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Explicit symmetric differential forms on complete intersection

varieties and applications

Damian Brotbek

June 29, 2014

Abstract

In this paper we study the cohomology of tensor products of symmetric powers of the cotangent

bundle of complete intersection varieties in projective space. We provide an explicit description of some

of those cohomology groups in terms of the equations defining the complete intersection. We give several

applications. First we prove a non-vanishing result, then we give a new example illustrating the fact

that the dimension of the space of holomorphic symmetric differential forms is not deformation invariant.

Our main application is the construction of varieties with ample cotangent bundle, providing new results

towards a conjecture of Debarre.
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1 Introduction

Varieties with ample cotangent bundle have many interesting properties, however, relatively few examples of
such varieties are know (see [17], [20], [7], [3]). Debarre conjectured in [7] that: if X is a general complete
intersection variety in PN of multidegree high enough and such that dimX 6 codimPN X then the cotangent
bundle of X should be ample. The study of this conjecture was the starting point of the present work. In
[3] we were able to prove this conjecture when dimX = 2, using Voisin’s variational method and inspired by
the work of Siu [18] and the work of Diverio Merker and Rousseau [10]. However we were not able to make
this strategy work completely in higher dimensions.

The construction of varieties with positive cotangent bundle is closely related to the construction of sym-
metric differential forms on it. In fact, if one wants to prove that a given variety has ample cotangent bundle,
it is natural to start by producing many symmetric differential forms, to be more precise, this means proving
that the cotangent bundle is big. In general, this is already a highly non-trivial question and this leads to
very interesting considerations. In that direction we would like to mention the recent work of Brunebarbe,
Klingler and Totaro [6] as well as the work of Roulleau and Rousseau [16].

However, ampleness is a much more restrictive condition than bigness, in some sense, bigness only re-
quires a quantitative information on the number of symmetric differential forms whereas ampleness requires
a more qualitative information on the geometry of the symmetric differential forms. The most natural way
to produce symmetric differential forms is to use Riemann-Roch theorem or a variation of it. For instance
under the hypothesis of Debarre’s conjecture, one can use Demailly’s holomorphic Morse inequality, in the
spirit of Diverio’s work [8] and [9], to prove that the cotangent bundle is big (see [3]). Nevertheless, this ap-
proach doesn’t give much information on the constructed symmetric differential forms besides its existence.
One can wonder if it is possible, given a complete intersection variety X in PN to write down explicitly the
equation of a symmetric differential form on X (if such an object exists).

If X is a curve in P2 of genus greater than 1, this is a very classical exercise. In higher dimensions,
very few results towards that problem are known. Brückmann [5] constructed an example of a symmetric
differential form on a complete intersection in P4 given by Fermat type equations, and more recently Merker
[14] was able to study examples of symmetric differential forms on complete intersection variety in P4 in the
spirit of work of Siu and Yeung [19] (see also [15] for related results for higher order jet differential equations).

The aim of this paper is to develop a cohomological framework which will enable us to describe the space
of holomorphic symmetric differential forms on a complete intersection variety in PN in terms of its defining
equations, and to give several applications. The outline of the paper is as follows.

In Section 2 we prove the main technical result of this work. In view of the possible generalizations
to higher order jet differential as well as for its own sake, we will not only study the space of symmetric
differential forms, but also the more general spaces Hi(X,Sℓ1ΩX ⊗ · · · ⊗SℓkΩX) for a complete intersection
variety X in PN . Recall the following vanishing result of Brückman and Rackwitz.

Theorem 1.1 (Brückmann-Rackwitz [4]). Let X ⊆ PN be a complete intersection of dimension n and
codimension c. Take integers j, ℓ1, . . . , ℓk > 0. If j < n−

∑k
i=1 min{c, ℓi} then

Hj(X,Sℓ1ΩX ⊗ · · · ⊗ SℓkΩX) = 0.

It is natural to look at what happens in the case j = n −
∑k

i=1 min{c, ℓi} in the above theorem. Our
result in that direction is the following.

Theorem A. Let c,N, e1, . . . , ec ∈ N∗, set n = N − c. Let X ∈ PN be a smooth complete intersection
variety of codimension c, dimension n, defined by the ideal (F1, . . . , Fc), where Fi ∈ H0(PN ,OPN (ei)). Take
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integers ℓ1, . . . , ℓk > c take an integer a < ℓ1 + · · ·+ ℓk − k, let q := n− kc and b := (k + 1)
∑c

i=1 ei. Then
one has a commutative diagram

Hq
(
X,Sℓ1ΩX ⊗ · · · ⊗ SℓkΩX(a)

)
//

E

��

ϕ

++❳❳❳❳
❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

HN
(
PN , Sℓ1−cΩPN ⊗ · · · ⊗ Sℓk−cΩPN (a− b)

)

E

��

Hq
(
X,Sℓ1Ω̃X ⊗ · · · ⊗ SℓkΩ̃X(a)

)
ϕ̃

// HN
(
PN , Sℓ1−cΩ̃PN ⊗ · · · ⊗ Sℓk−cΩ̃PN (a− b)

)

Such that all the arrows are injective and such that:

1. im ϕ̃ =
⋂c

i=1

(
ker(·Fi)

⋂k
j=1 ker(·dF

{j}
i )

)
.

2. imϕ = im ϕ̃ ∩ imE .

Remark 1.2. The bundle Ω̃ is described in Section 2.1 and the different maps arising in the statement are
described in Section 2.5

The important thing to note in that result, is that it gives a way of describing the vector space
Hq
(
X,Sℓ1ΩX ⊗ · · · ⊗ SℓkΩX(a)

)
as a sub-vector space of HN

(
PN , Sℓ1−cΩ̃PN ⊗ · · · ⊗ Sℓk−cΩ̃PN (a− b)

)
,

that this last space is easily described, and that one can precisely determine, in terms of the defining
equations of X what is the relevant sub-vector space. Therefore this result (and the more general statements
in Theorem 2.17 and Theorem 2.24) should be understood as our main theoretical tool to construct sym-
metric differential forms on complete intersection varieties.

In Section 3 we provide the first applications of Theorem A. First we describe how Theorem A can be
used very explicitly in Čech cohomology. Then we illustrate this by treating the case of curves in P2. After
that (Proposition 3.3) we prove that the result of Brückmann and Rackwitz is optimal by providing the
following non-vanishing result.

Theorem B. Let N > 2, let 0 6 c < N . Take integers ℓ1, . . . , ℓk > 1 and a < ℓ1 + · · · + ℓk − k. Suppose
0 6 q := N − c −

∑k
i=1 min{c, ℓi}. Then, there exists a smooth complete intersection variety in PN of

codimension c, such that
Hq(X,Sℓ1ΩX ⊗ · · · ⊗ SℓkΩX(a)) 6= 0.

Then, in Corollary 3.7, we provide a new example of a family illustrating the fact that the dimension of
the space of holomorphic symmetric differential forms is not deformation invariant.

Theorem C. For any n > 2, for any m > 2, there is a family of varieties Y → B over a curve, of relative
dimension n, and a point 0 ∈ B such that for generic t ∈ B,

h0(Y0, S
mΩY0

) > h0(Yt, S
mΩYt

).

This phenomenon has already been studied (see for instance [1], [2] and [16]) and is well known. How-
ever, this example shows that invariance fails for any m > 2, whereas the other known examples (based on
intersection computations) provide the result for m large enough.

In Section 4 we provide our main application, which is a special case of Debarre’s conjecture.

Theorem D. Let N, e ∈ N∗ such that e > 2N + 3. If X ⊆ PN be a general complete intersection variety of
multidegree (e, . . . , e), such that codimPN X > 3 dimX − 2, then ΩX is ample.

To our knowledge, this is the first higher dimensional result towards Debarre’s conjecture. The proof
of this statement does not rely on the variational method neither does it need the Riemann-Roch theorem
nor Demailly’s holomorphic Morse inequalities. The idea is to use the results of Section 2 to construct one
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very particular example of a smooth complete intersection variety in PN (with prescribed dimension and
multidegree) whose cotangent bundle is ample. Then by the openness property of ampleness, we will deduce
that the result holds generically. Such an example is produced by considering intersections of deformations
of Fermat type hypersurfaces.

Notation and conventions: In this paper, we will be working over he field of complex numbers C. Given a
smooth projective variety X and a vector bundle E on X , we will denote by SmE the m-th symmetric power
of E, we will denote by P(E) the projectivization of rank one quotients of E, we will denote the tangent
bundle of X by TX and the cotangent bundle of X by ΩX . Moreover we will denote by πX : P(ΩX) → X
the canonical projection. Given a line bundle L on X and an element σ ∈ H0(X,L) we will denote the zero
locus of σ by (σ = 0), and the base locus of L by Bs(L) =

⋂
σ∈H0(X,L)(σ = 0).

Given any m ∈ N, we will denote by C[Z0, . . . , ZN ]m the set of homogenous polynomials of degree m in
N + 1 variables and by C[z1, . . . , zN ]6m the set of polynomials of degree less or equal to m in N variables.
Given any set E ⊆ N and any k ∈ N we will write Ek

6= := {(i1, . . . , ik) such that ij 6= iℓ if j 6= ℓ} and
Ek

< := {(i1, . . . , ik) such that ij < iℓ if j < ℓ}.

Also, we will say that a property holds for a “general ” or a “generic” member of a family X
ρ
→ T if there

exists a Zariski open subset U ⊆ T such that the property holds for ρ−1(t) for any t ∈ U .

Acknowledgments. This work originated during the author’s phd thesis under the supervision of Christophe
Mourougane. We thank him very warmly for his guidance, his time and all the discussions we had. We also
thank Junjiro Noguchi and Yusaku Tiba for listening through many technical details. We thank Joël Merker
for his many encouragements and for all the interest he showed in this work. We also thank Lionel Darondeau
for motivating discussions and for his suggestions about the presentation of this paper.

2 Cohomology of symmetric powers of the cotangent bundle

2.1 The tilde cotangent bundle

It will be convenient for to use the Ω̃ bundle, studied in particular by Bogomolov and DeOliveira in [2], but
also by Debarre in [7]. In some way, the bundle Ω̃ will allow us to work naturally in homogenous coordinates.
Let us recall some basic facts about this bundle. Consider PN = P (CN+1) with its homogenous coordinates
[Z0, . . . , ZN ]. Let X ⊆ PN be a smooth subvariety. We denote by γX the Gauss map

γX : X → Grass(n,PN)

x 7→ TxX

where TxX ⊂ PN is the embedded tangent space of X at x, and where Grass(n,PN ) denotes the grassmannian
of n-dimensional linear projective subspace of PN . Let Sn+1 denote the tautological rank n+1 vector bundle
on Grass(n,PN ). Then define

Ω̃X := γ∗
XS∨

n+1 ⊗OX(−1).

We will refer to this bundle as the tilde cotangent bundle of X , and a holomorphic section of SmΩ̃X will be
called a tilde symmetric differential form. Observe that one has a natural identification

Ω̃PN
∼= CN+1 ⊗OPN (−1) ∼=

N⊕

i=0

OPN (−1)dZi.

Therefore given any homogenous degree e polynomial F ∈ C[Z0, . . . , ZN ] one can define a map

·dF : OPN (−e) → Ω̃PN (1)

g 7→ g ·

N∑

i=0

∂F

∂Zi

dZi.
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One easily verifies that if X ⊆ PN is a smooth subvariety and if F defines a hypersurface H such that
Y := X ∩H is a smooth hypersurface in X then the above map fits into the following exact sequence,

0 → OY (−e)
·dF
→ Ω̃X |Y → Ω̃Y → 0. (2)

We will refer to it as the tilde conormal exact sequence. On the other hand, let X̂ ⊆ CN+1 \ {0} be the cone
above X , and let ρX = X̂ → X be the natural projection. Observe that ρ∗Xγ∗

XSn+1 = T X̂. The differential
dρX : T X̂ → ρ∗XTX is not invariant under the natural C∗ action on X̂ because for any x ∈ X̂, any ξ ∈ TxX̂
and any λ ∈ C∗, dρX,λxξ = 1

λ
dρX,xξ. We can easily compensate this by a simple twist by OX(−1) as in the

following

γ∗
XSn+1,x → TxX ⊗OX,x(−1)

(x, ξ) 7→ (x, dρX,xξ ⊗ x).

This yields an exact sequence 0 → OX(−1) → γ∗
XSn+1 → TX(−1) → 0 which we twist and dualize to get

0 → ΩX
E
→ Ω̃X → OX → 0. (3)

Will refer to it as the Euler exact sequence. Note that the map E can be understood very explicitly. Indeed, if
we consider the chart CN = (Z0 6= 0) ⊂ PN , with zi =

Zi

Z0
for any i ∈ {1, . . . , N}, then E (dzi) =

Z0dZi−ZidZ0

Z2
0

.

Let us mention that in our computations we will often write dzi instead of E (dzi) for simplicity. Those two
exact sequences fit together in the following commutative diagram

0 0
y

y

OY (−e) OY (−e)
y

y

0 −−−−→ ΩX |Y −−−−→ Ω̃X |Y −−−−→ OY −−−−→ 0
y

y
∥∥∥

0 −−−−→ ΩY −−−−→ Ω̃Y −−−−→ OY −−−−→ 0
y

y

0 0

(4)

Remark 2.1. Observe that Ω̃X can never be ample because it has a trivial quotient. However, Debarre proved
in [7] that under the hypothesis of his conjecture, the bundle Ω̃X(1) is ample.

