a_{1} n_{1}(x)-a_{2} n_{2}(x) & =g_{2}(x) \\
<\lambda_{1}, 1> & =0 \\
<\lambda_{1}, x_{1}>+<\lambda_{2}, n_{1}> & =0 \\
<\lambda_{1}, x_{2}>+<\lambda_{2}, n_{2}> & =0 \tag{44}
\end{align*}
$$

where $x \in \partial B$ and \oint denotes the principal Cauchy value.
The three last conditions of (44) express the following asymptotic behavior of P :

$$
P(x)=a_{0}+a_{1} x_{1}+a_{2} x_{2}+A \log (|x|)+O(1)
$$

(4) For $x \in \partial B$, we set $x=(\cos (\theta)$, $\sin (\theta))$ for $\theta \in\left[0,2 \pi\left[\right.\right.$. Assuming that g_{1} and g_{2} take the form $g_{1}(x)=A_{1} \cos (2 \theta)+B_{1} \sin (2 \theta)$, and $g_{2}(x)=C_{2}+A_{2} \cos (2 \theta)+B_{2} \sin (2 \theta)$, then $P(x)=O(\log (|x|))$ and then $a_{0}=a_{1}=a_{2}=0$. Thus λ_{1} and λ_{2} are given by :

$$
\begin{align*}
& \lambda_{1}(x)=\alpha \cos (2 \theta)+\beta \sin (2 \theta) \\
& \lambda_{2}(x)=c+a \cos (2 \theta)+b \sin (2 \theta) \tag{45}
\end{align*}
$$

with

$$
\begin{array}{ll}
\alpha=-8 \frac{A_{1}+A_{2}(1+\nu)}{(1-\nu)(3+\nu)} & , \quad \beta=-8 \frac{B_{1}+B_{2}(1+\nu)}{(1-\nu)(3+\nu)} \\
a=2 \frac{A_{1}(1+\nu)+4 A_{2}}{(1-\nu)(3+\nu)} & , \quad b=2 \frac{B_{1}(1+\nu)+4 B_{2}}{(1-\nu)(3+\nu)} \quad, \quad c=2 \frac{C_{2}}{1-\nu}
\end{array}
$$

(5) Let l^{P} defined by (14) (for $\epsilon=1$) and the data g_{1} and g_{2} given in the fourth point; then we have the following jump relations through ∂B for $x \in \partial B$

$$
\begin{align*}
& g_{1}(x)-B_{1}\left(l^{P}\right)(x)=-\lambda_{1}(x), x \in \partial B \\
& g_{2}(x)-B_{2}\left(l^{P}\right)(x)=\lambda_{2}(x), x \in \partial B \tag{46}
\end{align*}
$$

Remark 5.4. The choice of g_{1} and g_{2} in the fourth point comes from the boundaries data given in Proposition 2.1.

Proof. We introduce the bilinear form on $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$

$$
b^{\prime}(u, v)=\int_{B^{\prime}} \Delta u \Delta v+(1-\nu)\left(2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right), \forall u, v \in W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}
$$

and the linear form on $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$

$$
l^{\prime}(v)=\int_{\partial B} g_{1} v-g_{2} \partial_{n} v, \forall v \in W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}
$$

From (5), and Lemma 4.1, the coercivity of $b^{\prime}(u, v)$ is straightforward. Applying the trace theorem on $B_{2} \backslash \bar{B}$, we deduce the continuity of $l^{\prime}(v)$ on $W^{2}\left(B^{\prime}\right) / \mathbb{P}_{1}$, which ends the proof of the first point.
The second and the third point are proven in ([15], p.417).
Then by using the Green formula on B^{\prime}, we get

$$
\begin{aligned}
P(x) & =\int_{B^{\prime}}-\Delta^{2} E(x-y) P(y) d y \\
& =\int_{\partial B} B_{1, y}(E(x-y)) P(y) d y-\int_{\partial B} B_{2, y}(E(x-y)) \partial_{n} P(y) d y \\
& +\int_{\partial B} \partial_{n_{y}}(E(x-y)) B_{2, y}(P)(y) d y-\int_{\partial B} E(x-y) B_{1, y}(P)(y) d y \\
& =A-B+C-D
\end{aligned}
$$

We remark that with the values of g_{1} and g_{2} given in the fourth point we have the following relations :

$$
\begin{align*}
<g_{1}, 1> & =0 \\
<g_{1}, x_{1}> & =<g_{1}, n_{1}>=<g_{1}, x_{2}>=<g_{1}, n_{2}>=0 \tag{47}\\
<g_{2}, x_{1}> & =<g_{2}, n_{1}>=<g_{2}, x_{2}>=<g_{2}, n_{2}>=0
\end{align*}
$$

Calculating $B_{1, y}(E(x-y))$ and $B_{2, y}(E(x-y))$ for $y \in \partial B$ and when $|x| \rightarrow \infty$ we show that

$$
A=\int_{\partial B} B_{1, y}(E(x-y)) P(y) d y=O\left(\frac{1}{|x|}\right) \quad, \quad B=\int_{\partial B} B_{2, y}(E(x-y)) \partial_{n} P(y) d y=O(\log (|x|))
$$

For C and D , we use a Taylor expansion of $E(x-y)$ and $\partial_{n_{y}}(E(x-y))$ at 0 , and we assume that $|x| \rightarrow \infty$

$$
\begin{align*}
E(x-y) & =E(x)-y \cdot \nabla E(x)+\frac{1}{2} y \cdot \nabla^{2} E(x) y+O\left(\frac{1}{|x|}\right) \tag{48}\\
\partial_{n_{y}} E(x-y) & =\nabla E(x) \cdot n_{y}-\nabla^{2} E(x) y \cdot n_{y}+O\left(\frac{1}{|x|}\right)
\end{align*}
$$

Using the estimates $\nabla^{2} E(x)=O(\log (|x|)),(48)$ and the relations (47) we have

$$
\begin{aligned}
C & =\int_{\partial B} \partial_{n_{y}}(E(x-y)) B_{2, y}(P)(y) d y=O(\log (|x|)) \\
D & =\int_{\partial B} E(x-y) B_{1, y}(P)(y) d y=O(\log (|x|))
\end{aligned}
$$

We deduce that $P(x)=O(\log (|x|))$ when $x \rightarrow \infty$ and then $a_{0}=a_{1}=a_{2}=0$.
To determinate λ_{1} and λ_{2} we first calculate kernels associated with the integral equations. From ([15],pp 390-392), by setting $x=(\cos (\varphi), \sin (\varphi))$ and $y=(\cos (\theta), \sin (\theta))$, we have

$$
\begin{aligned}
B_{2, x}(E(x-y)) & =-\frac{1}{8 \pi}((1+\nu) \log (2(1-\cos (\varphi-\theta))+(1+3 \nu)+(1-\nu)(1-\cos (\varphi-\theta))) \\
B_{2, x}\left(\partial_{n_{y}}(E(x-y))\right) & =-\frac{\nu}{4 \pi}+\frac{1-\nu}{8 \pi} \cos (\varphi-\theta) \\
B_{1, x}(E(x-y)) & =-\frac{1}{4 \pi}-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta) \\
B_{1, x}\left(\partial_{n_{y}}(E(x-y))\right) & =-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)+\frac{1+\nu}{8 \pi(1-\cos (\varphi-\theta))}
\end{aligned}
$$

To simplify notations, we denote by $\lambda_{1}(\theta)=\lambda_{1}(\cos (\theta), \sin (\theta))$ and $\lambda_{2}(\theta)=\lambda_{2}(\cos (\theta), \sin (\theta))$ the densities λ_{1} and λ_{2} evaluated on the unit circle. Equations given in the third point of the Theorem 5.3 express as
$(E q .1)\left\{\begin{array}{l}-\frac{1}{2} \lambda_{1}(\varphi)+\int_{0}^{2 \pi}\left(-\frac{1}{4 \pi}-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)\right) \lambda_{1}(\theta) d \theta \\ +\oint_{0}^{2 \pi}\left(-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)+\frac{1+\nu}{8 \pi(1-\cos (\varphi-\theta))}\right) \lambda_{2}(\theta) d \theta=A_{1} \cos (2 \varphi)+B_{1} \sin (2 \varphi)\end{array}\right.$
$(E q .2)\left\{\begin{array}{l}\frac{1}{2} \lambda_{2}(\varphi)+\int_{0}^{2 \pi}\left(-\frac{1}{8 \pi}((1+\nu) \log (2(1-\cos (\varphi-\theta))+(1+3 \nu)+(1-\nu)(1-\cos (\varphi-\theta)))) \lambda_{1}(\theta) d \theta\right. \\ +\int_{0}^{2 \pi}\left(-\frac{\nu}{4 \pi}+\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)\right) \lambda_{2}(\theta) d \theta=C_{2}+A_{2} \cos (2 \varphi)+B_{2} \sin (2 \varphi)\end{array}\right.$
The only singular kernel is $\frac{1+\nu}{8 \pi(1-\cos (\varphi-\theta))}=O\left(|\theta-\varphi|^{2}\right)$ associated with $B_{1, x}\left(\partial_{n_{y}}(E(x-y))\right)$. We remark that $B_{1, x}\left(\partial_{n_{y}}(E(x-y))\right)=\partial_{n_{x}}\left(B_{1, y}(E(x-y))\right)$. We deduce that

$$
\int_{\partial B} B_{1, x}\left(\partial_{n_{y}}(E(x-y))\right) d \sigma_{y}=\partial_{n_{x}} \int_{\partial B} B_{1, y}(E(x-y)) d \sigma_{y}=\partial_{n_{x}}\left(-\frac{1}{2}\right)=0
$$

We can rewrite the left term of (Eq.1) as :

$$
\oint_{0}^{2 \pi}\left(-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)+\frac{1+\nu}{8 \pi(1-\cos (\varphi-\theta))}\right)\left(\lambda_{2}(\theta)-\lambda_{2}(\varphi)\right) d \theta
$$

