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DUAL OPERATOR ALGEBRAS WITH NORMAL
VIRTUAL h-DIAGONAL

JEAN ROYDOR

ABSTRACT. We study the class of dual operator algebras admit-
ting a normal virtual h-diagonal (i.e. a diagonal in the normal
Haagerup tensor product), this property can be seen as a dual
operator space version of amenability. After giving several char-
acterizations of these algebras, we show this class is stable under
algebraic perturbations and cb-isomorphisms with small bound.
We also prove some perturbation results for the Kadison-Kastler
metric.

1. INTRODUCTION

In this paper, we are interested in a special class of dual operator
algebras. Concretely a dual operator algebra is a w*-closed subalgebra
of a certain B(H), the von Neumann algebra of all bounded operators
on a Hilbert space H (see Section 2.7 in [2] for details on dual operator
algebras), here we assume all our algebras to be unital. We consider
the class of all dual operator algebras admitting a normal virtual A-
diagonal in the sense of [2] Paragraph 7.4.8. Let us recall this notion
(for background on completely bounded maps, operator space theory
and non-selfadjoint algebra theory, the reader is referred to [2], [9], [14]
and [16]). In the following ®,, denotes the normal Haagerup tensor
product, see Paragraph 1.6.8 of [2]. Let M be a unital dual operator
algebra. The M-bimodule structure of M ®,, M is determined by the
actions:

a-(c®d)-b=ac® db.
We denote
my: M®;p M — M

the completely contractive w*-continuous linear map induced by the
multiplication. A normal virtual h-diagonal for M is an element u €
M @4, M satistying:

(C1) for any m € M, m-u=u-m,
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(C2) mp(u) =1.

In this paper we call such an element oh-diagonal. Note that condition
(C2) implies that the norm of a oh-diagonal is always greater or equal
to 1 (because my, is contractive). When a dual operator algebra M
admits a ch-diagonal, M is said oh-amenable.

This condition can be thought as an amenability condition (it is an
analog of virtual diagonal) in the category of dual operator algebras.
Therefore we will try to transfer properties of amenable Banach al-
gebras to oh-amenable dual operator algebras. Especially we are in-
terested in stability properties of this class of algebras under different
type of perturbations: algebraic perturbations (i.e. neighboring multi-
plications), cb-isomorphisms and perturbation in the sense of Kadison-
Kastler. Note also that admitting a normal virtual hA-diagonal is a
weaker condition than admitting a normal virtual diagonal (see remark
2.1 in [19]), hence in view of Conjecture 1 in [19], it is interesting to
understand the class of ch-amenable dual operator algebras.

In Section 2, we give different characterizations of ch-amenability. Re-
call that the initial definition of amenability for Banach algebras is in
terms of vanishing of the first Hochschild cohomology group on dual
Banach modules. For dual Banach algebras, two analogs of amenability
have already been considered: one in terms of normal virtual diagonal
and another one in terms of vanishing cohomology on normal dual Ba-
nach bimodules (i.e. Connes-amenability, see [20]). The problem is
that, unlike the Banach algebra case, this two notions do not coincide
for dual Banach algebras, see [21]. This phenomenon can not happen
for dual operator algebras; more precisely, ch-amenability is equivalent
to vanishing of the first Hochschild cohomology group relatively to the
normal completely bounded cohomology, see Proposition 2.3. This ac-
tually relies on the associativity of the normal haagerup tensor product.
The idea of considering the normal completely bounded cohomology is
inspired from [23] (see also [15]). Furthermore, we also characterize
oh-amenability in terms of neighboring representations. The link be-
tween geometry of representations and amenability is known to Banach
algebraists (see [20]). Finally as a direct application of Gifford’s work,
we describe w*-closed ideals of ogh-amenable dual operator algebras
(this description will be used in Proposition 3.13).

In Section 3, we study the stability properties of the class of oh-
amenable dual operator algebras. We first notice that oh-amenability
is stable under algebraic perturbations see Proposition 3.4. This re-
sult is an analog of Theorem 3 [18], but here we give a proof using
[19], so that we can give an explicit bound in function of the norm