2.2 A preliminary example

The combinatorics needed in the proof of the main results of Section 2 may seem elaborate, but the idea
behind it is absolutely elementary. In fact the proofs of the statements in Section 2 are only a repeated us
of long exact sequences in cohomology associated to short some exact sequences which are deduced from the
restriction exact sequence, the conormal exact sequence, the tilde conormal exact sequence and the Euler
exact sequence. But because our purpose is to study tensor produces of symmetric powers of some vector
bundle, many indices have to be taken into account, the only purpose of all the notation we will introduce
is to synthesis this as smoothly as possible.
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Let us illustrate the idea behind this by considering a basic example. Suppose that H is a smooth degree
e hypersurface in PN defined by some homogenous polynomial F ∈ C[Z0, . . . , ZN ]. Suppose that we want
to understand the groups Hi(X,SmΩ̃X(−a)) for some a ∈ N, and m > 1. To do so we look at the tilde
conormal exact sequence

0 → OX(−e)
·dF
→ Ω̃PN |X → Ω̃X → 0

and take the m-th symmetric power and twist it by OX(−a) of it to get the exact sequence

0 → Sm−1Ω̃PN |X(−e− a)
·dF
→ SmΩ̃PN |X(−a) → SmΩ̃X(−a) → 0.

By considering the long exact sequence in cohomology associated to it, we see that the groups Hi(X,SmΩ̃X(−a))

can be understood from the groups Hi(X,SkΩ̃PN |X(−b)) for k, b ∈ N, and from the applications appearing
in the long exact sequence in cohomology. But to understand those groups, we consider the restriction exact
sequence

0 → OPN (−e)
·F
→ OPN → OX → 0,

and twist it by SkΩ̃PN (−b) to get

0 → SkΩ̃PN (−b− e)
·F
→ SkΩ̃PN (−b) → SkΩ̃PN |X(−b) → 0.

Once again, we look at what happens in cohomology, and we see that the groups Hi(X,SkΩ̃PN |X(−b)) can
be understood from the groups Hi(PN , SℓΩ̃PN (−c)) for ℓ, c ∈ N and the maps appearing in the long exact
sequence. But observe that Hi(PN , SℓΩ̃PN (−c)) ∼= SℓCN+1⊗Hi(PN ,OPN (−c−ℓ)) = 0 for all i < N, from this
we get that Hi(X,SkΩ̃PN |X(−b)) = 0 for all i < N−1 and from this we deduce that Hi(X,SmΩ̃X(−a)) = 0
for all i < N − 2. Moreover, a more careful study shows that we obtain the following chain of inclusions:

HN−2(X,SmΩ̃X(−a))
ϕ̃1

→֒ HN−1(X,Sm−1Ω̃PN |X(−a− e))
ϕ̃2

→֒ HN(PN , Sm−1Ω̃PN (−a− 2e)).

The inclusions appearing in Theorem A are of this type. Now if one wants to describe what is the image of this
composed inclusion, one needs to look more carefully at what are exactly the maps between the cohomology
groups in the different long exact sequences. For instance the second injection comes the following exact
sequence

0 → HN−1(X,Sm−1Ω̃PN |X(−a− e)) → HN (PN , Sm−1Ω̃PN (−a− 2e))
·F
→ HN(PN , Sm−1Ω̃PN (−a− e)).

Hence, im(ϕ̃2) = ker
(
HN (PN , Sm−1Ω̃PN (−a− 2e))

·F
→ HN (PN , Sm−1Ω̃PN (−a− e))

)
. To understand simi-

larly im(ϕ̃2◦ϕ̃1) is less straightforward, combining the different long exact sequences one obtains the following
commutative diagram:

HN−2(X,SmΩ̃X(−a))
ϕ̃1

//

ϕ

**❱❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

HN−1(X,Sm−1Ω̃PN |X(−a− e))
·dF //

ϕ̃2

��

HN−1(X,SmΩ̃PN |X(−a))

��

HN (PN , Sm−1Ω̃PN (−a− 2e))
·dF // HN (PN , SmΩ̃PN (−a− e))

where the vertical arrows are injective. Then, by linear algebra, we obtain that im(ϕ̃) = im(ϕ̃2)∩ker(·dF ) =
ker(·F ) ∩ ker(·dF ) for suitable maps ·F and ·dF. This example already contains the main idea of the proof
of the first part of Theorem A. To study more generally tensor products of symmetric powers of the tilde
cotangent bundle is done similarly by considering each factor independently, and to deduce the results
concerning the cotangent bundle instead of the tilde cotangent bundle is done in a similar fashion using the
Euler exact sequence.
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2.3 An exact sequence

In the rest of Section 2, the setting will be the following. Take an integer N > 2, let c ∈ {0, . . . , N − 1}
and take e1, . . . , ec ∈ N∗. Take non-zero elements F1 ∈ H0(PN ,OPN (e1)), . . . , Fc ∈ H0(PN ,OPN (ec)), and
for any i ∈ {1, . . . , c} we set Hi = (Fi = 0). For any i ∈ {1, . . . , c} let Xi := H1 ∩ · · · ∩Hi. Set X := Xc and
X0 := PN . We suppose that X is smooth. For simplicity, we will also suppose that Xi is smooth for each
i ∈ {0, . . . , c}.

Remark 2.2. We make this additional smoothness hypothesis here so that we can work without worrying
with all the conormal exact sequences between Xi and Xi+1 (and this hypothesis will be satisfied in all our
applications). However, a more careful analysis of the proof of the main results shows that the only thing
we need to have is the smoothness of each of the X ′

is in a neighborhood of X , and this follows from the
smoothness of X .

To simplify our exposition, we introduce more notation. If E is a vector bundle on a variety Y , and if
λ = (λ1, . . . , λk) is a k-uple of non-negative integers, then we set

Eλ := Sλ1E ⊗ · · · ⊗ SλkE.

If µ = (µ1, . . . , µj) is a j-uple of non-negative integers, we set

λ ∪ µ := (λ1, . . . , λk, µ1, . . . , µj).

The following definition gives a convenient framework for our problem.

Definition 2.3. With the above notation.

1. A λ-setting is a (p + 2)-uple Σ := (Xp, λ
0, . . . , λp), where 0 6 p 6 c, and for any 0 6 j 6 p,

λj = (λj
1, . . . , λ

j
mj

) ∈ Nmj for some mj ∈ N.

2. If Σ = (Xp, λ
0, . . . , λp) is as above, we set:

• codimΣ := p and dimΣ := N − p.

• If λ1 = · · · = λp = 0 set degΣ := ep. Otherwise, let j0 := min{1 6 j 6 p such that λj 6= 0} and
set degΣ := ej0 .

3. Take Σ as above. We set:

ΩΣ := Ωλ0

PN |Xp
⊗ Ωλ1

X1|Xp
⊗ · · · ⊗ Ωλp

Xp
and Ω̃Σ := Ω̃λ0

PN |Xp
⊗ Ω̃λ1

X1|Xp
⊗ · · · ⊗ Ω̃λp

Xp
.

4. For any a ∈ Z and any j ∈ N, we set:

Hj
(
ΩΣ(a)

)
:= Hj

(
Xp,Ω

Σ ⊗OXp
(a)
)

and Hj
(
Ω̃Σ(a)

)
:= Hj

(
Xp, Ω̃

Σ ⊗OXp
(a)
)
.

We will also need a more general definition which will allow us to work simultaneously with Ω and Ω̃.

Definition 2.4. 1. A λ-pair (Σ, Σ̃) is a couple of λ-settings Σ = (Xp, λ
0, . . . , λp) and Σ̃ = (Xp̃, λ̃

0, . . . , λ̃p̃)
such that p = p̃.

2. Given a λ-pair (Σ, Σ̃) we set:

• dim(Σ, Σ̃) := dimΣ = dim Σ̃ and codim(Σ, Σ̃) := codimΣ = codim Σ̃.

• If λj = λ̃j = 0 for all i ∈ {1, . . . , p} we set deg(Σ, Σ̃) := ep. Otherwise, let j0 := min{j ∈

{1, . . . , p} such that λj 6= 0 or λ̃j 6= 0} and set deg(Σ, Σ̃) = ej0 .

3. With the above notation, we set Ω(Σ,Σ̃) := ΩΣ ⊗ Ω̃Σ̃.
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4. For any a ∈ Z and any j ∈ N, we set Hj
(
Ω(Σ,Σ̃)(a)

)
:= Hj

(
Xp,Ω

(Σ,Σ̃) ⊗OXp
(a)
)
.

To describe our fundamental exact sequence, we introduce some notion of successors.

Definition 2.5. Take a λ-setting Σ = (Xp, λ
0, . . . , λp) with p > 1 and where for any 0 6 j 6 p one denotes

λj = (λj
1, . . . , λ

j
mj

). We define λ-settings s1(Σ) and s2(Σ) as follows.

• If λj = 0 for all 1 6 j 6 p then set s1(Σ) := s2(Σ) := (Xp−1, λ
0, . . . , λp−1).

• If there exists 1 6 j 6 p such that λj 6= 0, let j0 := min{j / 1 6 j 6 p and λj 6= 0} and let
i0 := min{i / 1 6 i 6 mj0 and λj0

i 6= 0}. Then we define

s1(Σ) := (Xp, λ
0, 0, . . . , 0, (λj0

i0
), (λj0

i0+1, . . . , λ
j0
mj0

), λj0+1, . . . , λp)

s2(Σ) := (Xp, λ
0, 0, . . . , 0, (λj0

i0
− 1), (λj0

i0+1, . . . , λ
j0
mj0

), λj0+1, . . . , λp).

We will need the following generalization to λ-pairs.

Definition 2.6. Take a λ-pair (Σ, Σ̃) where Σ = (Xp, λ
0, . . . , λp) and Σ̃ = (Xp, λ̃

0, . . . , λ̃p). Define s1(Σ, Σ̃)

and s2(Σ, Σ̃) as follows.

• If λj = λ̃j = 0 for all 1 6 i 6 p set s1(Σ, Σ̃) := s2(Σ, Σ̃) := (s2(Σ), s2(Σ̃)) = (s1(Σ), s1(Σ̃)).

• If there exists 1 6 j 6 p such that λj 6= 0 or λ̃j 6= 0 set j0 := min{j > 1 / λj 6= 0 or λ̃j 6= 0}.

– If λ̃j0 6= 0 set s1(Σ, Σ̃) = (Σ, s1(Σ̃)) and s2(Σ, Σ̃) = (Σ, s2(Σ̃)).

– If λ̃j0 = 0 set s1(Σ, Σ̃) = (s1(Σ), Σ̃) and s2(Σ, Σ̃) = (s2(Σ), Σ̃).

Now we come to an elementary, but important, observation.

Proposition 2.7. For any λ-pair (Σ, Σ̃), we have a short exact sequence

0 → Ωs2(Σ,Σ̃)(− deg(Σ, Σ̃)) → Ωs1(Σ,Σ̃) → Ω(Σ,Σ̃) → 0 (5)

Proof. Take Σ = (Xp, λ
0, . . . , λp) and Σ̃ = (Xp, λ̃

0, . . . , λ̃p). We have to consider two cases.

Case 1: λ1 = · · · = λp = λ̃1 = · · · = λ̃p = 0. Set Σ′ := s1(Σ) = s2(Σ) and Σ̃′ := s1(Σ̃) = s2(Σ̃) so that

Ω̃
(Σ′,Σ̃′)
|Xp

= Ω̃(Σ,Σ̃). We have the restriction exact sequence

0 → OXp−1
(−ep) → OXp−1

→ OXp
→ 0.

Since ep = deg(Σ, Σ̃), it suffices to tensor this exact sequence by Ω̃(Σ′,Σ̃′) to obtain the desired exact sequence.

Case 2: there exists j > 1 such that λj 6= 0 or λ̃j 6= 0. Set j0 := min{j > 1 / λj 6= 0 or λ̃j 6= 0}. Suppose
in a first time that λ̃j0 6= 0. Recall that ej0 = deg(Σ, Σ̃). Set also i0 := min{i / 1 6 i 6 mj0 and λj0

i 6= 0}.

Set Σ̃′ := (Xp, λ̃
0, 0, . . . , 0, (λ̃j0

i0+1, . . . , λ̃
j0
mj0

), λ̃j0+1, . . . , λ̃p), so that Ω(Σ,Σ̃) = ΩΣ ⊗ Sλ̃
j0
i0 Ω̃Xj0

|Xp
⊗ Ω̃Σ̃′

,

Ωs1(Σ,Σ̃) = ΩΣ ⊗ Sλ̃
j0
i0 Ω̃Xj0−1

|Xp
⊗ Ω̃Σ̃′

and Ωs2(Σ,Σ̃) = ΩΣ ⊗ Sλ̃
j0
i0

−1Ω̃Xj0−1
|Xp

⊗ Ω̃Σ̃′

. By taking the λ̃j0
i0

-th
symmetric power of the tilde conormal exact sequence when Xj0 is seen as a hypersurface of Xj0−1 and
restricting everything to Xp, we obtain

0 → Sλ̃
j0
i0

−1Ω̃Xj0−1
(−ej0)|Xp

→ Sλ̃
j0
i0 Ω̃Xj0−1

|Xp
→ Sλ̃

j0
i0 Ω̃Xj0

|Xp
→ 0.

It suffices now to tensor this exact sequence by Ω̃Σ̃′

and ΩΣ to obtain the desired result. If λj0 = 0 with use
the same decomposition on Σ (and the λj ’s) and we use the usual conormal exact sequence instead of the
tilde conormal exact sequence.
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2.4 A vanishing lemma

In this section, we prove a vanishing lemma which we will often use later. To be able to give the state-
ment, we need some more notation. Given any m-uple of integers λ = (λ1, . . . , λm), we define nz(λ) =
♯{i such that λi 6= 0} to be the number of non-zero terms in λ.

