
HAL Id: hal-01016319
https://hal.science/hal-01016319v1

Submitted on 30 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Non-Inclusive Contacts in Posture
Generation

Stanislas Brossette, Adrien Escande, Joris Vaillant, François Keith, Thomas
Moulard, Abderrahmane Kheddar

To cite this version:
Stanislas Brossette, Adrien Escande, Joris Vaillant, François Keith, Thomas Moulard, et al.. Integra-
tion of Non-Inclusive Contacts in Posture Generation. IROS: Intelligent RObots and Systems, Sep
2014, Chicago, United States. pp.933-938, �10.1109/IROS.2014.6942671�. �hal-01016319�

https://hal.science/hal-01016319v1
https://hal.archives-ouvertes.fr

Integration of Non-Inclusive Contacts in Posture Generation

Stanislas Brossette, Adrien Escande, Joris Vaillant, François Keith, Thomas Moulard, Abderrahmane Kheddar

Abstract— In this paper we propose a simple way to formu-
late geometric contact formation to have an arbitrary intersec-
tion shape in a robotic (humanoid) posture generation problem.
The contact shape is the outcome of our posture generator
that is formulated as a non-linear optimization programming
to fulfill a large variety of robot intrinsic limitations (e.g. joint
and torque limits) and tasks (e.g. desired contact). Starting
by defining convex areas of contact on the robot’s body and
the environment, that we call contact patches, we can generate
contacts with arbitrary intersection of a pair of any of these
predefined patches. Our geometric contact modeling writes very
simply as additional constraints and variables added to the opti-
mization problem, translating the search for an ellipse inscribed
in the intersection of the pair of patches we want in contact. The
result of our posture generator is then a configuration where
contact patches are not necessarily included in one another. This
allows our posture generator to propose contacts of different
shapes with a non-predefined number of contact points (used
later to compute reaction/contact forces). We illustrate the
efficiency of our method in multi-contact posture generation
with the HRP-2 and ATLAS humanoid robots with results that
can not be generated automatically by existing methods.

I. INTRODUCTION

Generating viable robotic postures is a common prob-
lem encountered in sampling-based planning techniques and
simulation of virtual characters. Generating desired initial,
intermediary or finale posture configurations requires defin-
ing static task goals (e.g. reach a target point in 6D) to be
done under intrinsic constraints such as joint limits, torque
limits, avoiding non-desired self-collisions... and perceptual
or extrinsic ones such as keeping an object in the embedded
camera field-of-view, avoiding non-desired collisions with
surrounding objects, etc. A common task objective assigned
to virtual characters, avatars, or humanoid robots is to contact
one or more of its links with the environment (e.g. feet
touching the ground). Since our main applications target hu-
manoid robots, we consider here posture generation problems
inherent to these robots. However, the formalism applies to
any kind of robots achieving contacts with its surroundings
or itself.

Our problem is to generate multi-contact viable postures.
As far as humanoids are concerned, we may add to the
previously cited constraints, equilibrium and non-sliding.
This paper is dedicated to the focused issue of how contact
constraints can be written geometrically. Generating pos-
tures often uses state-of-the-art enhanced inverse kinemat-

CNRS-UM2 LIRMM Interactive Digital Humans, UMR0056, Montpel-
lier, France

CNRS-AIST Joint Robotics Laboratory (JRL), UMI3218/CRT, Tsukuba,
Japan

This work was partially supported by the FP7 KoroiBot and the FP7
RoboHow.Cog EU projects

Fig. 1: Using non-inclusive contacts for ladder climbing
(green/red: contact polygons; blue: contact ellipse; red arrows:

contact forces resultants)

ics or general-purpose non-linear optimization programming
(where inverse kinematics can be seen as a particular solver
case).

In general, desired contacts write as hard constraints to
fulfill in an optimization problem. Yet, we need to write the
maths for, say, put the gripper on the wall and the left foot on
the ground. In general, the maths of a gripper is a complex
geometric description, so is often that of the environment.
A contact is generally defined by a pair of points (one on
each object in contact) and a pair of normal vectors. A
hard contact constraint boils down to finding a posture in
which the predefined authorized contact points and normal
of each body match [1][2]. Likewise, in [3], the position
of the feet of the NAO robot is manually tuned in order
to obtain statically stable position during the climbing of
a spiral staircase. In [4], the surface in contact is chosen
according to two criteria: the position of the force sensors
of the feet, and the type of contact desired. In [5], the
problem of contact discovery in not considered. In [6], two
surfaces are considered in contact as soon as the center point
of one of them touches the other one and their normals
match. Although used in many papers, it is not difficult
to see that this definition of contact excludes a series of
possibilities that would have been obtained if the predefined
points were placed in different configurations within their
respective patches. Once the contact is established, one
determines the intersection of contacting surfaces in order
to find points on which reaction forces are to be computed.

