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ISOMORPHISMS OF TENSOR ALGEBRAS OF
TOPOLOGICAL GRAPHS

KENNETH R. DAVIDSON AND JEAN ROYDOR

Abstract. We show that if two tensor algebras of topological
graphs are algebraically isomorphic, then the graphs are locally
conjugate. Conversely, if the base space is at most one dimensional
and the edge space is compact, then locally conjugate topological
graphs yield completely isometrically isomorphic tensor algebras.

1. Introduction

In [7], Katsura defined the notion of a topological graph which uni-
fies countable directed graphs and dynamical systems. This enabled
him to introduce a new class of C*-algebras generalizing the classes
of graph C*-algebras and homeomorphism C*-algebras. These C*-
algebras arise as Cuntz-Pimsner algebras over C*-correspondences, a
construction due to Pimsner [13]. Muhly and Solel have a long series
of papers which consider the non-selfadjoint tensor algebra associated
to a C*-corrsepondence (see [10, 11] for a start) which develop a de-
tailed theory, making this a very tractable, yet rich, family of operator
algebras.

This class of tensor algebras contains two well-known classes of op-
erator algebras as special cases: tensor algebras of countable directed
graphs and operator algebras associated to dynamical systems in one
or several variables. One important direction is the attempt to clas-
sify these algebras, and in particular to decide to what extent one can
recover the graph or dynamical system from the operator algebra. We
continue this program in this paper in the context of topological graphs.

This was successfully done for countable directed graphs, showing
that the graph can be completely recovered from the operator algebra.
This was accomplished in increasing generality by Kribs and Power [9],
Solel [16] and Katsoulis and Kribs [6].
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Operator algebras of dynamical systems has a very long history. The
story for nonself-adjoint algebras begins with the work of Arveson [1, 2]
where an operator algebra is associated to a dynamical system deter-
mined by a single map from a compact Hausdorff space to itself subject
to certain additional hypotheses. Peters [12] showed how to define an
abstract operator algebra, known as a semicrossed product, to any such
discrete dynamical system, and classified them with weaker constraints.
Further results by Hadwin and Hoover [5], Power [14] and Davidson
and Katsoulis [3] eventually showed that the dynamical system can be
completely recovered from the operator algebra up to conjugacy for any
proper continuous map of a locally compact Hausdorff space to itself.

In the case of multivariable dynamics, Davidson and Katsoulis [4]
define a universal operator algebra that encodes n proper continuous
maps of a locally compact Hausdorff space X to itself. This algebra is
the tensor algebra of a C*-correspondence. It is shown that isomorphic
algebras have dynamical systems which are piecewise conjugate, which
is a local version of conjugacy that allows different permutations of
the maps in different neighbourhoods. A strong converse, showing
that piecewise conjugate systems determine completely isometrically
isomorphic algebras, was established if dimX ≤ 1 or if the number of
maps was at most three.

In the case of topological graphs, it is necessary to formulate an
appropriate notion of piecewise conjugacy, that we call local conjugacy.
In this paper, we show that if two tensor algebras of topological graphs
are algebraically isomorphic, then the topological graphs are locally
conjugate. The proof of this result uses the same ingredients as in
the multivariable dynamics case: characters and nest representations
of the tensor algebras. However the converse proves to be considerably
harder. This is because the topological graphs that arise in [4] are
topologically much simpler than the general case. We prove that the
strong converse holds when the edge space is compact and the base
space has dimension at most one.

2. Preliminaries

A topological graph E = (E0, E1, r, s) consists of two locally compact
spaces E0, E1, a continuous proper mapping r : E1 → E0 and a local
homeomorphism s : E1 → E0. The set E0 is called the base space
and E1 the edge space. A topological graph is called compact if both
of these spaces are compact Hausdorff spaces. An important class of
examples of topological graphs are multivariable dynamical systems.
More precisely, if X is a locally compact Hausdorff space endowed
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with n proper continuous selfmaps (σ1, . . . , σn), then let E0 = X, E1 =
{1, . . . , n} × X, let s be the natural projection onto E1 onto E0, and
r = ∪iσi the union the maps σi. This defines a topological graph. More
examples of topological graphs can be found in [8].

Following [7], we consider the associated C*-correspondence X (E)
over C0(E

0). We recall that the right and left actions of C0(E
0) on

Cc(E
1) are given by

(f · x · g)(e) = f(r(e))x(e)g(s(e))

for x ∈ Cc(E
1), f, g ∈ C0(E

0) and e ∈ E1. The inner product is defined
for x, y ∈ Cc(E

1) by

〈x, y〉(v) =
∑

e∈s−1(v)

x(e)y(e) for v ∈ E0.

Finally, X (E) denotes the completion of Cc(E
1) for the norm

‖x‖ = sup
v∈E0

〈x, x〉(v)1/2.

See [15] for more details.
Looking at the C*-correspondence in [4], it is easy to see that the

tensor algebra of a multivariable dynamical system (X; σ1, . . . , σn) coin-
cides with the tensor algebra of the topological graph described above.

In general, the tensor algebra of a C*-correspondence can be defined
by a certain universal property [10]. In our case, this tensor algebra
is the universal algebra for pairs of representations (π, t,H) where π :
C0(E

0) → B(H) is a ∗-homomorphism and t : X (E) → B(H) is a
completely contractive map satisfying covariance relations

t(f · x) = π(f)t(x) and t(x · f) = t(x)π(f).

More precisely, T (E)+ is the unique operator algebra containing C0(E
0)

and X (E) such that every such pair of representations (π, t,H) extends
uniquely to a completely contractive representation of T (E)+. We will
use repeatedly this universal property to construct characters and nest
representations of T (E)+.