of oh-diagonal. Further, by an ultraproduct argument, we also prove
that the class of oh-amenable operator algebras is stable under unital
w*-continuous cb-isomorphisms with small bound (see Theorem 3.6).
The objective of the second part of Section 3 is to prove perturbation
results for the Kadison-Kastler metric in the continuation of [19]. Per-
turbations for various classes of non-selfadjoint algebras have already
been considered (see e.g. [7], [17] and [13]). But here for our results,
two hypothesis are needed: a complementation hypothesis (i.e. exis-
tence of a projection) and an amenability hypothesis (i.e. existence of
a normal virtual h-diagonal or a normal virtual diagonal). In [19], we
could prove a parametrization of Theorem 4.1 [5] in function of the
norm of the normal virtual diagonal (but we kept a completely con-
tractive projection). We use here the term ‘parametrization’ because
a dual operator algebra which admits a normal virtual h-diagonal of
norm one is actually selfadjoint. The same phenomenon occurs for the
complementation hypothesis, more precisely a unital operator algebra
which is the range of completely contractive projection is necessarily
selfadjoint. Hence we could imagine to incorporate the cb-norm of the
projection as an extra parameter, Theorem 4.1 [5] is almost the spe-
cial case of Theorem 3.9 corresponding to cb-norm of the projection
equals one. The only problem is that we need to assume this projec-
tion to be w*-continuous. The only missing ingredient in order to find
a ‘full parametrization’ of Theorem 4.1 [5] is an analog of Tomiyama’s
decomposition (into normal/singular parts, see [24]) for oh-amenable
(non-selfadjoint) dual operator algebras. We prove such a decompo-
sition in the very special case when a dual operator algebra admits
a virtual h-diagonal in the sense of [2]. As a peripheral result, we
also show that a ch-complemented oh-amenable dual operator algebra
which is close enough to a von Neumann algebra is similar to it (see
Theorem 3.12).

2. CHARACTERIZATIONS AND PERMANENCE PROPERTY

In this section, we give two characterizations of unital dual opera-
tor algebras admitting a oh-diagonal (see Corollary 2.7 below). The
first one involves the normal completely bounded Hochschild cohomol-
ogy of operator algebras. The second characterization is in terms of
neighbouring representations.

Definition 2.1. Let M be a unital dual operator algebra and X be a
dual operator space which is a M-module. Then, X is called a normal
operator M-module if the bilinear map

(mx) EMXX—m-zeX



induced by the action of M on X is completely contractive and the
map m € M — m-x € X is w*-continuous, for every x € X.

The bimodule version of this definition is obvious (see Paragraph
3.8.2 in [2] for more details).
One can be surprised that, in the previous definition, the w*-continuity
of the map x € X — m -x € X is not required. Actually this w*-
continuity is automatic from Corollary 4.10 in [3]. Consequently, from
the universal property of the normal Haagerup tensor product, X is a
normal operator M-module if and only if

mreMeX—m-z€X

extends to a completely contractive w*-continuous map from M ®,, X
into X.

As X is the dual space, there is an operator space ) such that X =
Y*. As X is a normal operator M-module, Y** = X* can be turned
canonically into a Banach M-bimodule and then it is easy to check that
Y is a Banach sub-M-module of Y**. Hence, normal operator modules
are the operator space analog of the normal dual Banach modules (see

[23]).

Lemma 2.2. Let M be a unital dual operator algebra. Then, M&,, M
s a normal operator M-bimodule.

Proof. We give here a quick proof, see Lemma 2.5 in [1]. For sim-
plicity, we just prove this for the left action of M. It is sufficient to
prove that @ : M ® (M ®,, M) - M ®,, M defined by a(m ®
v) = m - v extends to a completely contractive w*-continuous map on
M R, (M ®q, M). This dual space (by associativity of ®,y) can
be identified with (M ®4, M) ®,;, M via a w*-continuous complete
isometry. Recall that the action of M on M ®,, M is determined by

m-(z®y) = (mz)®y,
hence

A mamem = (M grid )| mMormem:
So « has a completely contractive w*-continuous extension to M ®,,

M Qg M. [ ]

This previous Lemma can not be stated with the normal (or binor-
mal) projective tensor product (see [8] p. 139). The previous proof
actually relies on the associativity of the normal Haagerup tensor prod-
uct.

The ‘only if” part of the next proposition is still true for dual Banach
algebras, whereas the ‘if” part is not (see [21]).



Following notation of [23], when X is a normal operator M-bimodule,
we denote H ,(M,X) the first Hochschild cohomology group rela-
tively to the normal completely bounded multi-linear maps.

Proposition 2.3. Let M be a unital dual operator algebra. Then, M
admits a oh-diagonal if and only if H. ,(M,X) =0, for every normal
operator M-bimodule X .

Proof. The proof follows B.E. Johnson’s proof on characterization of
amenable Banach algebra in terms of virtual diagonal, so we sketch
it (for more details, see e.g. Lemma 7.4.4 in [2]). Suppose u is a
oh-diagonal for M and let D : M — X be a completely bounded w*-
continuous derivation into a normal operator M-bimodule X. As ®,
we can consider D ®,p,1dy and then define ¢ = D ®,p,idayq(w). It is not
difficult to check that D is the inner derivation implemented by . For
the converse, note that Ker my, is a normal operator sub-M-bimodule
of M ®,p, M (see Lemma 2.2 above), so we can follow the computation
of Lemma 7.4.4 in [2]. n

We recall from [19] that two representations of a dual operator al-
gebra, admitting a oh-diagonal, which are close enough are necessarily
similar.

