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Abstract

In this paper we study the cohomology of tensor products of symmetric powers of the cotangent
bundle of complete intersection varieties in projective space. We provide an explicit description of some
of those cohomology groups in terms of the equations defining the complete intersection. We give several
applications. First we prove a non-vanishing result, then we give a new example illustrating the fact
that the dimension of the space of holomorphic symmetric differential forms is not deformation invariant.
Our main application is the construction of varieties with ample cotangent bundle, providing new results
towards a conjecture of Debarre.
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1 Introduction

Varieties with ample cotangent bundle have many interesting properties, however, relatively few examples of
such varieties are know (see [17], [20], [7], [3]). Debarre conjectured in [7] that: if X is a general complete
intersection variety in PN of multidegree high enough and such that dim X < codimp~y X then the cotangent
bundle of X should be ample. The study of this conjecture was the starting point of the present work. In
[3] we were able to prove this conjecture when dim X = 2, using Voisin’s variational method and inspired by
the work of Siu [18] and the work of Diverio Merker and Rousseau [10]. However we were not able to make
this strategy work completely in higher dimensions.

The construction of varieties with positive cotangent bundle is closely related to the construction of sym-
metric differential forms on it. In fact, if one wants to prove that a given variety has ample cotangent bundle,
it is natural to start by producing many symmetric differential forms, to be more precise, this means proving
that the cotangent bundle is big. In general, this is already a highly non-trivial question and this leads to
very interesting considerations. In that direction we would like to mention the recent work of Brunebarbe,
Klingler and Totaro [6] as well as the work of Roulleau and Rousseau [16].

However, ampleness is a much more restrictive condition than bigness, in some sense, bigness only re-
quires a quantitative information on the number of symmetric differential forms whereas ampleness requires
a more qualitative information on the geometry of the symmetric differential forms. The most natural way
to produce symmetric differential forms is to use Riemann-Roch theorem or a variation of it. For instance
under the hypothesis of Debarre’s conjecture, one can use Demailly’s holomorphic Morse inequality, in the
spirit of Diverio’s work [8] and [9], to prove that the cotangent bundle is big (see [3]). Nevertheless, this ap-
proach doesn’t give much information on the constructed symmetric differential forms besides its existence.
One can wonder if it is possible, given a complete intersection variety X in PV to write down explicitly the
equation of a symmetric differential form on X (if such an object exists).

If X is a curve in P? of genus greater than 1, this is a very classical exercise. In higher dimensions,
very few results towards that problem are known. Briickmann [5] constructed an example of a symmetric
differential form on a complete intersection in P* given by Fermat type equations, and more recently Merker
[14] was able to study examples of symmetric differential forms on complete intersection variety in P* in the
spirit of work of Siu and Yeung [19] (see also [15] for related results for higher order jet differential equations).

The aim of this paper is to develop a cohomological framework which will enable us to describe the space
of holomorphic symmetric differential forms on a complete intersection variety in PV in terms of its defining
equations, and to give several applications. The outline of the paper is as follows.

In Section 2 we prove the main technical result of this work. In view of the possible generalizations
to higher order jet differential as well as for its own sake, we will not only study the space of symmetric
differential forms, but also the more general spaces H* (X, 4 Qx @ --- ® S Q) for a complete intersection
variety X in PV. Recall the following vanishing result of Briickman and Rackwitz.

Theorem 1.1 (Briickmann-Rackwitz [4]). Let X C PV be a complete intersection of dimension n and
codimension c. Take integers j,€1,..., 0 > 0. If j <n — Zle min{c, ¢;} then

HI(X,89Qx @---®8%Qx) =0.

It is natural to look at what happens in the case j = n — Zle min{c, ¢;} in the above theorem. Our
result in that direction is the following.

Theorem A. Let ¢,N,eq,...,ec € N*, set n = N —c. Let X € PV be a smooth complete intersection
variety of codimension c, dimension n, defined by the ideal (F1, ..., F.), where F; € HO (PN, Opn (e;)). Take



integers {1, ..., 0g > c take an integer a < b1+ -+l — k, let ¢ :=n — ke and b:= (k+1) > ;_, €;. Then
one has a commutative diagram

H(X,8"Qx ® - © §%Qx (a)) —= HY (PN, 54 Qpn @ --- @ §%Qpn (a — b))

He (X, S0y @ kaﬁx(a)) P HN (IPN, SU=cQpn ® - ® S Cpn (a — b))

Such that all the arrows are injective and such that:
1. imp=_, (ker(-Fi) ﬂ§:1 ker(-dﬂ{j})) )
2. imp=im@Nimé.

Remark 1.2. The bundle ) is described in Section 2.1 and the different maps arising in the statement are
described in Section 2.5

The important thing to note in that result, is that it gives a way of describing the vector space
H? (X, ShQx®---®@ SleX(a)) as a sub-vector space of HY (]P’N, Sll’cﬁpw R ® Slk’cﬁpw (a— b)),
that this last space is easily described, and that one can precisely determine, in terms of the defining
equations of X what is the relevant sub-vector space. Therefore this result (and the more general statements
in Theorem 2.17 and Theorem 2.24) should be understood as our main theoretical tool to construct sym-
metric differential forms on complete intersection varieties.

In Section 3 we provide the first applications of Theorem A. First we describe how Theorem A can be
used very explicitly in Cech cohomology. Then we illustrate this by treating the case of curves in P2. After
that (Proposition 3.3) we prove that the result of Briickmann and Rackwitz is optimal by providing the
following non-vanishing result.

Theorem B. Let N > 2, let 0 < ¢ < N. Take integers £1,..., 0 > 1 and a < {1+ ---+ € — k. Suppose
0<q:=N-c— Zle min{c, ¢;}. Then, there evists a smooth complete intersection variety in PN of
codimension c, such that

HYX,5%Qx @+ @ S*Qx(a)) # 0.

Then, in Corollary 3.7, we provide a new example of a family illustrating the fact that the dimension of
the space of holomorphic symmetric differential forms is not deformation invariant.

Theorem C. For anyn > 2, for any m > 2, there is a family of varieties % — B over a curve, of relative
dimension n, and a point 0 € B such that for generic t € B,

RO(Yy, S™Qy,) > h (Y, S™Qy,).

This phenomenon has already been studied (see for instance [1], [2] and [16]) and is well known. How-
ever, this example shows that invariance fails for any m > 2, whereas the other known examples (based on
intersection computations) provide the result for m large enough.

In Section 4 we provide our main application, which is a special case of Debarre’s conjecture.

Theorem D. Let N,e € N* such that e > 2N + 3. If X C PV be a general complete intersection variety of
multidegree (e, ..., e), such that codimpy X > 3dim X — 2, then Qx is ample.

To our knowledge, this is the first higher dimensional result towards Debarre’s conjecture. The proof
of this statement does not rely on the variational method neither does it need the Riemann-Roch theorem
nor Demailly’s holomorphic Morse inequalities. The idea is to use the results of Section 2 to construct one



very particular example of a smooth complete intersection variety in PV (with prescribed dimension and
multidegree) whose cotangent bundle is ample. Then by the openness property of ampleness, we will deduce
that the result holds generically. Such an example is produced by considering intersections of deformations
of Fermat type hypersurfaces.

Notation and conventions: In this paper, we will be working over he field of complex numbers C. Given a
smooth projective variety X and a vector bundle E on X, we will denote by S™E the m-th symmetric power
of E, we will denote by P(E) the projectivization of rank one quotients of E, we will denote the tangent
bundle of X by TX and the cotangent bundle of X by Qx. Moreover we will denote by 7x : P(Qx) — X
the canonical projection. Given a line bundle L on X and an element o € H°(X, L) we will denote the zero
locus of o by (o = 0), and the base locus of L by Bs(L) = (1,0 (x,1)(0 = 0).

Given any m € N, we will denote by C[Z, ..., Zn]m the set of homogenous polynomials of degree m in
N + 1 variables and by C[z1, ..., z2n]|<m the set of polynomials of degree less or equal to m in N variables.
Given any set £ C N and any k£ € N we will write E;@ = {(i1,...,1,) such that i; # ip if j # ¢} and
E% :={(i1,...,i)) such that i; < i, if j < £}.

Also, we will say that a property holds for a “general” or a “generic’ member of a family 2" % T if there
exists a Zariski open subset U C T such that the property holds for p=1(t) for any ¢t € U.

Acknowledgments. This work originated during the author’s phd thesis under the supervision of Christophe
Mourougane. We thank him very warmly for his guidance, his time and all the discussions we had. We also
thank Junjiro Noguchi and Yusaku Tiba for listening through many technical details. We thank Joél Merker
for his many encouragements and for all the interest he showed in this work. We also thank Lionel Darondeau
for motivating discussions and for his suggestions about the presentation of this paper.

2 Cohomology of symmetric powers of the cotangent bundle

2.1 The tilde cotangent bundle

It will be convenient for to use the bundle, studied in particular by Bogomolov and DeOliveira in [2], but
also by Debarre in [7]. In some way, the bundle Q will allow us to work naturally in homogenous coordinates.
Let us recall some basic facts about this bundle. Consider PV = P(CV*1) with its homogenous coordinates
[Zo, ..., Zn]. Let X C PN be a smooth subvariety. We denote by vx the Gauss map

vx: X = Grass(n,IP’N)
r — T.X
where T, X C P¥ is the embedded tangent space of X at x, and where Grass(n, PV) denotes the grassmannian

of n-dimensional linear projective subspace of PV. Let S, 41 denote the tautological rank n + 1 vector bundle
on Grass(n,PV). Then define

Ox == 7% SV ® Ox (—1).

We will refer to this bundle as the tilde cotangent bundle of X, and a holomorphic section of SmQ) x will be
called a tilde symmetric differential form. Observe that one has a natural identification

N
Qpv = CNT1 @ Opn(—1) = @D Opw (~1)dZ;.
1=0

Therefore given any homogenous degree e polynomial F' € C[Zy, ..., Zy]| one can define a map
dF : Opn(—€) —  Qpn (1)
N
oF
g — g- Z ﬁdzz
i=0 ="



One easily verifies that if X C PV is a smooth subvariety and if F defines a hypersurface H such that
Y := X N H is a smooth hypersurface in X then the above map fits into the following exact sequence,

0—)Oy(—€) d—) |y—>Qy—)O (2)

We will refer to it as the tilde conormal ezact sequence. On the other hand, let X C CN+1 \ {0} be the cone
above X, and let px = = X — X be the natural projection. Observe that p% v Sp+1 = TX. The differential
dpx : TX — pxTX is not 1nvar1ant under the natural C* action on X because for any x € X any £ €T, X

and any A € C*, dpx € = de@f. We can easily compensate this by a simple twist by OX( 1) as in the
following
’7;(8714-1,1 — TmX ® OX,Z(_l)
(z,8) = (z,dpx@ ).

This yields an exact sequence 0 — Ox (—1) = v%Sp+1 — TX(—1) — 0 which we twist and dualize to get

O%Qxﬂﬁx—)OX—)O. (3)

Will refer to it as the Euler exact sequence. Note that the map & can be understood very explicitly. Indeed, if

we consider the chart CV = (Zy # 0) C PV, with z; = —; for any i € {1,..., N}, then &(dz;) = W.
0

Let us mention that in our computations we will often write dz; instead of &(dz;) for simplicity. Those two
exact sequences fit together in the following commutative diagram

0 0
Oy(*e) Oy(fe)

0 —— Qx|y —_— ﬁx|y —_— Oy — 0

0 —— Qy — Qy — Oy —— 0

Remark 2.1. Observe that Q x can never be ample because it has a trivial quotient. However, Debarre proved
in [7] that under the hypothesis of his conjecture, the bundle Qx (1) is ample.

2.2 A preliminary example

The combinatorics needed in the proof of the main results of Section 2 may seem elaborate, but the idea
behind it is absolutely elementary. In fact the proofs of the statements in Section 2 are only a repeated us
of long exact sequences in cohomology associated to short some exact sequences which are deduced from the
restriction exact sequence, the conormal exact sequence, the tilde conormal exact sequence and the Euler
exact sequence. But because our purpose is to study tensor produces of symmetric powers of some vector
bundle, many indices have to be taken into account, the only purpose of all the notation we will introduce
is to synthesis this as smoothly as possible.