The tensor algebra associated to a C*-correspondence can also be
realized concretely as a subalgebra of the adjointable operators on the
related Fock space (see [7]). We recall briefly this construction in our
case. Let E = (E0, E1, r, s) be a topological graph and let X (E) be
the associated C*-correspondence over C0(E

0). We define

F(E) = C0(E
0)⊕

⊕

n≥1

X (E)n
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to be the Fock space of E, where X (E)n denotes the n-fold tensor prod-
uct of X (E). Let L(F(E)) be the C*-algebra of adjointable operators
on F(E). The Fock representation (π∞, t∞) is defined in the following
way: for f ∈ C0(E

0) and x1 ⊗ · · · ⊗ xn ∈ X (E)n, set

π∞(f)(x1 ⊗ · · · ⊗ xn) = (f · x1)⊗ · · · ⊗ xn.

This is a ∗-isomorphism from C0(E
0) into L(F(E)). Also for x ∈ X (E)

and x1 ⊗ · · · ⊗ xn ∈ X (E)n, let

t∞(x)(x1 ⊗ · · · ⊗ xn) = x⊗ x1 ⊗ · · · ⊗ xn.

This is a completely contractive mapping from X (E) into L(F(E)). It
is not difficult to check that the pair (π∞, t∞) satisfies the covariance
relations. The tensor algebra associated to the topological graph E is

T (E)+ = span{tn∞(x) : n ≥ 0, x ∈ X (E)n} ⊂ L(F(E))

with the conventions X (E)0 = C0(E
0), t0∞ = π∞ and tn∞ denotes the

n-fold tensor product of t∞.

3. Identifying the base space

Following [4], we wish to identify the character space M(E) of
T (E)+ and the maximal analytic subsets. Recall that an analytic sub-
set of M(E) is the image of an injective function Φ from a domain Ω
in C

k into M(E) such that for each A ∈ T (E)+, the function Φ(z)(A)
is analytic on Ω. It is a maximal analytic set if it is not contained in
any larger analytic set.

Since T (E)+ contains C0(E
0), the restriction of any character to

this subalgebra yields a point evaluation δv for some v ∈ E0. Let
M(E)v denote those characters which extend δv. Recall that there is a
canonical conditional expectation Ξ of T (E)+ onto C0(E

0) obtained by
integrating the gauge automorphisms. This map is a homomorphism,
and thus θv,0 := δvΞ is always a character. So M(E)v is never empty.
For each v ∈ E0, we denote

E1
v = {e ∈ E1 : r(e) = v = s(e)}.

This is a compact set because r is proper, and is discrete because s is
a local homeomorphism. Hence it is finite.

Lemma 3.1. Let x ∈ X (E) such that supp(x)∩E1
v = ∅. Then θ(x) =

0 for every θ ∈ M(E)v.

Proof. Note that supp(x) ∩ s−1(v) is finite; and so its image under r
is compact and disjoint from v. Thus there is a neighbourhood U1 of
supp(x)∩ s−1(v) with compact closure so that r(U1) is disjoint from v.
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Therefore there is a positive function g1 in C0(E
0) so that g1r|U1

= 1
and g1(v) = 0. Let x1 = g1 · x and x2 = x− x1.

Observe that supp(x2) ∩ U1 = ∅. So s(supp(x2)) is compact and
disjoint from v. Therefore there is a positive function g2 in C0(E

0) so
that g2s|supp(x2) = 1 and g2(v) = 0. Note that x2 = x2 · g2.

For any θ ∈ M(E)v,

θ(x) = θ(g1 · x1) + θ(x2 · g2) = δv(g1)θ(x1) + θ(x2)δv(g2) = 0.

Theorem 3.2. For v ∈ E0, let n denote the (finite) cardinality of E1
v .

If n = 0, then M(E)v = {θv,0}. If n ≥ 1, then M(E)v is homeomor-

phic to Bn, the closed unit ball of Cn, and the image of the open ball
Bn is a maximal analytic set. Moreover, these are the only maximal
analytic sets.

Proof. Let E1
v = {ei : 1 ≤ i ≤ n}. Since E1

v is a finite set, we can select
disjoint neighbourhoods ei ∈ Vi ⊂ Vi ⊂ Ui of ei such that Ui is compact
and such that s maps each Ui homeomorphically onto a neighbourhood
U of v. Pick contractions ti ∈ Cc(E

1) ⊂ X (E) with compact support
in Ui such that ti|Vi

= 1. Observe that the row operator t =
[

t1 . . . tn
]

is a contraction. Consider the map κ defined on M(E)v by

κ(θ) = (θ(t1), . . . , θ(tn)).

As a character θ is completely contractive, the range of κ is contained
in Bn.

To prove that κ is surjective, let z = (z1, . . . , zn) ∈ Bn, and consider
the complete contraction tz defined on X (E) by

tz(x) =
n

∑

i=1

zix(ei).

Then (δv, tz,C) is covariant representation. By the universal property
of T (E)+, it extends uniquely to a character θv,z ∈ M(E)v. Clearly
κ(θv,z) = z.

For the injectivity, let θ1, θ2 ∈ M(E)v such that κ(θ1) = κ(θ2). As
T (E)+ is generated by C0(E

0) and X (E), it suffices to prove that θ1
and θ2 agree on X (E). Let x ∈ X (E) and pick an open set U of E1

with compact closure such that E1
v ∩ U = ∅ and {U, V0, V1, . . . , Vn}

forms an open cover of supp(x). Let {p, pi : 1 ≤ i ≤ n} be a partition
of the unity in Cc(E

1) ⊂ X (E) associated to this open cover. Then
x = xp+ xp1 + · · ·+ xpn. By Lemma 3.1,

θ1(xp) = θ2(xp) = 0.
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Moreover for each i ≥ 1, supp(xpi) ⊂ Vi so xpi = ti · bi, where bi is a
function in C0(E

0) extending xpi ◦ s|
−1
Vi
. Hence

θ1(xpi) = θ1(ti)bi(v) = θ2(ti)θ2(bi) = θ2(xpi).