Definition 2.8. Take a λ-setting Σ = (Xp, λ
0, . . . , λp), where for all j ∈ {0, . . . , p}, λj = (λj

1, . . . , λ
j
mj

). Then
we set

• q(Σ) := dim(Σ)− n(Σ), where n(Σ) :=
∑p

j=1

∑mj

i=1 min{j, λj
i}.

• i(Σ) := codim(Σ) + w(Σ), where w(Σ) :=
∑p

j=1 j nz(λ
j).

• t(Σ) := |Σ| − nz(Σ), where |Σ| :=
∑p

j=0

∑mj

i=1 λ
j
i and nz(Σ) :=

∑p
j=0 nz(λ

j).

We will also need the generalization to λ-pairs.

Definition 2.9. Take a λ-pair (Σ, Σ̃) where Σ = (Xp, λ
0, . . . , λp), Σ̃ = (Xp, λ̃

0, . . . , λ̃p). Then we set

• q(Σ, Σ̃) := dim(Σ, Σ̃)− n(Σ, Σ̃), where n(Σ, Σ̃) := n(Σ) + n(Σ̃).

• i(Σ, Σ̃) := codim(Σ, Σ̃) + w(Σ, Σ̃), where w(Σ, Σ̃) := w(Σ) + w(Σ̃).

• t(Σ, Σ̃) := |(Σ, Σ̃)| − nz(Σ), where |(Σ, Σ̃)| = |Σ|+ |Σ̃|.

Remark 2.10. Let us just mention what the purpose of these functions are. The integer q(Σ, Σ̃) will be the
degree of the cohomology group on which we will get some description. The integer i(Σ, Σ̃) will be used as a
counter in several induction arguments, and t(Σ, Σ̃) (as well as |Σ|) will be a bound on the twist by OX(a)
we can allow in the statements of our results.

It is straightforward but crucial to observe how those notions behave with respect to the successors
introduces in Section 2.3.

Proposition 2.11. For any λ-setting Σ0 and any λ-pair (Σ, Σ̃) we have:

1. q(s1(Σ0)) > q(Σ0) and q(s1(Σ, Σ̃)) > q(Σ, Σ̃).

2. q(s2(Σ0)) = q(Σ0) + 1 and q(s2(Σ, Σ̃)) = q(Σ, Σ̃) + 1.

3. i(s1(Σ0)) < i(Σ0) and i(s1(Σ, Σ̃)) < i(Σ, Σ̃).

4. i(s2(Σ0)) < i(Σ0) and i(s2(Σ, Σ̃)) < i(Σ, Σ̃).

5. | s1(Σ0)| = |Σ0| and t(s1(Σ, Σ̃)) = t(Σ, Σ̃).

6. | s2(Σ0)| = |Σ0| − 1 and t(s2(Σ, Σ̃)) > t(Σ, Σ̃)− 1.

We are now in position to state and prove our vanishing result.

Lemma 2.12. Take a λ-pair (Σ, Σ̃). Take a ∈ Z and j ∈ N. If j < q(Σ, Σ̃) and a < t(Σ, Σ̃), then

Hj
(
Ω(Σ,Σ̃)(a)

)
= 0.

Remark 2.13. If we specialize this lemma to Σ̃ = (X, 0, . . . , 0), Σ = (X, 0, . . . , 0, (ℓ1, . . . , ℓk)) and a = 0, we
obtain that Hj(X,Sℓ1ΩX ⊗· · ·⊗SℓkΩX) = 0 if j < dimX−

∑k
i=1 min{c, ℓi}. This is the same conclusion as

in Brückmann and Rackwitz theorem. Therefore Lemma 2.12 can be seen as a generalization of their result.
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Proof of Lemma 2.12. We make an induction on i(Σ, Σ̃).

If i(Σ, Σ̃) = 0: Then Σ = (PN , λ0) and Σ̃ = (PN , λ̃0), it is a straightforward induction on nz(λ0) using
the symmetric powers of the Euler exact sequence.

If i(Σ, Σ̃) > 0: By Proposition 2.11 we can apply our induction hypothesis to s1(Σ, Σ̃) and s2(Σ, Σ̃).
Observe also that if a < t(Σ, Σ̃) then by Proposition 2.11 we get a < t(s1(Σ, Σ̃)) and also a − deg(Σ, Σ̃) <

t(s2(Σ, Σ̃)). We apply our induction hypothesis and Proposition 2.11 to obtain the vanishings

Hj
(
Ωs1(Σ,Σ̃)(a)

)
= 0 for j < q(Σ, Σ̃) 6 q(s1(Σ, Σ̃)), (6)

Hj
(
Ωs2(Σ,Σ̃)(a− deg(Σ, Σ̃))

)
= 0 for j < q(Σ, Σ̃) + 1 = q(s2(Σ, Σ̃)). (7)

By Proposition 2.7 we have the following exact sequence

0 → Ωs2(Σ,Σ̃)(a− deg(Σ, Σ̃)) → Ωs1(Σ,Σ̃)(a) → Ω(Σ,Σ̃)(a) → 0. (8)

It then suffices to use (6) and (7) in the cohomology long exact sequence associated to (8) to obtain the
desired result.

2.5 Statements for the tilde cotangent bundle

In this section we will prove the first half of Theorem A, to be precise, we will describe the map ϕ̃ and
give the announced description of im(ϕ̃). In fact, to prove this result we will need to prove a more general
statement. Before we state our results we need more notation and some more definitions. If ℓ ∈ N and if
λ := (λ1, . . . , λk) is a k-uple of integers such that λi > ℓ for any i ∈ {1, . . . , k} then we set

λ− ℓI := (λ1 − ℓ, . . . , λk − ℓ).

If we have two λ-settings of the same dimension Σ1 = (Xp, λ
0, . . . , λp) and Σ2 = (Xp, µ

0, . . . , µp), we set

Σ1 ∪ Σ2 := (Xp, λ
0 ∪ µ0, . . . , λp ∪ µp).

Definition 2.14. Take a λ-setting Σ = (Xp, λ
0, . . . , λp) where for all 0 6 j 6 p we denote λj = (λj

1, . . . , λ
j
mj

).

We say that Σ is simple if for any 1 6 j 6 p and for any 1 6 i 6 mj, λ
j
i > j. More generally, we say that a

λ-pair (Σ, Σ̃) is simple if Σ and Σ̃ are simple.

It is easy to observe how simplicity behaves with respect to the successors s1 and s2.

Proposition 2.15. If Σ is simple, then s1(Σ) and s2(Σ) are simple and moreover

q(s1(Σ)) = q(s2(Σ)) = q(Σ) + 1.

Definition 2.16. If Σ is simple, we define

Σlim := (PN , λ0 ∪ (λ1 − I) ∪ (λ2 − 2I) ∪ · · · ∪ (λp − pI)),

and

bΣ :=

p∑

i=1

ei


1 +

p∑

j=i

mj


 =

p∑

i=1

ei +

p∑

j=1

mj

j∑

i=1

ei.
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Fix a simple setting Σ = (Xp, λ
0, . . . , λp) as above. Note that for any i ∈ {1, . . . , p} one has a natural

morphism
OPN

·Fi−→ OPN (ei)

which induces a morphism
Ω̃Σlim(a)

·Fi−→ Ω̃Σlim(a+ ei).

This induces an application in cohomology,

HN (Ω̃Σlim(a))
·Fi−→ HN(Ω̃Σlim(a+ ei)),

which we will still denote ·Fi. This should not lead to any confusion.

Similarly, taking the symmetric powers of the application (2), for any i ∈ {1, . . . , p} and for any m ∈ N
one has a natural morphism

SmΩ̃PN
·dFi−→ Sm+1Ω̃PN (ei).

Now fix j ∈ {1, . . . , p} and k ∈ {1, . . . ,mj}. Set

η1 := λ0 ∪ (λ1 − I) ∪ · · · ∪ (λj−1 − (j − 1)I) ∪ (λj
1 − j, . . . , λj

k−1 − j)

η2 := (λj
k+1 − j, . . . , λj

mj
− j) ∪ (λj+1 − (j + 1)I) ∪ · · · ∪ (λp − pI).

So that Ω̃Σlim = Ω̃η1

PN ⊗ Sλ
j

k
−jΩ̃PN ⊗ Ω̃η2

PN . As above, we get a morphism

Sλ
j

k
−jΩ̃PN

·dFi−→ Sλ
j

k
−j+1Ω̃PN (ei).

If we tensor this morphism by Ω̃η1

PN , Ω̃η2

PN and OPN (a) we get a morphism

Ω̃Σlim(a)
·dF

{j,k}
i−→ Ω̃η1

PN ⊗ Sλ
j

k
−j+1Ω̃PN ⊗ Ω̃η2

PN (a+ ei),

which yields a morphism

HN
(
Ω̃Σlim(a)

)
·dF

{j,k}
i−→ HN

(
PN , Ω̃η1

PN ⊗ Sλ
j

k
−j+1Ω̃PN ⊗ Ω̃η2

PN (a+ ei)
)
.

We are now in position to state our result.

Theorem 2.17. Take a simple λ-setting Σ = (Xp, λ
0, . . . , λp) as above. Take an integer a < |Σ|. Then,

there exists an injection

Hq(Σ)
(
Ω̃Σ(a)

)
ϕ̃
→֒ HN

(
Ω̃Σlim(a− bΣ)

)
.

Moreover,

ϕ̃
(
Hq(Σ)

(
Ω̃Σ(a)

))
=

p⋂

i=1


ker(·Fi)

p⋂

j=i

mj⋂

k=1

ker
(
·dF

{j,k}
i

)

 .

To simplify our presentation, we will decompose the proof of Theorem 2.17 in a couple of propositions.
The following proposition describes the map ϕ̃.
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Proposition 2.18. With the notation of Theorem 2.17. Let q := q(Σ). There is a chain of inclusions:

Hq(Ω̃Σ(a)) →֒ Hq+1
(
Ω̃s2(Σ)(a− degΣ)

)

→֒ Hq+2
(
Ω̃s22(Σ)(a− degΣ− deg s2(Σ))

)

· · ·

→֒ Hq+k

(
Ω̃sk2(Σ)

(
a−

k−1∑

i=0

deg si2(Σ)

))

· · ·

→֒ HN

(
Ω̃sN−q

2
(Σ)

(
a−

N−q−1∑

i=0

deg si2(Σ)

))

And moreover

1. sN−q
2 (Σ) = Σlim.

2.
∑N−q−1

i=0 deg si2(Σ) = bΣ.

Proof. This is an induction on i(Σ).

If i(Σ) = 0, the result is clear since Σ = (PN , λ0) and therefore q = N , bΣ = 0 and Σ = Σlim.

Now suppose i(Σ) > 0. Then we can suppose, by induction, that the result holds for s2(Σ) which is simple
and satisfies q(s2(Σ)) = q(Σ) + 1. Consider the exact sequence

0 → Ω̃s2(Σ)(a− deg Σ) → Ω̃s1(Σ)(a) → Ω̃Σ(a) → 0.

By Proposition 2.15 and Lemma 2.12 we obtain

Hj
(
Ω̃s2(Σ)(a− deg Σ)

)
= Hj

(
Ω̃s1(Σ)(a)

)
= 0 if j 6 q.

By looking at the long exact sequence induced in cohomology we obtain an exact sequence

0 → Hq
(
Ω̃Σ(a)

)
→ Hq+1

(
Ω̃s2(Σ)(a− degΣ)

)
→ Hq+1

(
Ω̃s1(Σ)(a)

)
. (9)

Applying the induction hypothesis to s2(Σ) we get the desired chain of inclusions.
Now observe that s2(Σ)lim = Σlim, and therefore, by induction, we obtain sN−q

2 (Σ) = Σlim.
To see the last point, we have to prove that bΣ = bs2(Σ) + degΣ. If λ1 = · · · = λp = 0, then deg Σ = ep,
bΣ =

∑p
i=1 ei and bs2(Σ) =

∑p−1
i=1 ei, and therefore bΣ = bs2(Σ) + degΣ. Now if there exists 1 6 j 6 p such

that λj 6= 0. Set, as usual, j0 := min{j > 1 / λj 6= 0}, so that degΣ = ej0 . Then mj = 0 for all 1 6 j < j0
and therefore

bs2(Σ) =

p∑

i=1

ei +

p∑

j=j0+1

mj

j∑

i=1

ei +

j0−1∑

i=1

ei + (mj0 − 1)

j0∑

i=1

ei =

p∑

i=1

ei +

p∑

j=j0+1

mj

j∑

i=1

ei − ej0 = bΣ − degΣ.

The map
ϕ̃ : Hq

(
Ω̃Σ(a)

)
→ HN

(
Ω̃Σlim(a− bΣ)

)

in Theorem 2.17 is just the composition of all the injections in Proposition 2.18.
We will need an easy linear algebra lemma.
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Lemma 2.19. Take a commutative diagram of vector spaces

A
g

//

ϕ

  ❅
❅

❅

❅

❅

❅

❅

B
f1

//

h1

��

C

h2

��
D

f2
// E

such that g, h1 and h2 are injective, such that f1 ◦ g = 0 and such that g(A) = ker f1, then

ϕ(A) = h1(B) ∩ ker f2.

The key observation is the following proposition.

Proposition 2.20. With the notation of Theorem 2.17. Let q := q(Σ). There is a commutative diagram

Hq
(
Ω̃Σ(a)

)
ι //

ϕ̃

((

Hq+1
(
Ω̃s2(Σ)(a− deg Σ)

)
·Aq

//

��

Hq+1
(
Ω̃s1(Σ)(a)

)

��
...