Let us illustrate the idea behind this by considering a basic example. Suppose that H is a smooth degree
e hypersurface in PV defined by some homogenous polynomial F' € C[Z, ..., Zy]. Suppose that we want
to understand the groups H(X, 5™y (—a)) for some a € N, and m > 1. To do so we look at the tilde
conormal exact sequence

O—>Ox(—€) d—}; QPN|X %ﬁx —0

and take the m-th symmetric power and twist it by Ox(—a) of it to get the exact sequence
0— S™ 1| x(—e —a) B S Qpn|x (—a) = S™Qx(—a) — 0.

By considering the long exact sequence in cohomology associated to it, we see that the groups H*(X, S MmOy (—a))
can be understood from the groups H*(X, S*Qpn|x(—b)) for k,b € N, and from the applications appearing
in the long exact sequence in cohomology. But to understand those groups, we consider the restriction exact
sequence

0— OPN(fe) E) OIPN — Ox — 0,

and twist it by SkQPN(fb) to get
0 — S*Qpn (=b —€) 5 S*Qpn (—b) = S*Qpn | x (—b) — 0.

Once again, we look at what happens in cohomology, and we see that the groups H'(X, S kFQpn |x(—b)) can
be understood from the groups H*(PV, SEQpn (—c¢)) for ¢,¢ € N and the maps appearing in the long exact
sequence. But observe that H! (PN, §/Qpn (—c)) = S‘CN T @H (PN, Opn (—c—L)) = 0 for all i < N, from this
we get that H(X, S*Qpn|x(—b)) = 0 for all i < N — 1 and from this we deduce that H*(X, S™Qx (—a)) =0
for all © < N — 2. Moreover, a more careful study shows that we obtain the following chain of inclusions:

HY2(X, 5™Qx (—a)) &5 HY1(X, 5™ x| x (—a — €)) T3 BNV (BN, §™ 10pn (—a — 2¢)).

The inclusions appearing in Theorem A are of this type. Now if one wants to describe what is the image of this
composed inclusion, one needs to look more carefully at what are exactly the maps between the cohomology
groups in the different long exact sequences. For instance the second injection comes the following exact
sequence

0— HN"1(X, 8™ Qpn|x(—a—€)) = HY (PN, S™ 1Qpn (—a — 2¢)) 5 HN (PN, 8™ 'Qpn (—a — ¢)).

Hence, im(p2) = ker (HN(]P’N, S0 (—a — 2¢)) 5 HN (PN, S™ 1 0pn (—a — e))) . To understand simi-
larly im(p20p1) is less straightforward, combining the different long exact sequences one obtains the following
commutative diagram:

HV=2(X, 8™y (—a)) —Z2 HN-1(X, 8™ 1w |x (—a — ) “Ho HN-1(X, S™Qpn | x (—a))

— | |

HN (PN, $m10pn (—a — 2¢)) —2 s HN (PN, §mQpn (—a — €))

where the vertical arrows are injective. Then, by linear algebra, we obtain that im(¢) = im(p2) Nker(-dF') =
ker(-F') Nker(-dF") for suitable maps -F' and -dF. This example already contains the main idea of the proof
of the first part of Theorem A. To study more generally tensor products of symmetric powers of the tilde
cotangent bundle is done similarly by considering each factor independently, and to deduce the results
concerning the cotangent bundle instead of the tilde cotangent bundle is done in a similar fashion using the
Euler exact sequence.



2.3 An exact sequence

In the rest of Section 2, the setting will be the following. Take an integer N > 2, let ¢ € {0,...,N — 1}
and take ey, ...,e. € N*. Take non-zero elements Fy; € HO(PY, Opn (e1)),...,F. € H'(PN,Opn (e.)), and
for any i € {1,...,c} weset H; = (F; =0). For any i € {1,...,c} let X;:= HiN---NH;. Set X := X, and
Xo := PY. We suppose that X is smooth. For simplicity, we will also suppose that X; is smooth for each
1€{0,...,c}.

Remark 2.2. We make this additional smoothness hypothesis here so that we can work without worrying
with all the conormal exact sequences between X; and X;;1 (and this hypothesis will be satisfied in all our
applications). However, a more careful analysis of the proof of the main results shows that the only thing
we need to have is the smoothness of each of the X/s in a neighborhood of X, and this follows from the
smoothness of X.

To simplify our exposition, we introduce more notation. If F is a vector bundle on a variety Y, and if
A= (A1,..., ) is a k-uple of non-negative integers, then we set

B =SME®. . @ S*™E.
If p=(p1,..., 1) is a j-uple of non-negative integers, we set
AU = (A, A, e, 1)
The following definition gives a convenient framework for our problem.
Definition 2.3. With the above notation.

1. A A-setting is a (p + 2)-uple ¥ = (X, A% ...,\P), where 0 < p < ¢, and for any 0 < j < p,
M= (M,.. .,)\fnj) € N for some m; € N.

2. If ¥ = (X, \%..., \P) is as above, we set:

e codimy :=pand dim¥ := N —p.

o If \l = ... =)\P =0 set deg¥ := e,. Otherwise, let jo := min{l < j < p such that N # 0} and
set deg := ey, .

3. Take ¥ as above. We set:
0% =0y, @0k, ®--00) and 0% =0, @0, 20},
4. For any a € Z and any j € N, we set:

HI (0%(a)) = H' (X,,2° ® O, (a)) and H’ (ﬁz(a)) = HY (X,,, 0% @ Oy, (a)) .

We will also need a more general definition which will allow us to work simultaneously with 2 and Q.

Definition 2.4. 1. A A-pair (X, ) is a couple of A-settings & = (Xp, A% ..., AP) and Y= (X5, 2O AP)
such that p = p.

2. Given a A-pair (3, %) we set:
e dim(%,Y) :=dim ¥ = dim £ and codim(%, ) := codim ¥ = codim .

eIf M =X = 0foralliec {1,...,p} we set deg(%,%) := ep. Otherwise, let jo := min{j €
{1,...,p} such that M =0 or M # 0} and set deg(Z,X) = e;,.

3. With the above notation, we set Q&) .= 0¥ ® 0.



4. For any a € Z and any j € N, we set H’ (Q(Evi) (a)) = HJ (Xp, Q5 g Ox, (a)) )
To describe our fundamental exact sequence, we introduce some notion of successors.

Definition 2.5. Take a A-setting ¥ = (X,, A\, ..., \?) with p > 1 and where for any 0 < j < p one denotes
No=(\,..., )\ﬁn) We define A-settings s1(X) and so(3) as follows.

o If M =0 for all 1 < j < p then set s1(X) :=52(%) := (Xp—1, A0 ..., AP71),

o If there exists 1 < j < p such that M # 0, let jo := min{j / 1 < j < p and M # 0} and let
ip :=min{i / 1 <i < mj, and X° # 0}. Then we define

s1(B) = (X,,2%0,...,0,(\°), (Aggﬂ,...,vov ), Mot )
s2(8) = (X A% 0,0, 0, (A = 1), (A2, AN ) N0 L),

We will need the following generalization to A-pairs.
Definition 2.6. Take a A-pair (2, %) where ¥ = (X,,A\%,...,\?) and & = (XP,XO, ..., AP). Define 1 (%, )
and s3(%, X) as follows.
e If N =X =0forall 1 <i<psets(B,8):=s5(%,%) = (52(%),52(%)) = (51(X),51(%)).
e If there exists 1 < j < p such that M # 0 or N #0set jo:=min{j >1/ M #0or N #0}.
— If Ao #£ 0 set s1(%, ) (2,51(2)) and (2, %) = (T, 5(2)).
— If Mo =0 set 51(%, %) = (s1(X), %) and s5(%, %) = (s2(%), ).
Now we come to an elementary, but important, observation.

Proposition 2.7. For any A-pair (%, ENI), we have a short exact sequence
0 — Q23 (—deg(n,8)) — QuED L oD (5)
Proof. Take ¥ = (X,, A%, ..., AP) and £ = (X,, A%, ..., AP). We have to consider two cases.

Case 1: Nl =-.- =X =Xl = ... = AP = 0. Set ¥/ :=51(%) = 52(¥) and %' := 51(3) = 52(2) so that

(~2|(§ ) — Q) We have the restriction exact sequence
P

0— Ox, ,(—e) = Ox, , = Ox, — 0.
Since e, = deg(X, f]), it suffices to tensor this exact sequence by Q) to obtain the desired exact sequence.

Case 2: there exists j > 1 such that X # 0 or N 7é 0. Set jo :=min{j =1/ M #0or N # 0}. Suppose
in a first time that A% # 0. Recall that ej, = deg(%,X). Set also ig := min{i / 1 < i < mj, and Mo £ 0},
Set ¥/ = (X,,,XO,O7 ()\f"ﬂ, . ,X{gjo),XjOH, ..., AP), so that Q(E’Z) = 0" ® S’\Zgﬁxjo|xp ® QF,
Q1) = oF g §M0 Q) ij071|xp © 0¥ and Q2G5 = 0¥ @ §% 0y, | |x, ® 0¥, By taking the \’-th
symmetric power of the tilde conormal exact sequence when X, is seen as a hypersurface of X; _; and
restricting everything to X,,, we obtain

Mo_15 o~ o &
0 — S7o QXj071(7€j0)|Xp — S 1UQXJ-O,1|XP — S 1UQXJ‘U|X;7 — 0.

It suffices now to tensor this exact sequence by 0% and OF to obtain the desired result. If Mo = 0 with use
the same decomposition on ¥ (and the A7’s) and we use the usual conormal exact sequence instead of the
tilde conormal exact sequence. O



2.4 A vanishing lemma

In this section, we prove a vanishing lemma which we will often use later. To be able to give the state-
ment, we need some more notation. Given any m-uple of integers A = (A1,..., A\ ), we define nz(\) =
#{é such that X\; # 0} to be the number of non-zero terms in .

Definition 2.8. Take a A-setting & = (X, A°,..., A?), where for all j € {0,...,p}, ¥ = (\,..., )\g'nj). Then
we set

¢ ¢(2) := dim(E) — n(E), where n(¥) := Y37_; 37 min{j, ).
* i(X) := codim(%¥) + w(X), where w(X) := 3°F_, jnz(N).
o t(%) := |%] - nz(%), where [2] := 30_, Y1 A and nz(%) = >F_gmz(N).
We will also need the generalization to A-pairs.
Definition 2.9. Take a A-pair (X,%) where £ = (X,,A%,...,AP), & = (X, \°, ..., \?). Then we set
e ¢(2,%) := dim(%, ¥) — n(2, ¥), where n(E, %) := n(T) + n(%).
e i(%,%) := codim(%, ¥) + w(%, %), where w(Z, 2) := w(X) + w(X).
o {(3,%) := |(%,%)] — nz(¥), where |(Z,3)] = || + 2.

Remark 2.10. Let us just mention what the purpose of these functions are. The integer ¢(3, f]) will be the
degree of the cohomology group on which we will get some description. The integer (3, f]) will be used as a
counter in several induction arguments, and ¢(2, %) (as well as |$|) will be a bound on the twist by Ox (a)
we can allow in the statements of our results.

It is straightforward but crucial to observe how those notions behave with respect to the successors
introduces in Section 2.3.

Proposition 2.11. For any A\-setting ¢ and any A-pair (3, f]) we have:
1. g(s1(%0)) > ¢(So) and g(s1(, %)) > ¢(3, %),
q(s2(Z0)) = q(Z0) + 1 and q(s2(X, %)) = q(%, )+ 1.

i(s1(20)) < i(30) and i(s1(%, %)) < i(%,X).
(s2(

o

4. i(s2(%0)) < i(So) and i(s2(%, %)) < i(%,%).
5. |s1(Z0)| = o and t(s1(Z, %)) = t(T, X).
6. |s2(0)| = o] — 1 and t(s2(%, %)) = ¢(2, %) — 1.