This is true for each i, so θ1 = θ2.
Thus κ is a bijection. We denote the character κ−1(z) as θv,z. Now

for x ∈ X (E), θv,z(x) = tz(x) is a linear function. Thus the extension
to

∑

k≥0 t
n
∞(X (E)n) takes polynomial values. A sequence of such ele-

ments converging to T ∈ T (E)+ converges uniformly onM(E) because
characters are (completely) contractive. It follows that the function

T̂ (z) := θv,z(T ) is analytic on the relative interior M0
v of Mv, which is

identified with the open ball Bn. Thus this is an analytic set.
Finally if U is an analytic subset of M(E), then the restriction to

C0(E
0) is analytic, which forces it to lie in some Mv. Thus it is clear

that it is a subset of M0
v. So we have identified the maximal analytic

sets.

As in [4], we observe that the quotient space of M(E) obtained by
mapping the closure of each maximal analytic set to a point is homeo-
morphic to E0. Hence we deduce the following important corollary.

Corollary 3.3. The character space M(E) determines E0 up to home-
omorphism.

4. Local conjugacy

For v, w in E0, we denote

E1
v,w = {e ∈ E1 : r(e) = v and s(e) = w} = r−1(v) ∩ s−1(w).

This is a finite set because r−1(v) is compact, and s−1(w) is a discrete
set. Denote its cardinality by nv,w.
Recall that a nest representation is a homomorphism of the algebra

into the 2 × 2 upper triangular matrices with respect to a basis e1, e2
such that the only proper invariant subspace is Ce1. The two diagonal
entries are characters, and the 1, 2 entry is a derivation. Let RepT2(E)
denote the set of all 2-dimensional nest representations of T (E)+. Let
Repv,w(E) be the set of 2-dimensional nest representations of T (E)+
such that the 1, 1 entry belongs to M(E)v and the 2, 2 entry belongs
to M(E)w. We also denote Repd

v,w(E) the subset of Repv,w(E) of rep-

resentations which are diagonal when restricted to C0(E
0).

Lemma 4.1. Repv,w(E) is non-empty if and only if E1
v,w 6= ∅. More-

over, if x ∈ X (E) is such that supp(x)∩E1
v,w = ∅, then ρ(x) is diagonal

for every ρ ∈ Repd
v,w(E).
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Proof. First assume that E1
v,w is non-empty. Let λe for e ∈ E1

v,w be
complex scalars such that 0 <

∑

|λe| ≤ 1. Define a ∗-homomorphism
π : C0(E

0) → M2 by

π(f) =

[

f(v) 0
0 f(w)

]

and a map t : X (E) → M2 by

t(x) =

[

0
∑

e∈E1
v,w
λex(e)

0 0

]

This is contractive (as it is a convex combination of contractive maps).
Thus t is completely contractive because it’s 1-dimensional.

Clearly

t(f · x) =
∑

λef(r(e))x(e) = π(f)t(x)

and

t(x · f) =
∑

λex(e)f(s(e)) = t(x)π(f).

Hence by the universal property of the tensor algebra, this pair of
representations extends to a completely contractive representation ρ of
T (E)+. The range of ρ is the entire upper triangular 2 × 2 matrices
because some λe is non-zero. If x ∈ X (E) satisfies supp(x)∩E1

v,w = ∅,

then ρ is diagonal. So ρ belongs to Repd
v,w(E).

Conversely suppose that Repv,w(E) is non-empty. Then applying a

similarity (as in Lemma 4.2 below) yields an element of Repd
v,w(E). Let

x ∈ X (E) such that supp(x) ∩ E1
v,w = ∅. We will prove that ρ(x) is

diagonal for every ρ in Repd
v,w(E). Arguing as in Lemma 3.1, we can

split x = g1 · x1 + x2 · g2 so that g1(v) = 0 and g2(w) = 0. Thus ρ(x)
has the form

ρ(x) = ρ(g1)ρ(x1) + ρ(x2)ρ(g2)

=

[

0 0
0 ∗

] [

∗ ∗
0 ∗

]

+

[

∗ ∗
0 ∗

] [

∗ 0
0 0

]

=

[

∗ 0
0 ∗

]

If E1
v,w were empty and ρ ∈ Repd

v,w(E), then ρ(x) is diagonal for
every x ∈ X (E). Thus ρ is not a nest representation, contrary to
assumption. Hence E1

v,w is not empty.

We also need a technical result which is a minor modification of [4,
Lemma 3.13] using σ = rEs

−1
E|L.
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Lemma 4.2. Let E = (E0, E1, s, r) be a topological graph. Let L ⊂ E1,
K ⊂ E0 two compact subsets such that sE|L maps L onto K homeo-
morphically. Set σ = rEsE|

−1
L . Let Ω be a domain in C

d. Suppose that
there exists a map ρ from K × Ω to Rep T (E)+ such that

(a) ρ(x, z) ∈ Repσ(x),x,
(b) ρ is continuous in the point-norm topology,
(c) for each x ∈ K, ρ(x, z) is analytic in z ∈ Ω.

