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June 30, 2014

Abstract

We present a motion planning algorithm for a quasi-static Kirchhoff

elastic rod in complex environments. As the set of quasi-static deforma-

tions defines a finite dimensional manifold that can be parameterized by

a single chart, the configuration space formulation extends nicely to this

deformation space. This parameterization is computationally expensive

and our algorithm takes advantage of its linearization to perform fast col-

lision checking in its neighborhood. In the context of physically realistic

deformable rods, the efficiency of this approximation can be coupled with

motion planning techniques to obtain significant performance improve-

ments. We demonstrate the effectiveness of our approach on various toy

and industrial scenarios.

1 INTRODUCTION

Motion planning is a fundamental problem in robotics and has been exten-
sively studied for last three decades. So far, most of the work focused on rigid
bodies and articulated chains, but relatively little attention has been given to
deformable robots. Recent applications of robotics algorithms in various fields
such as virtual prototyping have brought new motivations in this direction. In
Product Life Management (PLM), motion planning plays an essential role for
assembling and disassembling studies. However, due to the lack of efficient algo-
rithms, deformable parts that are typically used in automotive and aeronautics
industry are not handled yet.

Moreover, in this context, many of the deformable parts consist in ”De-
formable Linear Objects” (DLOs), which are characterized by having one di-
mension much greater than the other two (cable, hose, pipe,...). This paper
focuses on planning a geometrical free path for a free-flying DLO in a rigid
environment.
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The extension of the motion planning problem to deformable robots is non-
trivial and implies new challenging aspects. For a rigid body, the configuration
is defined by the finite number of parameters (here 6) that defines the frame,
whereas for a deformable robot the number of shapes given a fixed frame is
infinite. As deformation can be seen as adding new degrees of freedom to the
system, the extension to current configuration space based formulation might
seem straightforward. However, working with an inefficient parameterization
of a deformation would lead to a high number of dependent degrees of free-
dom. This involves a high-dimensional configuration space although the set of
deformations describes a much lower-dimensional manifold. Also, the deforma-
tion model that would describe how to get from the configuration space to the
workspace may be hard to compute.

Great progress has been done in simulating deformable objects, for exam-
ple XDE [12] is a physics simulation software environment fully developed by
CEA-LIST for real-time application. This type of simulators is well suited for
interactive applications but the simulation cost is too high to couple these sim-
ulators with motion planning algorithms in an industrial integration context.

To overcome the curse of dimensionality we need a model that respects the
physical properties of deformations, but also minimizes the number of model
parameters.

The work from Bretl and McCarthy [5] offers a single global chart to describe
the manifold of equilibrium configurations of an elastic rod. As coordinates in
this chart are a subset of a low dimensional Euclidean space, it is especially
well suited for sampling-based methods. However, computing the parameter-
ization of this manifold that gives us the Direct Geometric Model (DGM) is
computationally expensive. Our approach approximates the neighborhood of
this parameterization and enables fast collision checking in this neighborhood.
We use this approximation to perform efficient motion planning for free-flying
quasi-static elastic rods.

The rest of the paper is organized as follows: Section II presents different
approaches for the motion planning applied to a deformable object. Section III
contains a description of the proposed approach and our FFG-RRT algorithm.
Section IV presents and discusses the experimental results. Conclusions and
future work are reported in section V.

2 RELATED WORK

Flexible rods mechanics have been extensively studied, especially in the case
of elastic deformations [1] [18] [10] [3]. These works offer relatively accurate
dynamic models of an elastic rod, but the computational cost induced by the
use of numerical methods such as finite elements is too high to include them
directly into a motion planning framework. For instance, in [17], Rodriguez et al.
coupled a deformable dynamics simulator with a kynodynamic motion planning
algorithm. However, the use of fully deformable environments prevents the
robot to be stuck in local minima and bypasses the local control problem.

As in our context of assembling and disassembling studies the goal is to find
a geometric path for the rod, the use of quasi-static models seems a reasonable
assumption. In this direction, the work from Lamiraux and Kavraki [9] investi-
gated for the manipulation planning problem of deformable objects based on the
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computation of their equilibrium configurations. This computation relies on the
numerical minimization of the total elastic energy for given gripper placements.
Some efforts have been done by Moll and Kavraki [13] in the special case of in-
extensible DLOs to reduce the cost of the minimization by the use of recursive
subdivision. Similarly, the work of Wakamatsu et al. [21] defines another static
model of elastic rods which also relies on optimization techniques. In all the
cited approaches, the use of numerical methods make them too computationally
expensive.