We are now in position to state and prove our vanishing result.

Lemma 2.12. Take a A-pair (Z,ENZ). Take a € Z and j € N. If j < q(%, ENI) and a < t(Z,ENZ), then
H (Q(E’i)(a)) = 0.
Remark 2.13. If we specialize this lemma to Y= (X,0,...,0), X = (X,0,...,0,(f1,...,¢)) and a = 0, we

obtain that H’(X,S4Qx ®---®5%Qx) = 0if j < dim X — Zle min{e¢, ¢;}. This is the same conclusion as
in Briickmann and Rackwitz theorem. Therefore Lemma 2.12 can be seen as a generalization of their result.



Proof of Lemma 2.12. We make an induction on (X, f])

If i(2,%) = 0: Then ¥ = (P, \%) and & = (PN, \0), it is a straightforward induction on nz(A°) using
the symmetric powers of the Euler exact sequence.

If (%, f]) > 0: By Proposition 2.11 we can apply our induction hypothesis to sl(E,i) and sqo(X, f])
Observe also that if a < ¢(X,Y%) then by Proposition 2.11 we get a < ¢(s1(2,X)) and also a — deg(2, %) <
t(s2(X,X)). We apply our induction hypothesis and Proposition 2.11 to obtain the vanishings

H (@29 (@) =0 for j <q(S5) < as(2,5)), (6)
H (QS2<25>(a — deg(%, i))) =0 for j<q®3)+1=q(x(7). (7)
By Proposition 2.7 we have the following exact sequence
0= Q2D (g — deg(%, %)) = &5 () = Q& (g) 0. (8)
It then suffices to use (6) and (7) in the cohomology long exact sequence associated to (8) to obtain the

desired result. O

2.5 Statements for the tilde cotangent bundle

In this section we will prove the first half of Theorem A, to be precise, we will describe the map ¢ and
give the announced description of im(g). In fact, to prove this result we will need to prove a more general
statement. Before we state our results we need more notation and some more definitions. If ¢ € N and if
A:=(A1,..., ) is a k-uple of integers such that \; > ¢ for any i € {1,...,k} then we set

A== ()\1 —f,...,)\k —f)
If we have two A-settings of the same dimension %1 = (X,, A%, ..., \?) and £ = (X,, u%, ..., uP), we set
YU = (Xp, AU, NP U pP).

Definition 2.14. Take a A-setting ¥ = (X,,, A%, ..., \?) where for all 0 < j < p we denote M = (A{, M),

. ?omy
We say that X is simple if for any 1 < j < p and for any 1 <@ < mj, A] > j. More generally, we say that a
A-pair (3,X) is simple if ¥ and ¥ are simple.

It is easy to observe how simplicity behaves with respect to the successors s; and ss.

Proposition 2.15. If ¥ is simple, then s1(X) and s2(X) are simple and moreover
q(51(2)) = q(52(2)) = ¢(3) + 1.
Definition 2.16. If ¥ is simple, we define
Yhim = PV, AU —TH U (A2 =20 U---U (WP — pl)),

and
p

p p
bs ::Zei 1+ij :Z€i+
i=1 A i=1 J

j=i

p

J
m; E €.
1 i=1

10



Fix a simple setting ¥ = (X,, A", ..., \?) as above. Note that for any ¢ € {1,...,p} one has a natural
morphism

O[P’N i) OPN (€1>

which induces a morphism
0P (g) - P (0 + ¢y).

This induces an application in cohomology,
HY (@ (a)) -2 HY (O™ (0 + €1)),
which we will still denote -F;. This should not lead to any confusion.

Similarly, taking the symmetric powers of the application (2), for any ¢ € {1,...,p} and for any m € N
one has a natural morphism

Sy 5 S Qi (e5).
Now fix j € {1,...,p} and k € {1,...,m;}. Set
o= UM DU UV G- DD U, — G, N — )
7= Mgy = dree s Ay, = DUV = G+ 1D U U (W = pI).

So that QFim = ng\, ® SMI ey ® ﬁgi, As above, we get a morphism

My EE GMTTHI L ().

~_ 1 ~_ 2
If we tensor this morphism by QgN, QgN and Opn (a) we get a morphism

~ -dFi{j’k} ~ 1 Nl ~ 2
OFim(a) = QN @ ST Qe @ Uy (a + €),

which yields a morphism

N (&2 APy N &t MN_jt+15 on’
H (Q hm(a)) L (]P’ QI © SN QPN®QPN(a+ei)).

We are now in position to state our result.

Theorem 2.17. Take a simple A\-setting ¥ = (X,,\°,...,A\P) as above. Take an integer a < |X|. Then,
there exists an injection

HI®) (ﬁz(a)) & g (ﬁznm (a— bg)) .

Moreover,
p

@@@®%Mﬁkmmﬂﬁmwwﬁ

i=1 j=ik=1

To simplify our presentation, we will decompose the proof of Theorem 2.17 in a couple of propositions.
The following proposition describes the map .

11



Proposition 2.18. With the notation of Theorem 2.17. Let q := q(X). There is a chain of inclusions:

HY(92%(a))

I

H! (QSZ(E)(a — deg E))

oy HIt2 (Qsi(z) (a —degX — degss (E)))

k—1
— HIF ((NZS,;(E) (a - Z deg sé(E)))

=0

N—qg—1
— HY (ngq(z) (a Z degsé(E)))
i=0

And moreover
1. sY7UE) = S
2. YN degsh () = by.

Proof. This is an induction on i(X).
If i(X) = 0, the result is clear since ¥ = (P, \?) and therefore ¢ = N, by, = 0 and X = Bjp,.

Now suppose i(X) > 0. Then we can suppose, by induction, that the result holds for so(3) which is simple
and satisfies g(s2(2)) = ¢(£) + 1. Consider the exact sequence

0— 2 (a — deg %) — ) (a) —» O¥(a) — 0.
By Proposition 2.15 and Lemma 2.12 we obtain
H ((252(2) (a — deg 2)) = H (551@)(@)) =0if j<gq
By looking at the long exact sequence induced in cohomology we obtain an exact sequence
0— HY (ﬁz(a)) — gt (ﬁsw(a — deg z)) — gt (ﬁs@(a)) . 9)

Applying the induction hypothesis to s2(3) we get the desired chain of inclusions.
Now observe that so(3)1im = Xiim, and therefore, by induction, we obtain séqu(E) = Ylim-
To see the last point, we have to prove that by = by,(x) + deg . If AL = = N = 0, then degZ = ep,

by = ) i € and by, (xz) = >or 11 ei, and therefore by = bg,(x) + degX. Now if there exists 1 < j < p such
that A/ 7é 0. Set, as usual, jo := min{j > 1 / M # 0}, so that deg® = e;,. Then m; = 0 for all 1 <7< Jo
and therefore

Jo—1 Jo J

P P
bsy(z) = Zez Z mgzeerZez (my, — e, = Z€z+ Z ijeifejO:bgfdegE.

Jj=jo+1 =1 =1 =1 Jj=jo+1 =1
O
The map
He (ﬁz(a)) = HY (ﬁzﬁm (a— bg))

in Theorem 2.17 is just the composition of all the injections in Proposition 2.18.
We will need an easy linear algebra lemma.
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Lemma 2.19. Take a commutative diagram of vector spaces

g f1

A——-B——C
\ lhl l;u
f2
D—sF

such that g,h1 and hy are injective, such that f1 o g =0 and such that g(A) = ker f1, then

©(A) = h1(B) Nker fa.

The key observation is the following proposition.

Proposition 2.20. With the notation of Theorem 2.17. Let q := q(X). There is a commutative diagram

.Aq

Hot (ﬁs@ (a))

He (ﬁz(a)) d Hat! (552@ (a — deg z))

Hatk (65’5(2) (a - Zf:_ol deg SZQ(Z))) ek Hatk (QSI;I =1(2) (a - Zf:_f deg Sé(z)))

fatk (§S§+1(E) (a B Ef:o deg 812(2))) 'AL"*; Fratk+1 (ﬁsg s1(2) (a — Zle deg SZQ(E)))

HN (Qsé\]*q(E) (a _ f\LBQ*l deg SZQ(E))) $ HN (Qsé\’qul s1(2) (a _ Zfiﬁf}*l degsé(z)))

where all the vertical arrows and the map ¢ are injective. The maps -Aqyy are described as follows. Let
Y= (Xp, A0 AP). If AL = = WP =0 the map -Agik is just the map -F, induced by Opn — Opn (ep).
If there exists 1 < j < p such that N # 0, set jo := min{j > 1/\ # 0}, then the maps -Aqtr are maps
induced by -dF}, so that -Aq is the one induced by the map appearing in the exact sequence (9) and the map
Ay is just -dFJ{UJ“’l}.

The proof of Theorem 2.17 now easily follows by induction from Proposition 2.20 and Lemma 2.19.

Proof of Theorem 2.17. We proceed by induction on i(X). If ¢(X) = 0, there is nothing to prove. Now
suppose (%) > 0. With the same notation as above. Thanks to Proposition 2.20 we obtain the following

commutative diagram, whose vertical arrows are injective.

Ha (QE(Q)) 'y gatl (ﬁw(z) (a — deg 2)) M gen (Qsl(z)(a))

I |

N—q—

HY (ﬁsé“q@ (a— bg)) AN gN (ﬁ% Y (g - by 4 deg(Z)))

13



By Lemma 2.19 we obtain im ¢ = im ¢s Nker(-An). Now it suffices to apply the induction hypothesis to
s2(X) to obtain the announced description of im @9, which induces the announced description for im . [

We now give the proof of the proposition.

Proof of Proposition 2.20. Let ¥ = (X,, A", ..., \"). We need to treat two cases.
Case 1: N\l = ... = X\ =0, then 51(X) = s2(2). Therefore one has for any k£ > 0 a commutative diagram

0 0

~ k+1

. Fy o~ .
Qs2 (%) (a — Zf:o deg SZQ(Z)) L gn(®) (a — Zle deg SZQ(Z))

S 1 Fp o~ k- — ;
Ot sk(®) (a o Zi@;ol deg SZQ(E)) _ 7t s 515, (D) (a . Zi_c:ll deg Sé(z))

- ) Fy o~ k-1 _ )
Qs () (a - Zf;ol deg SE(E)) Lo £ et ) (a - Zlel deg 512(2))

0 0
where the horizontal maps are just multiplication by F},. Here the vertical exact sequences come from the

exact sequence (9) applied to s5(X). Since ¥ is simple, we see that s5(X), sb~1s; (%), s5T1(D), sksi (D),

s155(%) and s; 8571 s;(X) are simple, and that

q(s5(2)) = q(s5 ' s1(2)) = a(X)+k and q(s571(2)) = ¢(s551(8)) = q(s155(%)) = gls185 ' s1(%)) = ¢(8)+k+1.

By considering the diagram in cohomology associated to the above diagram and by applying Lemma 2.12,
we obtain the following commutative diagram

0 0

~ k-1

Hook (050 (o= 47 degsy()) ) —2 HOtH (05191 (0 = 247 degsi(5)))

~ b1 . -Fp ~ )
k1 (ng+ =) (a — 5k deg SQ(E))) TP gatktt (Qs’; s1(3) (a ~ ¢ | deg sg(E)))
now we put all those squares together to obtain our claim.