Then we are searching for the form of the solutions. First $\int_{0}^{2 \pi} \lambda_{1}(\theta) d \theta=0$ and according to the fourth point, $g_{1} \in \operatorname{span}(\cos (2 \theta), \sin (2 \theta))$ and $g_{2} \in \operatorname{span}(1, \cos (2 \theta), \sin (2 \theta))$ so regarding the kernels forms, it is legitimate to search λ_{1} and λ_{2} as

$$
\lambda_{1}(\theta)=\alpha \cos (2 \theta)+\beta \sin (2 \theta) \quad, \quad \lambda_{2}(\theta)=a \cos (2 \theta)+b \sin (2 \theta)+c
$$

Let f continuous on $[0,2 \pi]$, we define the following improper integral : $I(f)(\varphi)=\oint_{0}^{2 \pi} \frac{f(\theta)-f(\varphi)}{1-\cos (\theta-\varphi)} d \theta$ where by definition : $\oint_{0}^{2 \pi}=\lim _{\epsilon \rightarrow 0} \int_{0}^{\varphi-\epsilon}+\int_{\varphi+\epsilon}^{2 \pi}$. Then we calculate the two following improper integrals :

$$
\begin{equation*}
I(\cos (2 \theta))(\varphi)=-4 \pi \cos (2 \varphi) \quad, \quad I(\sin (2 \theta))(\varphi)=-4 \pi \sin (2 \varphi) \tag{49}
\end{equation*}
$$

We rewrite (Eq.1) as

$$
\begin{aligned}
& -\frac{1}{2}(\alpha \cos (2 \varphi)+\beta \sin (2 \varphi))+\int_{0}^{2 \pi}\left(-\frac{1}{4 \pi}-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)\right)(\alpha \cos (2 \theta)+\beta \sin (2 \theta)) d \theta \\
& +\oint_{0}^{2 \pi}\left(-\frac{1-\nu}{8 \pi} \cos (\varphi-\theta)+\frac{1+\nu}{8 \pi(1-\cos (\varphi-\theta))}\right)(a(\cos (2 \theta)-\cos (2 \varphi))+b(\sin (2 \theta)-\sin (2 \varphi))) d \theta \\
& =A_{1} \cos (2 \varphi)+B_{1} \sin (2 \varphi)
\end{aligned}
$$

From (49), we obtain the following equation :

$$
-\frac{1}{2}(\alpha \cos (2 \varphi)+\beta \sin (2 \varphi))+\frac{1+\nu}{8 \pi}(-4 \pi a \cos (2 \varphi)-4 \pi b \sin (2 \varphi))=A_{1} \cos (2 \varphi)+B_{1} \sin (2 \varphi)
$$

Identifying each term in front of cosinus and sinus we get

$$
(\widetilde{E q \cdot 1})\left\{\begin{align*}
-\frac{1+\nu}{2} a-\frac{\alpha}{2} & =A_{1} \tag{50}\\
-\frac{1+\nu}{2} b-\frac{\beta}{2} & =B_{1}
\end{align*}\right.
$$

Similarly, equation (Eq.2) rewrites as

$$
(\widetilde{E q \cdot 2})\left\{\begin{align*}
\frac{1-\nu}{2} c & =C_{2} \tag{51}\\
\frac{a}{2}+\frac{1+\nu}{8} \alpha & =A_{2} \\
\frac{b}{2}+\frac{1+\nu}{8} \beta & =B_{2}
\end{align*}\right.
$$

Solving $(\widetilde{E q \cdot 1})$ and $(\widetilde{E q \cdot 2})$ we obtain the expression of λ_{1} and λ_{2} given in (45), which ends the proof of the fourth point.
For the fifth point, let l^{P} defined by (14) (with $\epsilon=1$). Thanks to the continuity of simple and double layers (see [15], p.384), we have

$$
l^{P}(x)=\int_{\partial B} \lambda_{1}(y) E(x-y) d s(y)+\int_{\partial B} \lambda_{2}(y) \partial_{n_{y}} E(x-y) d s(y), \text { for } x \in B
$$

Using again jump relations given in ([15], p.385), we obtain for $x \in \partial B$

$$
\begin{align*}
& B_{1}\left(l^{P}\right)(x)=\frac{1}{2} \lambda_{1}(x)+\int_{\partial B} \lambda_{1}(y) B_{1, x}(E(x-y)) d s(y)+\int_{\partial B} \lambda_{2}(y) B_{1, x}\left(\partial_{n_{y}} E(x-y)\right) d s(y) \\
& B_{2}\left(l^{P}\right)(x)=-\frac{1}{2} \lambda_{2}(x)+\int_{\partial B} \lambda_{1}(y) B_{2, x}(E(x-y)) d s(y)+\int_{\partial B} \lambda_{2}(y) B_{2, x}\left(\partial_{n_{y}} E(x-y)\right) d s(y) \tag{52}
\end{align*}
$$

Finally, by using (52) and the two first equations of (44) and by setting $a_{0}=a_{1}=a_{2}=0$, we get the last point of the theorem.
Lemma 5.5. Let P the solution of $\left(\mathcal{P}_{\text {ext }}\right)$ given in (22). We have the following asymptotic behavior as $|x| \rightarrow \infty$:

$$
\begin{aligned}
|P(x)| \leq \operatorname{Clog}(|x|) \quad, \quad|\nabla P(x)| & \leq \frac{C}{|x|} \quad, \quad\left|\nabla^{2} P(x)\right| \leq \frac{C}{|x|^{2}} \\
\left\|P\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}=O(-\log (\epsilon)) \quad, \quad\left|P\left(\frac{x}{\epsilon}\right)\right|_{1, \Omega_{\epsilon}} & =O(\epsilon \sqrt{-\log (\epsilon)}) \quad, \quad\left|P\left(\frac{x}{\epsilon}\right)\right|_{2, \Omega_{\epsilon}}=O(\epsilon)
\end{aligned}
$$

Proof. $P(x)$ is given by

$$
P(x)=\int_{\partial B} \lambda_{1}(y) E(x-y) d \sigma_{y}+\int_{\partial B} \lambda_{2}(y) \partial_{n_{y}}(E(x-y)) d \sigma_{y}
$$

With the boundary data g_{1} and g_{2} given in the last point of Theorem 5.3, λ_{1} and λ_{2} satisfy the following relations

$$
\begin{align*}
\left\langle\lambda_{1}, 1>\right. & =0 \\
\left.<\lambda_{1}, x_{1}\right\rangle & \left.=<\lambda_{1}, n_{1}\right\rangle=<\lambda_{1}, x_{2}>=<\lambda_{1}, n_{2}>=0 \tag{53}\\
<\lambda_{2}, x_{1}> & =<\lambda_{2}, n_{1}>=<\lambda_{2}, x_{2}>=<\lambda_{2}, n_{2}>=0
\end{align*}
$$

A Taylor expansion of P at x and (53) give the first inequality. The two others inequalities are straightforward if we differentiate the expression of P in interchanging integral and derivatives. Then using again a Taylor expansion at x, and by taking $|x| \longrightarrow \infty$, we get the result. To estimate the $L^{2}\left(\Omega_{\epsilon}\right)$-norms of the derivatives of P, we choose two large positive reals a and D and a small positive real ϵ such that $B \subset B_{a} \subset \frac{1}{\epsilon} \Omega \subset \frac{1}{\epsilon} B_{D}$. Thus we have :

$$
\begin{aligned}
\left\|P\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}^{2} & =\int_{\Omega_{\epsilon}} P\left(\frac{x}{\epsilon}\right)^{2} d x=\epsilon^{2} \int_{\frac{1}{\epsilon} \Omega \backslash \bar{B}} P(y)^{2} d y \leq \epsilon^{2}\left(\int_{B_{a} \backslash \bar{B}} P(y)^{2} d y+\int_{\frac{1}{\epsilon} B_{D} \backslash \overline{B_{a}}} P(y)^{2} d y\right) \\
& \leq C \epsilon^{2}+C \epsilon^{2} \int_{a}^{D / \epsilon} \log (r)^{2} r d r=C \epsilon^{2}+C \epsilon^{2}\left[\log (r) \frac{r^{2}}{2}(\log (r)-1)+\frac{r^{2}}{4}\right]_{a}^{\frac{D}{\epsilon}} \leq C \log (\epsilon)^{2}
\end{aligned}
$$

which is the first estimate. The calculus of the second and the third norm estimate are similar.
Lemma 5.6. Let w_{ϵ} given in (21) and P the solution of $\left(\mathcal{P}_{\text {ext }}\right)$ the exterior problem given in (22), then we have the following asymptotic expansion when $\epsilon \rightarrow 0$:

$$
w_{\epsilon}=\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+e_{\epsilon}
$$

with

$$
\begin{gathered}
\left\|e_{\epsilon}\right\|_{2, \Omega_{\epsilon}}=O\left(\epsilon^{2} \log (\epsilon)\right) \quad, \quad\left\|w_{\epsilon}\right\|_{0, \Omega_{\epsilon}}=O\left(\epsilon^{2} \log (\epsilon)\right) \\
\left|w_{\epsilon}\right|_{1, \Omega_{\epsilon}}=O\left(\epsilon^{2} \sqrt{-\log (\epsilon)}\right) \quad, \quad\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}}=O(\epsilon)
\end{gathered}
$$