If S € B(H) is an invertible operator, we denote Adg the similarity
implemented by S.

Proposition 2.4. Let M be a unital dual operator algebra. We sup-
pose that M has a ch-diagonal u € M Q. M. Let 1,79 be two unital
w*-continuous completely bounded homomorphism into a same dual op-
erator algebra N'.

If |1 — oy < |ul| 7t max{||m ||}, (|72l '}, then there exists an in-
vertible operator S in the w*-closed algebra generated by w1 (M)Uma(M)
such that m; = Adg oms.

Proof. See Proposition 4.1 [19], noticing that the proof works if one
replaces B(K) by any arbitrary unital dual operator algebras. n

Remark 2.5. Note that the previous Proposition works in the cate-
gory of unital amenable Banach algebra with unital bounded homo-
morphisms (or unital dual Banach algebras with w*-continuous unital
bounded homomorphisms), see [20].

Now we are going to see that the converse of the previous proposition
is true.
Let M, N be two unital dual operator algebras, we denote Hom gy« (M, N)
the set of all unital w*-continuous completely bounded homomorphisms



equipped with the metric induced by the cb-norm i.e. the distance be-
tween mp,m € Homgy,: (M, N) is defined by ||m; — mal|s. For @ €
Hom g+ (M, N), we also denote [r] the similarity orbit of m, that is

(7] = {Adgom, S €N} C Homgpy: (M, N),
where A'~! C N denotes the group of invertible operators in N.

Proposition 2.6. Let M be a unital dual operator algebra. Suppose
that for any unital dual operator algebra N, for any m € Hom py: (M, N),
(7] is open, then M admits a oh-diagonal.

Proof. Let X be a normal operator M-bimodule and D : M — X
be a w*-continuous completely bounded derivation. From Proposition
2.3, we must show that D is inner. Let N be the space of all elements

of the form
m
0 m|’

where m € M and x € X. Actually, using the module actions, we
can equipped N with a multiplication. Then N becomes a unital
dual operator algebra (arguing as in Section 4 of [1] ). Now, denote
7 = idy @ idpyg : M — N, which is obviously a unital w*-continuous
completely bounded homomorphism. Hence there is an € > 0 such
that the open ball of radius € centered in 7 is contained in [r]. Put
r = s—=— and define o : M — A by

QHD”cb

s = [1 2]

So p is a unital w*-continuous completely bounded homomorphism
from M into A/ and
|m— ol < €.

Consequently, there exists an invertible
S = {m x} eN
m

such that 7 = Adgop. Easy computation show that D is in fact the

inner derivation implemented by %xm_l. n

To summarize:

Corollary 2.7. Let M be a unital dual operator algebra. The following
are equivalent:

(i) M has a och-diagonal u € M 4, M,
(ii) for every normal operator M-bimodule X, H! ,(M,X) =0,



(111) for any unital dual operator algebra N, for any m € Hom g (M, N),
the similarity orbit [r] is clopen.

It is clear that the class of oh-amenable operator algebras are stable
under unital w*-continuous cb-homomorphism with w*-closed range.
Also w*-closed ideals of a o h-amenable operator algebra are och-amenable
as well. More precisely:

Proposition 2.8. Let M be a unital dual operator algebra and Z be a
w*-closed ideal of M.

(1) If M is oh-amenable (with diagonal u), then there is a unique
central idempotent p such that T = pM. Moreover, ||p| < ||ul-
Consequently, T and M /T are ch-amenable.

(2) Conversely, if T and M/Z are och-amenable then M is oh-

amenable.

Proof. For (1), by Proposition 7.4.12 in [2], M has the w*-module
complementation property, so we can adapt the proof of Theorem 3.2.2
in [10]. For (2), see Theorem 2.3.10 in [20]. n

3. PERTURBATION OF ch-AMENABLE DUAL OPERATOR ALGEBRAS

3.1. Algebraic perturbations. This subsection is inspired by Theo-
rem 6.2 in [12], where B.E. Johnson proves the stability of amenabil-
ity for neighboring multiplications (that we call here algebraic per-
turbations). Ome can prove the analog for a oh-amenable operator
algebra M by first noticing that every Hochschild cohomology groups
HE (M, M) (associated to the normal completely bounded cohomol-
ogy) actually vanish, and then applying Theorem 1 of [18].