Several approaches require fixing the number of contact
points or to have inclusive contact (i.e. one patch is fully
included in the other) [7].

We provide a simple solution that relaxes hard contact
constraints and gets rid of predefining the contact points by
allowing them to travel within the patches. We consider that
a contact is valid if the intersection between two distinct
patches has an area greater than a given threshold. To enforce
this, we require this intersection to contain an ellipse whose
surface can possibly be maximized. Convex patches allow
writing the inscription constraints easily by means of half-
spaces. We finally implement our solution and present some
examples for complex multi-contact posture generations with
the HRP-2 and ATLAS robots, as shown in Fig. 1.

II. CONTACT GEOMETRY FORMULATION

For our formulation, we consider a situation where a set of
contacts between the robot and its environment are already
made, and therefore fixed, and we want to add a new contact
to this set. This doesn’t induce any loss of generality since it
just comes down to adding the contacts one by one. To ensure
that the new contact can be reached in a quasi-static way, we
look for a configuration where the new contact is “barely”
made: the position of contact is reached, but that contact
does not support any contact forces (this is a necessary step
to generate a sequence of quasi-static transitions). We call
it a geometric contact. Let us consider that the contact to
add is defined by two flat surfaces S1 and S2 which are
respectively delimited by two convex polygons P1 and P2.
For this contact to be valid, it is obviously necessary that
the intersection P1 ∩P2 is not empty. We propose a method
in which the size of the contact area is approximated by the
size of an ellipse that is inscribed in it. If such an ellipse is
found and is of a sufficient size, then the contact is valid.
This allows to consider contacts between surfaces that do not
necessarily include each other.

An important remark is that the number of sides of the
intersection polygon is not known a priori and, as shown
on Fig. 2, this number can change depending on the con-
figuration. Each time this number changes, the gradient of
the area of the intersection is discontinuous. This is an issue
for integrating any constraint or objective based on the area
because we use a solver for smooth optimization problems.
This issue could be dealt with by using non-smooth opti-
mization routines, but such algorithms are slower and less
available, and our posture generator is not designed to use
them. Moreover, supposing that we want to write constraints

4 vertices 7 vertices
Fig. 2: Topological instability of P1 ∩ P2

based on the sides of the contact area, then, the number
of constraints would change with the number of vertex of

P1 ∩ P2. The large majority of the optimization softwares
cannot deal with a non-constant number of constraints. The
solution proposed in section IV overcomes these issues by
defining a set of constraints that is independent from the
topology of the intersection area.

III. POSTURE GENERATION

The posture generation process aims at finding a posture
that satisfies a set of tasks {Ti} and that minimizes a cost
function Cost by solving the following problem:

min
q,f ,τ

Cost(q, f , τ)

s.t.

q−i ≤ qi ≤ q
+
i ∀i = 1, ..., n

τ−i ≤ τi ≤ τ
+
i ∀i = 1, ..., n

εij ≤ d(ri(q), rj(q)), ∀(i, j) ∈ Iauto
εik ≤ d(ri(q, Ok)), ∀(i, k) ∈ Icoll
τ + J(q)T f = g(q)
s(q, f) ≤ 0,
gi(q, f , τ) = 0 ∀Ti,
hi(q, f , τ) ≤ 0 ∀Ti.

(1)

where the optimization variables q, f and τ stand for the
configuration, contact forces and joint torques of the robot.
Those constraints are illustrated in Fig. 3 and are, in order
of appearance:
• Joint limits
• Torque limits
• Auto-collisions, with d(X,Y) the signed distance be-

tween objects X and Y and ri(q) is the i-th body of
the robot at configuration q. Iauto is the set of pairs of
bodies to monitor.

• Collisions with the environment, Ok being the k-th
object in the environment and Icoll the set of pairs to
monitor

• Equation of static stability, with J the Jacobian matrix
of all points where the contact forces are applied, and
g the gravity term.