A different category of approaches, motivated by applications in computer
graphics, relies on simplified deformation models that do not take into account
mechanical properties. For instance, in [2] Bayazit et al. pre-compute some
reduced models of the deformable object and use them to build a weighted
roadmap through Probalistic Roadmap (PRM) methods. In [6], Gayle et al.
use the Constraint Based Motion Planning framework to simulate a deformable
robot using a mass-spring model along a rough estimate of the solution path.
Kabul et al. [8] extended this work to DLOs using a kinematic chain as de-
formable model. In these cases, the quality of the solution mostly depend on
the estimate and might be unable to solve some cases.

Another interesting direction has been investigated by Mahoney et al. [11]
by the use of a two-step process. A learning phase first collects high-dimensional
samples (e.g. using simulation) and computes a new basis for the deformation set
using linear dimensionality reduction. Then, this reduced deformation space is
used as parameterization to perform motion planning. Its main drawback lie in
the limitation to linear reduction and its nonlinear extension requires additional
information on the model.

This work tries to tackle all the drawbacks of the mentioned approaches.
We build on top of recent work from Bretl and McCarthy [5], which directly
provides a parameterization of the finite-dimensional manifold of equilibrium
configurations for a inextensible Kirchhoff elastic rod. This enables faster com-
putation of deformation states and, coupled with neighborhood information, we
show that it can be efficiently used for motion planning.

3 MOTION PLANNING FOR QUASI-STATIC

ELASTIC RODS

3.1 Problem Statement

Let R be a robot having n independent degrees of freedom. The configuration
space C of R is an n-manifold consisting in the set of all configurations of R.
Then the classic motion planning problem can be stated as finding a continuous
path τ : [0, 1] → Cfree, where Cfree ⊆ C is the set of valid configurations. In
general, a configuration is valid if it is collision-free in the workspace.

Consider now that the robot R is deformable, and more specifically it is an
elastic Kirchhoff rod in quasi-staticity. [5] showed that the set of deformations
D is an m-manifold, then it is possible to apply the same formulation.

Sampling-based methods relies on a parameterization of the manifold. Un-
fortunatly, finding a global parameterization of a manifold is not always possible
without going to higher dimensions (e.g. the Lie Group SO(3) ). As D is a
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manifold, it can be described by an atlas {(φα,Uα)}, that is a collection of local
charts (φα,Uα) where Uα ⊆ D.

Ideally, the model of deformation should provide a single chart (φ,D), which
would induce a global parameterization φ−1 of D, with φ−1 : U → D and U ⊂
R

m. This parameterization would offer an elegant way to sample on the manifold
and the Euclidean topology of the coordinates set gives a straightforward metric.

In this direction, the following section will introduce a global parameteriza-
tion for Kirchhoff quasi-static elastic rods.

3.2 Kirchhoff Quasi-Static Elastic Rods

This section briefly presents the results of Bretl and McCarthy [5]. We encour-
age the interested reader to refer to the original paper for details. Consider
a uniform inextensible Kirchhoff elastic rod as defined in [19] having material
elasticity coefficients and fixed end positions. At equilibrium configurations,
the rod locally minimizes its total elastic energy and its shape can be expressed
as a local solution to a geometric optimal control problem. From Theorem 6
in [5], the set of solutions to this optimal control problem is a 6-manifold that
can be parameterized by an atlas having a single chart, with coordinates given
by the open subset A ⊂ R

6. Let t ∈ [0, 1] be the parameterization along the
rod and g : [0, 1] × A → SE(3) be the mapping that describes the rod spatial
position at its parameter t for a given coordinate a ∈ A in previously described
chart. Note these spatial positions are relative to the rod base g(0, a). For a
fixed, computing g(t, a) for t ∈ [0, 1] requires the integration of several nonlinear
differential systems (see Fig. 6 in [5]). More specifically, sufficient conditions
for static equilibrium of the rod have to be checked. From Theorem 4 in [5], a
rod configuration is in static equilibrium if and only if det(J(t, a)) 6= 0 for all
t ∈ (0, 1] where the Jacobian matrix J ∈ R

6×6 is defined by:

J(t, a) = Tg(t,a)Lg(t,a)−1

[

∂g(t, a)

∂a1
· · ·

∂g(t, a)

∂a6

]

(1)

At a given rod position t, this Jacobian matrix describes variations of the geom-
etry ∂g(t, a) with respect to variations ∂a in the chart expressed at the identity
element of SE(3). The set of coordinates a for which the rod is in static equi-
librium will be noted Astable with Astable ⊂ A. These results enable us to use
the coordinates Astable to describe an equilibrium configuration of the rod.