Then there exists a map A from K × Ω onto the group of invertible
upper triangular matrices, so that

(1) A(x, z)ρ(x, z)(·)A(x, z)−1 ∈ Repd
σ(x),x,

(2) A is continuous on K \ {x : σ(x) = x} × Ω,
(3) A(x, z) = I2 when σ(x) = x,
(4) for each x ∈ K, A(x, z) is analytic in z ∈ Ω,
(5) max

{

‖A(x, z)‖, ‖A(x, z)−1‖
}

≤ 1 + ‖ρ(x, z)‖.

Now we define a notion which extends the notion of piecewise conju-
gacy introduced in [4]. To paraphrase, local conjugacy means that the
base spaces are homeomorphic and there is an open cover of the base
spaces which lift to local intertwining of the two graphs. From now on,
we will need to assume that the edge space is compact.

Definition 4.3. Let E = (E0, E1, sE, rE) and F = (F 0, F 1, sF , rF ) be
two compact topological graphs. They are said to be locally conjugate if
there exists a homeomorphism τ : E0 → F 0 such that for every u ∈ E0,
there is a neighbourhood U of u, a homeomorphism γ of s−1

E (U) onto
s−1
F (τU) such that sFγ = τsE|s−1

E
(U) and rFγ = τrE|s−1

E
(U).

Remark 4.4. While we will only deal with compact topological graphs
in this paper, if E1 and F 1 are not compact, we would modify the
definition of local conjugacy to say: there exists a homeomorphism
τ : E0 → F 0 such that for every v ∈ E0, and for every open set O
in E0 such that O is compact, there is a neighbourhood V of v, a
homeomorphism hV from r−1

E (O)∩ s−1
E (V ) onto r−1

F (τ(O))∩ s−1
F (τ(V ))

such that sFhV = τsE and rFhV = τrE.

To prove the classification result, we need an equivalence relation
between edges. Two edges e, e′ ∈ E1 are said to be equivalent if there
exist U neighbourhood of e, U ′ neighbourhood of e′ such that sE re-
stricted to both U and U ′ is a homeomorphism and sE(U) = sE(U

′) and
for every v ∈ s(U), rEsE|

−1
U (v)) = rEsE|

−1
U ′ (v)). In this case, we denote

e ∼ e′. When there is a homeomorphism τ : E0 → F 0, this equivalence
relation naturally extends to an equivalence relation between edges of
E1 and F 1 (relative to τ).
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The proof follows the lines of [4, Theorem 3.22] with some additional
technicalities.

Theorem 4.5. Let E = (E0, E1, sE, rE) and F = (F 0, F 1, sF , rF ) be
two compact topological graphs. If T (E)+ and T (F )+ are algebraically
isomorphic, then E and F are locally conjugate.

Proof. Let γ be an isomorphism of T (E)+ onto T (F )+. This induces
a canonical map γc from M(E) onto M(F ) between the character
spaces. It also induces a map γr from RepT2(E) onto RepT2(F ).

Since M(E) is endowed with the weak-∗ topology, it is easy to see
that γc is continuous. Indeed, if θα is a net in M(E) converging to θ
and B ∈ T (F )+, then

lim
α
γcθα(B) = lim

α
θα(γ

−1(B)) = θ(γ−1(B)) = γcθ(B).

The same holds for γ−1
c . So γc is a homeomorphism.

Observe that γc carries analytic sets to analytic sets. Indeed, if Θ is
an analytic function of a domain Ω into M(E), then

γcΘ(z)(B) = Θ(z)(γ−1(B))

is analytic for every B ∈ T (F )+; and thus γcΘ is analytic. Since the
same holds for γ−1, it follows that γc takes maximal analytic sets to
maximal analytic sets. Thus it carries their closures, M(E)u, onto sets
the corresponding sets M(F )v.

By Corollary 3.3, γc induces a homeomorphism τ of E0 onto F 0. For
simplicity of notation, we identify E0 and F 0 via τ , so that F 0 = E0

and τ = id.
Fix v0 ∈ E0. Since sE and sF are local homeomorphisms and

E1 and F 1 are compact, both s−1
E (v0) = {e1, . . . , ep} and s−1

F (v0) =
{f1, . . . , fq} are finite sets. Let G denote the equivalence class of e1
among {e1, . . . , ep, f1, . . . , fq}. After relabeling

G = {e1, . . . , ek, f1, . . . , fl : e1 ∼ · · · ∼ ek ∼ f1 ∼ · · · ∼ fl}.

By exchanging E and F if necessary, we can suppose that k ≥ l. Our
purpose is to prove that k = l. So, suppose that k > l.

As in [7, Lemma 1.4], there exists a neighbourhood W of v0, Ui

disjoint neighbourhoods of ei (1 ≤ i ≤ p), Vj disjoint neighbourhoods
of fj (1 ≤ j ≤ q) such that sE(Ui) = W = sF (Vj) homeomorphically,
and

s−1
E (W ) =

p
⋃

i=1

Ui and s−1
F (W ) =

q
⋃

j=1

Vj
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and

σ := rEsE|
−1
U1

= rEsE|
−1
Ui

= rF sF |
−1
Vj

for 1 ≤ i ≤ k, 1 ≤ j ≤ l.