• Stability constraints describing the friction cones
• Equality constraints describing the task Ti
• Inequality constraints describing the task Ti
A usual task Ti in the posture generation is to ensure

that two surfaces are in contact. We consider 2 polygons
P1 and P2 described in 2 frames F1 and F2, respectively.
Each frame is defined by an origin point Oi = (oxi , o

y
i , o

z
i)

and 3 orthogonal vectors [Ti,Bi,Ni]. In those frames, the
polygons are described as a set of ni bi-dimensional points
[p0i , p

1
i , . . . , p

ni−1
i] lying in the [Oi,Ti,Bi] plane. To ensure

the contact between those two surfaces, it is necessary that
the planes defined by [O1,T1,B1] and [O2,T2,B2] are
coplanar. This is expressed by the set of equations (2). Those
equations define a floating contact, where the co-planarity is
ensured and the surfaces can translate along T1 and B1 and
rotate around N1.

(O2 −O1).N1 = 0
T2.N1 = 0
B2.N1 = 0
−N2.N1 ≤ 0

(2)

Fig. 3: Posture Generation’s usual constraints

However, this is not sufficient since nothing ensures that
the intersection of P1 and P2 is not empty. Up to now, to
avoid the problems described in section II, we were requiring
that one of the two polygons was completely included
into the other (which restricted the contact configuration
possibilities) or by defining a fixed contact position by hand,
in which case the non-emptiness is ensured by the user. The
next section presents a more general formulation

IV. NON INCLUSIVE CONTACT CONSTRAINTS

A. Main Idea

We present our main contribution: a smooth formulation
of the non empty intersection between two contact surfaces.
We assume that co-planarity of S1 and S2 is obtained by
using the constraints presented in the previous section. Here
we focus on the intersection of the two polygons P1 and
P2, respectively describing the contours of S1 and S2. As
we pointed out earlier, a problem with computing the area
of intersection of two polygons comes from the fact that
depending on their positions in space, the number of edges
of their intersection can change (cf. Fig. 2), which induces
discontinuity of the gradient of the area and change of the
number of constraints associated with this contact.

To avoid dealing with these changes of topology, we
consider using an ellipse E included in P1 ∩ P2 to estimate
the area of the intersection. Since P1 and P2 are convex
polygons, then P1 ∩ P2 is also a convex polygon. A convex
polygon can be seen as an intersection of half-planes based
on the lines supporting its edges. Thus, an ellipse is inside a
convex polygon if it lies entirely in the corresponding half-
planes. Having the ellipse be included in the intersection
of two polygons is equivalent to having it included in both
polygons:

E ⊂ P1 ∩ P2 ⇐⇒ E ⊂ P1 ∧ E ⊂ P2 (3)

Even if the number of edges of P1 ∩ P2 can change, the
numbers of edges of P1 and P2 respectively are fixed.
To assert that an ellipse lies in a half-plane, we need a
function that is positive when the ellipse is in it (with zero

value when the ellipse is on the edge) and negative if not.
The signed distance to the line defining the half-space is a
good candidate (distance ellipse-line if the ellipse is in the
half-plane, opposite of the penetration distance if not), but
actually, any pseudo-distance does the job. And a sufficient
condition for the ellipse to be inside the polygons intersection
is that the pseudo-distance between the ellipse and each edge
of both polygons is positive (see Fig. 4). By considering each
edge separately as opposed to the (pseudo-)distance of the
ellipse to a whole polygon, we can write smooth constraints
with a simple pseudo-distance function. We develop such a
pseudo-distance in the next subsection.

Fig. 4: Distance between E and P1 ∩ P2

B. Pseudo-distance
To estimate the constraint of inclusion of the ellipse E in

both polygons P1 and P2, we need to compute the signed
distance between E and each segment of the polygons.
Computing the distance between an ellipse and a line is not
straightforward, whereas the distance between a line and a
circle is very easy to compute. Also, we note that in the
frame FE defined by the ellipse’s axes and pseudo-radius,
the ellipse is a circle of radius rE = 1 (The x-unit along the
first axis of the ellipse is rx, the first radius of the ellipse,
the y-unit along the second axis of the ellipse is ry , the
second radius). The transformation from the original frame
F0 in which the ellipse and the polygons are described to
the ellipse’s frame FE is just the composition of a rotation
and a scaling of the space along the axes of the ellipse with
a scaling vector [1

rx
, 1
ry
]. The effect of such a transformation

applied to an ellipse and two polygons is shown in Fig. 5. We
thus defined the following pseudo-distance from an ellipse
to a half-plane as the signed Euclidean distance from the
corresponding unit circle to the transformed half-plane in
the frame FE .

r xry
1

1

Fig. 5: Transformation from F0(O0, X0, Y0) to FE(OE , XE , YE)
Now let us consider a single segment pipj and an ellipse

E defined in F0. The expression of a vector vTF0
= [vx, vy]F0

in FE is obtained by applying the formula (4)

vFE =

(
1
rx

0

0 1
ry

)
.