In the following, a bilinear m : M x M — M is called a multiplication
on M if it is associative, extends to the normal Haagerup tensor prod-
uct M ®,, M and unital (i.e. m(1,2) = m(x,1) = ). We know that
given a multiplication m (from [2] Theorems 5.2.1 and 5.2.16), that
M equipped with m is cb-isomorphic via a unital w*-homeomorphism
to an actual dual operator algebra. Therefore, it makes sense to talk
about the oh-amenability of (M, m). We denote by m, the original
multiplication on M.

Lemma 3.1. Let M be a unital ch-amenable dual operator algebra.
Then, H" ,(M, M) =0, for any n.

wceb
Proof. Firstly, using the oh-diagonal to average, one can prove the
analog of Theorem 1.7.4 in [23]. Denote C'B,(M, M) the set of all
w*-continuous completely bounded linear maps from M into M and



denote C'B, (M, M), the subspace of C'B,(M, M) consisting of the
right M-module maps. Let L € CB,(M, M), consider

I, : M Qe M Qe M — N

defined
[ (z®y®z) = L(zy)z.

Now, for m € M, we define II(L)(m) = II.(m ® w), where u is a
oh-diagonal. Then one can check that II is a completely bounded
projection from C'B,(M, M) onto CB,(M, M) with [[TT||a < ||ul.
Secondly, as u € M ®,;, M, there is a net (u;); in M ® M converging
to u in the w*-topology of M ®,, M. For any ¢, there are finite families
(al)k, (b),)x of elements in M such that u = w* —lim,; >, af ®b},. Then
one can follow the computation of Theorem 7.3.1 in [23] in replacing
d_;m* @m§ by u=w* — lim; ), a @ by "

Remark 3.2. Note that w*-continuity of II(L) actually comes from
the associativity of the normal Haagerup tensor product. There might
be another way to prove this Lemma using a reduction of dimension
argument, but computations might be longer.

Note that it is not too difficult to state the analog of Theorem 3 of
[18] (or Theorem 2.1 of [12], see also Theorem 7.4.1 in [23]) for a dual
operator algebra M. One has to replace hypothesis on the continuous
cohomology by the same hypothesis on the normal completely bounded
cohomology i.e.

(31) Hicb(Ma M) = Hg)cb(Ma M) =0
and replace the norm of both multiplications by their cb-norm i.e.

[l —mv e

The conclusion is the existence of constants §,C' > 0 and existence
of a w*-continuous completely bounded linear isomorphism & of M
satisfying

|® —idm|le < C|lm—mp || and (m(z,y)) = ¢(z)P(y),

providing that ||m —mpy ||e < 9.

For the proof of this fact, one just has to apply the implicit function
Theorem 1 in [18] (see also Theorem 7.3.1 in [23]) to the right spaces
of w*-continuous completely bounded multilinear maps. As a corollary,
if M is oh-amenable, then (M, m) is also oh-amenable (because ® is
a unital w*-continuous cb-isomorphism between these algebras). The
flaw in this —too general— approach is that the constant ¢ is implicit.
Here we give another argument using [19] which enables us to explicit
a bound.



Recall that TV denotes the bilinear map from M x M into N defined
by T(z,y) = T(xy) — T(x)T(y).

Theorem 3.3. Let M, N be two unital dual operator algebras. We
suppose that M has a normal virtual h-diagonal uw € M &y, M. Then,
for any e €]0, 1[, for any p > 0, there ezists 6 > 0 such that: for every
unital w*-continuous linear map L : M — N satisfying | L||o < p and
|ILY ||l < 0, there is a unital w*-continuous completely bounded algebra
homomorphism m: M — N such that |L — 7||a < €.

Proof. See [19], we just recall that one can choose § = ToseeE: ™

Let us recall more precisely Theorems 5.2.1 and 5.2.16 in [2]. Given
a completely bounded multiplication m on M, there exists a dual oper-
ator algebra N and a completely bounded unital w*-continous algebra
homomorphism p : M — N with ||plles < 2||m|ls and |[p7 e <
Jm 5

Proposition 3.4. Let M be a unital ch-amenable dual operator alge-
bra (with oh-diagonal u). Let m be another multiplication on M. If
lmay —m||e < m, then (M, m) is ch-amenable.

Proof. Define L = poidy : M — N (with notation of the preceding
discussion). Note that

L7 Nl < Mlpllesll mae —m [l < 2) mflop || mpg — m -

We can to apply the previous theorem to L : M — N. Let § =
2| m |||l maq —m || b, 0= 2| m||p and recall from the proof of Theo-
rem 3.2 in [19] that & = 6(4|lu|| + 8u?||ul|?). Here we need to require
e < 1, so that the resulting algebra homomorphism 7 is bijective,
hence oh-amenability of (M, m,) transfers to A/ and consequently to
(M, m). In order to apply the previous theorem, we need the following

condition to be satisfied:
1

< .
Aflull + 32 m [[% [l ul?