Proof. e_{ϵ} is solution of the following problem

$$
\left(\mathcal{E}_{\epsilon}\right)\left\{\begin{align*}
\Delta^{2} e_{\epsilon}-\alpha \Delta e_{\epsilon}+e_{\epsilon} & =\alpha \Delta P\left(\frac{x}{\epsilon}\right)-\epsilon^{2} P\left(\frac{x}{\epsilon}\right) & & \text { on } \Omega_{\epsilon} \tag{54}\\
B_{1}\left(e_{\epsilon}\right)-\gamma \partial_{n} e_{\epsilon} & =-B_{1}\left(v_{0}\right)-\frac{1}{\epsilon} g_{1}\left(\frac{x}{\epsilon}\right)-\gamma \partial_{n} v_{0}=\varphi_{1}(x)=O(1), & & \text { on } \partial B_{\epsilon} \\
B_{2}\left(e_{\epsilon}\right) & =-B_{2}\left(v_{0}\right)-g_{2}\left(\frac{x}{\epsilon}\right)=\varphi_{2}(x)=O(x), & & \text { on } \partial B_{\epsilon} \\
B_{1}\left(e_{\epsilon}\right)-\gamma \partial_{n} e_{\epsilon} & =-\frac{1}{\epsilon} B_{1}(P)\left(\frac{x}{\epsilon}\right)=\phi_{1}(x)=O\left(\frac{\epsilon^{2}}{|x|^{3}}\right), & & \text { on } \Gamma \\
B_{2}\left(e_{\epsilon}\right) & =-B_{2}(P)\left(\frac{x}{\epsilon}\right)=\phi_{2}(x)=O\left(\frac{\epsilon^{2}}{|x|^{2}}\right), & & \text { on } \Gamma
\end{align*}\right.
$$

where the expressions of g_{1} and g_{2} are:

$$
g_{1}(X)=A_{1} \cos (2 \theta)+B_{1} \sin (2 \theta) \quad, \quad g_{2}(X)=C_{2}+A_{2} \cos (2 \theta)+B_{2} \sin (2 \theta)
$$

with $X=(\cos (\theta), \sin (\theta))$ and where

$$
\begin{array}{ll}
A_{1}=(1-\nu)\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)\right) \quad, \quad B_{1}=2(1-\nu) \frac{\partial^{2} v_{0}}{\partial x_{1} \partial x_{2}}(0) \\
A_{2}=-\frac{1-\nu}{2}\left(\frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)\right) \quad, \quad B_{2}=-(1-\nu) \frac{\partial^{2} v_{0}}{\partial x_{1} \partial x_{2}}(0) \quad, \quad C_{2}=-\frac{1+\nu}{2} \Delta v_{0}(0)
\end{array}
$$

The variational formulation of problem (54) is : find $e_{\epsilon} \in H^{2}\left(\Omega_{\epsilon}\right)$ such as

$$
a_{\epsilon}\left(e_{\epsilon}, v\right)=\int_{\Omega_{\epsilon}}\left(-\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+\gamma \Delta P\left(\frac{x}{\epsilon}\right)\right) v+\int_{\partial B_{\epsilon}} \varphi_{1} v-\varphi_{2} \partial_{n} v+\int_{\Gamma}-\phi_{1} v+\phi_{2} \partial_{n} v
$$

We integrate by parts the second terms in the right hand side part of the above equality

$$
\int_{\Omega_{\epsilon}} \Delta P\left(\frac{x}{\epsilon}\right) v=\int_{\Gamma} \epsilon \partial_{n} P\left(\frac{x}{\epsilon}\right) v-\epsilon^{2} P\left(\frac{x}{\epsilon}\right) \partial_{n} v-\int_{\partial B_{\epsilon}} \epsilon \partial_{n} P\left(\frac{x}{\epsilon}\right) v+\epsilon^{2} P\left(\frac{x}{\epsilon}\right) \partial_{n} v+\int_{\Omega_{\epsilon}} \epsilon^{2} P\left(\frac{x}{\epsilon}\right) \Delta v
$$

Let b_{ϵ} the bilinear form associated with the leading operator of (54) such as for all $u, v \in H^{2}\left(\Omega_{\epsilon}\right)$

$$
\begin{equation*}
b_{\epsilon}(u, v)=\int_{\Omega_{\epsilon}} \Delta u \Delta v+(1-\nu)\left(2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right) \tag{55}
\end{equation*}
$$

Then we split the error into the sum $e_{\epsilon}=e_{\epsilon}^{1}+e_{\epsilon}^{2}$, where

- $e_{\epsilon}^{1} \in H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}$ is defined by

$$
b_{\epsilon}\left(e_{\epsilon}^{1}, v\right)=l_{\epsilon}^{1}(v), \quad \forall v \in H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}
$$

with

$$
l_{\epsilon}^{1}(v)=\int_{\partial B_{\epsilon}}\left(\varphi_{1}-\epsilon \partial_{n} P\left(\frac{x}{\epsilon}\right)\right) v+\int_{\partial B_{\epsilon}}\left(-\varphi_{2}+\epsilon^{2} P\left(\frac{x}{\epsilon}\right)\right) \partial_{n} v
$$

We can show (as for the Poincaré inequality (see [26])), that there exists C independent of ϵ such as the following inequality holds :

$$
\begin{equation*}
\|u\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}} \leq C|u|_{2, \Omega_{\epsilon}}, \forall u \in H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1} \tag{56}
\end{equation*}
$$

We deduce the coercivity of b_{ϵ} on this space with a constant not depending on ϵ :

$$
b_{\epsilon}(u, u) \geq(1-\nu)|u|_{2, \Omega_{\epsilon}}^{2} \geq C\|u\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}^{2}
$$

Thanks to the trace theorem applied on Ω_{ϵ}, the continuity of l_{ϵ}^{1} on $H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}$ is then straightforward.

- $e_{\epsilon}^{2} \in H^{2}\left(\Omega_{\epsilon}\right)$ is defined by

$$
a_{\epsilon}\left(e_{\epsilon}^{2}, v\right)=l_{\epsilon}^{2}(v), \forall v \in H^{2}\left(\Omega_{\epsilon}\right)
$$

with

$$
\begin{aligned}
l_{\epsilon}^{2}(v) & =\int_{\Omega_{\epsilon}}\left(-\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+\gamma \Delta e_{\epsilon}^{1}-e_{\epsilon}^{1}\right) v+\gamma \epsilon^{2} P\left(\frac{x}{\epsilon}\right) \Delta v \\
& +\int_{\Gamma}\left(-\phi_{1}+\gamma \epsilon \partial_{n} P\left(\frac{x}{\epsilon}\right)\right) v+\left(\phi_{2}-\gamma \epsilon^{2} P\left(\frac{x}{\epsilon}\right)\right) \partial_{n} v
\end{aligned}
$$

The coercivity of a_{ϵ} on $H^{2}\left(\Omega_{\epsilon}\right)$ is known (see (5)) and as for b_{ϵ} the constant do not depend on ϵ; the continuity of l_{ϵ}^{2} on $H^{2}\left(\Omega_{\epsilon}\right)$ is easily checked using the trace theorem on Ω_{ϵ}.

Now let us estimate $\left\|e_{\epsilon}^{1}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}$ and $\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}$ with respect to ϵ.
By considering the variational form of e_{ϵ}^{1}, by taking as test function $v=e_{\epsilon}^{1}$ and by using a change of variable we have

$$
\begin{aligned}
(1-\nu)\left|e_{\epsilon}^{1}\right|_{2, \Omega_{\epsilon}}^{2} \leq b_{\epsilon}\left(e_{\epsilon}^{1}, e_{\epsilon}^{1}\right) & =\epsilon \int_{\partial B}\left(\varphi_{1}(\epsilon X)-\epsilon \partial_{n} P(X)\right) e_{\epsilon}^{1}(\epsilon X)+\epsilon \int_{\partial B}\left(-\varphi_{2}(\epsilon X)+\epsilon^{2} P(X)\right) \partial_{n} e_{\epsilon}^{1}(\epsilon X) \\
& \leq\left(\epsilon\left\|\varphi_{1}(\epsilon X)\right\|_{-3 / 2, \partial B}+\epsilon^{2}\left\|\partial_{n} P\right\|_{-3 / 2, \partial B}\right)\left\|e_{\epsilon}^{1}(\epsilon X)\right\|_{H^{3 / 2}(\partial B) / \mathbb{P}_{1}} \\
& +\left(\left\|\varphi_{2}(\epsilon X)\right\|_{-1 / 2, \partial B}+\epsilon^{2}\|P\|_{-1 / 2, \partial B}\right)\left\|\partial_{n}\left(e_{\epsilon}^{1}(\epsilon X)\right)\right\|_{H^{1 / 2}(\partial B) / \mathbb{P}_{1}}
\end{aligned}
$$

Let $r>0$ such as $B \varsubsetneqq B_{r} \subset \frac{1}{\epsilon} \Omega$. The trace theorem on $B_{r} \backslash \bar{B}$, the Deny-Lions inequality ([15], Lemma 5.2) and a change of variable give :

$$
\begin{aligned}
\left|e_{\epsilon}^{1}\right|_{2, \Omega_{\epsilon}}^{2} & \leq C\left(\epsilon\left\|\varphi_{1}(\epsilon X)\right\|_{-3 / 2, \partial B}+\epsilon^{2}\left\|\partial_{n} P\right\|_{-3 / 2, \partial B}\right)\left\|e_{\epsilon}^{1}(\epsilon X)\right\|_{H^{2}\left(B_{R} \backslash \bar{B}\right) / \mathbb{P}_{1}} \\
& +C\left(\left\|\varphi_{2}(\epsilon X)\right\|_{-1 / 2, \partial B}+\epsilon^{2}\|P\|_{-1 / 2, \partial B}\right)\left\|e_{\epsilon}^{1}(\epsilon X)\right\|_{H^{2}\left(B_{R} \backslash \bar{B}\right) / \mathbb{P}_{1}} \\
& \leq C\left(\epsilon\left\|\varphi_{1}(\epsilon X)\right\|_{-3 / 2, \partial B}+\epsilon^{2}\left\|\partial_{n} P\right\|_{-3 / 2, \partial B}\right)\left|e_{\epsilon}^{1}(\epsilon X)\right|_{2, B_{R} \backslash \bar{B}} \\
& +C\left(\left\|\varphi_{2}(\epsilon X)\right\|_{-1 / 2, \partial B}+\epsilon^{2}\|P\|_{-1 / 2, \partial B}\right)\left|e_{\epsilon}^{1}(\epsilon X)\right|_{2, B_{R} \backslash \bar{B}} \\
& \leq C \epsilon\left(\epsilon\left\|\varphi_{1}(\epsilon X)\right\|_{-3 / 2, \partial B}+\epsilon^{2}\left\|\partial_{n} P\right\|_{-3 / 2, \partial B}\right)\left|e_{\epsilon}^{1}\right|_{2, \Omega_{\epsilon}}+C \epsilon\left(\left\|\varphi_{2}(\epsilon X)\right\|_{-1 / 2, \partial B}+\epsilon^{2}\|P\|_{-1 / 2, \partial B}\right)\left|e_{\epsilon}^{1}\right|_{2, \Omega_{\epsilon}}
\end{aligned}
$$