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.vF0

(4)

In FE , the distance between the circumference of E and the
segment pipj is:

ds(E , pipj) =
(−−→pipj)FE

×
(−−−→
piOE

)
FE

‖−−→pipj‖FE

− rE (5)

where × denotes the cross product and OE is the center of
the ellipse.

To avoid numerical problems when the segment pipj is
small, (see sec. IV-F), it is preferable to multiply this distance
by ‖−−→pipj‖FE before using it as a constraint. Then we get the
following constraint:

− (−−→pipj)FE
×
(−−−→
piOE

)
FE

+ ‖−−→pipj‖FE rE ≤ 0 (6)

The combination of these equations (4) and (6) applied for
each edge of the polygons gives us all the necessary tools to
develop a set of constraints that ensures that an ellipse is in
the intersection of two polygons.

C. Modification of the optimization problem

To include the above idea in our posture generation, we
need to modify the optimization problem (1) as follows.
Each non inclusive geometrical contact adds five variables
to the optimization vector, corresponding to the position,
orientation and radiuses of the ellipse (x, y, θ, rx and ry).
One constraint of ellipse inclusion (as described above) is
added to the problem for each edge of the polygons. The
parameters rx and ry are given lower positive bounds to
ensure that the ellipse is not empty. The existence of a contact
between S1 and S2 is thus transformed into the existence of
rx and ry respecting their bounds. In summary, this kind
of constraint adds 5 variables and card(P1) + card(P2)
constraints to the optimization problem, while the “usual”
inclusion constraint adds 0 variable and card(P1)card(P2)
constraints. The existence of the contact can alternatively be
enforced by imposing a minimum area for the ellipse.

D. Maximization of the contact area

The formulation in the above section only ensures the
existence of a contact of minimal size. However, one could
want to make sure to find a contact area as large as possible,
so that it is more likely to be able to support strong forces
and ensure strong friction forces, which is helpful to ensure
the stability of the robot. Therefore, it seems appropriate to
try and maximize the area of contact between two polygons.
As explained before, computing the area of the intersection
surface is not a good practice in our case. But we know that
the ellipse computed as above gives a lower bound of the
contact area.

E ⊂ P1 ∩ P2 =⇒ A(E) ≤ A(P1 ∩ P2) (7)

with A(X) being the area of X .
Therefore we can maximize the size of the ellipse in order
to maximize the contact area. This is readily obtained by
minimizing the value Cost = −πrxry in the modified prob-
lem (1). In case there are other cost functions, the above cost
can be added to them with a desired weight. This requires

however to scale properly the cost so as to have a meaningful
and easy-to-tune weight: the range of value of the ellipse’s
area goes from 0 to A(P1∩P2) ≤ min(A(P1),A(P2)). This
latter quantity can be small (a typical area of contact of a
humanoid robot is about 0.01m2, some environment surfaces
can be smaller). To get a basic cost (before weighting) of
magnitude around 1, we use the following scaling:

cost(E) = − πrxry
min(A(P1),A(P2))

(8)

This cost’s absolute value will always be less than 1, but not
much less around the optimum, in most cases.

E. Using a non inclusive contact to maintain stability

The method we presented so far allows finding a con-
figuration in which a new non-inclusive contact is added,
but this contact does not bear any force. It is found as a
geometrical contact, but will eventually have to bear some
forces, and thus, become a stability contact. Usually, for a
stability contact, each vertex of the contact area is considered
as the application point of a force that has to be in a friction
cone. Since our method allows dealing with surfaces that
are intersecting each other, the contact surface is not known
beforehand. Therefore, as soon as a non inclusive contact is
going to be used for the stability, we compute the intersection
of the two polygons P1 and P2 that are involved, and that
intersection P1 ∩ P2 is the contact surface, and its vertices
will bear the forces. We do not present here the algorithm to
compute the intersection of two convex polygons, as it can
be found in the literature easily.