If σ(v0) 6= v0, we also choose W so that σ(W ) ∩W = ∅.
For each v ∈ W and z = (z1, . . . , zk) in the C

k, define a representa-
tion in Repd

w,v(E) by

ρv,z =

[

δσ(v)
∑k

i=1 ziδei
0 δv

]

This is a continuous family of nest representations which is analytic in
the second variable. Here ρv,z is completely contractive if ‖z‖2 ≤ 1 and
bounded by 1 + ‖z‖2 in general.
Let ηv,z := γrρv,z = ρv,z ◦ γ−1. This is a nest representation in

Repσ(v),v(F ) with ‖η(x, z)‖ ≤ (1 + ‖z‖2)‖γ
−1‖. Apply Lemma 4.2 to

obtain a matrix valued function A(v, z) such that

Φ(v, z) = A(v, z)ηv,zA(v, z)
−1 ∈ Repd

w,v(F )

which is continuous on W \{x : σ(x) = x}×C
k, analytic in the second

variable, and such that

max
{

‖A(x, z)‖, ‖A(x, z)−1‖
}

≤ 1 + ‖η(x, z)‖.

Now for 1 ≤ j ≤ q, pick a contraction tj ∈ Cc(F
1) with supp(tj) ⊂ Vj

and a compact neighbourhood Ṽj ⊂ Vj of fj such that tj|Ṽj
= 1. Define

ψj(z) to be the (1, 2) entry of Φ(v0, z)(tj), and let

Ψ(z) = (ψ1(z), . . . , ψq(z)).

This is an analytic function from unit ball of Ck into C
q.

We claim that ψj(z) = 0 for j > l. If j > l, then fj is not in G.
Hence there is a net (vλ) ∈ W converging to v0 such that

rF sF |
−1
Vj
(vλ) 6= σ(vλ).

Note that

supp(tj) ∩ s
−1
F (vλ) ⊂ Vj ∩ s

−1
F (vλ) = {sF |

−1
Vj
(vλ)}.

Therefore, supp(tj) ∩ F
1
σ(vλ),vλ

= ∅. Hence by Lemma 4.1, Φ(vλ, z)(tj)

is diagonal for all λ and all z ∈ C
k.

Now there are two cases. If σ(v0) 6= v0, then A is continuous (since
σ(W ) ∩W = ∅). Hence Φ(v, z) is point-norm continuous. Taking a
limit in λ, we obtain that Φ(v0, z)(tj) is diagonal, whence ψj(z) = 0.

In the second case, σ(v0) = v0. Thus the diagonal elements of the
range of Φ(v0, z) are scalars. For z fixed, the function A(v, z) and
its inverse are bounded. Therefore we can pass to subnet so that
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A(z) := limλA(vλ, z) exists in the the group of invertible upper tri-
angular matrices. As ηv,z = ρv,z ◦ γ

−1 is point-norm continuous and
A(v0, z) = I2, passing to the limit we deduce that A(z)ηv,z(tj)A(z)

−1

is diagonal, hence scalar. So Φ(v0, z)(tj) is scalar, which means that
ψj(z) = 0.
We may now consider Ψ as a function from C

k into C
l. We have

Ψ(0) = 0. As in [4, Proposition 3.21], it follows that this cannot be
an isolated zero when l < k. Thus there is some z0 6= 0 such that
Ψ(z0) = 0. As in the proof of Theorem 3.2, every x ∈ X (F ) can
be written as a sum x = x0 +

∑q
j=1 tj · fj where x0 vanishes on a

neighbourhood of s−1
F (v0) and fj ∈ C0(F

0). It follows from Lemma 4.1
that Φ(v0, z0)(x0) is diagonal. As each Φ(v0, z0)(tj)Φ(v0, z0)(fj) is also
diagonal, we deduce that Φ(v0, z0) is diagonal—and hence is not a nest
representation. This contradiction shows that l = k.
Therefore we can partition {e1, . . . , ep} so they agree on a common

neighbourhood W of v0, and these equivalence classes will paired with
a corresponding partition of {f1, . . . , fq}. In particular, q = p. After
reordering, we may suppose that ei ∼ fi for 1 ≤ i ≤ p. Thus there are
disjoint neighbourhoods Ui of of ei and Vi of fi for 1 ≤ i ≤ p such that
sE(Ui) = W = sF (Vj) homeomorphically,

s−1
E (W ) ⊂

p
⋃

i=1

Ui and s−1
F (W ) ⊂

q
⋃

j=1

Vj,

and rEsE|
−1
Ui

= rF sF |
−1
Vi
. The map γi = sF |

−1
Vi
sE|Ui

is a homeomorphism
of Ui onto Vi so that

sFγi = sE|Ui
and rFγi = rE|Ui

.

Hence the map γ =
⋃p

i=1 γi is the desired homeomorphism of s−1
E (W )

onto s−1
F (W ) establishing local equivalence of E and F .

5. The converse

In this section, we discuss the converse of Theorem 4.5, namely, if
two topological graphs E and F are locally conjugate then are their
associated tensor algebras isomorphic (as Banach algebras)? We are
able to prove this converse when E0 or F 0 has topological dimension
less or equal to 1 and E1 and F 1 are compact. In this case, the tensor
algebras are completely isometrically isomorphic.

We begin by constructing a particularly good open cover of E.

Definition 5.1. Let E and F be two locally conjugate compact topo-
logical graphs with dim(E0) ≤ 1 via a homeomorphism τ . An open
cover U = (Ui)i≤n of E0 is called admissible if:
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(C1) For each i, there is an integer m(i) and disjoint open sets Uik of

E1 for 1 ≤ k ≤ m(i) such that s−1
E (Ui) =

⋃m(i)
k=1 Uik and sE maps

each Uik homeomorphically onto Ui.
(C2) For each 1 ≤ i ≤ n, there is a homeomorphism γi from s−1

E (Ui)
onto s−1

F (τUi) such that sFγi = τsE|s−1

E
(Ui)

and rFγi = τrE|s−1

E
(Ui)

.