Using that $\varphi_{1}(\epsilon X)=O(1)$ and $\varphi_{2}(\epsilon X)=O(\epsilon)$ we get

$$
\begin{equation*}
\left\|e_{\epsilon}^{1}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}=O\left(\epsilon^{2}\right) \tag{57}
\end{equation*}
$$

With a similar reasoning for e_{ϵ}^{2}, from its variational formulation we obtain

$$
\begin{aligned}
C\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}^{2} \leq a_{\epsilon}\left(e_{\epsilon}^{2}, e_{\epsilon}^{2}\right) & =\int_{\Omega_{\epsilon}}\left(-\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+\gamma \Delta e_{\epsilon}^{1}-e_{\epsilon}^{1}\right) e_{\epsilon}^{2}+\gamma \epsilon^{2} P\left(\frac{x}{\epsilon}\right) \Delta e_{\epsilon}^{2} \\
& +\int_{\Gamma}\left(-\phi_{1}+\gamma \epsilon \partial_{n} P\left(\frac{x}{\epsilon}\right)\right) e_{\epsilon}^{2}+\left(\phi_{2}-\gamma \epsilon^{2} P\left(\frac{x}{\epsilon}\right)\right) \partial_{n} e_{\epsilon}^{2} \\
& \leq C\left(\epsilon^{2}\left\|P\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}+\gamma\left|e_{\epsilon}^{1}\right|_{2, \Omega_{\epsilon}}+\left\|e_{\epsilon}^{1}\right\|_{L^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}\right)\left\|e_{\epsilon}^{2}\right\|_{0, \Omega_{\epsilon}}+C \gamma \epsilon^{2}\left\|P\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}\left|e_{\epsilon}^{2}\right|_{2, \Omega_{\epsilon}} \\
& +\left(\left\|\phi_{1}\right\|_{-3 / 2, \Gamma}+\gamma \epsilon\left\|_{n} P\left(\frac{x}{\epsilon}\right)\right\|_{-3 / 2, \Gamma}\right)\left\|e_{\epsilon}^{2}\right\|_{3 / 2, \Gamma}+\left(\left\|\phi_{2}\right\|_{-1 / 2, \Gamma}+\gamma \epsilon^{2}\left\|P\left(\frac{x}{\epsilon}\right)\right\|_{-1 / 2, \Gamma}\right)\left\|e_{\epsilon}^{2}\right\|_{1 / 2, \Gamma}
\end{aligned}
$$

The trace theorem applied on $\Omega \backslash \overline{B_{r}}$, the estimates $\phi_{1}=O\left(\frac{\epsilon^{2}}{|x|^{3}}\right), \phi_{2}=O\left(\frac{\epsilon^{2}}{|x|^{2}}\right)$ and $\left\|e_{\epsilon}^{1}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}=O\left(\epsilon^{2}\right)$, and Lemma 5.5 give :

$$
\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}=O\left(-\epsilon^{2} \log (\epsilon)\right)
$$

Coming back to e_{ϵ} since e_{ϵ}^{1} is defined up to a function in \mathbb{P}_{1}, and thanks to the Deny-Lions inequality given in (56), we have

$$
\left\|e_{\epsilon}\right\|_{2, \Omega_{\epsilon}} \leq\left\|e_{\epsilon}^{1}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}+\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}} \leq C \epsilon^{2} \log (\epsilon)
$$

which is the first estimate. For the $L^{2}\left(\Omega_{\epsilon}\right)$-norm estimates of $w_{\epsilon}, \nabla w_{\epsilon}$ and $\nabla^{2} w_{\epsilon}$, we must use that $w_{\epsilon}=$ $\epsilon^{2} P\left(\frac{x}{\epsilon}\right)+e_{\epsilon}$, differentiate it, take the norm and use Lemma 5.5 and the previous estimate of $\left\|e_{\epsilon}\right\|_{2, \Omega_{\epsilon}}$.

6. Appendix C

Let σ a smooth manifold that we extend to a smooth closed curve $\widetilde{\sigma}$. We denote by $\widetilde{\omega}$ the domain such as $\partial \widetilde{\omega}=\widetilde{\sigma}($ see Figure 3(a)).

We recall the definitions of $H_{00}^{1 / 2}(\sigma)$ and $H_{00}^{3 / 2}(\sigma)$:

$$
H_{00}^{1 / 2}(\sigma)=\left\{u_{\mid \Sigma}, u \in H^{1 / 2}(\widetilde{\sigma}), u_{\mid \widetilde{\sigma} \backslash \bar{\sigma}}=0\right\} \quad, \quad H_{00}^{3 / 2}(\sigma) \quad=\left\{u_{\mid \Sigma}, u \in H^{3 / 2}(\widetilde{\Sigma}), u_{\mid \widetilde{\Sigma} \backslash \bar{\Sigma}}=0\right\}
$$

and we introduce the weighted Sobolev space

$$
W^{2}(\Lambda)=\left\{u, \frac{u}{r^{2} \log (r)} \in L^{2}(\Lambda), \frac{\nabla u}{r \log (r)} \in L^{2}(\Lambda), \nabla^{2} u \in L^{2}(\Lambda)\right\}
$$

where $r=|x|$ and $\Lambda=\mathbb{R}^{2} \backslash \bar{\sigma}$.
In the sequel, B denotes the ball containing strictly the crack σ and its extension $\widetilde{\sigma}$ (for example $B=B_{\eta}$ with $\eta>1$) and such as $B \subset \frac{\Omega}{\epsilon}$ for small ϵ.
Lemma 6.1. Let $v \in H^{2}(B \backslash \bar{\sigma}), g_{1} \in\left(H_{00}^{3 / 2}(\sigma)\right)^{\prime}$ and $g_{2} \in\left(H_{00}^{1 / 2}(\sigma)\right)^{\prime}$, then we have the following inequality

$$
\int_{\sigma} g_{1}[v] \leq C\left\|g_{1}\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\|v\|_{H^{2}(B \backslash \bar{\sigma}) / \mathbb{P}_{1}} \quad, \quad \int_{\sigma} g_{2}\left[\partial_{n} v\right] \leq C\left\|g_{2}\right\|_{H_{00}^{1 / 2}(\sigma)^{\prime}}\|v\|_{H^{2}(B \backslash \bar{\sigma}) / \mathbb{P}_{1}}
$$

Proof. By using the definition of the $H_{00}^{3 / 2}(\sigma)$-norm and by splitting the jump of v across $\widetilde{\sigma}$, we have for any smooth function ψ :

$$
\int_{\sigma} g_{1}[v] \leq\left\|g_{1}\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\|[v+\psi]\|_{H_{00}^{3 / 2}(\sigma)} \leq\left\|g_{1}\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\left(\left\|v^{+}+\psi\right\|_{3 / 2, \widetilde{\sigma}}+\left\|v^{-}+\psi\right\|_{3 / 2, \widetilde{\sigma}}\right)
$$

Then by using the trace theorem applied to $\left(v^{+}+\psi\right)$ on $B \backslash \overline{\widetilde{\omega}}$ and $v^{-}+\psi$ on $\widetilde{\omega}$, we have

$$
\int_{\sigma} g_{1}[v] \leq\left\|g_{1}\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\left(\|v+\psi\|_{2, B \backslash \bar{\omega}}+\|v+\psi\|_{2, \widetilde{\omega}}\right)
$$

By taking the infimum with respect to $\psi \in \mathbb{P}_{1}$ and from the Deny-Lions inequality the first inequality holds. The second one is proved in the same manner.

Lemma 6.2. Let $u \in H^{2}\left(\Delta^{2}, B \backslash \bar{\sigma}\right)$, $h_{1} \in H_{00}^{3 / 2}(\sigma)$ and $h_{2} \in H_{00}^{1 / 2}(\sigma)$, then we have the following inequality

$$
\int_{\sigma} B_{1}(u) q_{1}-\int_{\sigma} B_{2}(u) q_{2} \leq C\left(\left\|q_{1}\right\|_{H_{00}^{3 / 2}(\sigma)}+\|q\|_{H_{00}^{1 / 2}(\sigma)}\right)\left(|u|_{2, B \backslash \bar{\sigma}}+\left\|\Delta^{2} u\right\|_{L^{2}(B \backslash \bar{\sigma})}\right)
$$

Proof. See [14].
Then we introduce the exterior problem :

$$
\left(\mathcal{R}_{e x t}\right)\left\{\begin{align*}
\Delta^{2} R & =0, \text { on } \mathbb{R}^{2} \backslash \bar{\sigma} \tag{58}\\
B_{1}(R) & =g_{1}, \text { on } \sigma \\
B_{2}(R) & =g_{2}, \text { on } \sigma
\end{align*}\right.
$$

where $g_{1} \in H_{00}^{3 / 2}(\sigma)^{\prime}$ and $g_{2} \in H_{00}^{1 / 2}(\sigma)^{\prime}$.
Theorem 6.3. (1) (58) admits a unique solution in $W^{2}(\Lambda) / \mathbb{P}_{1}$ and the $\operatorname{map}\left(g_{1}, g_{2}\right) \longmapsto R$ from $H_{00}^{3 / 2}(\sigma)^{\prime} \times$ $H_{00}^{3 / 2}(\sigma)^{\prime}$ into $W^{2}(\Lambda) / \mathbb{P}_{1}$ is continuous.
(2) The solution of (58) expresses as the sum of double and triple layers potential :

$$
\begin{equation*}
R(x)=\int_{\sigma} \lambda_{1}(y) B_{1}(E(x-y)) d s(y)+\int_{\sigma} \lambda_{2}(y) B_{2}(E(x-y)) d s(y), \text { for } x \in \Lambda \tag{59}
\end{equation*}
$$

(3) The following jump relations through σ hold:

$$
\begin{align*}
{[R] } & =R_{\mid \sigma}^{+}-R_{\mid \sigma}^{-}=\lambda_{1} \tag{60}\\
{\left[\partial_{n} R\right] } & =\partial_{n} R_{\mid \sigma}^{+}-\partial_{n} R_{\mid \sigma}^{-}=-\lambda_{2}
\end{align*}
$$