F. Extension to singular cases

Our method can be extended to be used to approximate
singular situations, such as finding an optimal contact with
a linear or even punctual surface. This is done by giving
a slight width to the point or the line. This approximation
is physically grounded: in terms of real contacts, linear or
punctual contacts do not exist. In fact, since all objects
are deformable, even slightly, the contact area between two
objects cannot be a perfect line, and must have a non-null
area. Which justifies that linear and punctual contacts can be
modeled as thin contact surfaces. By defining such a surface,
we impose partly the orientation of the contact. Here again,
one must be careful with numerical issues. Dealing with
small numbers (here we would like to take width of a fraction
of centimeter) may induce conditioning problems. Also,
having two close parallel constraints of opposite direction
(i.e. g(x) ≤ α and −g(x) ≤ α with α small) is not a good
practice in optimization as it will lead the solver to take
small steps. Therefore, it is best to apply a scaling to the
constraints by applying a geometrical scaling to P1 and P2

in the appropriate direction.
Likewise, constraints on the area of the ellipse should be
based on the same formulation as in equation (8).

V. SIMULATION RESULTS

We dedicated considerable efforts in proposing a general
multi-contact motion planner to solve cases of non-gaited

acyclic planning. Given a humanoid robot, an environment,
a start and a final desired postures, our planner generates a se-
quence of contact stances allowing any part of the humanoid
to make contact with any part of the environment to achieve
motion towards the goal. Our planner is thoroughly described
in [8]. Extensions of this multi-contact planner to multi-agent
robots and objects gathering locomotion and manipulation
are presented in [7], and preliminary validations with some
DARPA challenge scenarios, such as climbing a ladder,
ingress/egress a utility car or crossing through a relatively
constrained pathway are presented in [9]. In [8] and [7], we
describe works in multi-contact that are achieved by other
colleagues in robotics. In order to illustrate our method,
we present some examples starring the HRP-2 and ATLAS
humanoid robots, that are typical posture generations en-
countered in multi-contact planning. For the implementation
of our posture generator, we use the RobOptim optimization
framework [10] relying on the IPOPT solver [11].

A. Inclined ladder climbing

In this first example, we generate a posture that is part of
an inclined ladder climbing planning. We consider that the
robot HRP-2 reached a posture in which its right foot is on
the first step and its right hand is grasping the right guardrail,
both of those contacts are bearing forces. Those contacts are
fixed, and we search a posture that adds to it a geometrical
contact between the left foot and the second step. We require
the contact to include an ellipse with both radiuses bigger
than 40% of the ladder step’s width. The resulting posture
and a close-up view of the contact areas are shown in Fig. 6.
The latter shows clearly how an ellipse of sufficient size is
found, included in the contact area between the left foot and
the second step. It also shows that the contact forces on the
right foot are located on the vertex of the intersection of
the contact surfaces between the right foot and the first step,
which was also generated with our method, in a prior posture
generation. One can note that we use a contact area slightly
smaller than the actual surface under the foot of the robot.
We use indeed safety margins to account for modeling errors
so that the obtained posture is achievable by the real robot.

B. Vertical ladder climbing

In the second example we generate a posture in which the
robot climbs a vertical ladder. In this particular step, the robot
is using its right foot and both hands to maintain its stability
on top of the first rung of the ladder. We search a posture that
keeps those previous contacts and adds a geometrical contact
between the left foot and the second rung of the ladder.
The result of that optimization can be observed on Fig. 1,
with the robot posture on the left and a close-up look at the
contact areas on the right. The difficulty of this situation is
that a contact has to be made with a very thin surface of
the environment (the ladder rung). Usual contact generation
method would reduce a lot the span of possible contact
position (by patching the robot’s foot with a very small
surface or by imposing a set of authorized contact positions).
Whereas with our method, the contact configuration is found

Fig. 6: HRP2-10 ladder climbing posture and up close view of the
contact areas (green/red: contact polygons; blue: contact ellipse;

red arrows: contact forces resultants)

during the optimization process without requiring any extra
human work. The contact chosen by our software includes
an ellipse which first axis is the width of the robot’s foot
and second axis is as thin as the ladder rung. One problem
to expect is that numerical instability might happen if the
surface of the rung is given too thin. But that would also
happen with full inclusion constraints. This example also
illustrates one limitation of our method: it only considers
planar contacts and if one wants to model a purely linear
contact an other contact model must be used, since our
modeling of those singular cases is approximative.