��

...

��

Hq+k
(
Ω̃sk2(Σ)

(
a−

∑k−1
i=0 deg si2(Σ)

)) ·Aq+k
//

��

Hq+k
(
Ω̃sk−1

2
s1(Σ)

(
a−

∑k−1
i=1 deg si2(Σ)

))

��

Hq+k+1
(
Ω̃sk+1

2
(Σ)
(
a−

∑k
i=0 deg s

i
2(Σ)

))
·Aq+k+1

//

��

Hq+k+1
(
Ω̃sk2 s1(Σ)

(
a−

∑k
i=1 deg s

i
2(Σ)

))

��
...

��

...

��

HN
(
Ω̃sN−q

2
(Σ)
(
a−

∑N−q−1
i=0 deg si2(Σ)

))
·AN // HN

(
Ω̃sN−q−1

2
s1(Σ)

(
a−

∑N−q−1
i=1 deg si2(Σ)

))

where all the vertical arrows and the map ι are injective. The maps ·Aq+k are described as follows. Let
Σ = (Xp, λ

0, . . . , λp). If λ1 = · · · = λp = 0 the map ·Aq+k is just the map ·Fp induced by OPN → OPN (ep).
If there exists 1 6 j 6 p such that λj 6= 0, set j0 := min{j > 1/λj 6= 0}, then the maps ·Aq+k are maps
induced by ·dFj0 so that ·Aq is the one induced by the map appearing in the exact sequence (9) and the map
·AN is just ·dF {j0,1}

j0
.

The proof of Theorem 2.17 now easily follows by induction from Proposition 2.20 and Lemma 2.19.

Proof of Theorem 2.17. We proceed by induction on i(Σ). If i(Σ) = 0, there is nothing to prove. Now
suppose i(Σ) > 0. With the same notation as above. Thanks to Proposition 2.20 we obtain the following
commutative diagram, whose vertical arrows are injective.

Hq
(
Ω̃Σ(a)

)
ι //

ϕ̃

((◗◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

Hq+1
(
Ω̃s2(Σ)(a− degΣ)

)
·Aq

//

ϕ̃2

��

Hq+1
(
Ω̃s1(Σ)(a)

)

��

HN
(
Ω̃sN−q

2
(Σ) (a− bΣ)

)
·AN // HN

(
Ω̃sN−q−1

2
s1(Σ) (a− bΣ + deg(Σ))

)
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By Lemma 2.19 we obtain im ϕ̃ = im ϕ̃2 ∩ ker(·AN ). Now it suffices to apply the induction hypothesis to
s2(Σ) to obtain the announced description of im ϕ̃2, which induces the announced description for im ϕ̃.

We now give the proof of the proposition.

Proof of Proposition 2.20. Let Σ = (Xp, λ
0, . . . , λp). We need to treat two cases.

Case 1: λ1 = · · · = λp = 0, then s1(Σ) = s2(Σ). Therefore one has for any k > 0 a commutative diagram

0

��

0

��

Ω̃sk+1

2
(Σ)
(
a−

∑k
i=0 deg s

i
2(Σ)

)

��

·Fp
// Ω̃sk2 s1(Σ)

(
a−

∑k
i=1 deg s

i
2(Σ)

)

��

Ω̃s1 sk2 (Σ)
(
a−

∑k−1
i=0 deg si2(Σ)

)

��

·Fp
// Ω̃s1 sk−1

2
s1(Σ)

(
a−

∑k−1
i=1 deg si2(Σ)

)

��

Ω̃sk2 (Σ)
(
a−

∑k−1
i=0 deg si2(Σ)

)

��

·Fp
// Ω̃sk−1

2
s1(Σ)

(
a−

∑k−1
i=1 deg si2(Σ)

)

��
0 0

where the horizontal maps are just multiplication by Fp. Here the vertical exact sequences come from the
exact sequence (9) applied to sk2(Σ). Since Σ is simple, we see that sk2(Σ), sk−1

2 s1(Σ), sk+1
2 (Σ), sk2 s1(Σ),

s1 s
k
2(Σ) and s1 s

k−1
2 s1(Σ) are simple, and that

q(sk2(Σ)) = q(sk−1
2 s1(Σ)) = q(Σ)+k and q(sk+1

2 (Σ)) = q(sk2 s1(Σ)) = q(s1 s
k
2(Σ)) = q(s1 s

k−1
2 s1(Σ)) = q(Σ)+k+1.

By considering the diagram in cohomology associated to the above diagram and by applying Lemma 2.12,
we obtain the following commutative diagram

0

��

0

��

Hq+k
(
Ω̃sk2(Σ)

(
a−

∑k−1
i=0 deg si2(Σ)

))

��

·Fp
// Hq+k

(
Ω̃sk−1

2
s1(Σ)

(
a−

∑k−1
i=1 deg si2(Σ)

))

��

Hq+k+1
(
Ω̃sk+1

2
(Σ)
(
a−

∑k
i=0 deg s

i
2(Σ)

))
·Fp

// Hq+k+1
(
Ω̃sk2 s1(Σ)

(
a−

∑k
i=1 deg s

i
2(Σ)

))

now we put all those squares together to obtain our claim.

Case 2: there exists 1 6 j 6 p such that λj 6= 0. Set j0 := min{j > /λj 6= 0}. First let us explain what
the maps ·Aq+k are. Observe that for any 1 6 k 6 N − q, the bundles Ω̃sk2(Σ) and Ω̃sk−1

2
s1(Σ) are of the form

Ω̃sk2(Σ) = Ω̃Σ1 ⊗ SℓΩ̃Xi
⊗ Ω̃Σ2

Ω̃sk−1

2
s1(Σ) = Ω̃Σ1 ⊗ Sℓ+1Ω̃Xi

⊗ Ω̃Σ2
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where Σ1 and Σ2 are simple. The map ·dFj0 is then the map induced by IdΣ1
⊗ ·dFj0 ⊗ IdΣ2

. As before we
have a commutative diagram

0

��

0

��

Ω̃sk+1

2
(Σ)
(
a−

∑k
i=0 deg s

i
2(Σ)

)

·B

��

·dFj0 // Ω̃sk2 s1(Σ)
(
a−

∑k
i=1 deg s

i
2(Σ)

)

·B

��

Ω̃s1 sk2 (Σ)
(
a−

∑k−1
i=0 deg si2(Σ)

)

��

·dFj0// Ω̃s1 sk−1

2
s1(Σ)

(
a−

∑k−1
i=1 deg si2(Σ)

)

��

Ω̃sk2 (Σ)
(
a−

∑k−1
i=0 deg si2(Σ)

)

��

·dFj0 // Ω̃sk−1

2
s1(Σ)

(
a−

∑k−1
i=1 deg si2(Σ)

)

��
0 0

where the map ·B comes from the short exact sequence (9) applied to sk2(Σ). More precisely, the map ·B will
be either induced by ·Fj for some j, either induced by ·dFj for some j. If ·B = ·Fj then the commutativity
is clear. If ·B is induced by some map ·dFj then there are two cases to consider. Recall that by construction
each of those maps will be the identity on all except one term in the tensor product. So either the maps
·B and ·A act on the same factor of the tensor product, either they act on different factors. If they act on
different factors, the commutativity is clear. If they act on the same factor it suffices to use the commutativity
of the following diagram:

0 // Sℓ−1Ω̃Xi−1|Xi

(−2ei)

·dFj0

��

·dFi // SℓΩ̃Xi−1|Xi

(−ei)

·dFj0

��

// SℓΩ̃Xi
(−ei)

·dFj0

��

// 0

0 // SℓΩ̃Xi−1|Xi
(−ei)

·dFi // Sℓ+1Ω̃Xi−1|Xi

// Sℓ+1Ω̃Xi
// 0.

Now the rest of the proof follows as in the first case by looking at what happens in cohomology.

2.6 Twisting the Euler exact sequence

From the previous section, we have a good understanding of the groups Hq(Σ)
(
Ω̃Σ(a)

)
when Σ is simple.

Now we want to use this to deduce a similar description for the groups Hq(Σ)
(
ΩΣ(a)

)
. To do this, we

will use cohomological technics similar to the ones we used in the previous sections, but instead of building
everything on the restriction exact sequence and the conormal exact sequence, we will use the Euler exact
sequence. Again, everything will be based on a suitable exact sequence, and to define it, we need another
way of taking successors for simple pairs.

Definition 2.21. Take a simple λ-pair (Σ, Σ̃) such that Σ := (Xp, λ
0, . . . , λp), Σ̃ := (Xp, λ̃

0, . . . , λ̃p) and
such that nz(Σ) 6= 0. Set j0 := min{j > 0 / λj 6= 0}, i0 := min{i > 1 / λj0

i 6= 0} and let

Σ′ := (Xp, 0, . . . , 0, (λ
j0
i0+1, . . . , λ

j0
mj0

), λj0+1, . . . , λp)

Σ̃′ := (Xp, λ̃
0, . . . , λ̃j0−1, λ̃j0 ∪ (λj0

i0
), λ̃j0+1, . . . , λ̃p)

Σ̃′′ = (Xp, λ̃
0, . . . , λ̃j0−1, λ̃j0 ∪ (λj0

i0
− 1), λ̃j0+1, . . . , λ̃p),
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and set
h1(Σ, Σ̃) := (Σ′, Σ̃′) and h2(Σ, Σ̃) := (Σ′, Σ̃′′).

We make an elementary observation.

Proposition 2.22. If (Σ, Σ̃) is a simple pair such that nz(Σ) 6= 0, then h1(Σ, Σ̃) is simple, q(h1(Σ, Σ̃)) =

q(Σ, Σ̃), and q(h2(Σ, Σ̃)) > q(Σ, Σ̃).

The following proposition is crucial to us.

Proposition 2.23. With the above notation.

1. The Euler exact sequence (3) yields an exact sequence

0 → Ω(Σ,Σ̃) E
→ Ωh1(Σ,Σ̃) → Ωh2(Σ,Σ̃) → 0.

2. Suppose codim(Σ, Σ̃) > 0. For any 1 6 i, j 6 2, there is an isomorphism

Ωhi sj(Σ,Σ̃) ∼= Ωsj hi(Σ,Σ̃).

3. Suppose codim(Σ, Σ̃) > 0. Set b := deg(Σ, Σ̃). There is a commutative diagram

0 0 0
y

y
y

0 −−−−→ Ωs2(Σ,Σ̃)(−b) −−−−→ Ωs2 h1(Σ,Σ̃)(−b) −−−−→ Ωs2 h2(Σ,Σ̃)(−b) −−−−→ 0
y

y
y

0 −−−−→ Ωs1(Σ,Σ̃) −−−−→ Ωs1 h1(Σ,Σ̃) −−−−→ Ωs1 h2(Σ,Σ̃) −−−−→ 0
y

y
y

0 −−−−→ Ω(Σ,Σ̃) −−−−→ Ωh1(Σ,Σ̃) −−−−→ Ωh2(Σ,Σ̃) −−−−→ 0
y

y
y

0 0 0

(10)

Proof. The proof is very similar to what was done in the previous sections, and we give only a rough outline
of it.

1. With the notation of the definition of h1 and h2, it suffices to take the λj0
i0

’s power of the Euler exact
sequence to get

0 → Sλ
j0
i0ΩXj0

→ Sλ
j0
i0 Ω̃Xj0

→ Sλ
j0
i0

−1Ω̃Xj0
→ 0.

Then one just has to tensor this by a suitable tensor product of symmetric powers of Ω’s and Ω̃’s.

2. One just has to check the different cases. Most of the time the announced isomorphism is just the
identity, but in some cases, the isomorphism is a reordering of some factors in the tensor product under
consideration.

3. One takes the symmetric powers of Diagram (4) for suitable X and Y , and twist it by a suitable tensor
product of symmetric powers of Ω′s and Ω̃′s.
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2.7 Statements for the cotangent bundle

We are now in position to state and prove the second half of Theorem A. Observe that for any simple λ-setting
(Σ, Σ̃), the Euler exact sequence (3) yields a morphism Ω(Σ,Σ̃) E

→ Ω̃Σ∪Σ̃. Observe also that Ω̃Σlim∪Σ̃lim ∼=

Ω̃(Σ∪Σ̃)lim (just as in Proposition 2.23, this isomorphism is just a reordering of the different factors of the
tensor product). Therefore, this induces a map E : ΩΣlim ⊗ Ω̃Σ̃lim → Ω(Σ∪Σ̃)lim . As usual we will also denote
by E the map induced between the different cohomology groups. We have the following.

Theorem 2.24. If (Σ, Σ̃) is a simple pair and a < t(Σ, Σ̃) then, there is a commutative diagram

Hq(Σ,Σ̃)
(
Ω(Σ,Σ̃)(a)

)
//

ϕ

**❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

E

��

HN
(
ΩΣlim ⊗ Ω̃Σ̃lim(a− bΣ − bΣ̃)

)

E

��

Hq(Σ,Σ̃)
(
Ω̃Σ∪Σ̃(a)

)
ϕ̃

// HN
(
Ω̃(Σ∪Σ̃)lim(a− bΣ − bΣ̃)

)

where all the arrows are injective and where ϕ̃ is the map from Theorem 2.17. Moreover, imϕ = im ϕ̃∩ im E .

We would like to point out a special case of particular interest (which was denoted by Theorem A in the
introduction).