Note that A can be physically interpreted as the space of moments and forces
applied at the base of the rod.

3.3 Planning for Free-Flying Elastic Rods

In sampling-based methods for motion planning, a key predicate is determining
if a configuration lies in Cfree, i.e. checking collision in C. In most cases, this is
performed by going back to the workspaceW and carrying out two steps. First,
we compute the DGM, which consists in a mapping from a robot configuration
in C to its corresponding geometry in W. Then, we check for collisions in W
between robot geometry and obstacles. If the geometry is collision free, then q
lies in Cfree.

Using the configuration space formulation, adding a 6 degree of freedoms
free-flyer joint to the deformable robot changes the configuration space to C =
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A× SE(3) which is a 12-manifold. A configuration in this space will be noted
q = (a, p)T with a ∈ A and p ∈ SE(3). Note that we consider here the free-flyer
joint is attached to the base of the cable. Then the corresponding rod geometry
is described by w : [0, 1]× C → W with W ⊂ SE(3). Let Ccol ⊆ C be the set of
all configurations of the rod that lead to collisions with the environment in the
workspace. Obviously, this set depends on both its deformation state a and its
position p. Let now Cself = {(a, p) ∈ C | a ∈ Aself}, with Aself ⊆ A, be the set
of all deformation states which results in a self-colliding geometry. Then, the
set of invalid configurations is given by:

Cinv = Ccol ∪ Cself ∪ Cunstable (2)

with Cunstable = {(a, p) ∈ C | a /∈ Astable}. Finally, we have defined the set of
valid configurations for a free-flying quasi-static elastic rod, i.e. Cfree = C \Cinv.

3.4 Collision Checking With Fast DGM Approximation

It is now well known that the collision-checking step is a bottleneck for motion
planning problems. This is especially true for virtual prototyping applications
where the CAD models have generally more than 100’000 polygons. In common
cases, computing the DGM is extremely fast (e.g. a kinematical chain). But
in the deformable object context, computation of the DGM is considerably
more costly. Using the rod model described in 3.2, the DGM requires the
numerical integration along the parameter t of several nonlinear differential
systems. Even if these results are much more efficient than a numerical approach
based on minimal energy optimization, this step becomes at least as costly as
collision checking in the workspace for a sufficiently reasonable number of rod
nodes. Note that the number of nodes is given by the integration resolution,
and consequently the computational time to compute the DGM is in linear
complexity with the number of rod nodes.

3.4.1 Fast Neighborhood Approximation

To ensure a rod configuration q is in static equilibrium, we have to compute the
Jacobian J(a) of the mapping g. Without additional computational time, we
can take advantage of this computation which describes the behavior of the rod
geometry in the neighborhood of a in the deformation space A.

As the map g is smooth, we can apply first order Taylor’s approximation.
In the neighborhood of a, this approximation g̃(t, a+ δa) is given by:

g̃(t, a+ δa) = g(t, a) exp (J(t, a)δa) (3)

From (1), the Jacobian is expressed at the identity element of SE(3), so it
maps variations in A to elements of the tangent space of SE(3) at the identity,
i.e. the Lie algebra se(3). Then, the exponential mapping for elements of se(3)
can be efficiently computed using Rodrigues’ formula [14].

As illustrated in Fig. 1, (3) enables us to approximate rod geometry up to
10 times faster than the full DGM computation.
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Figure 1: Log scale computation time of the DGM (red) and its first order
approximation (green).