(4) The densities λ_{1} and λ_{2} are given by the two following equations:

$$
\begin{align*}
& g_{1}(x)=\oint_{\sigma} \lambda_{1}(y) B_{1, x} B_{1, y}(E(x-y)) d \sigma(y)+\oint_{\sigma} \lambda_{2}(y) B_{1, x} B_{2, y}(E(x-y)) d \sigma(y) \tag{61a}\\
& g_{2}(x)=\oint_{\sigma} \lambda_{1}(y) B_{2, x} B_{1, y}(E(x-y)) d \sigma(y)+\oint_{\sigma} \lambda_{2}(y) B_{2, x} B_{2, y}(E(x-y)) d \sigma(y) \tag{61b}
\end{align*}
$$

where \oint denotes the principal Cauchy value.
(5) For $\sigma=\{(s, 0) \times\{0\},-1<s<1\}, g_{1}(x)=0$, and $g_{2}(x)=C$ ste $=V, \lambda_{1}$ and λ_{2} are given by

$$
\begin{align*}
& \lambda_{1}(s)=0, \forall(s, 0) \in \sigma \\
& \lambda_{2}(s)=\frac{4}{(1-\nu)(3+\nu)} V \sqrt{1-s^{2}}, \forall(s, 0) \in \sigma \tag{62}
\end{align*}
$$

Proof. We denote by $\widetilde{\omega}^{\prime}$ the exterior domain $\widetilde{\omega}^{\prime}=\mathbb{R}^{2} \backslash \overline{\widetilde{\omega}}$.
We introduce the two following spaces

$$
H^{2}\left(\Delta^{2}, \widetilde{\omega}\right)=\left\{u \in H^{2}(\widetilde{\omega}), \Delta^{2} u \in L^{2}(\widetilde{\omega})\right\} \quad, \quad W^{2}\left(\Delta^{2}, \widetilde{\omega}^{\prime}\right) \quad=\left\{u \in W^{2}\left(\widetilde{\omega}^{\prime}\right), r^{2} \log (r) \Delta^{2} u \in L^{2}\left(\widetilde{\omega}^{\prime}\right)\right\}
$$

where $W^{2}\left(\widetilde{\omega}^{\prime}\right)$ is defined by (40) replacing B by $\widetilde{\omega}$. We define the following bilinear forms :

$$
\begin{aligned}
& \widetilde{a}(u, v)=\int_{\widetilde{\omega}} \Delta u \Delta v+(1-\nu)\left(2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right) \\
& \widetilde{a}^{\prime}(u, v)=\int_{\widetilde{\omega}^{\prime}} \Delta u \Delta v+(1-\nu)\left(2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} u}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right)
\end{aligned}
$$

Considering that $u \in H^{2}\left(\Delta^{2}, \widetilde{\omega}\right)$, the Green formula applied on $\widetilde{\omega}$ gives

$$
\widetilde{a}(u, v)=\int_{\widetilde{\omega}} \Delta^{2} u v-\int_{\partial \widetilde{\omega}}\left(B_{1}(u) v-B_{2}(u) \partial_{n} v\right), \forall v \in H^{2}(\widetilde{\omega})
$$

By the same reasoning on $u \in W^{2}\left(\Delta^{2}, \widetilde{\omega}^{\prime}\right)$ we have

$$
\widetilde{a^{\prime}}(u, v)=\int_{\widetilde{\omega}^{\prime}} \Delta^{2} u v+\int_{\partial \widetilde{\omega}}\left(B_{1}(u) v-B_{2}(u) \partial_{n} v\right)
$$

Then we introduce the space

$$
K=\left\{u \in H^{2}\left(\Delta^{2}, \widetilde{\omega}\right) / \mathbb{P}_{1} \times W^{2}\left(\Delta^{2}, \widetilde{\omega}^{\prime}\right) / \mathbb{P}_{1}, \operatorname{supp}\left(\Delta^{2} u\right)=\sigma,\left[B_{1}(u)\right]_{\sigma}=\left[B_{2}(u)\right]_{\sigma}=0,[u]_{\tilde{\sigma} \backslash \bar{\sigma}}=\left[\partial_{n} u\right] \widetilde{\sigma} \backslash \bar{\sigma}=0\right\}
$$

and by using the regularity of $H_{l o c}^{2}(\Lambda)$ functions, K rewrites as

$$
K=\left\{u \in W^{2}\left(\Delta^{2}, \Lambda\right) / \mathbb{P}_{1}, \operatorname{supp}\left(\Delta^{2} u\right)=\sigma,\left[B_{1}(u)\right]_{\sigma}=\left[B_{2}(u)\right]_{\sigma}=0\right\}
$$

($\mathcal{R}_{\text {ext }}$) reformulates as

$$
\text { find } R \in K \text { such as } B_{1}(R)=g_{1} \text { and } B_{2}(R)=g_{2} \text { on } \sigma \quad\left(\mathcal{R}_{e x t}\right)
$$

and the variational formulation of $\left(\mathcal{R}_{e x t}\right)$ is : find $R \in K$ such as

$$
a(R, v)=l(v), \forall v \in K
$$

where

$$
\begin{aligned}
a(R, v) & =\int_{\Lambda} \Delta R \Delta v+(1-\nu)\left(2 \frac{\partial^{2} R}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} R}{\left(\partial x_{1}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{2}\right)^{2}}-\frac{\partial^{2} R}{\left(\partial x_{2}\right)^{2}} \frac{\partial^{2} v}{\left(\partial x_{1}\right)^{2}}\right) \\
l(v) & =\int_{\sigma} g_{1}[v]-g_{2}\left[\partial_{n} v\right]
\end{aligned}
$$

Problem $\left(\mathcal{R}_{\text {ext }}\right)$ admits a unique solution in K . Indeed, it is coercive on K : first we have

$$
\begin{equation*}
a(u, u) \geq(1-\nu)|u|_{W^{2}(\Lambda)}^{2}, \forall u \in K \tag{63}
\end{equation*}
$$

and from Lemma 4.1 we have :

$$
\|u\|_{K}=\|u\|_{W^{2}(\Lambda) / \mathbb{P}_{1}} \leq C(\Lambda)|u|_{W^{2}(\Lambda)}
$$

which gives the proof of the coercivity of $a(u, v)$ on K. After that the problem is continuous on K : applying Lemma 6.1, we obtain

$$
\begin{equation*}
|l(v)| \leq C\left(\left\|g_{1}\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}+\left\|g_{2}\right\|_{H_{00}^{1 / 2}(\sigma)^{\prime}}\right)\|v\|_{W^{2}(\Lambda) / \mathbb{P}_{1}} \tag{64}
\end{equation*}
$$

which implies the continuity of $\mathrm{l}(\mathrm{v})$ on K . From (63) and (64) we deduce the continuity of the map $\left(g_{1}, g_{2}\right) \mapsto R$ from $H_{00}^{3 / 2}(\sigma)^{\prime} \times H_{00}^{3 / 2}(\sigma)^{\prime}$ into $W^{2}(\Lambda) / \mathbb{P}_{1}$.
Then as K is a closed subspace of $W^{2}(\Lambda) / \mathbb{P}_{1}$ which is an Hilbert space, we deduce that it is an Hilbert space too. Thanks to Lax-Milgram's theorem, we get the well-possedness of problem ($\mathcal{R}_{e x t}$). Thus we define the following isomorphism

$$
\begin{array}{cc}
\left(g_{1}, g_{2}\right) & \longmapsto R \\
J_{0}: & \left.\longmapsto H_{00}^{3 / 2}(\sigma)\right)^{\prime} \times\left(H_{00}^{1 / 2}(\sigma)\right)^{\prime} \\
& \longrightarrow K
\end{array}
$$

Let us consider the following problem : for $\left(q_{1}, q_{2}\right) \in H_{00}^{3 / 2}(\sigma) \times H_{00}^{1 / 2}(\sigma)$

$$
\text { find } Q \in K \text { such as }[Q]=q_{1} \text { and }\left[\partial_{n} Q\right]=q_{2} \quad\left(\mathcal{Q}_{e x t}\right)
$$

Let $v \in K$, we have

$$
a(u, v)=\int_{\Lambda} \Delta^{2} v u+\int_{\sigma} B_{1}(v)[u]-B_{2}(v)\left[\partial_{n} u\right]
$$

The variational formulation of $\left(\mathcal{Q}_{e x t}\right)$ is : find $Q \in K$ such as

$$
a(Q, v)=l^{\prime}(v), \forall v \in K
$$

where

$$
l^{\prime}(v)=\int_{\sigma} q_{1} B_{1}(v)-\int_{\sigma} q_{2} B_{2}(v)
$$

In the same way as for problem $\left(\mathcal{R}_{e x t}\right)$, we show the coercivity of problem $\left(\mathcal{Q}_{e x t}\right)$. From Lemma 6.2,

$$
l^{\prime}(v) \leq C\left(\left\|q_{1}\right\|_{H_{00}^{3 / 2}(\sigma)}+\left\|q_{2}\right\|_{H_{00}^{1 / 2}(\sigma)}\right)|v|_{H^{2}(B \backslash \bar{\sigma})}
$$

From the equivalency of $W^{2}(\Lambda) / \mathbb{P}_{1}$-norm and seminorm, we deduce the continuity of the map $l^{\prime}(v)$ on K . Thanks to Lax-Milgram theorem we obtain the well-possedness of problem $\left(\mathcal{Q}_{\text {ext }}\right)$. Thus we can define the isomorphism

$$
\begin{array}{cl}
\left(q_{1}, q_{2}\right) & \longmapsto Q \\
J_{1}:\left(H_{00}^{3 / 2}(\sigma)\right) \times\left(H_{00}^{1 / 2}(\sigma)\right) & \longrightarrow K
\end{array}
$$