Case 2: there exists 1 < j < p such that M # 0. Set jo := min{j > /N # 0}. First let us explain what
the maps -Ag4k are. Observe that for any 1 < k < N — g, the bundles 055 and Q% 1) are of the form

=) = 0% e Sy, © 0%
Ost tsi(®) - % ® SHlﬁXi ® Q2
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where ¥; and X, are simple. The map -dFj, is then the map induced by Idy, ® -dF}, ® Ids,. As before we
have a commutative diagram

~ k41 -dF;

OssTH(®) (a _ Zf:o deg 512(2)) T shsi(®) (a — Zle deg 512(2))

-B -B

~ . dF;, ~ _ .
Q51 sk (x) (a _ Zf:_ol deg SZQ(E)) _ P os skl (D) (a o Zi_cz—ll deg Sé(z))

~ . “dFj, ~ k— .
G40 (0= Sl degsh(%)) — 5 0% (= 17 degsi (%))

0 0

where the map -B comes from the short exact sequence (9) applied to s5(X). More precisely, the map -B will
be either induced by -F} for some j, either induced by -dF} for some j. If -B = -F}; then the commutativity
is clear. If - B is induced by some map -dF}; then there are two cases to consider. Recall that by construction
each of those maps will be the identity on all except one term in the tensor product. So either the maps
-B and -A act on the same factor of the tensor product, either they act on different factors. If they act on
different factors, the commutativity is clear. If they act on the same factor it suffices to use the commutativity
of the following diagram:

.dF ~
Q2 14
i71\X1_ (7261') > S QXi—l‘Xi

l -dFy, l -dFj, l -dF;

0— o S@XH\X (—e:) AP geeigy

0—— S 10y (—e;) —= SQx, (—e;) —=0

icilx, = Se+1QX1‘ —0.
i

Now the rest of the proof follows as in the first case by looking at what happens in cohomology. O

2.6 Twisting the Euler exact sequence

From the previous section, we have a good understanding of the groups H?*) (ﬁz (a)) when ¥ is simple.

Now we want to use this to deduce a similar description for the groups H?*) (Qz(a)). To do this, we
will use cohomological technics similar to the ones we used in the previous sections, but instead of building
everything on the restriction exact sequence and the conormal exact sequence, we will use the Euler exact
sequence. Again, everything will be based on a suitable exact sequence, and to define it, we need another
way of taking successors for simple pairs.

Definition 2.21. Take a simple A-pair (2,%) such that ¥ := (Xp, A0, o) AP), Y = (XP,XO, ..., AP) and
such that nz(¥) # 0. Set jo := min{j =0 / M # 0}, ig :=min{i > 1 / M]° # 0} and let

Y = (Xp,o,...,o,(Ag§+1,...,A{gm),vo“,...,AP)
S o= (X A0 ML N0 U (AR, Mot L)
7= (X, A0 AT U (A — 1), Mot L),

15



and set _ _ _ _
hi(2,3) = (X,¥) and he(%, %) = (¥,¥").

We make an elementary observation.

Proposition 2.22. If (%, ENI) is a simple pair such that nz(X) # 0, then hq (X%, ENI) is simple, q(h1(%, ENI)) =
Q(Ea 2)7 and q(hQ(Za X)) = q(E, E)'

The following proposition is crucial to us.
Proposition 2.23. With the above notation.

1. The Euler exact sequence (3) yields an exact sequence
0 QED 4 ghE) | gh(85)
2. Suppose codim(X, f]) > 0. For any 1 <i,j < 2, there is an isomorphism

th Sj(E,i) g QS]‘ hi(E,i).

3. Suppose codim(X, ENJ) > 0. Set b :=deg(Z, ENI) There is a commutative diagram
0 0 0

| | |

0 QSZ(E,i)(_b) QO)s2 hl(E,i)(_b) Q)82 hg(Z,i)(_b) s 0

| l l

0 s1(3.3) st h1(2,5) st h2(3,%) 0

(10)
L | |
0 —— Q&2 —u  gnE® 5 h®E2 4
| | |
0 0 0

Proof. The proof is very similar to what was done in the previous sections, and we give only a rough outline
of it.

1. With the notation of the definition of h; and hs, it suffices to take the )\gg’s power of the Euler exact
sequence to get

Ao Ao~ Mo_1y
0— 8%y, — 800y, — 570 Qyx. —0.
0 Jo Jo
Then one just has to tensor this by a suitable tensor product of symmetric powers of 2’s and O’s.

2. One just has to check the different cases. Most of the time the announced isomorphism is just the
identity, but in some cases, the isomorphism is a reordering of some factors in the tensor product under
consideration.

3. One takes the symmetric powers of Diagram (4) for suitable X and Y, and twist it by a suitable tensor
product of symmetric powers of {¥'s and 's.

O
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2.7 Statements for the cotangent bundle

We are now in position to state and prove the second half of Theorem A. Observe that for any simple A-setting
(3,%), the Euler exact sequence (3) yields a morphism Q> 4 QFYS. Observe also that QimUSim =
QEUZ)im (just as in Proposition 2.23, this isomorphism is just a reordering of the different factors of the

tensor product). Therefore, this induces a map & : Q%= ® Q%tm 5 QOUSim | As usual we will also denote
by & the map induced between the different cohomology groups. We have the following.

Theorem 2.24. If (%, §~3) is a simple pair and a < t(%, §~3) then, there is a commutative diagram

=) (Q<25>(a)) — N (QEnm ® O%im (q — by — bi))

Ha=E) (Qzui(a)) _® _  gN (Q(Eui)um(a — by — bi:))
where all the arrows are injective and where @ is the map from Theorem 2.17. Moreover, im ¢ = im @Nim &.

We would like to point out a special case of particular interest (which was denoted by Theorem A in the
introduction).

Corollary 2.25. Tuke integers ¢1,...,0 > c take an integer a < €1+ ---+ i, — k, let ¢ := n — kc and
b:=(k+1)>5 ,e;. Then one has a commutative diagram

He (X, Qgﬁmm(a)) gV (]P’N, QLo (g — b))
T )

Such that:
1 img =N, (ker(~E-) N*_, ker (-dﬂ.{j})).
2. imp =impNimé&.

In the corollary, the map -dFZ-{j Vs just the map

P -drl? P —c j—cC —c
HN (]P)N, QI([J’ZJ&[fc ..... Lp—c) (a B b)) di HN (]P)N, QI(PZ;[ yoelj—et+ 1,4 )(a —b+ ez))

induced by the map
SZJ_CQPN ‘lﬂ):‘i S@—c-{-lﬁPN (61').

Remark 2.26. Let us consider more precisely the case kK = 1 in Corollary 2.25, suppose for simplicity that
N = 2Ny is even. At first sight, it might seem that if ¢ > n this result doesn’t tell us anything, but in fact,
we can still get some information by using a simple trick. Indeed, suppose we want to construct symmetric
differential forms on X, then it suffices to write Y = HyN---NHy, and X =Y N Hy,41 N --- N He.
Corollary 2.25 then gives us information on HY(Y,S™Qy ). And if we are able to construct an element
w € H(Y,8™Qy) one can consider the induced restriction wx € H°(X, S™{x). Similar arguments can by
done when N is odd. We would like to mention that in the proof of our main application in Section 4, we
will in fact use a similar trick with Theorem 2.17 and not only Corollary 2.25.
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Proof of Theorem 2.24. Take a simple A-pair (X,3) where ¥ = (Xp, A% ..., AP) and Y= (XP,XO, CLAP).
We make an induction on nz(X). Let ¢ := ¢(X,X). If nz(X) = 0 there’s nothing to prove. We now suppose
that nz(X) # 0. Diagram (10) yields a commutative square

Ha (Q(Ei)) . Ha (th(Ei))

| !

Hat! (982@5)(— deg(z,i))) s [t (QSzh1<25>(— deg(z,i)))

where, by applying Lemma 2.12, all the arrows are injective. Now set

R i=1 _
HY = HTH <Qséh’f@az> (a — ) degsh (D, 2))) :

£=0

Putting all the above cartesian squares together, we obtain the following commutative diagram whose arrows
are all injective.

q q q q q
Ho,o — Ho,l Ho,k ? Ho,k+1 Ho,nz(z)

Hffgl —_— Hﬁl _— : :

L] !

H{]JFJ [N e — Hquj RN Hquj [N (11)
7,0 Jik Jik+1
q+j+1 q+j+1 q+j+1

Hiio — e Hin —— Hpgn, ——

J | | !

N N
HY 0 —— oo HN_ s

Observe that

Hg,nz(z) = HY (QEUE (a’))
HY_ ,0 = HY(Q%m 0% (a - by — bg))
HY sy & HY (@505 (0 — by, — b)),

We would like to point out that to make the proof completely precise, one should take into account the
different isomorphisms coming from Proposition 2.23.2. But for simplicity we neglect those details here. Set
¢ to be the map H&O — HJZ\\/Cq,nz(z)- Observe also that the composed map Hg,nz(z) — HJ]\\,C%DZ(E) is just
the map ¢ from Theorem 2.17. This gives us the commutative diagram of Theorem 2.24. The proof of the
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rest of the statement is similar to the proof of Theorem 2.17. When one looks at the long exact sequence
associated to Diagram 10, we get a commutative diagram

0 —— AT (Q@fv(a)) 4 He (Qh1<2i>(a)) . Ho (th<25>(a))

| | !

0 — Hot! (982@5)@ - b)) gt (Q ohi(25) (g — b)) . fatl (9320’12@5)@ - b))

where b := deg(X, f]) A quick induction yields a commutative diagram

&q

0——— 11 (259)(0)) 1 (259)(a)) 1 (0459 ()
R l
0—=HV (QN ) (g — bzyi)) _ OGN (QN T(EE) (g — bzyi)) T gN (QN Tha(25) (g — sz))

Where bz,i = by + bs. By Lemma 2.19 we obtain
im ¢y = im g Nker(7) = im @2 Nim &y.

From Diagram 11 one can extract the commutative diagram

Hg,O Hg,l Hg,nz(E)

N N N N
Hy_go0—= HN_qa N—gnz()

Our induction hypothesis is that im ¢’ = im &’ Nim @. Using the fact that im 1 = im @9 Nim &N, we get

imp =& (Impr) =& (IméEv)NE (Imps) =im&Nimy =im&Nim@Nimé =im& Nim @.

3 Applications

We give different applications of theorems 2.17 and 2.24. These two statements basically give us a way of
computing different cohomology groups on complete intersection varieties by reducing the problem to the
computation of the kernel of a linear map depending (in some explicit way) on the defining equations of our
complete intersection. In general computing this kernel is a difficult question because of the dimension of
the spaces that are involved. However, in some special cases, one can make those computations, and this
gives us some noteworthy conclusions.

3.1 Explicit computation in Cech cohomology

In this section, we explain how to make theorems 2.17 and 2.24 explicit via the use of Cech cohomology.
We will use the standard homogenous coordinates [Zp : ... : Zy] on P and the standard affine subsets
U, .= (Zz 75 0) C PN, Let 4 := (Ui)OgigN-
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Remark 3.1. In some situations it is more natural to use other open coverings of P more suitable to the
geometric problem under consideration. See for instance Section 3.2 for an illustration of this.

Recall, see for example [11], that if a > N + 1 then

I

HN (PN, Opn (—a)) = HY (4, Opn (—a)) b ﬁ-c (12)
W

10,...71N21

Recall also that N
Qpv = EP Opn (—1)dZi = V ® Opw (1),
i=0

where V = G}i]\;OC-dZi. Now take integers ¢1,...,¢, > 0and a < {1 +---+ £ — N — 1. We have

uv (IPN, ﬁﬁfgv'"’m(a)) o Yhats) @ EN (PN Opn(a— by — - — 0y))
1
o~ V(él,...,ék) Q _ _ .C

i0yeemin 1
io+-tin=~C1+ -+l —a

Therefore an element of HY (PN, (NZI(P% """ e’“)(a)) can be thought of as an element of the form

T Az @ - @ dz7
Z le,... Jr Z[ :

Jiyees I, TENN T

[J1|=L1,.. | Tk [ =Lk

I|=tr bt ly—a
I>1

Where wﬂl,___Jk € C and where I := (1,...,1) € N¥*L If K = (ko,...,kx) and J = (jo,...,jn) are both
in NV we write K > J if k; > j; fqr any 0 <4 < N. We also use the standard multi-index notation: if
I=(io,...,in) € NN+ then 27 := Z{° ... Z and dZ! := dZi° ---dZ .

We now describe explicitly the maps -F and -dF. Start with a monomial Z™ ¢ HY (PN, Opn(e)) of
degree e, where M € NV+1. Take A = (¢1,...,/;) as above. The multiplication by Z™ induces the map

ay (IEDN, M (a)) = av (IP’N, W (a + e))
Az @---@dZ’x -
— dz\@-@dz’k gM _ ] T — it I+1>M
“ 77 “ { 0 if T+1% M.