Corollary 2.25. Take integers ℓ1, . . . , ℓk > c take an integer a < ℓ1 + · · · + ℓk − k, let q := n − kc and
b := (k + 1)

∑c
i=1 ei. Then one has a commutative diagram

Hq
(
X,Ω

(ℓ1,...,ℓk)
X (a)

)
//

E

��

ϕ

**❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

HN
(
PN ,Ω

(ℓ1−c,...,ℓk−c)

PN (a− b)
)

E

��

Hq
(
X, Ω̃

(ℓ1,...,ℓk)
X (a)

)
ϕ̃

// HN
(
PN , Ω̃

(ℓ1−c,...,ℓk−c)

PN (a− b)
)

Such that:

1. im ϕ̃ =
⋂c

i=1

(
ker(·Fi)

⋂k
j=1 ker

(
·dF

{j}
i

))
.

2. imϕ = im ϕ̃ ∩ imE .

In the corollary, the map ·dF
{j}
i is just the map

HN
(
PN , Ω̃

(ℓ1−c,...,ℓk−c)

PN (a− b)
)

·dF
{j}
i→ HN

(
PN , Ω̃

(ℓ1−c,...ℓj−c+1,ℓk−c)

PN (a− b + ei)
)

induced by the map
Sℓj−cΩ̃PN

·dFi→ Sℓ−c+1Ω̃PN (ei).

Remark 2.26. Let us consider more precisely the case k = 1 in Corollary 2.25, suppose for simplicity that
N = 2N0 is even. At first sight, it might seem that if c > n this result doesn’t tell us anything, but in fact,
we can still get some information by using a simple trick. Indeed, suppose we want to construct symmetric
differential forms on X , then it suffices to write Y = H1 ∩ · · · ∩ HN0

and X = Y ∩ HN0+1 ∩ · · · ∩ Hc.
Corollary 2.25 then gives us information on H0(Y, SmΩY ). And if we are able to construct an element
ω ∈ H0(Y, SmΩY ) one can consider the induced restriction ωX ∈ H0(X,SmΩX). Similar arguments can by
done when N is odd. We would like to mention that in the proof of our main application in Section 4, we
will in fact use a similar trick with Theorem 2.17 and not only Corollary 2.25.
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Proof of Theorem 2.24. Take a simple λ-pair (Σ, Σ̃) where Σ = (Xp, λ
0, . . . , λp) and Σ̃ = (Xp, λ̃

0, . . . , λ̃p).

We make an induction on nz(Σ). Let q := q(Σ, Σ̃). If nz(Σ) = 0 there’s nothing to prove. We now suppose
that nz(Σ) 6= 0. Diagram (10) yields a commutative square

Hq
(
Ω(Σ,Σ̃)

)
−−−−→ Hq

(
Ωh1(Σ,Σ̃)

)

y
y

Hq+1
(
Ωs2(Σ,Σ̃)(− deg(Σ, Σ̃))

)
−−−−→ Hq+1

(
Ωs2 h1(Σ,Σ̃)(− deg(Σ, Σ̃))

)

where, by applying Lemma 2.12, all the arrows are injective. Now set

Hq+i
j,k := Hq+i

(
Ωs

j
2
hk
1 (Σ,Σ̃)

(
a−

j−1∑

ℓ=0

deg sℓ2(Σ, Σ̃)

))
.

Putting all the above cartesian squares together, we obtain the following commutative diagram whose arrows
are all injective.

Hq
0,0 −−−−→ Hq

0,1 −−−−→ · · · −−−−→ Hq
0,k −−−−→ Hq

0,k+1 −−−−→ · · · −−−−→ Hq

0,nz(Σ)y
y

y
y

y

Hq+1
1,0 −−−−→ Hq+1

1,1 −−−−→ · · ·
...

...
...

y
y

y
y

...
...

...
...

y
y

y

Hq+j
j,0 −−−−→ · · · · · · −−−−→ Hq+j

j,k −−−−→ Hq+j
j,k+1 −−−−→ · · ·

y
y

y

Hq+j+1
j+1,0 −−−−→ · · · · · · −−−−→ Hq+j+1

j+1,k −−−−→ Hq+j+1
j+1,k+1 −−−−→ · · ·

y
y

y
...

...
...

...
y

y

HN
N−q,0 −−−−→ · · · · · · · · · −−−−→ HN

N−q,nz(Σ)

(11)

Observe that

Hq

0,nz(Σ)
∼= Hq(Ω̃Σ∪Σ̃(a))

HN
N−q,0

∼= HN (ΩΣlim ⊗ Ω̃Σlim(a− bΣ − bΣ̃))

HN
N−q,nz(Σ)

∼= HN (Ω̃Σlim∪Σ̃lim(a− bΣ − bΣ̃)).

We would like to point out that to make the proof completely precise, one should take into account the
different isomorphisms coming from Proposition 2.23.2. But for simplicity we neglect those details here. Set
ϕ to be the map Hq

0,0 → HN
N−q,nz(Σ). Observe also that the composed map Hq

0,nz(Σ) → HN
N−q,nz(Σ) is just

the map ϕ̃ from Theorem 2.17. This gives us the commutative diagram of Theorem 2.24. The proof of the
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rest of the statement is similar to the proof of Theorem 2.17. When one looks at the long exact sequence
associated to Diagram 10, we get a commutative diagram

0 −−−−→ Hq
(
Ω(Σ,Σ̃)(a)

)
−−−−→ Hq

(
Ωh1(Σ,Σ̃)(a)

)
−−−−→ Hq

(
Ωh2(Σ,Σ̃)(a)

)

y
y

y

0 −−−−→ Hq+1
(
Ωs2(Σ,Σ̃)(a− b)

)
−−−−→ Hq+1

(
Ωs2 ◦h1(Σ,Σ̃)(a− b)

)
−−−−→ Hq+1

(
Ωs2 ◦h2(Σ,Σ̃)(a− b)

)

where b := deg(Σ, Σ̃). A quick induction yields a commutative diagram

0 // Hq
(
Ω(Σ,Σ̃)(a)

)

��

ϕ1

**❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

Eq
// Hq

(
Ωh1(Σ,Σ̃)(a)

)

ϕ2

��

// Hq
(
Ωh2(Σ,Σ̃)(a)

)

��

0 // HN
(
ΩsN−q

2
(Σ,Σ̃)(a− bΣ,Σ̃)

)
EN // HN

(
ΩsN−q

2
h1(Σ,Σ̃)(a− bΣ,Σ̃)

)
τ // HN

(
ΩsN−q

2
h2(Σ,Σ̃)(a− bΣ,Σ̃)

)

Where bΣ,Σ̃ = bΣ + bΣ̃. By Lemma 2.19 we obtain

imϕ1 = imϕ2 ∩ ker(τ) = imϕ2 ∩ imEN .

From Diagram 11 one can extract the commutative diagram

Hq
0,0

��

//

ϕ1

$$■
■

■

■

■

■

■

■

■

ϕ

��

Hq
0,1

ϕ2

��

//

ϕ′

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Hq

0,nz(Σ)

ϕ̃

��
HN

N−q,0

EN //

E

88
HN

N−q,1
E

′
// HN

N−q,nz(Σ)

Our induction hypothesis is that imϕ′ = im E ′ ∩ im ϕ̃. Using the fact that imϕ1 = imϕ2 ∩ imEN , we get

imϕ = E
′(imϕ1) = E

′(imEN ) ∩ E
′(imϕ2) = imE ∩ imϕ′ = imE ∩ im ϕ̃ ∩ imE

′ = imE ∩ im ϕ̃.

3 Applications

We give different applications of theorems 2.17 and 2.24. These two statements basically give us a way of
computing different cohomology groups on complete intersection varieties by reducing the problem to the
computation of the kernel of a linear map depending (in some explicit way) on the defining equations of our
complete intersection. In general computing this kernel is a difficult question because of the dimension of
the spaces that are involved. However, in some special cases, one can make those computations, and this
gives us some noteworthy conclusions.

3.1 Explicit computation in Čech cohomology

In this section, we explain how to make theorems 2.17 and 2.24 explicit via the use of Čech cohomology.
We will use the standard homogenous coordinates [Z0 : . . . : ZN ] on PN and the standard affine subsets
Ui := (Zi 6= 0) ⊂ PN . Let U := (Ui)06i6N .
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Remark 3.1. In some situations it is more natural to use other open coverings of PN more suitable to the
geometric problem under consideration. See for instance Section 3.2 for an illustration of this.

Recall, see for example [11], that if a > N + 1 then

HN(PN ,OPN (−a)) ∼= ȞN (U,OPN (−a)) ∼=
⊕

i0+···+iN=a
i0,...,iN>1

1

Zi0
0 · · ·ZiN

N

· C (12)

Recall also that

Ω̃PN =

N⊕

i=0

OPN (−1)dZi = V ⊗OPN (−1),

where V =
⊕N

i=0 C · dZi. Now take integers ℓ1, . . . , ℓk > 0 and a < ℓ1 + · · ·+ ℓk −N − 1. We have

HN
(
PN , Ω̃

(ℓ1,...,ℓk)

PN (a)
)

∼= V (ℓ1,...,ℓk) ⊗HN
(
PN ,OPN (a− ℓ1 − · · · − ℓk)

)

∼= V (ℓ1,...,ℓk) ⊗
⊕

i0,...,iN>1
i0+···+iN=ℓ1+···+ℓk−a

1

Zi0
0 · · ·ZiN

N

· C.

Therefore an element of HN
(
PN , Ω̃

(ℓ1,...,ℓk)

PN (a)
)

can be thought of as an element of the form

ω =
∑

J1,...,Jk,I∈N
N+1

|J1|=ℓ1,...,|Jk|=ℓk
|I|=ℓ1+···+ℓk−a

I>I

ωI
J1,...,Jk

dZJ1 ⊗ · · · ⊗ dZJk

ZI
.

Where ωI
J1,...,Jk

∈ C and where I := (1, . . . , 1) ∈ NN+1. If K = (k0, . . . , kN ) and J = (j0, . . . , jN ) are both
in NN+1 we write K > J if ki > ji for any 0 6 i 6 N. We also use the standard multi-index notation: if
I = (i0, . . . , iN ) ∈ NN+1 then ZI := Zi0

0 · · ·ZiN
N and dZI := dZi0

0 · · · dZiN
N .

We now describe explicitly the maps ·F and ·dF . Start with a monomial ZM ∈ HN(PN ,OPN (e)) of
degree e, where M ∈ NN+1. Take λ = (ℓ1, . . . , ℓk) as above. The multiplication by ZM induces the map

HN
(
PN , Ω̃λ

PN (a)
)

→ HN
(
PN , Ω̃λ

PN (a+ e)
)

ω = dZJ1⊗···⊗dZJk

ZI 7→ ω · ZM =

{
dZJ1⊗···⊗dZJk

ZI−M if I + I > M
0 if I + I � M.

If we take any F ∈ H0(PN ,OPN (e)), it suffices to decompose F as a sum of monomials and extend the above
description by linearity.

Now consider an element ξ = ZMdZi ∈ H0
(
PN , Ω̃PN (e)

)
. Fix 1 6 j 6 k. This induces a map

HN
(
PN , Ω̃

(ℓ1,...,ℓk)
PN (a)

)
→ HN

(
PN , Ω̃

(ℓ1,...,ℓj+1,...,ℓk)

PN (a+ e)
)

ω = dZJ1⊗···⊗dZJk

ZI 7→ ω · ξ{j} =

{
dZJ1⊗···⊗dZidZ

Jj⊗···⊗dZJk

ZI−M if I + I > M
0 if I + I � M.

again, it suffices to extend by linearity to describe the maps ·dF {j} for any j and any F ∈ HN(PN ,OPN (e)).
The maps E are understood very similarly and we don’t provide all the details here. However, because in our
computations we will have to use the coboundary map in the long exact sequence in cohomology associated
to a short exact sequence, we would like to recall how such a coboundary map can be understood. Suppose
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that X ⊆ PN is a projective variety, that U is an open covering of X and that one has the following exact
sequence of sheaves on X

0 → F
ϕ
→ E

ρ
→ G → 0

This gives us the following maps between the Čech complexes:

...

ď

��

...

ď

��

...

ď

��
Ck(U,F)

ď

��

ϕk
// Ck(U, E)

ď

��

ρk
// Ck(U,G)

ď

��

Ck+1(U,F)

ď��

ϕk+1
// Ck+1(U, E)

ď��

ρk+1
// Ck+1(U,G)

ď��
...

...
...

Here ď denotes the Čech differential. The coboundary map δk : Ȟk(U,G) → Ȟk+1(U,F) is obtained by
applying the snake lemma in the above diagram (we suppose that U is sufficiently refined so that one can
make this work). The problem we will be facing is the following: suppose that δk is injective and that we
have (σi0,...,ik) ∈ Zk+1(U,F) representing a class σ ∈ Ȟk+1(U,F) such that σ ∈ im(δk), how to compute a
Čech representative for δ−1

k (σ) in Ck(U,G)? This is just a diagram chase, and goes as follows: first compute
ϕk+1(σi0,...,ik), by hypothesis, there exists (τi0,...,ik) ∈ Ck(U, E) such that ϕk+1(σi0,...,ik) = ď(τi0,...,ik). And
then δ−1

k (σ) is just represented by the cocycle ρk(τi0,...,ik). For us the maps ϕk will be either multiplication
by F or multiplication by dF for some polynomial F and ρk will just by a restriction map.