(C3) Ui ∩ Uj ∩ Uk = ∅, whenever i 6= j 6= k 6= i.
(C4) U i \ Uj and U j \ Ui are disjoint for i 6= j.
(C5) If Ui ∩ Uj 6= ∅, then there is a permutation π ∈ Sm(i) so that

Uik ∩ Ujl 6= ∅ if and only if l = π(k).
(C6) The corresponding open cover of F 0 and F 1 obtained by setting

Vi = τ(Ui) and Vik = γi(Uik) also satisfies (C5).

Note that {Uik : 1 ≤ i ≤ n, 1 ≤ k ≤ m(i)} is an open cover of
E1. The property (C1) is easily achieved in general. It implies that
m(i) = m(j) if Ui and Uj intersect. Thus this is a locally constant
function.

(C2) is just a restatement of local equivalence. The fact that γi
intertwines the source maps sE and sF and takes Uik onto Vik means
that

γi|Uik
= (sF |Vik

)−1sE|Uik
for 1 ≤ i ≤ n and 1 ≤ k ≤ m.

Property (C3) is an expression of dim(E0) ≤ 1. Properties (C4)
and (C5) may be achievable in general, but our proof will use the low
dimension in a key way.

Property (C5) means that Uik intersects exactly one of the Ujl, not
some more complicated mixing. This seems essential in order to be able
to understand what is happening. If the sets Ui ∩ Uj were connected,
then this would be automatic. But in the dimension 0 case, that can’t
happen.

The open cover of F 0 and F 1 obtained as defined in (C6) is easily
seen to satisfy (C1,3,4). However property (C5) is not automatically
transferred.

Theorem 5.2. Suppose that E is compact topological graph where the
covering dimension of E0 is at most 1 and that E is locally conjugate
to another topological graph F via a homeomorphism τ . Then there
exists an admissible open cover (Ui)1≤i≤n of E0.

Proof. The definition of local equivalence shows that for each u ∈ E0,
there is an open neighbourhood U and a homeomorphism γ from
s−1
E (U) onto s−1

F (τU) such that sFγ = τsE|s−1

E
(U) and rFγi = τrE|s−1

E
(U).
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Now s−1
E (u) is finite, say {ej : 1 ≤ j ≤ m}, and sE is a local home-

omorphism. Thus there is an open set Ũ ⊂ U containing u and dis-
joint open sets Vj containing ej so that sE|Vj

is a homeomorphism

onto Ũ . Let U ′ = Ũ \ sE(E
1 \

⋃m
j=1 Vj). This is open, contains u,

and s−1
E (U ′) =

⋃m
j=1 V

′
j where V ′

j = s−1
E (U ′) ∩ Vj, and sE maps each

V ′
j homeomorphically onto U ′. The restriction of γ to s−1

E (U ′) is the
desired intertwining map.

By the compactness of E0, there is a finite subcover (U ′
i)i≤n of sets

constructed in the previous paragraph. Thus this cover satisfies (C1)
and (C2). Since E0 has covering dimension at most 1, this cover can
be further refined so that (C3) holds as well.

Now we make another modification to obtain (C4). Let fi be a
partition of unity in C(E0) such that supp(fi) ⊂ U ′

i . Observe that at
most two of the fi(u) can be non-zero for any u ∈ E0. Thus for each
u ∈ E0, there is some i with fi(u) > 1/3. Set Ui = {u : fi(u) > 1/3}.
This is a finer cover of E0 with Ui ⊂ U ′

i .
Fix i 6= j, and consider u ∈

(

Ui \ Uj

)

∩
(

Uj \ Ui

)

. Then

1
3
≤ fi(u) ≤

1
3

and 1
3
≤ fj(u) ≤

1
3
.

So fi(u) = fj(u) = 1/3 and fp(u) = 0 for i 6= p 6= j. This contradicts
∑

fi = 1, so the intersection is empty and (C4) holds and properties
(C1-3) are not affected.

Suppose that Ui ∩ Uj 6= ∅. By Tietze’s extension theorem, there
is a continuous function f in C(E0, [0, 1]) such that f |Ui\Uj

= 1 and

f |Uj\Ui
= 0.

For each 1 ≤ k, l ≤ m(i), let Wkl = Uik ∩ Ujl. Observe that for fixed
k, Uik ∩ s

−1
E (Ui ∩ Uj) is the disjoint union of Wkl for 1 ≤ l ≤ m(i). So

{sE(Wkl) : 1 ≤ l ≤ m(i)} partitions Ui ∩ Uj into disjoint open sets.
Thus {sE(Wkl) : 1 ≤ k, l ≤ m(i)} partitions Ui ∩ Uj into disjoint open
sets. Likewise the sets Vik = γi(Uik) and Vjl = γj(Ujl) determine open
sets Xkl = Vik ∩Vjl. Thus we obtain a partition of Ui ∩Uj into disjoint
open sets {Yr : 1 ≤ r ≤ r(i, j)} determined by

{sE(Wkl), τ
−1sF (Xkl) : 1 ≤ k, l ≤ m(i)}.

Using the function f constructed above, define

U ′
i = {u ∈ Ui : f(u) > .6} and U ′

j = {u ∈ Uj : f(u) < .4},

and set

Y ′
r = {u ∈ Yr : .3 < f(u) < .7} for 1 ≤ r ≤ r(i, j).

Replace Ui and Uj in the cover by these new sets. For each r ≤ r(i, j)
and k ≤ m(i), set Yrk = s−1

E (Y ′
r ) ∩ Uik. Note that if i 6= p 6= j, then
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Up ∩ U
′
i = Up ∩ Ui, Up ∩ U

′
j = Up ∩ Uj and Up ∩ Y

′
r = ∅. In addition,

U ′
i ∩U

′
j = ∅. It is clear by construction that Uik ∩Wrl is empty except

for l = k. Likewise Wrk ∩ Ujl is empty except for a single choice of
l = π(k). The same argument shows that the corresponding cover of
F satisfies (C5).