But using the obvious fact ||m || < 1+ || ma —m ||, we obtain that
the previous condition is satisfied if

2| m [lep || g — m e

1
e —m (1 + [ mpg —m [|p)* < 3
8|ull + 64|u]

As |lu|| > 1, this last condition would also imply that || my —m || <
%. Finally, if
23
< )
~ 192u|| + 1536||u||?

| Mg —m ||



we can apply the previous theorem and conclude. n

Lemma 3.5. For any n > 0, there exists p € (0,1) such that for any
unital operator algebras A, B, for any unital cb-isomorphism T : A —
B, Tl <1+ p and |T o < 14 p imply || TV < 7

Proof. Suppose the assertion is false, then there exists 7, > 0 such that
for every positive integer n € N*, there is a unital cb-isomorphism 7, :
A, — B, between some unital operator algebras satisfying ||7},||s <
L+ 1/n, [T e <1+ 1/n and | TY||e > 1,- Let U be a nontrivial
ultrafilter on N, let us denote K' the unitization of the C*-algebra of
all compact operators on ls. Denote also Ay (resp. By) the ultra-
product IT,K! @i An/U (resp. 1, K! @, B,/U), this is a unital
operator algebra (see [2] Chapter 2). Now consider Tj, : Ay — By
the ultraproduct map obtained from the idx: ® T,,’s. Hence Ty, is a
unital linear complete isometry between operator algebras, so Ty is
multiplicative (see [2] Theorem 4.5.13). This contradicts the hypoth-
esis for all n, [|T)Y |l > no. Because ||TY || = ||(idgr @ T,,)Y||, so the
condition ||7,Y||s > 71, means that there are x,,y, in the closed unit
ball of K' ®,in A, such that

[(idkr @ Ty) (znyn) — (idgr @ To) () (idxr @ T0) ()| = 70,
which implies that

1T (2y) — Tu (@) Tu ()]l = 10,

where & (resp. ¢) denotes the equivalence class of (z,), (resp. (yn)n)
in A;;. This last inequality contradicts the multiplicativity of 7, (this
ultraproduct argument is inspired from [11]). n

Theorem 3.6. There exists a function f : (1,4+00) — (0,1) such
that for every oh-amenable unital dual operator algebra M (with oh-
diagonal w), for any unital dual operator algebra N, for any unital
w*-continuous linear cb-isomorphism T : M — N, the inequalities
1Tl < 1+ f(l[ull) and [T~ < 1+ f(|lull) imply that M and N
are cb-isomorphic via a unital w*-continuous algebra homomorphism
(in particular, N is och-amenable).

Proof. Let M be a unital dual operator algebra admitting a oh-
diagonal u. Applying Theorem 3.3 with = 2, ¢ = 1/2 gives a ¢ (as
function of ||u||). Now we can apply previous Lemma with n = § to ob-
tain p and so we can define f(||u||) = p. Becauseif T : M — N is a uni-
tal w*-continuous linear ch-isomorphism satisfying || 7| < 1+ f(||ul])
and ||T7 s < 1+ f(|Ju||), hence [|TV]|s < §. Therefore by Theorem

10



3.3, there exists a unital w*-continuous completely bounded algebra
homomorphism 7 : M — N such that ||T — 7|ls < 1/2. Hence

T 7w —idpm]le < 1, 7 is bijective and |77 | < | T allm 1T ||ep <
1T~
1—||T_17T—iccll)Mch'
n

Remark 3.7. It would be ideal to prove a non-unital version of the
previous theorem involving the Banach-Mazur cb-distance.

3.2. Perturbation results for the Kadison-Kastler metric. Let
H be an Hilbert space, and B(H) the von Neumann algebra of all
bounded operators on H. Let £, F be two subsets of B(H). Let v > 0,
we write £ C7 F if for any x in the unit ball of £, there exists y in F
such that

|z —yll <~

We also write £ C7 F if there exists 4/ < 7 such that £ 7" F. We will
need the notion of near cb-inclusion. As usual in operator space theory,
ML, (€), the set of n x n matrices with coefficients in £ is normed by
the identification ML, () C M,,(B(H)) = B(¢? ® H). Finally, we write
E C), F if, for any n, M,,(€) CY M, (F).

In Theorem 5.2 in [19], N is injective i.e. N is the range of a com-
pletely contractive projection. The purpose of this subsection would
be to parametrize Theorem 5.2 in [19] in function of the cb-norm of
the projection.