If we take any F' € H°(PY, Opn (e)), it suffices to decompose F as a sum of monomials and extend the above
description by linearity.

Now consider an element & = ZMdZ; € H° (IPN, QIPN (e)) . Fix 1 < j < k. This induces a map

HN (]PN,QI([&,---/H(G)) N gy (]P’N,ﬁgj\l,"”’éj-i_l""’ék)(a+e))
1®... dz7i ... .
oo 2Nz gy o [ ERESG e Gl i [ 11> M
2! 0 if I+1% M.

again, it suffices to extend by linearity to describe the maps -dF ¥} for any j and any F' € HN (PV, Opn (e)).
The maps & are understood very similarly and we don’t provide all the details here. However, because in our
computations we will have to use the coboundary map in the long exact sequence in cohomology associated
to a short exact sequence, we would like to recall how such a coboundary map can be understood. Suppose
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that X C PV is a projective variety, that {( is an open covering of X and that one has the following exact
sequence of sheaves on X
0-FLEL6-0

This gives us the following maps between the Cech complexes:

CF (U, F) —5— CF (U, &) —2— CF(31,G)

CrL(8L, F) 22 okl (g, &) LS Ry, g)

Here d denotes the Cech differential. The coboundary map 6 : H*(4,G) — H*'(4, F) is obtained by
applying the snake lemma in the above diagram (we suppose that i is sufficiently refined so that one can
make this work). The problem we will be facing is the following: suppose that §; is injective and that we
have (04,4, ) € ZFF1(4, F) representing a class o € H*1(8(, F) such that ¢ € im(Jy), how to compute a
Cech representative for 6,;1(0) in C* (84, G)? This is just a diagram chase, and goes as follows: first compute
¢k+1(0iy...i ), by hypothesis, there exists (i, 4, ) € C¥(4, E) such that pri1(0iy.. i) = d(Tiy.... ir)- And
then 5,;1(0) is just represented by the cocycle pi(Ti,...., ). For us the maps ¢ will be either multiplication
by F' or multiplication by dF for some polynomial F' and py will just by a restriction map.

.....

3.2 The case of plane curves

Let us just explain how we can use this strategy to construct the “classical” differential form on smooth
curves in P? of genus greater than 1. Let F € C[Zy, Z1, Z2] be a homogenous polynomial of degree e > 3.
Such that the curve C := (F = 0) C P? is smooth. For any i € {0, 1,2}, set F; := 66_2 and U} := (F; #0)
and U := (Ul )o<ica. Because C is smooth, ¥ is an open covering of P2. From Proposition 2.18 we get a
diagram whose arrows are all injective

HO(C, Q) —2 HY(C,0c(—¢))

S b

H(P?, Op2(—2¢))

By Corollary 2.25 we get that im(p) = ker(-F) Nker(-dF). We will work in Cech cohomology with respect to
UF. For any degree e — 3 polynomial P € C[Zy, Z1, Z5] consider the element ™? € H?(P2?, Op2(—2e)) given

by the following cocycle:
~p P

%o = BEE
By Euler’s formula we have eF = FyZy + F1Z1 + F>Z5. Hence, we obtain

€ H*({UF, Op2(—2e)).

P 1 P Z VA Z
~pP 0 1 2
Wo12 (00+ 141+ I'2 2) <F1F2+FF2+FF1

_ —_ 72 F 2 (—
e ) 0 € B2, O (—c))
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And because dF = FydZy + F1dZy + FydZs we obtain similarly

dZy  dZy  dZs
+ +
P, | FoFy | Fol

- ar = ( ) =€ B (0]

hence, we see that w2 € im(@). This already proves the existence of a tilde differential form on C' and
in fact, Corollary 2.25 even proves that this tilde differential form will yield a true differential form simply
because, with the notation of Corollary 2.25, im(&) = H?(P?, Opz(—e)). It remains to compute ¢~ (0F?),
to do so, we first compute @7 !(©2). This is done as follows:

P ( Zy Zy Zy > ~p

~ ~p |~ S ~P
wora - B = e \ AR + Fols + Foly Wiy — Wpp + @5 =d ((wij)0<i<j<2)

Where for each i < j, &) = (fl)ngZ—; for k € {0,1,2}\ {4, j}. Therefore, ! := =1 (wF?) is represented
by the cocycle (w”)o<z<j<2 Now we compute @ H@P1). Let 4,7 € {0,1,2} such that i < j and let k €

{0, 1,23\ {3, 5}

P Z
of - dF = (-1)F = 2%

e I} F;

P (ZydZ; ZndZ; ZpFpdZ
(FidZi—f—Fdej—f—deZk):(—1)’“;( RO 2k Rk k)

F; F; FiF;
But here we can use the relation F' = 0, so that Z,Fy, = —Z;F; — Z;F}, and therefore

~ P (Z.,dZ;, ZidZ; ZiF; + Z;F;)dZ, P/1 f 1 ;
wi];-dF:(—l)k— k + kA _( +Z; J) k :(_1)k_ . Zy  Z L Zk 2
(& Fj E FiFj e de dZZ de de
For any i € {0,1,2}, take 7,k € {0,1} \ {i} such that j < k, and set
P\ Z, Z
~P . (_ 1\t~ ¥ k
wi=CUTE a4z dz,
With this formula, it is straighforward to check that (@] - Flo<i<j<2 = d (@ )o<i2) » hence @0 :=

¢ H@wh?) = gy (@) is represented by the cocycle (! )o<i<2. To complete our study, we still have to
compute the corresponding element w™? € HY(C, Q¢ ). To do this, we only have to dehomogenize (a}f)ogigg.

We are only going to consider the chart Uy = (Zy # 0) = C? with coordinates (z1, z2) where z; = g—; and
Z9 = é Let f € Clz1, 29] (resp Q € Clz, z2]) be the dehomogeneization of F' (resp. P) with respect to
Zy. For 1€ {1,2} let f; := 7, observe that f; is the dehomogeneization of F; with respect to Zy. We let

Ul =UyNUF = (fi #0). Moreover, for i € {1,2}, we have

b _ZdZi—ZidZy 1| Zo Z
= Z2 T~ 72| dzy Az |
Hence if i € {1,2} and j € {1,2}\ {¢} we obtain
_ P | Zy Z Ze3Q 1Q
P __ ( q\yi_~ 0 7 _ 2 .
wi - ( 1) dZO de - ( 1) Ze 1fz ZOdZZ ( ) e f dZJ

From this we obtain that w°|y, € H°(Uy N C,Q¢) is represented in Cech cohomology with respect to
(U] NnC,USNC) by the cocycle (fQ%, Q%), as expected.

Remark 3.2. It is true that this computation is longer than the usual one, however the strategy is a bit
different. Indeed, the classical approach consists in finding a differential form locally (on Uy N C') which is
done by a “guessing” process, after what one checks that the constructed differential form extends on C.
Here we somehow approach the problem the other way around, using Corollary 2.25, once we have found the
element wf},, we already know that we have a global differential form on C, and the entire computation just
comes down to compute a local representative of it, this process is long but of a mechanical nature. In our
opinion this second strategy reduces the importance of the “guessing” part and is therefore more suitable for
higher dimensional generalizations.
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3.3 Optimality in Briickmann and Rackwitz theorem

We are now in position to prove optimality in Theorem 1.1. By applying theorems 2.17 and 2.24 to a very
particular complete intersection, we will prove the following (so called Theorem B in the introduction).

Proposition 3.3. Let N > 2, let 0 < ¢ < N. Take integers £1,..., 0, =2 1 and a < l1 4+ -+ ¥ — k.
Suppose 0 < g:=N —c— Zle min{c, £;}. Then, there exists a smooth complete intersection variety in PN
of codimension c, such that

HY(X,5%Qx @ @ S*Qx(a)) # 0.

We will construct an example as follows. Take a ¢ x (N + 1) matrix

aio aiN
A= : ,
Qco acN
where the a;; € C are such that for any p € {1,...,c}, the p X p minors of the matrix A are non zero. Fix
an integer e > 1. For each p € {1,...,c}, set

N
Fp ::ZanX; and Xp = (Fl ZO)QQ(FPZO)
j=0

One easily check that X; is smooth for any i € {1,...,c}. We will show that if we take e > 1 this example
is sufficient to prove Proposition 3.3

3.3.1 The simple case

We first treat the simple case. Take a simple setting ¥ = (X, AL, if for any 0 < j < ¢ one denotes
N = (M,...,N,,) where X} > j for any 1 < k < mj. In our situation, one obtains: n(X) = >°7_, jmy,
nz(X) = 30_ my, [Siim| = X25_0 2op2y (A, — J) and by = e(c + n(X)). The statement is the following.

Proposition 3.4. Take X = X, and X as above. Take a < t(X). If

N 414 2|Sm| —a

O then  H®(0%(a)) # 0.

Proof. Tt suffices to apply theorems 2.17 and 2.24 to a non-zero element of the form
P c i -
SR ZodZy — 7147, Ak’JGHN@N,QE“mafb )
Zg_l..,ZZeV—l gg( 0&41 1dZo) aa ( =)

w

Where P € C[Zy, ..., Zn] is a homogenous polynomial of degree (¢(X)+1)e+a—N —1—2|%}iy,|. The condition

on the degree just insures that such an element exists. Our statement follows at once using theorems 2.17

and 2.24 and the description of Section 3.1 with F,, = Z;VZO ap;Z5 and dF, = e Z;'V:o aij;_lej. O

3.3.2 The general case

To complete the proof of Proposition 3.3 we also have to treat the non-simple case. If ¥ is not simple,
we can not apply directly theorems 2.17 and 2.24. We need another type of successors. Take any setting
Y = (X, A% ..., \P) where M = (M],.. ., A{nj). Suppose, without loss of generality, that for all 1 < j < p

and for all 1 < ¢ < m; we have )\g > 1. And suppose also that X is not simple. We define the successors
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c1 and co as follows: consider jy := max{l < Jj <p suchthat 31 <i<m; with )\g <j} and ig :=

min {1 < i < myj, such that )\{O < jo} . Set

a(D) = (Xp,)\o, N2 XL (A, g, NOFL .,Ap)
(X)) = (Xp,)\o, LN NI (0 1) gy, F .,)\p)
where p := ()\Jlb, U )\{8_1, )\{SH, cee /\;'gm) . With those notation set also deg’ X := e,. As in Proposition

2.7 we obtain an exact sequence
0— Q2™ (—deg’ ©) - Q1) 5 Q¥ 0.
We can now prove the following.

Proposition 3.5. Let ¥ be any setting, and denote q := q(X). For any integer a < t(X), there exists a
simple setting ¥’ such that ¢(X') = q, and an injection

He (QZ/ (a)) < H(Q%(a)) .

Proof. Of course, we can suppose that ¥ is not simple. Observe that ¢(c2(X)) = ¢(X)+1 = g+ 1. Therefore,
applying Lemma 2.12, we obtain

He (962@) (a — deg’ 2)) = 0.

This yields an injection
He (ch(z) (a)) < H7(Q%(a)).

It suffices now to observe that after a sufficient number r of iterations, we obtain a simple setting ¥’ = ¢} (%)
such that ¢(X') = ¢. By induction we therefore get a chain of injections

HY (QZ/ (a)) — He (QCI@(G)) s HY (Qc@) (a)) < H(0%(a)) .

The proof of Proposition 3.3 now follows directly from propositions 3.4 and 3.5.

3.4 Examples for the non-invariance under deformation

Applying theorems 2.17 and 2.24 to a very particular family of complete intersection surfaces we will prove
that the numbers h° (X,8™Qx) are not deformation invariant as soon as m > 2. Our example is the
following. Take o := (a1, a2) € C? and 8 := (1, 2) € C% Take ay,...,as € C such that a; # a; if i # j.
Take an integer e > 5 and set e; = | 5] and ex = [§]. Set

2
Fo = Zo+Z{+2Z5+ 25+ Z5 + onZg 27 + an Zy' Z5°
G = aoZy+ar1Zy +asZs + a3 Z5 + asZi + Pr1 Z5 277 + BaZy' Z37.

And set
Xopg=(Foa=0)N(Gg =0).