3.4.2 Local path validation

In addition to check if a configuration lies in Cfree, sampling-based methods also
requires a more general predicate. The local path validation consists in checking
if a local path (i.e. the shortest path between two configurations with respect to
the metric associated to C), lies in Cfree. This is usually done by sampling along
this local path with a given resolution ∆q and checking collision in C for each
sample. In our case, the geodesic between two configurations q1 = (a1, p1)

T and
q2 = (a2, p2)

T of C = A× SE(3) is given by q(λ) = (a(λ), p(λ))T with

a(λ) = λa1 + (1− λ)a2 (4)

as A are coordinates on a chart and p(λ) is the geodesic on SE(3) as defined in
[16].

The approximated geometry w̃(q) given by (3) can be checked for self-
collisions and collisions with the environment, i.e. determining if q lies in
C̃col ∪ C̃self , where C̃col (resp. C̃self ) are local approximations of Ccol (resp.
Cself ) due to the use of approximated geometry w̃(q) (see Fig. 2). Note that

the locally approximated invalid configurations set C̃col ∪ C̃self differs from Cinv
defined in (2) by not taking into account unstable rod configurations Cunstable in
addition to the error induced by the approximation. However, as it will be pre-
sented next, this difference is still much lower than Ccol∪Cself and consequently,
checking the approximated geometry w̃(q) is a good guess of determining if q
lies in Cinv.

As sampled configuration along a local path are typically close, this approxi-
mation can be efficiently used to approximately validate a local path. There are
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Figure 2: Correspondance between approximation of the rod geometry w̃(q) in
the workspace W (right) and approximation of the environment colliding space
C̃col in the configuration space C (left). In this case, the approximation of the
geometry induces a false invalid configuration detection.

Figure 3: Local path validation using DGM Jacobian approximation. The ap-
proximation of the geometry w̃(qi) is obtained using the geometry w(qj) of the
closest configuration qj having exact geometry. Crosses (resp. dots) represent
configurations where the DGM will be approximated (resp. fully computed).

different approaches to this end, and one is illustrated in Fig. 3. The basic idea
states as follow: while sampling along the local path with a resolution ∆q, we
select the closest configuration where the DGM has been computed and we use
its Jacobian to approximate the geometry of the current sample if the distance
between the two configurations is less than a threshold ∆C

ex. Otherwise, if there
is no configuration with an evaluated DGM in the neighborhood bounded by
∆C

ex, a new full computation of the DGM will be performed.
This validation scheme raises two sub-problems that can be handled effi-

ciently. First, we must choose a good value for the sampling distance ∆q. A too
coarse resolution would lead to missed collisions and, in the opposite, consider-
able time would be wasted in unnecessary collision-checking for a too fine value.
Although variations ∂w(t, q) with respect to ∂p can be computed globally, vari-
ations ∂w(t, q) with respect to ∂a require more attention as the mapping g(t, a)
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is only a local diffeomorphism (see proof of Theorem 8 in [5]). To handle this
problem, we chose to use ∆q as an initial guess of the sampling resolution and
we ensure the maximum node to node distance as defined in (5) is less than a
given maximum penetration in the workspace.

The second problem is characterizing the neighborhood where we assume
the validity of our approximation. This is detailed in the following paragraph.

3.4.3 Approximation error

Our work has been highly motivated by the low distance error between an
approximated rod geometry using the Jacobian and the exact geometry given
by the DGM (see Fig. 4). The distance function considered here is the maximum
node to node distance given by:

ρ(w1, w2) = max
t∈[0,1]

dT (w1(t), w2(t)) (5)

where dT : SE(3)×SE(3)→ R is the Euclidean distance between the translation
part of the nodes. Thanks to this results, we have a good estimation about how
far from a configuration our approximation is assumed to be valid. For a given
distance error, the corresponding norm of the variation in the deformation space
A denoted ∆A

ex is then used to compute its corresponding maximum variation
∆C

ex in the full configuration space C for a given local path. This enables us
to take advantage of the decoupling between the two sub-spaces A and SE(3).
This distance ∆C

ex allows us to control the size of the neighborhood we want
to approximate. As presented in the following algorithm, choosing a bad value
for ∆C

ex would not be critical for the validity of the result path and would only
penalize performances.