3.2 The case of plane curves

Let us just explain how we can use this strategy to construct the “classical” differential form on smooth
curves in P2 of genus greater than 1. Let F ∈ C[Z0, Z1, Z2] be a homogenous polynomial of degree e > 3.
Such that the curve C := (F = 0) ⊆ P2 is smooth. For any i ∈ {0, 1, 2}, set Fi :=

∂F
∂Zi

and UF
i := (Fi 6= 0)

and U
F := (UF

i )06i62. Because C is smooth, UF is an open covering of P2. From Proposition 2.18 we get a
diagram whose arrows are all injective

H0(C, Ω̃C)
ϕ̃0

//

ϕ̃
((◗◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

H1(C,OC(−e))

ϕ̃1

��
H2(P2,OP2(−2e))

By Corollary 2.25 we get that im(ϕ̃) = ker(·F )∩ker(·dF ). We will work in Čech cohomology with respect to
UF . For any degree e− 3 polynomial P ∈ C[Z0, Z1, Z2] consider the element ω̃P,2 ∈ H2(P2,OP2(−2e)) given
by the following cocycle:

ω̃P
012 :=

P

F0F1F2
∈ Ȟ2(UF ,OP2(−2e)).

By Euler’s formula we have eF = F0Z0 + F1Z1 + F2Z2. Hence, we obtain

ω̃P
012 · F =

P

e

1

F0F1F2
· (F0Z0 + F1Z1 + F2Z2) =

P

e

(
Z0

F1F2
+

Z1

F0F2
+

Z2

F0F1

)
= 0 ∈ Ȟ2(UF ,OP2(−e))
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And because dF = F0dZ0 + F1dZ1 + F2dZ2 we obtain similarly

ω̃P
012 · dF = P

(
dZ0

F1F2
+

dZ1

F0F2
+

dZ2

F0F1

)
= 0 ∈ Ȟ2(UF , Ω̃P2(−e))

hence, we see that ω̃P,2 ∈ im(ϕ̃). This already proves the existence of a tilde differential form on C and
in fact, Corollary 2.25 even proves that this tilde differential form will yield a true differential form simply
because, with the notation of Corollary 2.25, im(E ) = H2(P2,OP2(−e)). It remains to compute ϕ̃−1(ω̃P,2),
to do so, we first compute ϕ̃−1

1 (ω̃P,2). This is done as follows:

ω̃P
012 · F =

P

e

(
Z0

F1F2
+

Z1

F0F2
+

Z2

F0F1

)
= ω̃P

12 − ω̃P
02 + ω̃2

01 = ď
(
(ω̃P

ij)06i<j62

)

Where for each i < j, ω̃P
ij = (−1)k P

e
Zk

FiFj
for k ∈ {0, 1, 2}\{i, j}. Therefore, ω̃P,1 := ϕ̃−1(ω̃P,2) is represented

by the cocycle (ω̃P
ij)06i<j62. Now we compute ϕ̃−1

0 (ω̃P,1). Let i, j ∈ {0, 1, 2} such that i < j and let k ∈
{0, 1, 2} \ {i, j}.

ω̃P
ij · dF = (−1)k

P

e

Zk

FiFj

(FidZi + FjdZj + FkdZk) = (−1)k
P

e

(
ZkdZi

Fj

+
ZkdZi

Fi

+
ZkFkdZk

FiFj

)
.

But here we can use the relation F = 0, so that ZkFk = −ZiFi − ZjFj , and therefore

ω̃P
ij · dF = (−1)k

P

e

(
ZkdZi

Fj

+
ZkdZj

Fi

−
(ZiFi + ZjFj)dZk

FiFj

)
= (−1)k

P

e

(
1

Fj

∣∣∣∣
Zk Zi

dZk dZi

∣∣∣∣+
1

Fi

∣∣∣∣
Zk Zj

dZk dZj

∣∣∣∣
)

For any i ∈ {0, 1, 2}, take j, k ∈ {0, 1} \ {i} such that j < k, and set

ω̃P
i := (−1)i

P

eFi

∣∣∣∣
Zj Zk

dZj dZk

∣∣∣∣ .

With this formula, it is straighforward to check that (ω̃P
ij · F )06i<j62 = ď

(
(ω̃P

i )06i62

)
, hence ω̃P,0 :=

ϕ̃−1(ω̃P,2) = ϕ̃−1
0 (ω̃P,1) is represented by the cocycle (ω̃P

i )06i62. To complete our study, we still have to
compute the corresponding element ωP,0 ∈ H0(C,ΩC). To do this, we only have to dehomogenize (ω̃P

i )06i62.
We are only going to consider the chart U0 = (Z0 6= 0) = C2 with coordinates (z1, z2) where z1 = Z1

Z0
and

z2 = Z2

Z0
. Let f ∈ C[z1, z2] (resp. Q ∈ C[z1, z2]) be the dehomogeneization of F (resp. P ) with respect to

Z0. For i ∈ {1, 2} let fi :=
∂f
∂zi

, observe that fi is the dehomogeneization of Fi with respect to Z0. We let
U ′
i = U0 ∩ UF

i = (fi 6= 0). Moreover, for i ∈ {1, 2}, we have

dzi =
Z0dZi − ZidZ0

Z2
0

=
1

Z2
0

∣∣∣∣
Z0 Zi

dZ0 dZi

∣∣∣∣ .

Hence if i ∈ {1, 2} and j ∈ {1, 2} \ {i} we obtain

ω̃P
i = (−1)i

P

eFi

∣∣∣∣
Z0 Zj

dZ0 dZj

∣∣∣∣ = (−1)i
Ze−3
0 Q

eZe−1
0 fi

Z2
0dzi = (−1)i

1

e

Q

fi
dzj .

From this we obtain that ωP,0|U0
∈ H0(U0 ∩ C,ΩC) is represented in Čech cohomology with respect to

(U ′
1 ∩C,U ′

2 ∩ C) by the cocycle (−Q dz2
f1

, Q dz1
f2

), as expected.
Remark 3.2. It is true that this computation is longer than the usual one, however the strategy is a bit
different. Indeed, the classical approach consists in finding a differential form locally (on U0 ∩ C) which is
done by a “guessing” process, after what one checks that the constructed differential form extends on C.
Here we somehow approach the problem the other way around, using Corollary 2.25, once we have found the
element ωP

012, we already know that we have a global differential form on C, and the entire computation just
comes down to compute a local representative of it, this process is long but of a mechanical nature. In our
opinion this second strategy reduces the importance of the “guessing” part and is therefore more suitable for
higher dimensional generalizations.
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3.3 Optimality in Brückmann and Rackwitz theorem

We are now in position to prove optimality in Theorem 1.1. By applying theorems 2.17 and 2.24 to a very
particular complete intersection, we will prove the following (so called Theorem B in the introduction).

Proposition 3.3. Let N > 2, let 0 6 c < N . Take integers ℓ1, . . . , ℓk > 1 and a < ℓ1 + · · · + ℓk − k.
Suppose 0 6 q := N − c−

∑k
i=1 min{c, ℓi}. Then, there exists a smooth complete intersection variety in PN

of codimension c, such that
Hq(X,Sℓ1ΩX ⊗ · · · ⊗ SℓkΩX(a)) 6= 0.

We will construct an example as follows. Take a c× (N + 1) matrix

A =




a10 · · · a1N
...

. . .
...

ac0 · · · acN


 ,

where the aij ∈ C are such that for any p ∈ {1, . . . , c}, the p × p minors of the matrix A are non zero. Fix
an integer e > 1. For each p ∈ {1, . . . , c}, set

Fp :=

N∑

j=0

apjX
e
j and Xp := (F1 = 0) ∩ · · · ∩ (Fp = 0).

One easily check that Xi is smooth for any i ∈ {1, . . . , c}. We will show that if we take e ≫ 1 this example
is sufficient to prove Proposition 3.3

3.3.1 The simple case

We first treat the simple case. Take a simple setting Σ = (Xc, λ
0, . . . , λc), if for any 0 6 j 6 c one denotes

λj = (λj
1, . . . , λ

j
mj

) where λj
k > j for any 1 6 k 6 mj. In our situation, one obtains: n(Σ) =

∑c
j=1 jmj ,

nz(Σ) =
∑c

j=1 mj , |Σlim| =
∑c

j=0

∑mj

k=1(λ
j
k − j) and bΣ = e(c+ n(Σ)). The statement is the following.

Proposition 3.4. Take X = Xc and Σ as above. Take a < t(Σ). If

e >
N + 1 + 2|Σlim| − a

q(Σ) + 1
then Hq(Σ)(ΩΣ(a)) 6= 0.

Proof. It suffices to apply theorems 2.17 and 2.24 to a non-zero element of the form

ω :=
P

Ze−1
0 · · ·Ze−1

N

c⊗

j=0

mj⊗

k=1

(Z0dZ1 − Z1dZ0)
λ
j

k
−j ∈ HN

(
PN , Ω̃Σlim

PN (a− bΣ)
)
.

Where P ∈ C[Z0, . . . , ZN ] is a homogenous polynomial of degree (q(Σ)+1)e+a−N−1−2|Σlim|. The condition
on the degree just insures that such an element exists. Our statement follows at once using theorems 2.17
and 2.24 and the description of Section 3.1 with Fp =

∑N
j=0 apjZ

e
j and dFp = e

∑N
j=0 apjZ

e−1
j dZj .

3.3.2 The general case

To complete the proof of Proposition 3.3 we also have to treat the non-simple case. If Σ is not simple,
we can not apply directly theorems 2.17 and 2.24. We need another type of successors. Take any setting
Σ = (Xp, λ

0, . . . , λp) where λj = (λj
1, . . . , λ

j
mj

). Suppose, without loss of generality, that for all 1 6 j 6 p

and for all 1 6 i 6 mj we have λj
i > 1. And suppose also that Σ is not simple. We define the successors
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c1 and c2 as follows: consider j0 := max
{
1 6 j 6 p such that ∃ 1 6 i 6 mj with λj

i < j
}

and i0 :=

min
{
1 6 i 6 mj0 such that λj0

i < j0

}
. Set

c1(Σ) :=
(
Xp, λ

0, . . . , λj0−2, λj0−1 ∪ (λj0
i0
), µ, λj0+1, . . . , λp

)

c2(Σ) :=
(
Xp, λ

0, . . . , λj0−2, λj0−1 ∪ (λj0
i0
− 1), µ, λj0+1, . . . , λp

)

where µ :=
(
λj0
1 , . . . , λj0

i0−1, λ
j0
i0+1, . . . , λ

j0
mj0

)
. With those notation set also deg′ Σ := ej0 . As in Proposition

2.7 we obtain an exact sequence

0 → Ωc2(Σ)(− deg′ Σ) → Ωc1(Σ) → ΩΣ → 0.

We can now prove the following.

Proposition 3.5. Let Σ be any setting, and denote q := q(Σ). For any integer a < t(Σ), there exists a
simple setting Σ′ such that q(Σ′) = q, and an injection

Hq
(
ΩΣ′

(a)
)
→֒ Hq

(
ΩΣ(a)

)
.

Proof. Of course, we can suppose that Σ is not simple. Observe that q(c2(Σ)) = q(Σ)+1 = q+1. Therefore,
applying Lemma 2.12, we obtain

Hq
(
Ωc2(Σ)(a− deg′ Σ)

)
= 0.

This yields an injection
Hq
(
Ωc1(Σ)(a)

)
→֒ Hq

(
ΩΣ(a)

)
.

It suffices now to observe that after a sufficient number r of iterations, we obtain a simple setting Σ′ = cr1(Σ)
such that q(Σ′) = q. By induction we therefore get a chain of injections

Hq
(
ΩΣ′

(a)
)
= Hq

(
Ωcr1(Σ)(a)

)
→֒ · · · →֒ Hq

(
Ωc1(Σ)(a)

)
→֒ Hq

(
ΩΣ(a)

)
.

The proof of Proposition 3.3 now follows directly from propositions 3.4 and 3.5.

3.4 Examples for the non-invariance under deformation

Applying theorems 2.17 and 2.24 to a very particular family of complete intersection surfaces we will prove
that the numbers h0 (X,SmΩX) are not deformation invariant as soon as m > 2. Our example is the
following. Take α := (α1, α2) ∈ C2 and β := (β1, β2) ∈ C2. Take a0, . . . , a4 ∈ C such that ai 6= aj if i 6= j.
Take an integer e > 5 and set e1 = ⌊ e

2⌋ and e2 = ⌈ e
2⌉. Set

Fα := Ze
0 + Ze

1 + Ze
2 + Ze

3 + Ze
4 + α1Z

e1
0 Ze2

1 + α2Z
e1
2 Ze2

3

Gβ := a0Z
e
0 + a1Z

e
1 + a2Z

e
2 + a3Z

e
3 + a4Z

e
4 + β1Z

e1
0 Ze2

1 + β2Z
e1
2 Ze2

3 .

And set
Xα,β = (Fα = 0) ∩ (Gβ = 0).

Proposition 3.6. With the above notation, we have:

1. h0(X0,0, S
2ΩX0,0

) 6= 0.

2. For generic α and β, h0(Xα,β , S
2ΩXα,β

) = 0.
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Proof. The fact that h0(X0,0, S
2ΩX0,0

) 6= 0 is a very particular case of Proposition 3.4. The rest of the proof
is a straightforward computation, but we give it for the sake of completeness. Observe first that

H0
(
Xα,β, S

2ΩXα,β

)
∼= H0

(
Xα,β, S

2Ω̃Xα,β

)
.

By Theorem 2.17 and we obtain an injection H0
(
Xα,β, S

2Ω̃Xα,β

)
ϕ̃
→֒ H4

(
PN ,OPN (−4e)

)
such that

ϕ̃
(
H0
(
Xα,β, S

2Ω̃Xα,β

))
= ker(·Fα) ∩ ker(·Gβ) ∩ ker(·dFα) ∩ ker(·dGβ).