Treat all intersecting pairs Ui and Uj from the original cover in this
manner, and the new cover constructed satisfies (C5). This does not
affect (C1-3). If necessary, go through the construction to get (C4)
again. Reducing each open set does not affect (C1-3,5). So we are
done.

It is clear that m(i) = m(j) if Ui and Uj intersect. So E
0 splits into

a finite number of clopen subsets on which m(i) is constant. Clearly
it suffices to deal which each set separately. So we may suppose that
m(i) = m is constant.

Let U = (Ui)1≤i≤n be an admissible open cover of E0. Note that if
Ui ∩ Uj 6= ∅, then there is a unique permutation πE

i,j ∈ Sm defined by

πE
i,j(k) = l if and only if Uik ∩ Ujl 6= ∅. We denote ΠE,U the function

defined on a subset of {1, . . . , n}×{1, . . . , n} by ΠE,U(i, j) = πE
i,j when

Ui and Uj intersect. Obviously, πE
j,i = (πE

i,j)
−1.

First we record an easy lemma to set the stage.

Lemma 5.3. Suppose that E and F are two locally conjugate compact
topological graphs, and that E0 has dimension at most 1. Let U =
(Ui)1≤i≤n denote an admissible open cover of E0 with m(i) = m for
1 ≤ i ≤ n, and let V be the corresponding cover for F . We assume that
ΠE,U = ΠF,V . Then X (E) and X (F ) are unitarily equivalent as C*-
correspondences; and T (E)+ and T (F )+ are completely isometrically
isomorphic.

Proof. The map γ =
⋃

1≤i≤n γi is a well defined homeomorphism of

E1 onto F 1 because the assumption ΠE,U = ΠF,U means that γi and
γj agree on s−1

E (Ui ∩ Uj). Moreover sFγ = τsE and rFγ = τrE.
This induces a unitary isomorphism Γ from X (E) onto X (F ) given
by Γ(x) = x ◦ γ−1. To see that Γ is a bimodule map, note that τ
induces a ∗-isomorphism ρ of C(E0) onto C(F 0) by ρ(f) = f ◦ τ−1.
Moreover, τ−1sF = sEγ

−1
i and τ−1rF = rEγ

−1
i . Thus if g ∈ C(E0) and

x ∈ X (E), then

Γ(x · g) = (x ◦ γ−1
i )(g ◦ sEγ

−1
i )

= Γ(x)(g ◦ τ−1sF ) = Γ(x) · ρ(g).
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Similarly, Γ(g · x) = ρ(g) · Γ(x). Finally this map is isometric because
if v ∈ E0 and s−1

E (v) = {ei : 1 ≤ i ≤ m}, then

s−1
F (τv) = {fi = γ(ei) : 1 ≤ i ≤ m}.

So

〈Γ(x),Γ(x)〉(τv) =
m
∑

i=1

|Γ(x)(fi)|
2

=
m
∑

i=1

|x(ei)|
2 = 〈x, x〉(v)

Thus 〈Γ(x),Γ(x)〉 = ρ(〈x, x〉). It follows that this is a unitary equiva-
lence of C*-correspondences. Hence T (E)+ and T (F )+ are completely
isometrically isomorphic.

Now we modify this proof to get the key step in the proof of the
converse.

Lemma 5.4. Suppose that E and F are two locally conjugate compact
topological graphs, and that E0 has dimension at most 1. Let U =
(Ui)1≤i≤n denote an admissible open cover of E0 with m(i) = m for
1 ≤ i ≤ n, and let V be the corresponding cover for F . We assume
that ΠE,U = ΠF,V where they’re defined, except for a single pair i0, j0
at which the permutations differ by a single transposition (k0l0):

πE
i0,j0

= πF
i0,j0

◦ (k0l0).

Then X (E) and X (F ) are unitarily equivalent as C*-correspondences.

Proof. Let V = {Vi = τUi : 1 ≤ i ≤ n} be the corresponding cover
of F 0, and let Vik = γi(Uik) for 1 ≤ i ≤ n and 1 ≤ k ≤ m. Since the
labelling is arbitrary, we can suppose without loss of generality that
i0 = k0 = 1 and j0 = l0 = 2 and that πE

1,2 = id and so πF
1,2 = (12); while

πF
i,j = πE

i,j when {i, j} 6= {1, 2}. Thus the sets U11 ∩ U21, U12 ∩ U22,
V11 ∩ V22 and V12 ∩ V21 are all non-empty.

Except for this one flip, we have that Vik ∩ Vjl 6= ∅ if and only if
Uik ∩ Ujl 6= ∅ if and only if πE

i,j(k) = l. Thus

γi|Uik∩Ujl
= (sF |Vik∩Vjl

)−1sE|Uik∩Ujl
= γj|Uik∩Ujl

.

To describe what happens on the remaining four intersections, let

σ = (sF |V12∩V21
)−1sF |V11∩V22

be the canonical homeomorphism of V11 ∩ V22 onto V12 ∩ V21. Then

γ1|U11∩U21
= (sF |V11∩V22

)−1sE|U11∩U21
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whereas

γ2|U11∩U21
= (sF |V12∩V21

)−1sE|U11∩U21
= σγ1|U11∩U21

.