3.4.4 Fast Forward Geometry RRT

In this section, we present an extension of the classical RRT algorithm which
encapsulates our fast neighborhood approximation. We will call it Fast Forward
Geometry RRT (FFG-RRT). The global structure of the FFG-RRT algorithm
detailed in Alg. 1 is very similar to a Lazy-RRT [4]. The RANDOM SAMPLE
function returns a randomly chosen configuration qrand in C. NEAREST selects
the closest configuration qnear from sampled configuration in the tree according
to the metric of the configuration space. We consider here the weighted metric
between the metric on SE(3) from Park and the Euclidean metric on A. The
APPROX EXTEND typically consists in two steps. First, it must provides a
steering method that gives the local path between two configurations without
taking into account any obstacles. Then, it checks the local path for collisions
and returns the last collision free configuration qnew. In our context of mo-
tion planning for quasi-static Kirchhoff elastic rods, the APPROX EXTEND
function could be the local path validation as described in 3.4.2. However, we
emphasize this could be replaced in much more general context by any extend
method that could ensure a fast and reliable approximation of the local path
validity.

The second part of the algorithm is given by the CHECK SOLUTION func-
tion. This function tries to find a solution path in the current tree where most
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Figure 4: Measurements of the distance error between an approximated and an
exact geometry depending on the norm of the variation ‖δa‖ in A.

of the edges are only approximately valid and check for exact validity of this
path. Invalidated edges are then removed from the tree. There are many possi-
ble efficient variations (e.g. reconstruct locally at invalidated edges or merging
trees for multiple trees algorithms) but a simple version is presented in Alg. 2.

Note the efficiency of this algorithm relies on the number of tree reconstruc-
tions in the function CHECK SOLUTION. As we seen that our approximation
is close to the exact DGM, this implies a low number of calls to this function
and this will be verified in the experimental results.

4 EXPERIMENTAL RESULTS

In this section we will present and analyze results on solving the motion planning
problem for free flying Kirchhoff elastic rods using the model presented in section
3.2 and our approach for fast approximation of the Direct Geometric Model
detailed in section 3.4. The videos of the following reported results are available
at http://projects.laas.fr/gepetto/index.php/

Members/OlivierRoussel#DLO static planning.

4.1 Implementation Detail

We chose to implement our approach on top of the classical RRT and RRT-
Connect [7] planners for the benchmarks using the C++ motion planning li-
brary OMPL [20]. The numerical integration of differential systems required
to obtain the geometrical state of the rod was implemented using fourth or-
der Runge-Kutta methods. For collision checking, the geometry of the rod was
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Algorithm 1 FFG-RRT(qstart, qgoal)

Input: Environment model, a robot DGM, start configuration qstart and goal
configuration qgoal

Output: A feasible path τ , or report failure
1: T .init(qstart)
2: for i← 1 to k do

3: qrand ← RANDOM SAMPLE()
4: qnear ← NEAREST(T , qrand)
5: qnew ← APPROX EXTEND(qnear, qrand)
6: if qnew 6= qnear then

7: T .addVertex(qnew)
8: T .addEdge(qnear, qnew)
9: end if

10: (solved, τ)← CHECK SOLUTION(qstart, qgoal, T )
11: if solved then return τ
12: end if

13: end for

14: return failure

Algorithm 2 CHECK SOLUTION(qstart, qgoal, T )

Input: Environment model, a robot DGM, start configuration qstart, goal con-
figuration qgoal and configuration tree T

Output: A boolean that indicates if a valid solution exists from qstart to qgoal
in T and this path τ if any

1: if PATH EXISTS(qstart, qgoal) then
2: τ ← FIND PATH(qstart, qgoal)
3: isSolutionValid ← true

4: for all edges (qi, qj) of τ do

5: if not LOCAL PATH VALID(qi, qj) then
6: T .removeEdge(qnear, qnew)
7: isSolutionValid ← false

8: end if

9: end for

10: if isSolutionValid then return (false, τ)
11: end if

12: end if

13: return (false, emptyPath)
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Figure 5: The two toy scenarios used for benchmarks: crack (left) and backward
(right). Start (resp. goal) configurations of the rod are represented in green
(resp. red). Note the head of cable has been marked with a magenta circle on
the Benchmark scenario to emphasize solution path could not be obtained with
a point-like robot.

approximated to a hierarchical chain of capsules (i.e. Line Swept Spheres).
The Flexible Collision Library (FCL) [15] was used to perform collision check-
ing computations. All the benchmarks were run on a PC with 8GB of main
memory and using one core of an Intel Core i7-2720QM processor running at
2.2Ghz.