Proposition 3.6. With the above notation, we have:
1. h(Xo,0,5%Qx,,) # 0.
2. For generic o and 3, h°(Xo 5, 5*Qx,, ;) = 0.

24



Proof. The fact that h®(Xo o, SQQXU,O) # 0 is a very particular case of Proposition 3.4. The rest of the proof
is a straightforward computation, but we give it for the sake of completeness. Observe first that

H (Xo, 5%0x,. ) = H® (Xa,9,5%0x, )
By Theorem 2.17 and we obtain an injection H° (Xaﬁg, SQQXQVB) & g (PN, Opn (—4e)) such that

% (HO (XQ,B, SQQXQ,ﬂ)) = ker(-F,) Nker(-G) N ker(-dF,) Nker(-dGs).

Let ¢ € H* (PN, Opn (

since el = Zf 0 Zi %}; ,
shows that

—4e)), observe that ¢ € ker (-dFy,) if and only if ¢ € ﬂz Oker(

e Oker(

- OF,
imp = ker | - 97
i=0 ’

Now we proceed to a standart Gauss algorithm

az) Moreover,

) then ¢ € ker(-F,). A similar argument for G

o (52).

oG S, € I1 0k —
s =
geker( )mk (6_26) & {Z abe
1§z 9z, =
ZIE Z—-(eaoZoe +€161201 212) = 0
= {ZI‘EI%.ZB:—Z e -0
I35 P S A 0
fI—O V[Z(io,...,i4)/i0>€—1
& I . . . .
& =0 VI = (ig,...,14) [ ip > e1 — 1 and i > es.
Note that to do this, we suppose 1 # agay. Similarly, we find
I . .
LOF, BGB) 5 =0 VI—(’L(), . ,’L4)/Zl>€71
é.err(aZl)ﬁker(azl < {510 VI:(’L'(), ..,i4)/io>elandil>e271
I . . .
F, 6Gﬂ) & =0 VI = (igy...,04) [i2>e—1
§€ker( Z)ler(BZZ < {fIZO V[Z(io,...,i4)/’i2>€1—1andi3>62
I . . .
OF. =0 VI = (igy...,04) [i3>e—1
geker(azs)ﬁker( ) < {6120 VI:(iO,...,i4)/i2>elandi3>e2—1
and ¢ eker (95 ) nker (522) & { € =0  WI=(io, -+ ia) [is>e—1.
Now we just have to observe that any multi-index I = (ip,...,%4) with |I| = 4a satisfies one of those

conditions, because otherwise we would get

which is a contradiction. And therefore, if £ € im @, then ¢/ = 0 for all I. Hence, im ¢ = {0}.

de =g+ -4y

<2eat+e—2)+e—1<

4de — 4,

O

Observe that from this simple example, one can easily generate other families for which the dimension of
the space of holomorphic differential forms jumps.
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Corollary 3.7. For anyn > 2, for any m > 2, there is a family of varieties % — B over a curve, of relative
dimension n, and a point 0 € B such that for generic t € B,

RO (Yo, S™Qy,) > hO(Y;, S™Qy,).

Proof. Let 2 be the family of surfaces constructed in Proposition 3.6. Then it suffices to consider the family
2 x A for any (n — 2)—dimensional abelian variety A. O
4 Varieties with ample cotangent bundle

4.1 Statements

In this section we prove our main application of the results of Section 2. Our statement is the following
partial result towards Debarre’s conjecture (denoted by Theorem D in the introduction).

Theorem 4.1. Let N,c,e € N such that N > 2, ¢ > 3J\£1_2 and e > 2N +3. If X C PN be a general complete

intersection of codimension ¢ and multidegree (e, ..., e), then Qx is ample.
Remark 4.2. Observe that the condition ¢ > 3%=2 can be rephrased by codimpy (X) > 3dim(X) — 2.

Since ampleness is an open condition (see for instance Theorem 1.2.17 in [12] and Proposition 6.1.9in [13]),
it suffices to construct one example of a smooth complete intersection variety with ample cotangent bundle
satisfying the hypothesis of the theorem to prove that the result holds for a general complete intersection
variety. We will construct such an example by considering deformations of Fermat type complete intersection
varieties. To do so, let us introduce some notation.

Fix N >2,e € Nand e € N*. Set A, :=C[Zy,...,Zn]c. For any s = (sg,...,sn) € APNT! we set:

N
FiZ)=F(s,Z):= > s Zf. (13)

i=0
This is a homogeneous equation of degree ey := € + e and for a general choice of s, it defines a smooth

hypersurface in PV which we will denote by X,. For any m,a € N, and any smooth variety X C PV, we will
write Lx := Opay)(1) and LY (—a) := LY ® 75 Ox (—a). With those notation we have the following.

Theorem 4.3. Let N,c,e,e,a € N such that N > 2, ¢ > % and set n := N — c. Suppose that € > 1 and
that e > N +1+a+ Ne. Then for any 0 < j < N there exists s7 € A?NH such that X := Xg N+ N Xge
is a smooth complete intersection variety such that L% (—a) is nef.

Let us first prove that this result implies Theorem 4.1.

Proof of Theorem 4.3 = Theorem 4.1. Takea=¢=1,e > N(1+¢)+a+ 1= 2N + 2 (this is equivalent
to eg = 2N +3) and ¢ > 312_2. Then Theorem 4.3 implies that there exists a smooth complete intersection
variety X C PV of codimension ¢ and multidegree (e,...,e) such that L% (—1) is nef. But this implies
that L% is ample and therefore that Lx is ample, and thus, 2x is ample. But since ampleness is an open
condition in families, we deduce that a general complete intersection variety in PV of codimension ¢ and

multidegree (e, ..., e) has ample cotangent bundle. O

The proof of Theorem 4.3 is an induction based on the following technical lemma.

Lemma 4.4. Let N,c,e,e,a € N such that N > 2, ¢ > 3]\52, e>lande> N+1+4+a+Ne. Setn:= N —c.
For any 0 < 5 < N take s e A?N“ such that X := Xga N---N Xge is a smooth complete intersection
variety. For any i € {0,...,N}, set H; := (Z; = 0) and W; := X N H;. We look at P(Qw,) as a subvariety
of P(Qx). Then, for a general choice of st,...,s¢, there exists E C P(Qx), such that dim E = 0 and such

that

N
Bs(L% (~a)) € | JB(Qw,) UE
=0
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The proof of Lemma 4.4 is the content of Section 4.2 and Section 4.3. But for now let us explain how to
obtain Theorem 4.3 from Lemma 4.4.

SN

Proof of Theorem 4.3. Let H be a hyperplan section of X. Fixing ¢ > , the proof is an induction
on n = dim X (or equivalently on N). If n = 1, then X is a curve. By the adjunctlon formula, Kx =
Ox(c(e +¢€) — N —1). Therefore Qx(—a) = Kx(—a) is nef.

Now suppose that n > 2. We have to prove that for any irreducible curve C' C P(Q2x), C - L% (—a) > 0.
Certainly, if C' ¢ Bs(L%(—a)), C - L% (—a) > 0. Now suppose that C C Bs(L% (—a)), from Lemma 4.4
we know that Bs(L'% (—a)) C U P(Qw,) U E for some zero-dimensional set E. Therefore, there exists
1€ {0,...,N} such that C C P(QWI) But on can view W; as a codimension ¢ complete intersection variety
in H; = PV~ defined by equations of the same type than X (with one less variable). Observe moreover that
Lx(—a)lpw,) = Lw,(—a) and that if ¢ > 31\[[2, one has ¢ > M From our induction hypothesis we
therefore know that L;’Vzl(fa) is nef. Thus, I[,Tvlvj_l(fa) -C =20 and in particular (n — 1)Ly, - C > an H - C.
Hence,

TLL)(C:

(n—1)Lw, -C > o 1a7r}H~C’>a7r*H~C’.

n—1
And finally L% (—a) - C > 0. O

4.2 Constructing symmetric differential forms

To prove Lemma 4.4 we first need to construct sufficiently many symmetric differential forms on complete
intersection varieties of the above type, this is the purpose of this section. The setting is the following. We fix
N,c,e,e,a,r,n € Nsuchthat N > 2, N >c > %, a>0,e20,eza+N(E+1)+1l,r=e—1landn=N-—c.
For any 1 < j < ¢, we take s7 € AN*1 such that for any 1 < p < c and for any I := (i1,...,ip) € {1,...,c}%,
the set X! := X, N---NX sip 1S @ smooth complete intersection variety. Of course, this last condition holds
if the s%’s are general. We also denote X := X (19, For any 0 < i < N, any 1 < j < c and any v € A,,
we set a;(v) := Z;v and «;(v) := Z;dv + evdZ;. So that :

N N
F(s/,2)=> ai(s))Z] and dF(s',Z):=dFy(Z) =Y  ai(s])Z] (14)
i=0 i=0
For any i € {0,...,n} set U; := (Z; #0), U = (U;)ogicn and Ux = (U; N X )ogicn, Ux is an open covering

of X. Our first result is the following.

Lemma 4.5. With the above notations, for any I = (i1,...,in) € {1,...,c}, and for any degree e—a—Ne—

— 1 homogeneous polynomial P € C[Zo, ..., Zn], there is a non-zero element &'"F € HO(X,S"Qx(—a))
such that, when computed in Cech cohomology one has &1F = (~é’P, e ,(IJJIV’P) € H(Ux, S"Qx(—a)) with
ao(sg) -+ aj-1(sj_1)  ajpa(sjpy) oo an(sy)
1P _ (=1)7P | ao(s§) -+ aj—1(s§_1)  aj41(s5pe) -0 an(sy)
g zr | ao(sg) o ajoa(siiy) agpa(siy) o an(sy)
ao(sg) -+ ogoa(siy) agpa(sig) o an(sy)

Proof. For simplicity, for any i € {1,..., N} and any j € {1,...,c}, we write a{ = ai(s{), ozg = az(sz) and
F; = F,;. As in the statement, take I = (i1,...,4,) € {1,.. .,c}’;, and take (ip41,...,%.) € {1,.. .,c};;"
such that {i1,...,i.} = {1,...,c}. Forany j € {0,...,c} write I; = (i1,...,i;). We can apply Theorem 2.17
and Theorem 2.24 to the simple A-setting X = (X, A, ..., \°) where \' = @ if i # n and A" = n (note that
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q(¥) = 0). Here the order in which we intersect the different hypersurfaces to obtain X is crucial. We obtain
an injection

HO (X, SOy |x ®@ OX(—a)) S HN (PY, Op (—a — Neg))

such that

im(¢) = | () ker(-Fy,) | <ﬂ ker(~Fij)ﬂker(~dFij)>. (15)

j=n+1

Observe that our hypothesis on the degree ensures that e—a—Ne—N—1 > 0. Fix any degree e—a—Ne—N—1
polynomial P. Then we get a well defined element

~ P .
wé:iN = € HY (4, Opn (—a — Neg)) .
0 N

From (14) and (15) we see that Uué,’_li,N € im(p). To obtain the explicit description of @‘1(@5,’2\,) €

HO (ilx, S”ﬁxzn |X(—a)) we have to describe explicitly the inclusion ¢, to do so, we have to unravel the

proof of Theorem 2.17 in our situation. This inclusion is described in Proposition 2.18, applying this
proposition in our situation, we see that ¢ is obtained as the composition of the following chain of inclusions:

HO(X,8"Qxm|x(—a)) < H! (X,S"_IQXIH,JX(—a—eO))

< H? (X, S"20 i s |x (—a — 260))

H (X, Qxn|x(—a— (n—1)eg))
H"(X,0x(—a —neyp))
HnJrl(XIcfl , OX1671 (70, — (n 4+ 1)60))

rid

—  HN(PY, Opn(—a — Neg))

For any 0 < ¢ < N, we denote by @ element in the H’ group in the above chain of inclusion whose
image in HY (PN, Op~n(—a — N(e + €))) under the above inclusions is @!*¥’. Moreover, for any 0 < £ < N
and for any K = (ko,...,k¢) € {0,...,N}é<"’1 if we let K° = (koy1,...,kN) € {O,...,N}g‘é such that
{ko,...,kn} =1{0,..., N}, we set £(K) to be the signature of the following permutation

o o 1 --- N
K = ke ki - ky )’
and for any m € {1,...,c}, we set L} := (aﬁﬂ,...,a}&) and AR} = (aﬁﬂ,...,a?}v). We also set

X = %
K Zkg"'Zk[

Let £ € {0,..., N}, we are going to prove by induction that & can be represented in Cech cohomology
by the following cocycle (‘Z%)Ke{o Ny
..... >
L
1. If n <€ < N, write m := N — £, then &% = (-1)NN=HVg(K)P| : |Xgk.

im
Ly
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i1
LK

i
LK

2. If 0 < £ < n, write m :=n — £, then &% = (—1)NWV=+g(K)P An | Xk
K

Ay
Of course, if we look at £ = 0 in the last case, up to a sign, we get the description announced in the statement

of the lemma, and it suffices to look at &!* as an element in H°(X, $"Qx (—a)) by considering its image
under the natural restriction map H°(X, S"Qxr. |x(—a)) — H°(X,S"Qx(—a)).