Lemma 3.8. Let M, N C B(H) be two unital w*-closed operator al-
gebras. We suppose that N is the range of completely bounded w*-
continuous projection P. Denote T' = Py : M — N

If M CH N, with
v < @+ Ple)
then T is injective and satisfies:

(D) IT —idmller < (1 +||Plen)y
(2) 1T v < (14 [ Plle) (2 + ([ Plles) v,
where TV is the bilinear map from M x M into N defined by

TV(w,y) = T(xy) — T(x)T(y).
Moreover, if N C TR M, then T s bijective and

1

T_l cbg .
17 e < T T

11



Proof. Let z in the unit ball of M, (M), then there is y in M, (N)
such that ||z —y|| <.
[0 () — 2l = [Tz —y) = (@ = y)lles < (14 [|Pllen)-

which proves (1).
For (2), let z,y in the unit ball of M, (M)

(TY)n(2,y) = Talzy) — Tn(2)Tu(y)
= Tu(xy) — zy
+xy — xTn(y)
+ 2T5,(y) — To(z)Tn(y)

Consequently, using (1), we obtain
1T Nleo < 1T = idptller + 11T = idptller + 1T o | T — i nalles

< L+ 1Plles) 2 + [ Plles) v,
which gives (2). Now let’s prove that T is injective. Let z in M, (M).
From (1) and v < (1 + || P||s) ", we have

IZ.@)] > 1T(z) — ] — ]
> (1= (L4 [Plles)7) I

so T is injective (and has closed range).

1
Now assume N CTPT M. To conclude we just need to prove that T is
surjective, because the inequality

1
<
T L= (A [ Pllen)y
will follow from the inequality we have just proved. Let v < ||P|~*

such that A~ € M. Let y in the unit ball of A/, then there exists
in M such that ||y — z|| <. Hence

ly = T(@)[| = 1Ty — =) <A ITI < APl

1T les

Denote t; = T'(z), which is in the range of 7. Applying the same
procedure to m(y — t1) (which is the unit ball of '), we obtain ¢,
in the range of T" such that

ly =t = ta]| < (¥'[IPI])?
Inductively, for any j, we can find ¢, ...,¢; in the range of 7" such that

ly — (v +ta+ -+ )| < (YI|IPI]).

12



As+' < ||P||7!, we conclude that y belongs to the closure of the range of
T. But we have seen that T has closed range, so finally T is surjective.
n

For the following Theorem, we denote by F' the polynomial function
F(X,Y) =14+ X)(Y +4(X +2)Y? +8(X +2)X?*Y?)
The proof is similar to the proof of Theorem 5.5 in [19].

Theorem 3.9. Let M, N C B(H) be two unital w*-closed operator
algebras. We suppose that M has a oh-diagonal u € M Q,, M. We
suppose that N is the range of a completely bounded w*-continuous
projection P.

N CTPT M and M O N, with v < 1/F(||Pllay, |[ul]), then there
exists an invertible operator S in the w*-closed algebra generated by
MUN such that SMS™ = N. Moreover,

15 = Tl < AE(Pllebs [[ul])-

Proof. As |ju|]| > 1, we have v < (1+|P||s)"!. Hence, by Lemma 3.8,
there is a unital completely bounded w*-continuous linear bijection T’

from M onto N such that
(3.2) 1T les < (L +[[Plle6) (2 + | Plles)y and [Tl < [|P]]es-
Let

e = (L4 | Plleo) (4l Plles + 8)[lull + Bl Plles + L6) 1P 17 luel|*) .
Note that from the condition on v, we see that
(3.3) e+ (L4 [IPa)y < lluf ™ < L.

We also write 1 = || P||s and § = (4]Ju||+8x2||ul|?) e. So, by definition
of ¢,
0= (L4 [[Plleo)(2 + ([ Pllen)-

From Equations (3.2) and (3.3) above, we can apply Theorem 3.3 to
the linear map 7. Thus there exists a unital w*-continuous completely
bounded homomorphism 7 : M — N such that |7 — 7||s < e. Con-
sequently

”ﬂ- - 1dMch S ||7T - Tch + HT - ld./\/chb
< et (L+[1P]w)y
From equation (3.3), we have for any z € M,
[m(@)l = (1= (e + (L + [ Plleo)) ],

13



so m is injective and has closed range. For the surjectivity, let y in the
unit ball of N. Put x = 7(T~(y)). Further, we have (from Lemma

(3.8))

g

(4[| Plles)y
Inductively, as in the proof of Lemma 3.8, we have that for any j, there
are x; in the range of 7 such that ||y — ;|| < (e(1 = (14 || Plw)y) ).
So from equation (3.3), (z;); converges to y. As 7 has closed range, it
shows that 7 is surjective onto /. To conclude, we just need to apply
Proposition 2.4. Clearly,

ly ==l <IT = =T~ W)l < 1=

max{ x|, [lidumll'} =1
and we have seen above that
Im —idmlles < e+ (L4 | Plla)y < ful ™,

so we may obtain a similarity S such that idy = Adgor. As N is the
range of 7, this ends the proof. N