Let ξ ∈ H4
(
PN ,OPN (−4e)

)
, observe that ξ ∈ ker (·dFα) if and only if ξ ∈

⋂4
i=0 ker

(
·∂Fα

∂Zi

)
. Moreover,

since eF =
∑4

i=0 Zi
∂Fα

∂Zi
, we see that if ξ ∈

⋂4
i=0 ker

(
·∂Fα

∂Zi

)
then ξ ∈ ker(·Fα). A similar argument for Gβ

shows that

im ϕ̃ =

4⋂

i=0

(
ker

(
·
∂Fα

∂Zi

)
∩ ker

(
·
∂Gβ

∂Zi

))
.

Now we proceed to a standart Gauss algorithm

ξ ∈ ker
(
·∂Fα

∂Z0

)
∩ ker

(
·
∂Gβ

∂Z0

)
⇔

{ ∑
I ξ

I 1
ZI · ∂Fα

∂Z0
= 0∑

I ξ
I 1
ZI ·

∂Gβ

∂Z0
= 0

⇔

{ ∑
I ξ

I 1
ZI · (eZe−1

0 + e1α1Z
e1−1
0 Ze2

1 ) = 0∑
I ξ

I 1
ZI · (ea0Z

e−1
0 + e1β1Z

e1−1
0 Ze2

1 ) = 0

⇔

{ ∑
I ξ

I 1
ZI · Ze−1

0 = 0∑
I ξ

I 1
ZI · Ze1−1

0 Ze2
1 = 0

⇔

{
ξI = 0 ∀I = (i0, . . . , i4) / i0 > e− 1
ξI = 0 ∀I = (i0, . . . , i4) / i0 > e1 − 1 and i1 > e2.

Note that to do this, we suppose β1 6= a0α1. Similarly, we find

ξ ∈ ker
(
·∂Fα

∂Z1

)
∩ ker

(
·
∂Gβ

∂Z1

)
⇔

{
ξI = 0 ∀I = (i0, . . . , i4) / i1 > e− 1
ξI = 0 ∀I = (i0, . . . , i4) / i0 > e1 and i1 > e2 − 1

ξ ∈ ker
(
·∂Fα

∂Z2

)
∩ ker

(
·
∂Gβ

∂Z2

)
⇔

{
ξI = 0 ∀I = (i0, . . . , i4) / i2 > e− 1
ξI = 0 ∀I = (i0, . . . , i4) / i2 > e1 − 1 and i3 > e2

ξ ∈ ker
(
·∂Fα

∂Z3

)
∩ ker

(
·
∂Gβ

∂Z3

)
⇔

{
ξI = 0 ∀I = (i0, . . . , i4) / i3 > e− 1
ξI = 0 ∀I = (i0, . . . , i4) / i2 > e1 and i3 > e2 − 1

and ξ ∈ ker
(
·∂Fα

∂Z4

)
∩ ker

(
·
∂Gβ

∂Z4

)
⇔

{
ξI = 0 ∀I = (i0, · · · , i4) / i4 > e− 1.

Now we just have to observe that any multi-index I = (i0, . . . , i4) with |I| = 4a satisfies one of those
conditions, because otherwise we would get

4e = i0 + · · ·+ i4 6 2(e2 + e− 2) + e− 1 6 4e− 4,

which is a contradiction. And therefore, if ξ ∈ im ϕ̃, then ξI = 0 for all I. Hence, im ϕ̃ = {0}.

Observe that from this simple example, one can easily generate other families for which the dimension of
the space of holomorphic differential forms jumps.
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Corollary 3.7. For any n > 2, for any m > 2, there is a family of varieties Y → B over a curve, of relative
dimension n, and a point 0 ∈ B such that for generic t ∈ B,

h0(Y0, S
mΩY0

) > h0(Yt, S
mΩYt

).

Proof. Let X be the family of surfaces constructed in Proposition 3.6. Then it suffices to consider the family
X ×A for any (n− 2)−dimensional abelian variety A.

4 Varieties with ample cotangent bundle

4.1 Statements

In this section we prove our main application of the results of Section 2. Our statement is the following
partial result towards Debarre’s conjecture (denoted by Theorem D in the introduction).

Theorem 4.1. Let N, c, e ∈ N such that N > 2, c > 3N−2
4 and e > 2N+3. If X ⊆ PN be a general complete

intersection of codimension c and multidegree (e, . . . , e), then ΩX is ample.

Remark 4.2. Observe that the condition c > 3N−2
4 can be rephrased by codimPN (X) > 3 dim(X)− 2.

Since ampleness is an open condition (see for instance Theorem 1.2.17 in [12] and Proposition 6.1.9 in [13]),
it suffices to construct one example of a smooth complete intersection variety with ample cotangent bundle
satisfying the hypothesis of the theorem to prove that the result holds for a general complete intersection
variety. We will construct such an example by considering deformations of Fermat type complete intersection
varieties. To do so, let us introduce some notation.

Fix N > 2, ε ∈ N and e ∈ N∗. Set Aε := C[Z0, . . . , ZN ]ε. For any s = (s0, . . . , sN ) ∈ A⊕N+1
ε we set:

Fs(Z) = F (s, Z) :=

N∑

i=0

siZ
e
i . (13)

This is a homogeneous equation of degree e0 := ε + e and for a general choice of s, it defines a smooth
hypersurface in PN which we will denote by Xs. For any m, a ∈ N, and any smooth variety X ⊆ PN , we will
write LX := OP(ΩX)(1) and Lm

X(−a) := L⊗m
X ⊗ π∗

XOX(−a). With those notation we have the following.

Theorem 4.3. Let N, c, e, ε, a ∈ N such that N > 2, c > 3N−2
4 and set n := N − c. Suppose that ε > 1 and

that e > N + 1 + a+Nε. Then for any 0 6 j 6 N there exists sj ∈ A⊕N+1
ε such that X := Xs1 ∩ · · · ∩Xsc

is a smooth complete intersection variety such that Ln
X(−a) is nef.

Let us first prove that this result implies Theorem 4.1.

Proof of Theorem 4.3 ⇒ Theorem 4.1. Take a = ε = 1, e > N(1 + ε) + a + 1 = 2N + 2 (this is equivalent
to e0 > 2N + 3) and c > 3N−2

4 . Then Theorem 4.3 implies that there exists a smooth complete intersection
variety X ⊂ PN of codimension c and multidegree (e, . . . , e) such that Ln

X(−1) is nef. But this implies
that Ln

X is ample and therefore that LX is ample, and thus, ΩX is ample. But since ampleness is an open
condition in families, we deduce that a general complete intersection variety in PN of codimension c and
multidegree (e, . . . , e) has ample cotangent bundle.

The proof of Theorem 4.3 is an induction based on the following technical lemma.

Lemma 4.4. Let N, c, e, ε, a ∈ N such that N > 2, c > 3N−2
4 , ε > 1 and e > N+1+a+Nε. Set n := N−c.

For any 0 6 j 6 N take sj ∈ A⊕N+1
ε such that X := Xs1 ∩ · · · ∩ Xsc is a smooth complete intersection

variety. For any i ∈ {0, . . . , N}, set Hi := (Zi = 0) and Wi := X ∩Hi. We look at P(ΩWi
) as a subvariety

of P(ΩX). Then, for a general choice of s1, . . . , sc, there exists E ⊆ P(ΩX), such that dimE = 0 and such
that

Bs(Ln
X(−a)) ⊆

N⋃

i=0

P(ΩWi
) ∪ E
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The proof of Lemma 4.4 is the content of Section 4.2 and Section 4.3. But for now let us explain how to
obtain Theorem 4.3 from Lemma 4.4.

Proof of Theorem 4.3. Let H be a hyperplan section of X . Fixing c >
3N−2

4 , the proof is an induction
on n = dimX (or equivalently on N). If n = 1, then X is a curve. By the adjunction formula, KX =
OX(c(e + ε)−N − 1). Therefore ΩX(−a) = KX(−a) is nef.
Now suppose that n > 2. We have to prove that for any irreducible curve C ⊆ P(ΩX), C · Ln

X(−a) > 0.
Certainly, if C 6⊂ Bs(Ln

X(−a)), C · Ln
X(−a) > 0. Now suppose that C ⊆ Bs(Ln

X(−a)), from Lemma 4.4
we know that Bs(Ln

X(−a)) ⊆
⋃N

i=0 P(ΩWi
) ∪ E for some zero-dimensional set E. Therefore, there exists

i ∈ {0, . . . , N} such that C ⊆ P(ΩWi
). But on can view Wi as a codimension c complete intersection variety

in Hi
∼= PN−1 defined by equations of the same type than X (with one less variable). Observe moreover that

LX(−a)|P(Wi) = LWi
(−a) and that if c > 3N−2

4 , one has c >
3(N−1)−2

4 . From our induction hypothesis we
therefore know that Ln−1

Wi
(−a) is nef. Thus, Ln−1

Wi
(−a) ·C > 0 and in particular (n− 1)LWi

·C > aπ∗
XH ·C.

Hence,
nLX · C =

n

n− 1
(n− 1)LWi

· C >
n

n− 1
aπ∗

XH · C > aπ∗H · C.

And finally Ln
X(−a) · C > 0.

4.2 Constructing symmetric differential forms

To prove Lemma 4.4 we first need to construct sufficiently many symmetric differential forms on complete
intersection varieties of the above type, this is the purpose of this section. The setting is the following. We fix
N, c, ε, e, a, r, n ∈ N such that N > 2, N > c > N

2 , a > 0, ε > 0, e > a+N(ε+1)+1, r = e−1 and n = N−c.
For any 1 6 j 6 c, we take sj ∈ AN+1

ε such that for any 1 6 p 6 c and for any I := (i1, . . . , ip) ∈ {1, . . . , c}p6=,
the set XI := Xsi1 ∩· · · ∩Xsip is a smooth complete intersection variety. Of course, this last condition holds
if the sij ’s are general. We also denote X := X(1,...,c). For any 0 6 i 6 N , any 1 6 j 6 c and any v ∈ Aε,
we set ai(v) := Ziv and αi(v) := Zidv + evdZi. So that :

F (sj , Z) =

N∑

i=0

ai(s
j
i )Z

r
i and dF (sj , Z) := dFsj (Z) =

N∑

i=0

αi(s
j
i )Z

r
i (14)

For any i ∈ {0, . . . , n} set Ui := (Zi 6= 0), U = (Ui)06i6N and UX := (Ui ∩X)06i6N , UX is an open covering
of X . Our first result is the following.

Lemma 4.5. With the above notations, for any I = (i1, . . . , in) ∈ {1, . . . , c}n6=, and for any degree e−a−Nε−

N − 1 homogeneous polynomial P ∈ C[Z0, . . . , ZN ], there is a non-zero element ω̃I,P ∈ H0(X,SnΩ̃X(−a))

such that, when computed in Čech cohomology one has ω̃I,P = (ω̃I,P
0 , . . . , ω̃I,P

N ) ∈ Ȟ0(UX , SnΩ̃X(−a)) with

ω̃I,P
j =

(−1)jP

Zr
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0(s
1
0) · · · aj−1(s

1
j−1) aj+1(s

1
j+1) · · · aN (s1N )

...
...

...
...

a0(s
c
0) · · · aj−1(s

c
j−1) aj+1(s

c
j+1) · · · aN (scN )

α0(s
i1
0 ) · · · αj−1(s

i1
j−1) αj+1(s

i1
j+1) · · · αN (si1N )

...
...

...
...

α0(s
in
0 ) · · · αj−1(s

in
j−1) αj+1(s

in
j+1) · · · αN (sinN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. For simplicity, for any i ∈ {1, . . . , N} and any j ∈ {1, . . . , c}, we write aji := ai(s
j
i ), α

j
i := αi(s

j
i ) and

Fj = Fsj . As in the statement, take I = (i1, . . . , in) ∈ {1, . . . , c}n6=, and take (in+1, . . . , ic) ∈ {1, . . . , c}c−n
6=

such that {i1, . . . , ic} = {1, . . . , c}. For any j ∈ {0, . . . , c} write Ij = (i1, . . . , ij). We can apply Theorem 2.17
and Theorem 2.24 to the simple λ-setting Σ = (X,λ0, . . . , λc) where λi = ∅ if i 6= n and λn = n (note that
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q(Σ) = 0). Here the order in which we intersect the different hypersurfaces to obtain X is crucial. We obtain
an injection

H0
(
X,SnΩ̃XIn |X ⊗OX(−a)

)
ϕ̃
→ HN

(
PN ,OPN (−a−Ne0)

)

such that

im(ϕ̃) =




c⋂

j=n+1

ker(·Fij )



⋂
(

n⋂

i=1

ker(·Fij ) ∩ ker(·dFij )

)
. (15)

Observe that our hypothesis on the degree ensures that e−a−Nε−N−1 > 0. Fix any degree e−a−Nε−N−1
polynomial P . Then we get a well defined element

ω̃I,P
0,...,N :=

P

Zr
0 · · ·Z

r
N

∈ ȞN (U,OPN (−a−Ne0)) .

From (14) and (15) we see that ω̃I,P
0,...,N ∈ im(ϕ̃). To obtain the explicit description of ϕ̃−1(ω̃I,P

0···N ) ∈

Ȟ0
(
UX , SnΩ̃XIn |X(−a)

)
we have to describe explicitly the inclusion ϕ̃, to do so, we have to unravel the

proof of Theorem 2.17 in our situation. This inclusion is described in Proposition 2.18, applying this
proposition in our situation, we see that ϕ̃ is obtained as the composition of the following chain of inclusions:

H0(X,SnΩ̃XIn |X(−a)) →֒ H1
(
X,Sn−1Ω̃XIn−1 |X(−a− e0)

)

→֒ H2
(
X,Sn−2Ω̃XIn−2 |X(−a− 2e0)

)

...
...