We start by computing a Cech cocycle for @N~1. Recall that one has the twisted restriction short exact
sequence

.F;
0 — Opn(—a— Neg) = Opv(—a— (N —1)eg) = Ox, (—a— (N —1)eg) =0,
which yields the following in cohomology:

. i1 Fiy
0— HY7Y(X;,,0x,, (—a— (N —1)eg)) 5 HN (PN, Opn (—a — Neg)) = HY (PN, Opn (—a — (N — 1)eq)).
By the very definition of @™ ~!, we have 6.5, (N ~1) = @ = &P, As explained in Section 3.1, to compute
a cocycle for N1

have

, we compute @) - F;, and write it as the Cech differential of the desired cocycle. We

.....

~N ij ryr
wo, NPy = P-Xo., N~§ aj Z;

If we write K = (0,...,J,...,N), we have e(K) = (~1)/ and L% = (a’') and Xx = X,

; - Therefore,

..... Tseens

----------

we see that @) - Fj, =d (@%‘1)1{6{0 N}1<v) where as announced

R = (~)V ISR PILG K

We will only treat one case of the induction, the other case is treated the exact same way. Let n < £ < N,
let m = N — ¢ and suppose that we know that @ can be represented by a cocycle (&%)Ke{o N}Lrt as in
s NYE

the case 1. We have to prove that @'

have

can be represented by a cocycle of the form described in case 1. We
ot e HY (XI’", Oxim(—a— Eeo)) ,
and we have the following short exact sequence
'Fim+1
0= Oxrm(—a—"teg) = Oxrm(—a—({—1)eg) = Oxrpii(—a— (£ —1)eg) = 0.
In cohomology, it yields an injection (which is precisely the one appearing in the above chain of inclusions)

im41

(SAF
H7 (X Oxn (—a— (0= 1)eg)) <5 HY (X", Ox1m (—a — Leg))

To compute a Cech cohomology cocycle of w’~!, we proceed as before. For any K € {0, ..., N}QJrl we are
going to compute w - F; modulo Fj,,..., F;, . Fix K = (ko,..., k) € {0,..., N} and as usual, take

m+1
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K° (kl+1, ..., kn) € {0,..., N}g‘é such that K U K° = {0,..., N}. Because we are working modulo
F,,...,F;  , we have
SN A zr = -3 arzr
E;, = 0 j=0+1 Y “k; = =0 k k;
F 0 = SN aimzr = - adimzr
Tm - j=L+1 Tk; “kj - ] 0 “k; “k;
a — F = 0 N m+1 r7r i _ 'Lm+1
tm+1 tm+1 Zj:lJrl A, ij —Fi. . - E; 0 9k, ij
We may write this as follows:
11 11 r _ 4 71 T
koia agy 0 kein 22 j=0 %%, Zk,
B B r - £ bm 7T
ik‘g+1 (Z'k'N 0 Zk:N _Z] Oak Z
m+41 m+1 _ F: 7f7n+1 r
ket Opn 1 b1 - Z] 0 k Z
By a simple application of Cramer’s rule we obtain
i1 i1 i1 ¢ i r
ag,, ag, 0 ar,, ap ijo ay; ij
Fo| w0 171 l .
m m m m
Kot1 ey ko1 Uiy %g 0 ak Zy,
tm+1 im _ Tm41 im41l 1m+1
key1 akN 1 key1 akN Z] Oak kj
which yields
i1 i1 i1 i1
Ly ‘ Keta Uy L
. . . r
. 1m+1 Z : : : ij .
im Jj= Tm41 Gm41 Gm41
Ly Cgyr A Qg

We just have to be a bit careful with the signs.

For any j € {0, ...

L} we set Kj = K\ {k;}. We also take

vj € {{+1,..., N —1} such that ky, <kj <ky41 (if k; < ket+1, we just take v; = £). With this notation, we
have K7 = (Beg1y oo ko, kj kg1, kN) (or K7 = (kj ku1,..., kN) if k; <.kg+1). A straightforward
computation shows that ok, = (kj, kj+1,..., k)"t ook, hence e(K;) = (—1)"~7¢(K). On the other hand,
observe that ) ) _ )
k1[+1 Uy aklj L11<j
. . . _ (71)]\]71,]
g
Now we are ready for our computation:
Lif( ; L%j
Wi Fiyy = ()Y 0e(K) PXg Fiy = ()N OB PR Y (DN |z
im j=0 Tm+1
Ly Ly,
' L,
= (-)NEIPY (- —=0m s | X
=0 Tm+1
J LK;F
. L,
= Y (-)NWVEEDL(R) (1P| 1 | X,
=0 Gm1
J LK;



Hence (&e~ﬂm+1)K = J((@ﬁ;l ) , where for any K’ € {0,...,N}%,

L,
wﬁ(—/l — (71)N(N72+1)5(K/)P XK/
Lt
as announced. O

The last step is to use the tilde-symmetric differential forms constructed in Lemma 4.5 to get usual
symmetric differential forms. Recall that in our situation, from the exact sequence

0 — S"Qx(—a) = S™"Qx(—a) = S" ' Qx(—a) = 0

and the vanishing H° (X, S"_lﬁx(—a)) (deduced from Lemma 2.12), we get an isomorphism
H (X, 8" Qx(—a)) = H° (X, S"QX(—a)) .

Therefore we just have to compute the image w!' ¥ of @"F under this isomorphism. To do this we just have to
dehomogenize w!'*’. For simplicity, we only work in the Uy = (Zy # 0) chart. We use the following notation:
forany i€ {1,...,N}, z; = g—é, so that dZ; = Zydz; + z;dZy. Let us make an elementary observation. Take
¢>1,and let G € C[Zp,...,Zn] be a homogeneous degree ¢ polynomial. Let g be the dehomogenized of G
with respect to Zy. Then we have

dG =075 gdZo + Z5dg.

Indeed,

N N

oG oG oG
ZydG = Zo——dZ; = Zo——dZ —(Z2%dz; + Z;dZ,
° ; 07 07 °+;azi( 0dz: + ZudZo)
N N N
oG 2 oG 2 -1 99 0 £+1
— ;) o7, 2120 + 2 ; o715 = (GdZo + Z; ; 2yt 5 A = (Z5gdZ0 + 25" dg.

We introduce some more notation. For any v € A, = Clz1,...,2n]<e and any ¢ € {1,..., N} we set

bg(u) :=zgu and B4(u) = zqdu + eudz,.

For any 1 < j < c and for any 0 <1 < N we let tg (resp. f;) to be the dehomogenized of sg (resp. Fj) with
respect to Zo. Therefore we have a;(s]) = Z;s] = Z§™ 2t = Z5T'b;(t)) and

= eoZizit)dZo + Z5T (zidt] + etldz) = eo Z5bi(t])dZo + Z5 T Bi(t)).

Therefore, by the elementary properties of the determinant we get

ai(sy) - an(sy) bi(ty) - bn(ty)

p_ P ar(s5) - an(sy) | _ - b(t) - ba(t)
0 zy | aa(sy) - an(sy) 0 Bi(ty) - Bn(tN)
ar(si) - an(sy) Bilty) -+ Bu(tR)

This completes the proof of the following.
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Proposition 4.6. With the above notation. Take a homogenous polynomial P € C[Zy,...,ZnN] of degree
e—a—Ne—N—1and let Q € Clz,...,zN] be the dehomogenization of P with respect to Zy. Then, for
any I = (i1, ... in) € {1,...,c}}, the symmetric differential form

bi(ty) -+ bn(ty)

bi(t5) o ba(t)

R ] 0 n
Wo (t) *Q ﬁl(tzll) ﬁN(tﬁ\l/') € H (UoﬂX,S Qx)

Bu(fn) - Ba()

extends to a twisted symmetric differential form w'f € H°(X, S"Qx(—a)).

4.3 Estimating the base locus
4.3.1 Dimension count lemmas

We will need some elementary results. The following is classical, we provide a proof because we will use the
idea of it again afterwards.

Lemma 4.7. Let p,q € N such that n < p. Fiz a rank n matriz A € Mat,, ,(C). For any r € N* with r < n,
let
Y24 :={B € Mat,, ((C) such that rtk AB <r}.

Then, dim P9 < pg — (¢ —r)(n — 7).

Proof. Set
A :={(B,T') € Mat, 4(C) x Grass(r,C") such that im(AB) C T}

Let pry : A — Mat,, 4(C) and pry : A — Grass(r, C™) be the natural projections. For any I' € Grass(r, C")
we consider Ar = pry (pry H(T")). Of course,

Ar = {B € Mat,, 4(C) such that im(AB) C I'} = { B € Mat,, 4(C) such that im(B) C A~"(I')}

But since rk A = n, A is surjective and therefore dim(A~1(I")) = r+p—n. Therefore, Ar = Hom(C?,C"+P~")
and thus dim(Ar) = ¢(r + p — n). In particular,

dim A = g(r + p —n) + dim Grass(r,C") = q(r+p—n)+r(n—r) =qp— (¢ —r)(n —r).
Since ¥ = pr; (A), the result follows. O

From the previous lemma one can easily deduce the following.

Corollary 4.8. Let M, N,c € N* such that ¢ < N. Let l1,...,4xy € (CM)V be non-zero linear forms. For
any r € N* such that r < ¢, let

ti(zy) -+ In(ay)
¥, = (J:J)}éfécv € (CMYNe such that rk <r
b(z7) - An(zf)
Then, dim(X,) < MNc— (N —r)(c—r).

The following lemma will be crucial to us.
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Lemma 4.9. Take c,n, M € N* such thatn < c and let N := n+c. Take linear forms €1, ... lp, A1,..., Ay €

(CM)V such that for any i € {1,...,c}, \; # 0 and ker¢; # ker \;. Fiz A € Gl.(C) and B € Mat.(C). For
Jylsise M\cn ;

any © = (77)15;<,, € (CM)" consider

%

A :
- 0(z5) Culat)
§(e) = M@)o Aa(zh)
B : :
M@)o An(af)

For anyr € {c,...,N — 1}, let
2, = {z € (CM)*" such that kS (z)<r} C (CM)".
Then, dim(3,) < Mnc— (N —r)(2¢ — 7).

Proof. Using elementary operations on the ¢ first columns, we see that we may suppose that A = I, is

the identity matrix of size ¢. We will write everything in matricial notation. For any ¢ € {1,..., M} any
je{l,...,c} and any z = (xf)}éfifl € (CM)en we let
#1
Li= i, liar) € (CNY 0 Ay= (N1, Aiwr) € (CM)Y and X/ = : ecM
zg,M

such that ¢;(z7) = L;X7 and A\i(2) = A;X7. For any matrix Q we denote the transposed of Q by *Q. Set
moreover
tLy .- 0 Ay - 0 tX11 thll
L:= , A= and X = _
0 N 0 e PAL, tch tXfL

I. XL

With those notations, S(z) = ( B XA

> , and by elementary operations on the lines we get that

I XL B
rk(S(z)) :rk( 0 XA_ BXL ) =c+1k(XA - BXL).