Remark 3.10. If one compares the preceding Theorem with Chris-
tensen’s Theorem 4.1 in [5], the first difference that appears is that,
here, we need a near cb-inclusion. But when M is injective von Neu-
mann algebra, it is known that a near inclusion M C” N implies the
near cb-inclusion M C% A (see Theorem 3.1 in [6], with D = M,
for arbitrary n and k = 1 thanks to injectivity). Actually, the real
difference here is that we assume the w*-continuity of the projection
P, whereas E. Christensen used Tomiyama decomposition of P into
normal and singular parts (see [24]). We will discuss a possible analo-
gous decomposition for ch-amenable dual operator algebras in the last
subsection. Such a decomposition would enable us to get rid of the
w*-continuity hypothesis on P.

The w*-continuity of the projection P in the previous theorem is a
strong hypothesis. For instance, if N' were selfadjoint, it would be a
von Neumann algebra of type I. The next Theorem can be compared
with E. Christensen’s result Theorem 6.1 in [4]. Note that the following
result can be deduced from Theorem 5.3 in [19], but in the type I case,
we can improve the bound.

Theorem 3.11. Let M, N C B(H) be two unital w*-closed operator
algebras. We suppose that N is a von Neumann algebra of type I.

IfN c* M and M C, N, with v < é, then there exists an invertible
operator S in the w*-closed algebra generated by M U N such that

SMSt=N.

14



Proof. As N is a von Neumann algebra of type I, N is the range of
a completely contractive w*-continuous projection P. As before, let
T = Py : M — N. Now we have the following estimation,

1
T —idal|er <2 T Y, <
I7 = il < 2. T < 7=~

and consequently

_ . _ . 27y
T —idalle < I T "W IIT = idplle <
T~ idwll < 1T all T~ idallo < =5~
and
~ ~ . 27(3 — 4v)
T W < 2+ [T )T = idp| < 22— L2
1Tl < @+ 1T )T = idwlle < 755

The proof essentially follows the previous one, but we want to apply
Theorem 3.3 to T!, which is w*-continuous (by the Krein-Smulian
Theorem) and unital. Here, we put pp= (1 —2y)"", 6 = % and

LB =) =29)+4)

(1—29)* '
Moreover, as A is an injective von Neumann algebra, we can find a
oh-diagonal u of norm 1 (see [8]). Further, one can check that
0= - 201,112’
Aflull + 82 [|ull

so we can apply Theorem 3.3 to 77! and find a unital w*-continuous
completely bounded homomorphism 7 : NV — M such that ||[T7! —
7|la < . Consequently,

I —idnlles < [lm = T Hlop + 177" — iyl

2y
<
<etiTo
Since v < 8%,
2
(3.4) I —idulles < £+ 7 _727 <1

As in the proof of Theorem 3.9, one can prove 7 is injective and has
closed range. The surjectivity of m comes from the fact for any y in the
unit ball of M, there is x = m(T'(y)) in the range of 7 such that

ly == <177 =7 lITW)] < e < 1.

hence, by induction as above, we conclude that 7 is bijective. Now the
strict inequality in (3.4) enables us to apply Proposition 2.4 to 7 and
idas, which gives the desired similarity. n
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The following theorem is a variant of Theorem 5.2 in [19]; now both
hypothesis (amenability hypothesis and complementation property) are
endowed by the non-selfadjoint algebra.

Theorem 3.12. Let M, N C B(H) be two unital w*-closed operator
algebras. We suppose that N is a von Neumann algebra and M is
ch-amenable (with oh-diagonal u) and there is a completely bounded
projection P from B(H) onto M.

FMCTN and N 0, M with
1
L [[Plles) (3lul| + 54[|ufl* + 243]|u][*)”

then there exists an invertible operator S in the w*-closed algebra gen-

erated by M UN such that SMS™1 = N.

’Y<(

Proof. As before we denote 1" = Py. By Lemma 3.8,
[T —idnller < (1 + [[Pllen)y < 1

and T is bijective and |77 < m. Denote T™ the normal
part of T. Then we also have

1T —idwfler < (14 [[Plles)y < 1.

Hence T™ is injective and has closed range. By induction as in Lemma

3.8, we can prove that T™ is surjective. Let y in the unit ball of M, put
_ . n n - 2(1+| P

2 =T1(y) in N. Then |}y — ()| < |77 — T[T < 20tboln

because

7" =TI < T = idnfl + 1T = tdprl} < 21+ [|Pl]eo) -

Therefore T™ is a linear w*-continuous cbh-isomorphism from N onto M.
Define V = (T™)~! which is also a w*-continuous (by Krein-Smulyan
Theorem) cb-isomorphism from M onto N.