4.2 Benchmark Scenarios

We selected four distinguished scenarios in order to test the effectiveness of our
approach. Two firsts consist in toy scenarios (see Fig. 5) where each shows
a specific difficulty. Last two scenarios are industrial cases with a disassembly
study (see Fig. 6). On all of this cases, bounds have been set on the configu-
ration space but, for clarity, environment bounding boxes are not shown in the
illustrations.

• Crack. Lightweight model where the rod must pass through a crack
shaped narrow passage. The length (resp. diameter) of the rod is half the
length (resp. width) of the crack free space.

• Backward. Lightweight model where a point-like robot path would give
an invalid guess or approximate solution. Note that due to the bounding
box, the DLO has to go trough the corridor between obstacles.

• Free-Flying engine. Industrial model with 132,000 polygons and where
the rod models a cable in a typical disassembly study case.

• Fixed engine. The model is the same as in the previous scenario but
here the cable has a fixed base.

Note that on all of these scenarios, the rod has to deform its shape to go from
start to goal configurations. We ran the benchmark 30 times for each case. The
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Figure 6: Two industrial cases of disassembling for a free-flying cable (top) and
a fixed base cable (bottom). The cable has to get out from a highly constrained
start configuration (in green) to a low constrained configuration (in red). Closer
views on the start configuration are represented on the right for each scenario.

number of rod nodes has been chosen to give sufficient realism of the physical
deformation and depends on the level of deformation and the rod length.

4.3 Results

Benchmark results are shown in Table 1 where (1) is average planning time in
seconds, (2) is success rate in percentage, (3) is the average total forward geom-
etry time (i.e. time spent in exact DGM calculation and DGM approximation
time if relevant) and (4) is the average number of invalidated solution paths due
to the approximation. For each scenario we set a timeout in time and memory
usage.

We see our approach solves the problem about two to three times faster
than its respective classical implementation, with a similar success rate. For
classical algorithms, most of the planning time is effectively spent in the DGM

12



Table 1: Planning performance comparison

Scenario RRT FFG-RRT
RRT

Connect
FFG-RRT
Connect

Failed Failed 301,2 113,5 Time (1)

Crack 0 0 80 96,7 Success (2)

Failed Failed 246,7 38,5 Tot. FG (3)

- Failed - 0,07 Inv. app. (4)

Failed Failed 450,6 172,9 Time

Backward 0 0 93,3 86,7 Success

Failed Failed 360,1 49,4 Tot. FG

- Failed - 0,34 Inv. app.

Failed Failed 240,7 82,9 Time
Free-flying 0 0 100 100 Success

engine Failed Failed 129,5 11,4 Tot. FG

- Failed - 0,4 Inv. app.

95,1 19,6 636,8 250,9 Time
Fixed 50 40 100 100 Success

engine 69,4 3,4 446,1 49,3 Tot. FG

- 0 - 0,8 Inv. app.

computation. Thanks to our approach, this time which includes the geometry
approximation time is divided by a ratio up to ten.

Also, as toy scenarios typically show two connected components with a nar-
row passage, bi-directional planners such RRT-Connect are highly more efficient
in these cases. The very low number of invalidated solution paths confirms the
quality of the approximation, meaning that the function CHECK SOLUTION
detailed in Alg. 2 is rarely called. Theses cases where the approximated solution
path is invalidated are mainly due to the non respect of sufficient conditions for
static equilibrium as described in 3.2 (i.e. q ∈ Cunstable).

5 CONCLUSION AND PERSPECTIVES

In this paper, we presented an new approach to the motion planning problem for
a Kirchhoff elastic rod. Using a realistic physical model for the DLO, we are able
to solve complex industrial scenarios in a reasonable time. We also introduced
a new local planning scheme by taking advantage of the linearization of the
Direct Geometrical Model which enables to solve the problem two to three times
faster. This local method can be embedded in many different motion planning
algorithms and extends to any model where the DGM cost becomes critical.

In the future, we would like to extend the approach by coupling with dynamic
simulation to ensure mechanical constraints of the rod between two quasi-static
rod configurations. Another interesting problem in manufacturing would be to
take into account gripers of the rod during the planning process.
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