We denote by $J=J_{1}^{-1} \circ J_{0}$ the isomorphism

$$
\begin{array}{cl}
\left(g_{1}, g_{2}\right) & \longmapsto\left(q_{1}, q_{2}\right) \\
J:\left(H_{00}^{3 / 2}(\sigma)^{\prime}\right) \times\left(H_{00}^{1 / 2}(\sigma)^{\prime}\right) & \longrightarrow\left(H_{00}^{3 / 2}(\sigma)\right) \times\left(H_{00}^{1 / 2}(\sigma)\right)
\end{array}
$$

Now, let $\overline{\bar{u}}$ defined by

$$
\begin{aligned}
\overline{\bar{u}}(x) & =\int_{\sigma} \lambda_{1}(y) B_{1, y} E(x-y) d \sigma_{y}+\int_{\sigma} \lambda_{2}(y) B_{2, y} E(x-y) d \sigma_{y} \\
& =\int_{\partial \widetilde{\omega}} \widetilde{\lambda_{1}}(y) B_{1, y} E(x-y) d \sigma_{y}+\int_{\partial \widetilde{\omega}} \widetilde{\lambda_{2}}(y) B_{2, y} E(x-y) d \sigma_{y}
\end{aligned}
$$

where $x \in \Lambda$ and $\lambda_{1} \in H_{00}^{3 / 2}(\sigma), \lambda_{2} \in H_{00}^{1 / 2}(\sigma)$ and $\widetilde{\lambda}_{i} \in H^{3 / 2-(i-1)}(\widetilde{\sigma})$ defined by

$$
\tilde{\lambda}_{i}=\left\{\begin{array}{l}
\lambda_{i}, \text { on } \sigma \\
0, \text { on } \widetilde{\sigma} \backslash \bar{\sigma}
\end{array}\right.
$$

for $i \in\{1,2\}$. Firstly, $\overline{\bar{u}}$ is biharmonic. Indeed for $x \in \Lambda$ and $y \in \sigma$ the maps $y \mapsto B_{1, y} E(x-y)$ and $y \mapsto B_{2, y} E(x-y)$ are $C^{\infty}(\sigma)$. Besides

$$
\Delta_{x}^{2} B_{1, y} E(x-y)=B_{1, y} \Delta_{x}^{2} E(x-y)=0 \quad \text { and } \quad \Delta_{x}^{2} B_{2, y} E(x-y)=B_{2, y} \Delta_{x}^{2} E(x-y)=0
$$

Then by using the regularity of $y \mapsto B_{1, y} E(x-y)$ and of $y \mapsto B_{2, y} E(x-y)$ we can interchange the integral and bilaplacian operators which leads to the following equation :

$$
\Delta^{2} \overline{\bar{u}}(x)=0, \forall x \in \Lambda
$$

Besides for $|x| \rightarrow \infty$, a Taylor expansion at x gives $\overline{\bar{u}}(x)=O(\log (|x|))$. A twice differentiation of $\overline{\bar{u}}$ and a Taylor expansion at point x of $\overline{\bar{u}}$, show that $\overline{\bar{u}} \in W^{2}(\Lambda)$. Considering $\overline{\bar{u}}$ as an element of $W^{2}(\Lambda) / \mathbb{P}_{1}$, we get $\overline{\bar{u}} \in K$. By using jump relations given in ([15], pp.385-386) we have

$$
\begin{align*}
& B_{1, x}(\overline{\bar{u}})(x)=\oint_{\sigma} \lambda_{1}(y) B_{1, x} B_{1, y} E(x-y) d \sigma_{y}+\oint_{\sigma} \lambda_{2}(y) B_{1, x} B_{2, y} E(x-y) d \sigma_{y} \tag{65}\\
& B_{2, x}(\overline{\bar{u}})(x)=\oint_{\sigma} \lambda_{2}(y) B_{2, x} B_{1, y} E(x-y) d \sigma_{y}+\oint_{\sigma} \lambda_{2}(y) B_{2, x} B_{2, y} E(x-y) d \sigma_{y}
\end{align*}
$$

We show now that these two boundary integral equations describe the isomorphism J^{-1}. Indeed by using ([15], p.384), we get

$$
\begin{aligned}
& \overline{\bar{u}}^{ \pm}(x)= \pm \lambda_{1}(x)+\oint_{\sigma} \lambda_{1}(y) B_{1, y} E(x-y) d \sigma_{y}+\oint_{\sigma} \lambda_{2}(y) B_{2, y} E(x-y) d \sigma_{y} \\
& \bar{u}^{ \pm}(x)=\mp \lambda_{2}(x)+\oint_{\sigma} \lambda_{1}(y) \partial_{n_{x}} B_{1, y} E(x-y) d \sigma_{y}+\oint_{\sigma} \lambda_{2}(y) \partial_{n_{x}} B_{2, y} E(x-y) d \sigma_{y}
\end{aligned}
$$

Then by difference

$$
[\overline{\bar{u}}]=\lambda_{1} \quad, \quad\left[\partial_{n} \overline{\bar{u}}\right]=-\lambda_{2}
$$

As J_{1} is an isomorphism, if we set $\lambda_{1}=[R]$ and $\lambda_{2}=\left[\partial_{n} R\right]$, we get $\overline{\bar{u}}=R$. Thus (65) with $B_{1}(\overline{\bar{u}})=g_{1}$ and $B_{2}(\overline{\bar{u}})=g_{2}$ defines the isomorphism J^{-1}. This ends the proof of the second, third and fourth points of the theorem. Now we must solve the two boundary integral equations (61) in order to prove the fifth point. We first calculate the kernels in the simple case of a straight crack : we set $n=(0,1), x=(s, 0)$, and $y=(t, 0) \in \sigma$ and so :

$$
\begin{aligned}
& B_{1, x}\left(B_{1, y}(E(x-y))\right)=-\frac{3(-1+\nu)(3+\nu)}{2 \pi(s-t)^{4}} \\
& B_{2, x}\left(B_{1, y}(E(x-y))\right)=B_{1, x}\left(B_{2, y}(E(x-y))\right)=0 \\
& B_{2, x}\left(B_{2, y}(E(x-y))\right)=\frac{(-1+\nu)(3+\nu)}{4 \pi(s-t)^{2}}
\end{aligned}
$$

Integral equations (61a) and (61b) rewrite as

$$
\begin{aligned}
0 & =g_{1}(x)
\end{aligned}=-\oint_{-1}^{1} \lambda_{1}(t) \frac{3(-1+\nu)(3+\nu)}{2 \pi(s-t)^{4}} d t .
$$

These two equations are uncoupled. For the first one the choice $\lambda_{1}=0$ is a solution, and by uniqueness it is the solution of (61a). For the second equation, we define the function :

$$
g(s)=\frac{1}{\pi} \oint_{-1}^{1} \frac{\lambda_{2}(t)}{s-t},-1<s<1
$$

We remark that (61b) rewrites as

$$
g^{\prime}(s)=-\frac{4}{(-1+\nu)(3+\nu)} V=A
$$

Then we get $g(s)=A s+B$ with B an arbitrary constant that we can take equal to 0. From [20], λ_{2} is given by the following formula

$$
\begin{aligned}
\lambda_{2}(s) & =-\frac{1}{\pi} \oint_{-1}^{1} \sqrt{\frac{1-t^{2}}{1-s^{2}}} \frac{A t}{s-t} d t+\frac{C s t e}{\sqrt{1-s^{2}}}=-\frac{1}{\pi \sqrt{1-s^{2}}} \oint_{1}^{1} \frac{\sqrt{1-t^{2}}}{s-t}(A(t-s)+A s) d t+\frac{C s t e}{\sqrt{1-s^{2}}} \\
& =\frac{-A}{\pi \sqrt{1-s^{2}}}\left(s \oint_{-1}^{1} \frac{\sqrt{1-t^{2}}}{s-t} d t-\oint_{-1}^{1} \sqrt{1-t^{2}} d t\right)+\frac{C s t e}{\sqrt{1-s^{2}}} \\
& =\frac{-A}{\pi \sqrt{1-s^{2}}}\left(s^{2} \pi-\frac{\pi}{2}\right)+\frac{C s t e}{\sqrt{1-s^{2}}}=A \sqrt{1-s^{2}}
\end{aligned}
$$

where we set Cste $=A / 2$ in order to satisfy $\lambda_{2}(-1)=\lambda_{2}(1)=0$ (ie $\left.\lambda_{2} \in H_{00}^{1 / 2}(\sigma)\right)$. This ends the proof of the theorem.

Lemma 6.4. Let R be the solution of the exterior problem (\mathcal{R}) given in (58), we have the following asymptotic behavior :
for $|x| \rightarrow \infty$

$$
|R(x)| \leq C l o g(|x|) \quad, \quad|\nabla R(x)| \leq \frac{C}{|x|} \quad, \quad\left|\nabla^{2} R(x)\right| \leq \frac{C}{|x|^{2}}
$$

for $\epsilon \rightarrow 0$

$$
\left\|R\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}=O(-\log (\epsilon)) \quad, \quad\left\|\nabla R\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}=O(\epsilon \sqrt{-\log (\epsilon)}) \quad, \quad\left\|\nabla^{2} R\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}=O(\epsilon)
$$

Proof. From the expression of R given in Theorem 6.3 and by using a Taylor expansion at point x and taking $|x| \rightarrow+\infty$, we get the first inequality. For the second and the third ones, we must differentiate the expression of $R \in C^{\infty}\left(\mathbb{R}^{2} \backslash \bar{\sigma}\right)$, interchange integral and derivative, and use a Taylor expansion around x. We refer to Lemma 5.5 for the proof of the three last estimates.