C. Climbing Stairs

In a third simulation, the ATLAS robot climbs a flight
of stairs. All the steps are too small for the robot to put
its entire foot on. Therefore, it has to make a non inclusive
contact and we propose to maximize the size of the contact
area with the ellipse included in it, as explained in IV-D. The
size of the contact area is limited by the fact that the foot
cannot penetrate the wall behind each step. On Fig. 7, we
present 3 postures generated on this environment. On each
of those postures, we see that the ellipse’s size is maximized
until the foot enters in collision with the vertical wall behind
each step. And when possible, like on the last step, the
contact area is maximized without collision limitation and
the foot is positioned as fully included in the support surface.
We can see here that even when the size of the ellipse is
maximized while competing with other non-linear constraints
like collision avoidance, our method still works well and
leads us to a satisfactory solution.

VI. DISCUSSION AND CONCLUSION

Generating arbitrary shaped contact areas proved to be
doable very simply in an optimization-based posture gener-
ation module. We focused on writing constraints that have
continuous gradients, since the posture generate problem is
dominantly smooth. Hence, our geometric contact model can
be useful for other optimization-based purposes, for example

Fig. 7: Atlas climbing stairs with small steps by maximizing the size of the contact areas
(green/red: contact polygons; blue: contact ellipse; red arrows: contact forces resultants)

control or trajectory optimization, and any gradient-based
descent scheme which handles inequalities (e.g. [12]). While
we were expecting an increase of computation time due to
the addition of new variables in the problem, we noticed that
the timings obtained with this method are sensibly the same
that our previous version of the posture generator with full
contact surface inclusion. Consequently, this method offering
a richer contact search (exploration) during planning comes
without degrading computation time. In fact, it truly allows
us to substantially reduce the time spent by the user in ad-
hoc tuning the shapes of the contact patches, or fixing the
contact positions that were previously done by hand. Also,
it is fairly easy to implement and extends a multi-contact
planning algorithms like the one described in [8] to give it
richer planning possibilities.

There are several opportunities for future work. For ex-
ample, we could improve the generality of our contact
constraint formulation even further to manage linear and
punctual contacts without the approximations we currently
use. Also we could extend our method to allow dealing
with non-convex surfaces. And finally we would like to
apply our method to other fields that use contact generation,
like trajectory or control optimization. Our methods extends
straightforwardly to point cloud data as far as polygonal
patches can be extracted.

REFERENCES

[1] Y. Zhang, J. Luo, K. Hauser, R. Ellenberg, P. Oh, H. Park, M. Paldhe,
and C. Lee, “Motion planning of ladder climbing for humanoid
robots,” in IEEE Conf. on Technologies for Practical Robot Appli-
cations, 2013.

[2] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” in Intl. J. of Robotics
Research 27(11-12):1325-1349, 2008.

[3] S. Osswald, A. Gorog, A. Hornung, and M. Bennewitz, “Autonomous
climbing of spiral staircases with humanoids,” in Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on,
Sept 2011, pp. 4844–4849.

[4] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami, “Biped navigation in rough environments using on-board
sensing,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, (IROS’09). Piscataway, NJ, USA: IEEE Press, 2009,
pp. 3543–3548.

[5] L. Sentis and O. Khatib, “Compliant control of multicontact and
center-of-mass behaviors in humanoid robots,” IEEE Trans. Robot.,
vol. 26, no. 3, pp. 483–501, Jun. 2010.

[6] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 1–8, Jul. 2012.

[7] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, 2012.

[8] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428–442, 2013.

[9] K. Bouyarmane, J. Vaillant, F. Keith, and A. Kheddar, “Exploring hu-
manoid robot locomotion capabilities in virtual disaster response sce-
narios,” in IEEE/RSJ International Conference on Humanoid Robots,
Osaka, Japan, December 2012, pp. 337–342.

[10] T. Moulard, F. Lamiraux, K. Bouyarmane, and E. Yoshida, “Robop-
tim: an optimization framework for robotics,” in Japan Society for
Mechanical Engineers: Robotics and Mechatronics Conference, 2013.

[11] A. Wächter and L. Biegleri, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

[12] A. Escande, N. Mansard, and P.-B. Wieber, “Fast resolution of
hierarchized inverse kinematics with inequality constraints,” in IEEE
International Conference on Robotics and Automation, Anchorage,
USA, 3-7 May 2010, pp. 3733 – 3738.