Write B = (b; j)1<i,j<c- By a straightforward computation we obtain that for any j € {1,...,n} the j-th
column of the matrix XA — BXL is exactly K;X,; where

le Aj 0 buul; -+ bicL;
Xj = : and K;=| @ . o - : :
X5 0 - A beiLl; -+ beck;
In particular, we have XA — BXL = ( KX, - KpX, ) . An easy computation shows that under our

hypothesis on the ;s and the Xjs, rk K; = c for all j € {1,...,n}. The end of the proof goes as in Lemma 4.8.
Let
A= {(X,T) € (CM)" x Grass(r — ¢, C°) such that im(XA — BXL) CT'}
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Let pry : A — (CM)m and pry : A — Grass(r—c, C¢) be the natural projections. For any I' € Grass(r—c, C¢)
let Ar = pry(pry }(T")). Then
Ar = {X €(CM)" such that im(XA — BXL)CTI'}
= {X € (CM)" such that im( K, X; --- K,X, )CT}
= {X € (C")" such that im(X,) C K; "(I),...,im(X,) € K,'(I)}

Since for each j € {1,...,n}, K, is surjective, we obtain that dim(Kj_l(l")) =r—c+Mc—c=Mc+r—2c.

In particular Ap 2 Hom(C, CMet7=2¢)97 which implies that dim(Ar) = n(Mc +r — 2¢). And therefore,

dim(A) = n(Mc+r—2¢)+dim Grass(r —e¢, C%) = n(Mc+r—2¢)+ (r—c)(2c—r) = Mnc— (n+c—r)(2c—r).

But since X, = pry(A), this concludes the proof of the lemma. O
We are also going to need the following elementary algebraic geometry lemma.

Lemma 4.10. Let X and Y be two algebraic varieties (not necessarily irreducible). Let f : X — Y be a
regular map. Suppose that Y =Yy U---UY, such that Y; NY, = @ if i # j. For each i € {0,...,r} take
n; € N. Suppose that for each y € Y; and for each i € {0,...,r} , dim X, < n;. Then

dim X < max (dim(Y;) + n;).
o<igsr

4.3.2 Proof of Lemma 4.4

We are now in position to prove Lemma 4.4. It will be a immediate consequence of the following more precise
statement.

Lemma 4.11. Let N,c,e,e,a € N such that N > 2, ¢ > 3N4*2, e>1ande > N+ 1+ a+ Ne, set
q:=e—(N+1+a+Ne). Setn:= N—c. Forany0<j < N take s7 € APVt such that X := XN+ -NXge
is a smooth complete intersection variety. For anyi € {0,..., N}, set H; := (Z; =0) and W; := XNH;. We
look at P(Qw,) as a subvariety of P(Qx). Then, for a general choice of s,...,s¢, there exists E C P(Qx)
such that dim E < 0 and

N
Bs(Lx(—a)) C N @'"*=0=POw)UE.
I€{l,...,c}2 i=0

PeClZy,...,ZN]q

Where w'"f € HO(P(Qx),L%(—a)) = H°(X,S"Qx(—a)) is the symmetric differential form constructed in
Proposition 4.6 viewed as a global section of L% (—a).

Proof. For simplicity, we only treat the chart Up, the other charts are dealt with in the exact same way. Let
us precise the notation of Proposition 4.6: for any (u, z,£) € A. x CN x PN~1 we set

be(u, 2) == zqu(z), and f4(u, z,§) = zqdu,(§) + eu(z)&,.

Moreover, for any ¢t = (t!,...,t¢) = (tz)}égécv € (AN)c and for any (2,£) € CV x PN~ we set
bl(t%az) bN(t}Vaz) /Bl(t%vzvg) ﬂN(t}szvg)
B(t, z) := and B'(t,z,€) :=
From now on we make the identification P(Qpn |y, ) = CN x PN~1. So that if for any j € {1,...,c} we take

59 € AN such that X = (Fyu = 0)N---N (Fse = 0) is a smooth complete intersection in PV and if for any
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j€{l,...,c}, welet t/ be the dehomogeneization on s/, f,; be the dehomogeneization of F,; and X; = X,
then, one naturally has

(2) == fie(2) =0
P(Q = (2,€) € CN x PV~ such that { fa(2) Jie(2) }chxPN1~PQ
(Qx,nvo) {(z 3| suc & dfp (&) = =dfte () =0 [ = ()
Moreover, set W := vazl ((z=0)N(&=0)) = UN P(Qm,nv, ), where H; = (Z; = 0). Our aim is to prove
that, for a general £ € AN V¢ there exists E C P(Qx,nv,) such that dim E < 0 and

P(2x,000) (1 () (w9t 2,6) = 0) = (P(@x,00,) N W) U E.
IQ

The first thing to observe is that if (z,£) € W then for any I € {1,...,¢c}}, and any Q € Clz1,...,2n]<q One

has wQ(t, 2,£) = 0, and therefore W C (0, Q (wo (t,2,€) = 0) . The more difficult part is to prove that,

generically, this is actually an equality up to a ﬁmte number of points.
Observe that if rk(B(t,z)) < ¢, then Wo 9(t,2,6) = 0 for all T and all Q. On the other hand, if
rk(B(t, z)) = ¢ then

wy?(t,2,6) =0 VI, VQ < rk( B]’B(gj)@ ) -

Therefore, for any t € A(N+1)° the locus 0 (Wo (t,2,&) = 0) is precisely

{(z,f) € CN x PN=1 such that 1k B(t,2) <c or tkB(t,z) = c and rk< B/B(Et’zzlc) > < N}

To understand this locus for general ¢t € AgNH)C we will consider the problem in family, and study the
corresponding incidence varieties. Let us introduce some more notation. Consider the natural projections

p1 :A‘(gN-‘rl)c x (CN - A‘(gN-i-l)c P2 :AgN-‘rl)c X CN BN CN P A(N-i—l)c x (CN X ]P)N—l SN A‘(gN-i-l)c
pra s AVFDE 5 CN 5 PN=1 5 AWNFDe 5 N oy ANFDE 5 N  PN-L 5 N x PVL

For any k € {0,...,N}, set Y = {(zl,...,zN) eCVN /) 3Ie {1,...,N}’; such that z; =0 < Z'EI}.
Observe that dimY; = N — k. Moreover, set

((#4,...,1%), 2) € (ANFD)e % CN such that fu(z) = - = fie(z) = o}

{
27 = {((t1 t),2,€) € (A NF+D)e 5 €N x PN~ such that { dft{tlggi :g}tc( )(520 }
{

/ B B(t, z)
(t,2,€) € Z; such that rk B(t,z) = c and rk( Btz ) <N

P (A)NZ!, E.:=E UA., T.:=E.\py(W)and TY:=E%\ py(W).

Of course, 2, 24 AQNH)C is just the universal family of complete intersection of Fermat type we are con-
sidering (or to be precise, the dehomogeneization of it), and 27 is just the projectivization of the relative

cotangent bundle of 2, 2 AWNFDe por any t € A§N+”C, we write 2., = p;*(t) (and similarly for 27/

c,ty
A, etc.). By the above discussion, our aim is to prove that for a general ¢t € AgNH)C, I'c; is finite. To

do so, we will prove that for a general t € AgNH)C, A} ; is empty and dim FS,t < 0. This will follow at once
from the two following claims.

Claim 1. dim A, < dim AV TDe
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Claim 2. dimT?Y < dim AN FDe

Proof of Claim 1. Take k € {0,...,N}. Fix (z1,...,2n) € Y;. Without loss of generality, we may assume

that z; = -+ = 2z = 0 and that zx41---zxy # 0. In particular,
tllc+1(z> e ty(2)
rk B(t, z) = rk :
tha(z) - ty(2)

Set AZ := p1 (p5 ' ({z}) N A.) . Of course,

tia(2) o ty(2)
Az = (1550) € ANV such that wic | | < and fu(e) == fele) =0
tia(2) - iy(2)
tllc+1(z) T t}v(z>
By Lemma 4.8 the set defined by rk < cis of dimension less than dim AYY ¢ —
tipa(2) - 5(2)

max{0, N — ¢ — k + 1}. Therefore,
dim A? < dim AVFTYe —max{0,N -k —c+1} —c.

Indeed, for any j € {1,...,¢}, the equation fy(z) = t}(2) + t)(2)2§ + --- + t4(2)2% = 0 is affine (in #/)
and involves the term t}(z) which appears in none of the other equations defining AZ. So that each of the

equations fi(z) = 0 increases the codimension by one, and we get the announced dimension. Therefore by
Lemma 4.10 we obtain that

dimA, < max (dim Y; + dim AgNJrl)c —max{0,N —k—c+1} — c)

X

~  max (dim AN _ax{O,N —k —c+ 1} + N — &k — c) < dim AWV — 1 < dim AW+De,

O

To prove Claim 2 we will need the following observation.
Claim 3. Let (z,6) € CN x PN=I\W. For any q € {1,..., N}, By(-,2,€) # 0 and ker by (-, 2) # ker B4(-, 2, €).

Proof of Claim 3. For k € {1,...,N}, we set 5 = (0,...,0,1,0,...,0) € NV be the multi-index whose only
non-zero term is in the k-th slot. For any u € A, any (z,£) € CN x PN~! and any ¢ € {1,..., N} we have
by definition,

I I+6
be(u,2) = z4 g urz” | = zquo + 212qUs, + -+ + ZNZqUsy + g 21t 0aq,,
ITl<e 2<[T1<e
N
- I-6 I
Bqy(u,2,8) =z E E irurz’ & | + €&y E urz
|7]<e k=1 l1|<e

N
= efquo + (2061 +en&g)us, + -+ (Zbn +eznbolusy + D (Zq > iz TG + ez]&;) ur.

2<|I|<e k=1

Take (z,€) € CN=1 x PN=1\ W. Let ¢ € {1,...,N}. In view of the above expression, if 3, = 0 then in
particular
e€g = zg§1 +ez18g = -+ = 2gfn +eznéy = 0,
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and because (z,£) ¢ W, we get z4 # 0, so that {; = & = --- = &v = 0, which is not possible because
¢ € PN-L It remains to prove that kerb, (-, 2) # ker B,(-, 2z,&). If by(-,z) = 0, this is obvious. Suppose
be(+,2) # 0 and therefore z, # 0. If ker b, (-, 2) = ker B4(-, 2,£), then from the above expression we get in
particular that

1 z1 _ 1 ZN —0
ely zgb1t+enéy | ey zg€n +exnéy |
From which we deduce once again that &, =--- =&y = 0. O
Proof of Claim 2. For any K = (ki,...,kc) € {1,..., N}5 let
bi, (th,,2) -+ bi(th,2)
UK = (t,2,6) € AVTDe 5 €N 5 PNV such that  det ; : £0
bi, (t,,2) -+ be (85, 2)

For any K, UX := UK NTY is an open subset of I'? and 'Y = | J, UL, therefore for our dimension estimation,

Ulf’5 = p1(py3 (2,€) N Ur). Using Claim 3 and Lemma 4.9 we see that the set defined in AgNH)C by

B(t, z)
rk( BI(t, =€) ) <N and (t,2,§)eU
is of dimension less than dim AgNH)C —2c+ N — 1, and by the same argument as in the proof of Claim 1,

we obtain
dim UZ* < dim ANV+FYe —92¢ + N —1 - 2¢.

Hence dim Up < dim AT —d4e + N — 1+ dim(CY x PY=1) = dim ANV —4e+ N~ 142N — 1. And
therefore (because the same argument holds for all the UL)

dimT? = dim AV+Ve —4¢ 4 3N — 2,
(

In particular, dimI'Y < dim AENH)C as soon as —4c + 3N — 2 < 0. This last condition is equivalent to

3N=2 " which is exactly our hypothesis. O

o

O
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