Now the proof essentially follows the proof of Theorem 3.2 in [19].
To apply Theorem 3.3, we need to unitize V. Note that ||V (1) — 1| <

UHPlo)y 7 56 V(1) is invertible in A and we obtain

=Pl )y
1= (A [[Pllen)

B3 WV s T = S T2a T 1P

Denote L = V(1)7'V, so L is a unital w*-continuous completely bounded
isomorphism from M onto N and
(3.6)

1
Ll < IVA) IV e < VO THIT e < '
L]l < V)TV lIew < V) Hb_l_Q(HHp”Cm
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Fix n, let  in unit ball of M, (N), from Equation (3.5) we have
ILn(z) — 2l < L@ V(1) (Va(2) — )| + [T @ V(1) "'z — 2
< VOV = idalles + VOV (1) = 1]
201+ |[Pllen)y
1= 2(1 + [|Plles)y

<

SO
201+ ([ Plles)y
—2(1+ [Plles)

Therefore, by Lemma 3.8 and Equation (3.6) we estimate the defect of
multiplicativity of L.

(3.7) I~ idylo < <

G(L+ [[Pllen)y

LY b < (24| L]|e L_lchbS .
120 < -+ ELa)IE —idyll < o

We can apply Theorem 3.3 to L. Put

_ 1 s S0Py
=201+ Pl (1= 201+ ][Plla))?

i

Let

6(1+ || P 8

e lPlohy (8
(1 =21+ [[Pll)v) (1—4y)

By Theorem 3.3 we can find a unital w*-continuous completely bounded
homomorphism 7 : M — A such that

e = 6(4]lull + 8p*||ull*) =

|IL— 7| < e.
Consequently, from Equation (3.7)
I —idnlles < [l = Lifes + |L = idrles

2(1 + ||P],
<oy 20+1Plohy
=31+ Pl
1

because 7 < (T+TPTles) BTul+54ul?+243]u][®) Hence, applymg Proposition
2.4 to m and idys, we find an invertible operator S in the w*-closed
algebra generated by M U N such that

Adgom = idy.

<1

To achieve the proof, it is sufficient to prove that the range of 7 is
M. Note from the previous equation that 7 is injective and has closed
range. Let y is in the unit ball of M, then

lw (L™ ) =yl < [l = Lo 127" |-

17



To prove the surjectivity (by induction as in Lemma 3.8) we just need
to check that |7 — L||||L || is strictly smaller than one. However,
from Equation (3.7)

1 1—2(1+ Pl
1Ll < 120+ Py
1—||L—idnll = 1—4(1 +[|Pla)y

it follows that

o 1=20 4| Pla)y

I — Llepl| L7 lep < £
1= 4(1+ [|Plles)y

which is strictly smaller than 1.
|

3.3. Predual properties: a special case. In this short subsection,
we prove Tomiyama decomposition for a special subclass of oh-amenable.
Here we deal with a dual operator algebra M admitting a virtual A-
diagonal (in the sense of [2]), it means that M admits an element
u € (M ®, M)** satisfying conditions (C1) and (C2). We recall that
the normal Haagerup tensor product of dual operator spaces can de-
fined by X Q.4 Y = (X @, V)5)*, where (X ®, V): C (X @, V)*
denotes the subspace of all completely bounded bilinear forms which
are separately w*-continuous (see Paragraph 1.6.8 of [2]). By duality,
this last inclusion induces a map from (M ®;, M)** onto M ®,, M and
this map sends virtual h-diagonals inside normal virtual A-diagonals.

Proposition 3.13. Let M C B(H) be a unital w*-closed operator
algebra, denote M, its standard predual. Suppose that M admits a
diagonal u € (M ®p, M)**.
(1) There is a unique central idempotent p € M*™ such that R,(M*) =
M., (see Prop. 1.17.7 in [22] for notation). Moreover, ||p|| <
]
(2) For any bounded linear map T : M — X into a dual Banach
space X = (X,)*, T can be decomposed into w*-continuous and
‘singular’ part.

Proof. By paragraph 7.4.9 in [2], u is actually a normal virtual h-
diagonal for the dual operator algebra M**| in particular it enjoys the
w*-complementation property. As in [22], let M? C M** be the polar
of M,, then M? is a w*-closed ideal of M**, hence its annihilator is
also an w*-closed ideal of M**. By proposition 2.8 above, there exists
a unique central idempotent p € M** such that M? = (1 — p)M**.
The rest follows [24], one just has to define the w*-continuous part, for
y € M by

"(y) = (T")1x.)" (py)

18



and the singular part by

T*(y) = ((T")12.)" (1 = p)y).
|

Question. Can we find an analogous Tomiyama decomposition for
ch-amenable dual operator algebras ? More generally, it would be
beneficial to investigate the predual properties of ch-amenable dual
operator algebras.
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