Similarly, γ1|U12∩U22
is a homeomorphism onto V12 ∩ V21, while

γ2|U12∩U22
= σ−1γ1|U12∩U22

is a homeomorphism onto V11 ∩ V22.
Using property (C4) and Tietze’s extension theorem, there exists

a continuous function g ∈ C(F 0, [0, π/2]) such that g|V 1\V2
= 0 and

g|V 2\V1
= π/2. Let h = g ◦ sF . For x ∈ X (F ) and a ∈ F 1, we define

Γ(x) ∈ X (F ) by setting Γ(x)(a) to be

xγ−1
i (a) a ∈ Vik, a 6∈ V11 ∩ V22 or V12 ∩ V21

cos(h(a))xγ−1
1 (a) + sin(h(a))xγ−1

2 (a) a ∈ V11 ∩ V22

e2ih(a)
(

cos(h(a))xγ−1
1 (a)− sin(h(a))xγ−1

2 (a)
)

a ∈ V12 ∩ V21

By the calculations in the previous paragraph, Γ(x) is well defined on
F 1.

It is easy to verify that Γ(x) is a continuous function on F 1. As
before, there is an induced ∗-isomorphism ρ between C(E0) and C(F 0)
given by sending f ∈ C(E0) to ρ(f) = f ◦ τ−1. The relations τ−1sF =
sEγ

−1
i and τ−1rF = rEγ

−1
i allow us to show that Γ is a bimodule map:

if f ∈ C(E0), x ∈ X (E) and a ∈ F 1 \
(

(V11 ∩ V22) ∩ (V12 ∩ V21)
)

, then
the argument is as in Lemma 5.3. While if a ∈ V11 ∩ V22, then

Γ(x · f)(a) =
(

cos(h(a))xγ−1
1 (a) + sin(h(a))xγ−1

2 (a)
)

f(sEγ
−1
i (a))

= Γ(x)(a)f(τ−1sF (a)) = Γ(x) · ρ(f)(a).

A similar calculation works on V12 ∩ V21, so Γ is a right module map.
Similarly, it is a left module map.

Finally we show that Γ is isometric. We will prove that for every
v ∈ E0, 〈Γ(x),Γ(x)〉(τv) = 〈x, x〉(v). It is clear from the definition
of Γ and the argument in Lemma 5.3 that the only place a problem
might arise is when v ∈ U1 ∩ U2. If s−1

E (v) = {ei : 1 ≤ i ≤ m}, then
s−1
F (τv) = {fi := γ1(ei) : 1 ≤ i ≤ m}. So

〈x, x〉(v) =
m
∑

i=1

|x(ei)|
2
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and

〈Γ(x),Γ(x)〉(τv) =
m
∑

i=1

|Γ(x)(γ1(ei))|
2

=
2

∑

i=1

|Γ(x)(fi)|
2 +

m
∑

i=3

|x(ei)|
2.

Thus we can ignore the terms 3 ≤ i ≤ m. We compute

|Γ(x)(f1)|
2 + |Γ(x)(f2)|

2 =

=
∣

∣ cos(h(f1))xγ
−1
1 (f1) + sin(h(f1))xγ

−1
2 (f1)

∣

∣

2

+
∣

∣e2ih(f2)
(

cos(h(f2))xγ
−1
1 (f2)− sin(h(f2))xγ

−1
2 (f2)

)∣

∣

2

= cos2(g(τv))|x(e1)|
2 + sin(2g(τv)) Rex(e1)x(e2) + sin2(g(τx))|x(e2)|

2

+ cos2(g(τv))|x(e2)|
2 − sin(2g(τv)) Rex(e1)x(e2) + sin2(g(τx))|x(e1)|

2

= |x(e1)|
2 + |x(e2)|

2

Hence Γ is a unitary.
It follows that X (E) and X (F ) are unitarily equivalent as C*-corr-

espondences.

Now we make the routine extension to the general result.

Theorem 5.5. Let E = (E0, E1, sE, rE) and F = (F 0, F 1, sF , rF ) be
two compact topological graphs with dimE0 ≤ 1. Then the following
are equivalent:

(i) T (E)+ and T (F )+ are algebraically isomorphic,
(ii) E and F are locally conjugate,
(iii) T (E)+ and T (F )+ are completely isometrically isomorphic.

Proof. We established (i) implies (ii) in Theorem 4.5. As (iii) clearly
implies (i), it remains to establish (ii) implies (iii).

Let U be an admissible cover. Let us write σi,j = (πF
i,j)

−1πE
i,j for

1 ≤ i, j ≤ n. Fix k and set πE
i,j(k) = l, k′ = πF −1

i,j (l) and l′ = πE
i,j(k

′);
so that σij(k) = k′. Then γj carries Uik ∩ Uil onto Vik′ ∩ Vjl, which is
carried by γ−1

i onto Uik′ ∩Ujl′ . By the local equivalence (C2), it follows
that

sEγ
−1
i γj|Uik∩Uil

= sE|Uik∩Uil
and rEγ

−1
i γj|Uik∩Uil

= rE|Uik∩Uil
.

It follows that we can build a new topological graph by changing πE
ij

by the transposition (l, l′) and leaving the rest the same. That is,
we declare that Uik intersects Ujl′ and Uik′ intersects Ujl, leaving all
other intersections unchanged. This defines a new topological graph,
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which by Lemma 5.4 determines a C*-correspondence which is unitarily
equivalent to X (E).

Repeated use of this procedure a finite number of times yields an
equivalent topological graph Ẽ for which ΠẼ,U = ΠF,V . By Lemma 5.3,

the two C*-correspondences X (Ẽ) and X (F ) are unitarily equivalent.
It follows that X (E) and X (F ) are unitarily equivalent, whence T (E)+
and T (F )+ are completely isometrically isomorphic.
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