Lemma 6.5. Let be w_{ϵ} the solution of problem $\left(\mathcal{Q}_{\epsilon}^{c}\right)$ given in (32), and R the solution of the exterior problem $\left(\mathcal{R}_{\text {ext }}\right)$ given in (33), then we have the following asymptotic expansion :

$$
w_{\epsilon}=\epsilon^{2} R\left(\frac{x}{\epsilon}\right)+e_{\epsilon}
$$

with

$$
\begin{aligned}
\left\|e_{\epsilon}\right\|_{2, \Omega_{\epsilon}} & =O\left(-\epsilon^{2} \log (\epsilon)\right) \\
\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}} & =O(\epsilon)
\end{aligned}
$$

Proof. e_{ϵ} solves the following problem

$$
\left(\mathcal{E}_{\epsilon}\right)\left\{\begin{array}{rlr}
\Delta^{2} e_{\epsilon}-\gamma \Delta e_{\epsilon}+e_{\epsilon}=\gamma \Delta R\left(\frac{x}{\epsilon}\right)-\epsilon^{2} R\left(\frac{x}{\epsilon}\right) & \text { on } \Omega_{\epsilon} \tag{66}\\
B_{1}\left(e_{\epsilon}\right)-\gamma \partial_{n} e_{\epsilon}=-B_{1}\left(v_{0}\right)-\underbrace{\frac{1}{\epsilon} B_{1}(R)\left(\frac{x}{\epsilon}\right)}_{=0}-\gamma \partial_{n} v_{0}=\varphi_{1}(x)=O(1), & \text { on } \sigma_{\epsilon} \\
B_{2}\left(e_{\epsilon}\right)=-B_{2}\left(v_{0}\right)-g_{2}\left(\frac{x}{\epsilon}\right)=\varphi_{2}(x)=O(x), & \text { on } \sigma_{\epsilon} \\
B_{1}\left(e_{\epsilon}\right)-\gamma \partial_{n} e_{\epsilon}=-\frac{1}{\epsilon} B_{1}(R)\left(\frac{x}{\epsilon}\right)=\phi_{1}(x)=O\left(\frac{\epsilon^{2}}{|x|^{3}}\right), & \text { on } \partial \Omega \\
B_{2}\left(e_{\epsilon}\right)=-B_{2}(R)\left(\frac{x}{\epsilon}\right)=\phi_{2}(x)=O\left(\frac{\epsilon^{2}}{|x|^{2}}\right), & \text { on } \partial \Omega
\end{array}\right.
$$

where $g_{2}(X)=-\frac{\partial^{2} v_{0}}{\left(\partial x_{2}\right)^{2}}(0)-\nu \frac{\partial^{2} v_{0}}{\left(\partial x_{1}\right)^{2}}(0)=-\beta$ for $X \in \sigma$.
The variational formulation of problem $\left(\mathcal{E}_{\epsilon}\right)$ given in (66) is : find $e_{\epsilon} \in H^{2}\left(\Omega_{\epsilon}\right)$ such as

$$
a_{\epsilon}\left(e_{\epsilon}, v\right)=\int_{\Omega_{\epsilon}} \gamma \Delta R\left(\frac{x}{\epsilon}\right) v-\epsilon^{2} R\left(\frac{x}{\epsilon}\right) v+\int_{\sigma_{\epsilon}} \varphi_{1}[v]-\varphi_{2}\left[\partial_{n} v\right]-\int_{\Gamma}\left(\phi_{1} v-\phi_{2} \partial_{n} v\right), \forall v \in H^{2}\left(\Omega_{\epsilon}\right)
$$

Integrating by parts the first term of $a_{\epsilon}\left(e_{\epsilon}, v\right)$ gives
$\int_{\Omega_{\epsilon}} \Delta R\left(\frac{x}{\epsilon}\right) v=\epsilon \int_{\Gamma} \partial_{n} R\left(\frac{x}{\epsilon}\right) v-\epsilon \int_{\sigma_{\epsilon}}\left[\partial_{n} R\left(\frac{x}{\epsilon}\right) v\right]-\epsilon^{2} \int_{\Gamma} R\left(\frac{x}{\epsilon}\right) \partial_{n} v+\epsilon^{2} \int_{\sigma_{\epsilon}}\left[R\left(\frac{x}{\epsilon}\right) \partial_{n} v\right]+\int_{\Omega_{\epsilon}} \epsilon^{2} R\left(\frac{x}{\epsilon}\right) \Delta v$
The variational formulation of $\left(\mathcal{E}_{\epsilon}\right)$ rewrites as :

$$
\begin{aligned}
a_{\epsilon}\left(e_{\epsilon}, v\right) & =\epsilon \int_{\Gamma} \partial_{n} R\left(\frac{x}{\epsilon}\right) v-\epsilon \int_{\sigma_{\epsilon}}\left[\partial_{n} R\left(\frac{x}{\epsilon}\right) v\right]-\epsilon^{2} \int_{\Gamma} R\left(\frac{x}{\epsilon}\right) \partial_{n} v \\
& +\epsilon^{2} \int_{\sigma_{\epsilon}}\left[R\left(\frac{x}{\epsilon}\right) \partial_{n} v\right]+\int_{\Omega_{\epsilon}} \epsilon^{2} R\left(\frac{x}{\epsilon}\right) \Delta v-\epsilon^{2} R\left(\frac{x}{\epsilon}\right) v \\
& +\int_{\sigma_{\epsilon}} \varphi_{1}[v]-\varphi_{2}\left[\partial_{n} v\right]-\int_{\Gamma}\left(\phi_{1} v-\phi_{2} \partial_{n} v\right), \forall v \in H^{2}\left(\Omega_{\epsilon}\right)
\end{aligned}
$$

We split e_{ϵ} in the distributionnal sense into the $\operatorname{sum} e_{\epsilon}=e_{\epsilon}^{1,+}+e_{\epsilon}^{1,-}+e_{\epsilon}^{2}$ with

- $e_{\epsilon}^{1, \pm} \in H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}$ defined by

$$
b_{\epsilon}\left(e_{\epsilon}^{1, \pm}, v\right)=l_{\epsilon}^{1, \pm}(v), \forall v \in H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}, \text { where } b_{\epsilon} \text { is given in }(55)
$$

and

$$
l_{\epsilon}^{1, \pm}(v)=-\gamma \epsilon \int_{\sigma_{\epsilon}}\left(\partial_{n} R\left(\frac{x}{\epsilon}\right) v\right)^{ \pm}+\gamma \epsilon^{2} \int_{\sigma_{\epsilon}}\left(R\left(\frac{x}{\epsilon}\right) \partial_{n} v\right)^{ \pm}
$$

where we recall that for $x \in \sigma_{\epsilon}, u(x)^{ \pm}$are the right and left limit values (see Figure 3).
We check easily that each problem defining the solution $e_{\epsilon}^{1, \pm}$ is well defined on $H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}$.

- $e_{\epsilon}^{2} \in H^{2}\left(\Omega_{\epsilon}\right)$ is defined by the variational form :

$$
\begin{aligned}
a_{\epsilon}\left(e_{\epsilon}^{2}, v\right)=a_{\epsilon}\left(e_{\epsilon}-e_{\epsilon}^{1,+}-e_{\epsilon}^{1,-}, v\right) & =-\int_{\Omega_{\epsilon}} \epsilon^{2} R\left(\frac{x}{\epsilon}\right) v+\int_{\Omega_{\epsilon}} \gamma \epsilon^{2} R\left(\frac{x}{\epsilon}\right) \Delta v-\gamma \int_{\Omega_{\epsilon}} \nabla\left(e_{\epsilon}^{1,+}+e_{\epsilon}^{1,-}\right) \cdot \nabla v \\
& -\int_{\Omega_{\epsilon}}\left(e_{\epsilon}^{1,+}+e_{\epsilon}^{1,-}\right) v-\int_{\Gamma}\left(\phi_{1} v-\phi_{2} \partial_{n} v\right)+\int_{\sigma_{\epsilon}} \varphi_{1}[v]-\varphi_{2}\left[\partial_{n} v\right], \forall v \in H^{2}\left(\Omega_{\epsilon}\right)
\end{aligned}
$$

As for $e_{\epsilon}^{1, \pm}$, we can show that e_{ϵ}^{2} is well defined.
Now let us estimate $\left\|e_{\epsilon}^{1, \pm}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}$ and $\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}$. A change of variable, the trace theorem on $B \backslash \overline{\widetilde{\omega}}$, the equivalency of $H^{2}(B \backslash \overline{\widetilde{\omega}}) / \mathbb{P}_{1}$-norm and seminorm and a change of variable again lead to

$$
\begin{aligned}
C\left|e_{\epsilon}^{1,+}\right|_{2, \Omega_{\epsilon}}^{2} \leq b_{\epsilon}\left(e_{\epsilon}^{1,+}, e_{\epsilon}^{1,+}\right) & =-\epsilon \int_{\sigma_{\epsilon}}\left(\partial_{n} R\left(\frac{x}{\epsilon}\right) e_{\epsilon}^{1,+}\right)^{+}+\epsilon^{2} \int_{\sigma_{\epsilon}}\left(R\left(\frac{x}{\epsilon}\right) \partial_{n} e_{\epsilon}^{1,+}\right)^{+} \\
& =-\epsilon^{2} \int_{\sigma}\left(\partial_{n} R(X) e_{\epsilon}^{1,+}(\epsilon X)\right)^{+}+\epsilon^{3} \int_{\sigma}\left(R(X) \partial_{n} e_{\epsilon}^{1,+}((\epsilon X))^{+}\right. \\
& \leq C \epsilon^{2}\left\|e_{\epsilon}^{1,+}(\epsilon X)\right\|_{H_{00}^{3 / 2}(\sigma) / \mathbb{P}_{1}}+C \epsilon^{3}\left\|\partial_{n} e_{\epsilon}^{1,+}(\epsilon X)\right\|_{H_{00}^{1 / 2}(\sigma) / \mathbb{P}_{1}} \\
& \leq C \epsilon^{2} \mid e_{\epsilon}^{1,+}(\epsilon X)\left\|_{H^{3 / 2}(\partial \widetilde{\omega}) / \mathbb{P}_{1}}+C \epsilon^{3}\right\| \partial_{n} e_{\epsilon}^{1,+}(\epsilon X) \|_{H^{1 / 2}(\partial \widetilde{\omega}) / \mathbb{P}_{1}} \\
& \leq \epsilon^{2}\left\|e_{\epsilon}^{1,+}(\epsilon X)\right\|_{H^{2}(B \backslash \bar{\omega}) / \mathbb{P}_{1}} \leq C \epsilon^{2}\left|e_{\epsilon}^{1,+}(\epsilon X)\right|_{2, B \backslash \bar{\omega}} \leq C \epsilon^{3}\left|e_{\epsilon}^{1,+}\right|_{2, \Omega_{\epsilon}}
\end{aligned}
$$

We deduce that $\left|e_{\epsilon}^{1,+}\right|_{2, \Omega_{\epsilon}}=O\left(\epsilon^{3}\right)$. In the same way, applying the trace theorem on $\widetilde{\omega}$ we get $\left|e_{\epsilon}^{1,--}\right|_{2, \Omega_{\epsilon}}=$ $O\left(\epsilon^{3}\right)$.

As $e_{\epsilon}^{1, \pm}$ is defined up to a polynomial of degree less or equal than 1 , and from Lemma 6.1 and the estimates $\left\|\phi_{1}\right\|_{-3 / 2, \Gamma}=O\left(\epsilon^{2}\right),\left\|\phi_{2}\right\|_{-1 / 2, \Gamma}=O\left(\epsilon^{2}\right),\left|\varphi_{1}(\epsilon X)\right|=O(1),\left|\varphi_{2}(\epsilon X)\right|=O(\epsilon)$ and $\left|e_{\epsilon}^{1, \pm}\right|_{2, \Omega_{\epsilon}}=O\left(\epsilon^{3}\right)$ and a change of variable we have

$$
\begin{aligned}
C\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}^{2} \leq a_{\epsilon}\left(e_{\epsilon}^{2}, e_{\epsilon}^{2}\right) & \leq \epsilon^{2}\left\|R\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}\left\|e_{\epsilon}^{2}\right\|_{0, \Omega_{\epsilon}}+\gamma \epsilon^{2}\left\|R\left(\frac{x}{\epsilon}\right)\right\|_{0, \Omega_{\epsilon}}\left|e_{\epsilon}^{2}\right|_{2, \Omega_{\epsilon}} \\
& +\gamma\left(\left|e_{\epsilon}^{1,+}\right|_{H^{1}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}+\left|e_{\epsilon}^{1,-}\right|_{H^{1}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}\right)\left|e_{\epsilon}^{2}\right|_{1, \Omega_{\epsilon}} \\
& +\left(\left\|e_{\epsilon}^{1,+}\right\|_{L^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}+\left\|e_{\epsilon}^{1,-}\right\|_{L^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}\right)\left\|e_{\epsilon}^{2}\right\|_{0, \Omega_{\epsilon}} \\
& +\left\|\phi_{1}\right\|_{-3 / 2, \Gamma}\left\|e_{\epsilon}^{2}\right\|_{3 / 2, \Gamma}+\left\|\phi_{2}\right\|_{-1 / 2, \Gamma}\left\|\partial_{n} e_{\epsilon}^{2}\right\|_{1 / 2, \Gamma} \\
& +\epsilon\left\|\varphi_{1}(\epsilon X)\right\|_{H_{00}^{3 / 2}(\sigma)^{\prime}}\left|e_{\epsilon}^{2}(\epsilon X)\right|_{2, B \backslash \bar{\sigma}}+\left\|\varphi_{2}(\epsilon X)\right\|_{H_{00}^{1 / 2}(\sigma)^{\prime}}\left|e_{\epsilon}^{2}(\epsilon X)\right|_{2, B \backslash \bar{\sigma}} \\
& \leq C\left(-\epsilon^{2} \log (\epsilon)+C \epsilon^{3}+C \epsilon^{2}+C \epsilon^{2}\right)\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}
\end{aligned}
$$

We deduce that

$$
\left\|e_{\epsilon}^{2}\right\|_{2, \Omega_{\epsilon}}=O\left(-\epsilon^{2} \log (\epsilon)\right)
$$

We come back to e_{ϵ} : as $e_{\epsilon}^{1, \pm}$ is defined up to a polynomial of degree less or equal than 1 and thanks to the Deny-Lions inequality given in (56) we have

$$
\left\|e_{\epsilon}\right\|_{2, \Omega_{\epsilon}} \leq\left\|e_{\epsilon}^{1,+}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}+\left\|e_{\epsilon}^{1,-}\right\|_{H^{2}\left(\Omega_{\epsilon}\right) / \mathbb{P}_{1}}+\left\|e_{\epsilon}^{2}\right\|_{H^{2}\left(\Omega_{\epsilon}\right)}=O\left(-\epsilon^{2} \log (\epsilon)\right)
$$

Finally, to estimate $\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}}$ we use Lemma 6.4:

$$
\left|w_{\epsilon}\right|_{2, \Omega_{\epsilon}} \leq\left|R\left(\frac{x}{\epsilon}\right)\right|_{2, \Omega_{\epsilon}}+\left|e_{\epsilon}\right|_{2, \Omega_{\epsilon}} \leq C \epsilon+C \epsilon^{2} \log (\epsilon) \leq C \epsilon
$$

which ends the proof.

References

[1] R. A. Adams. Sobolev spaces. Pure and applied mathematics. Academic Press, New York, 1978.
[2] S. Amstutz. Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Analysis, 49(1-2):87108, 2006.
[3] S. Amstutz. The topological asymptotic for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, 11(3):401-425, 32010.
[4] S. Amstutz and A.A. Novotny. Topological asymptotic analysis of the Kirchhoff plate bending problem. ESAIM, Control Optim. Calc. Var., 17(3):705-721, 2011.
[5] J.P. Antoine, R. Murenzi, and P. Vandergheynst. Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in Patterns. Applied and Computational Harmonic Analysis, 6(3):314-345, 1999.
[6] G. Aubert, J.F Aujol, and L. Blanc-Féraud. Detecting Codimension - Two Objects in an Image with Ginzburg-Landau Models. 65(1-2):29-42, 2005.
[7] D. Auroux. From restoration by topological gradient to medical image segmentation via an asymptotic expansion. Math. Comput. Model., 49(11-12):2191-2205, 2009.
[8] D. Auroux, M. Masmoudi, and L. Jaafar Belaid. Image restoration and classification by topological asymptotic expansion, pages 23-42. Variational Formulations in Mechanics: Theory and Applications, E. Taroco, E.A. de Souza Neto and A.A. Novotny (Eds). CIMNE, Barcelona, Spain, 2007.
[9] A. Baudour. Détections de Filaments dans des images 2D et 3D; modélisation, étude mathématique et algorithmes. Phd Dissertation, Université de Nice Sophia Antipolis, 2009.
[10] A. Baudour, G. Aubert, and L. Blanc-Féraud. Detection and Completion of Filaments: A Vector Field and PDE Approach. In Fiorella Sgallari, Almerico Murli, and Nikos Paragios, editors, SSVM, volume 4485 of Lecture Notes in Computer Science, pages 451-460. Springer, 2007.
[11] L. Jaafar Belaid, M. Jaoua, M. Masmoudi, and L. Siala. Application of the topological gradient to image restoration and edge detection. Engineering Analysis with Boundary Elements, 32(11):891 - 899, 2008.
[12] S. Berlemont and J-C. Olivo-Marin. Combining Local Filtering and Multiscale Analysis for Edge, Ridge, and Curvilinear Objects Detection. IEEE Transactions on Image Processing, 19(1):74-84, 2010.
[13] A. Drogoul. Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging (submitted). SIAM Journal on Imaging Sciences (SIIMS).
[14] A. Drogoul. Applications of the topological gradient in the detection of fine structures in imaging. Phd Thesis University of Nice Sophia Antipolis, 2014.
[15] J. Zhou G. Chen. Boundary Element Methods with Applications to Nonlinear Problems. Artlantis studies in Mathematics for Engineering and Science, 1992.
[16] D. Graziani, G. Aubert, and L. Blanc-Féraud. A formal Gamma-convergence approach for the detection of points in 2-D biological images. SIAM Journal on Imaging Sciences, 3(3):578-594, September 2010.
[17] C. Lacoste, X. Descombes, and J. Zerubia. Point Processes for Unsupervised Line Network Extraction in Remote Sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1568-1579, 2005.
[18] KM. Liew and Q. Wang. Application of Wavelet Theory for Crack Identification in Structures. Journal of Engineering Mechanics, 124(2):152-157, 1998.
[19] M. Jacob and T. Blu and C. Vaillant and J.H. Maddocks and M. Unser. 3D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake. IEEE Trans. Image Process, 15:214-227, 2006.
[20] P.A. Martin. Exact solution of a hypersingular integral equation. Journal of integral equations and applications, 4(2):197-204, 1992.
[21] A.M Mendona and A.C. Campilho. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging, 25(9):1200-1213, 2006.
[22] C. Cañero Morales and P. Radeva. Vesselness enhancement diffusion. Pattern Recognition Letters, 24(16):3141-3151, 2003.
[23] J-C. Nédélec. Acoustic and electromagnetic equations : integral representations for harmonic problems. Applied mathematical sciences. Springer, New York, 2001.
[24] L. Nirenberg. On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 13(2):115-162, 1959.
[25] M. Rochery, I.H. Jermyn, and J. Zerubia. New higher-order active contour energies for network extraction. In ICIP (2), pages 822-825. IEEE, 2005.
[26] D. Ruiz. A note on the uniformity of the constant in the Poincaré inequality. 2012.
[27] M. Masmoudi S. Amstutz, I. Horchani. Crack detection by the toplogical gradient method. Control and Cybernetics, 34(1):81101, 2005.
[28] J. Sokolowski and A. Zochowski. On the topological derivative in shape optimization. SIAM J. Control Optim., 37(4):12511272, April 1999.
[29] C. Steger. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell., 20(2):113-125, 1998.
[30] R. Stoica, X. Descombes, and J. Zerubia. A Gibbs Point Process for Road Extraction from Remotely Sensed Images. International Journal of Computer Vision, 57(2):121-136, 2004.
[31] F. Tupin, J.F. Mangin, E. Pechersky, J.M. Nicolas, and H. Maître. A Graph-Based Representation to Detect Linear Features. 12:21-31, 1998.
[32] F. Zana and J-C. Klein. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 10(7):1010-1019, 2001.

[^0]: Keywords and phrases: Topological gradient, fourth order PDE, fine structures, 2D imaging.
 ${ }^{1}$ Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France; e-mail: gaubert@unice.fr \& drogoula@unice.fr