→֒ Hn−1(X, Ω̃XI1 |X(−a− (n− 1)e0))

→֒ Hn(X,OX(−a− ne0))

→֒ Hn+1(XIc−1 ,OXIc−1 (−a− (n+ 1)e0))

...
...

→֒ HN (PN ,OPN (−a−Ne0))

For any 0 6 ℓ 6 N , we denote by ω̃ℓ element in the Hℓ group in the above chain of inclusion whose
image in HN (PN ,OPN (−a − N(e + ε))) under the above inclusions is ω̃I,P . Moreover, for any 0 6 ℓ 6 N
and for any K = (k0, . . . , kℓ) ∈ {0, . . . , N}ℓ+1

< if we let K◦ = (kℓ+1, . . . , kN ) ∈ {0, . . . , N}N−ℓ
< such that

{k0, . . . , kN} = {0, . . . , N}, we set ε(K) to be the signature of the following permutation

σK :=

(
0 1 · · · N
k0 k1 · · · kN

)
,

and for any m ∈ {1, . . . , c}, we set Lm
K := (amkℓ+1

, . . . , amkN
) and Λm

K := (αm
kℓ+1

, . . . , αm
kN

). We also set
XK := 1

Zr
k0

···Zr
kℓ

.

Let ℓ ∈ {0, . . . , N}, we are going to prove by induction that ω̃ℓ can be represented in Čech cohomology
by the following cocycle (ω̃ℓ

K)
K∈{0,...,N}ℓ+1

<
:

1. If n 6 ℓ 6 N , write m := N − ℓ, then ω̃ℓ
K = (−1)N(N−ℓ+1)ε(K)P

∣∣∣∣∣∣∣

Li1
K
...

Lim
K

∣∣∣∣∣∣∣
XK .
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2. If 0 6 ℓ 6 n, write m := n− ℓ, then ω̃ℓ
K = (−1)N(N−ℓ+1)ε(K)P

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Li1
K
...

Lic
K

Λi1
K
...

Λim
K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

XK .

Of course, if we look at ℓ = 0 in the last case, up to a sign, we get the description announced in the statement
of the lemma, and it suffices to look at ω̃I,P as an element in H0(X,SnΩ̃X(−a)) by considering its image
under the natural restriction map H0(X,SnΩ̃XIn |X(−a)) → H0(X,SnΩ̃X(−a)).

We start by computing a Čech cocycle for ω̃N−1. Recall that one has the twisted restriction short exact
sequence

0 → OPN (−a−Ne0)
·Fi1→ OPN (−a− (N − 1)e0) → OXi1

(−a− (N − 1)e0) → 0,

which yields the following in cohomology:

0 → HN−1(Xi1 ,OXi1
(−a− (N − 1)e0))

δ·Fi1→ HN (PN ,OPN (−a−Ne0))
·Fi1→ HN (PN ,OPN (−a− (N − 1)e0)).

By the very definition of ω̃N−1, we have δ·Fi1
(ω̃N−1) = ω̃N = ω̃I,P . As explained in Section 3.1, to compute

a cocycle for ω̃N−1, we compute ω̃N
0,...,N · Fi1 and write it as the Čech differential of the desired cocycle. We

have

ω̃N
0,...,N · Fi1 = P · X0,...,N ·

N∑

j=0

a
ij
j Z

r
j

= P ·

N∑

j=0

a
ij
j X0,...,ĵ,...,N = P ·

N∑

j=0

(−1)j
(
(−1)j(−1)N(N−1+1)a

ij
j X0,...,ĵ,...,N

)

If we write K = (0, . . . , ĵ, . . . , N), we have ε(K) = (−1)j and Li1
K = (ai1j ) and XK = X0,...,ĵ,...,N . Therefore,

we see that ω̃N
0,...,N · Fi1 = ď

(
(ω̃N−1

K )K∈{0,...,N}N
<

)
where as announced

ω̃N−1
K = (−1)N(N−1+1)ε(K)P |Li1

K |XK .

We will only treat one case of the induction, the other case is treated the exact same way. Let n < ℓ 6 N ,
let m = N − ℓ and suppose that we know that ω̃ℓ can be represented by a cocycle (ω̃ℓ

K)K∈{0,...,N}ℓ+1
<

as in

the case 1. We have to prove that ω̃ℓ−1 can be represented by a cocycle of the form described in case 1. We
have

ω̃ℓ ∈ Hℓ
(
XIm ,OXIm (−a− ℓe0)

)
,

and we have the following short exact sequence

0 → OXIm (−a− ℓe0)
·Fim+1

→ OXIm (−a− (ℓ− 1)e0) → OXIm+1 (−a− (ℓ− 1)e0) → 0.

In cohomology, it yields an injection (which is precisely the one appearing in the above chain of inclusions)

Hℓ−1
(
XIm+1 ,OXIm+1 (−a− (ℓ− 1)e0)

) δ·Fim+1

→֒ Hℓ
(
XIm ,OXIm (−a− ℓe0)

)

To compute a Čech cohomology cocycle of ωℓ−1, we proceed as before. For any K ∈ {0, . . . , N}ℓ+1
< we are

going to compute ωℓ
K · Fim+1

modulo Fi1 , . . . , Fim . Fix K = (k0, . . . , kℓ) ∈ {0, . . . , N}ℓ+1
< and as usual, take
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K◦ = (kℓ+1, . . . , kN ) ∈ {0, . . . , N}N−ℓ
< such that K ∪ K◦ = {0, . . . , N}. Because we are working modulo

Fi1 , . . . , Fim , we have





Fi1 = 0
...

...
Fim = 0

Fim+1
− Fim+1

= 0

⇔





∑N
j=ℓ+1 a

i1
kj
Zr
kj

= −
∑ℓ

j=0 a
i1
kj
Zr
kj

...
...∑N

j=ℓ+1 a
im
kj
Zr
kj

= −
∑ℓ

j=0 a
im
kj
Zr
kj∑N

j=ℓ+1 a
im+1

kj
Zr
kj

− Fim+1
= −

∑ℓ
j=0 a

im+1

kj
Zr
kj

We may write this as follows:



ai1kℓ+1
· · · ai1kN

0
...

...
...

aimkℓ+1
· · · aimkN

0

a
im+1

kℓ+1
· · · a

im+1

kN
−1







Zr
kℓ+1

...
Zr
kN

Fim+1


 =




−
∑ℓ

j=0 a
i1
kj
Zr
kj

...
−
∑ℓ

j=0 a
im
kj
Zr
kj

−
∑ℓ

j=0 a
im+1

kj
Zr
kj




.

By a simple application of Cramer’s rule we obtain

Fim

∣∣∣∣∣∣∣∣∣∣

ai1kℓ+1
· · · ai1kN

0
...

...
...

aimkℓ+1
· · · aimkN

0

a
im+1

kℓ+1
· · · aimkN

−1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

ai1kℓ+1
· · · ai1kN

−
∑ℓ

j=0 a
i1
kj
Zr
kj

...
...

...
aimkℓ+1

· · · aimkN
−
∑ℓ

j=0 a
im
kj
Zr
kj

a
im+1

kℓ+1
· · · a

im+1

kN
−
∑ℓ

j=0 a
im+1

kj
Zr
kj

∣∣∣∣∣∣∣∣∣∣

which yields ∣∣∣∣∣∣∣

Li1
K
...

Lim
K

∣∣∣∣∣∣∣
Fim+1

=
ℓ∑

j=0

∣∣∣∣∣∣∣∣

ai1kℓ+1
· · · ai1kN

ai1kj

...
...

...
a
im+1

kℓ+1
· · · a

im+1

kN
a
im+1

kj

∣∣∣∣∣∣∣∣
Zr
kj
.

We just have to be a bit careful with the signs. For any j ∈ {0, . . . , ℓ} we set Kj = K \ {kj}. We also take
νj ∈ {ℓ+1, . . . , N−1} such that kνj < kj < kνj+1 (if kj < kℓ+1, we just take νj = ℓ). With this notation, we
have K◦

j = (kℓ+1, . . . , kνj , kj , kνj+1, . . . , kN ) (or K◦
j = (kj , kνj+1, . . . , kN ) if kj < kℓ+1). A straightforward

computation shows that σKj
= (kj , kj+1, . . . , kνj )

−1 ◦ σK , hence ε(Kj) = (−1)νj−jε(K). On the other hand,
observe that ∣∣∣∣∣∣∣∣

ai1kℓ+1
· · · ai1kN

ai1kj

...
...

...
a
im+1

kℓ+1
· · · a

im+1

kN
a
im+1

kj

∣∣∣∣∣∣∣∣
= (−1)N−νj

∣∣∣∣∣∣∣∣

Li1
Kj

...
L
im+1

Kj

∣∣∣∣∣∣∣∣
.

Now we are ready for our computation:

ωℓ
K · Fim+1

= (−1)N(N−ℓ)ε(K)PXK

∣∣∣∣∣∣∣

Li1
K
...

Lim
K

∣∣∣∣∣∣∣
Fim+1

= (−1)N(N−ℓ)ε(K)PXK

ℓ∑

j=0

(−1)N−νj

∣∣∣∣∣∣∣∣

Li1
Kj

...
L
im+1

Kj

∣∣∣∣∣∣∣∣
Zr
kj

= (−1)N(N−ℓ)P

ℓ∑

j=0

(−1)Nε(K)(−1)j(−1)j−νj

∣∣∣∣∣∣∣∣

Li1
Kj

...
L
im+1

Kj

∣∣∣∣∣∣∣∣
XKj

=

ℓ∑

j=0

(−1)N(N−ℓ+1)ε(Kj)(−1)jP

∣∣∣∣∣∣∣∣

Li1
Kj

...
L
im+1

Kj

∣∣∣∣∣∣∣∣
XKj

.
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Hence
(
ω̃ℓ · Fim+1

)
K

= ď
((

ω̃ℓ−1
K′

)
K′∈{0,...,N}ℓ

<

)
, where for any K ′ ∈ {0, . . . , N}ℓ<,

ωℓ−1
K′ = (−1)N(N−ℓ+1)ε(K ′)P

∣∣∣∣∣∣∣

Li1
K′

...
L
im+1

K′

∣∣∣∣∣∣∣
XK′

as announced.

The last step is to use the tilde-symmetric differential forms constructed in Lemma 4.5 to get usual
symmetric differential forms. Recall that in our situation, from the exact sequence

0 → SnΩX(−a) → SnΩ̃X(−a) → Sn−1Ω̃X(−a) → 0

and the vanishing H0
(
X,Sn−1Ω̃X(−a)

)
(deduced from Lemma 2.12), we get an isomorphism

H0 (X,SnΩX(−a)) ∼= H0
(
X,SnΩ̃X(−a)

)
.

Therefore we just have to compute the image ωI,P of ω̃I,P under this isomorphism. To do this we just have to
dehomogenize ω̃I,P . For simplicity, we only work in the U0 = (Z0 6= 0) chart. We use the following notation:
for any i ∈ {1, . . . , N}, zi = Z1

Z0
, so that dZi = Z0dzi + zidZ0. Let us make an elementary observation. Take

ℓ > 1, and let G ∈ C[Z0, . . . , ZN ] be a homogeneous degree ℓ polynomial. Let g be the dehomogenized of G
with respect to Z0. Then we have

dG = ℓZℓ−1
0 gdZ0 + Zℓ

0dg.

Indeed,

Z0dG =

N∑

i=0

Z0
∂G

∂Zi

dZi = Z0
∂G

∂Z0
dZ0 +

N∑

i=1

∂G

∂Zi

(Z2
0dzi + ZidZ0)

=

N∑

i=0

∂G

∂Zi

ZidZ0 + Z2
0

N∑

i=1

∂G

∂Zi

dzi = ℓGdZ0 + Z2
0

N∑

i=1

Zℓ−1
0

∂g

∂zi
dzi = ℓZℓ

0gdZ0 + Zℓ+1
0 dg.

We introduce some more notation. For any u ∈ Aε
∼= C[z1, . . . , zN ]6ε and any q ∈ {1, . . . , N} we set

bq(u) := zqu and βq(u) := zqdu+ eudzq.

For any 1 6 j 6 c and for any 0 6 i 6 N we let tji (resp. fj) to be the dehomogenized of sji (resp. Fj) with
respect to Z0. Therefore we have ai(s

j
i ) = Zis

j
i = Zε+1

0 zit
j
i = Zε+1

0 bi(t
j
i ) and

αi(s
j
i ) = Zids

j
i + esjidZi = Z0zi(εZ

ε−1
0 tjidZ0 + Zε

0dt
j
i ) + eZε

0t
j
i (zidZ0 + Z0dzi)

= e0Z
ε
0zit

j
idZ0 + Zε+1

0 (zidt
j
i + etjidzi) = e0Z

ε
0bi(t

j
i )dZ0 + Zε+1

0 βi(t
j
i ).

Therefore, by the elementary properties of the determinant we get

ω̃I,P
0 =

P

Zr
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1(s
1
1) · · · aN (s1N )

...
...

a1(s
c
1) · · · aN (scN )

α1(s
i1
1 ) · · · αN (si1N )

...
...

α1(s
in
1 ) · · · αN (sinN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= PZ
N(ε+1)−r
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1(t
1
1) · · · bN (t1N )

...
...

b1(t
c
1) · · · bN (tcN )

β1(t
i1
1 ) · · · βN (ti1N )

...
...

β1(t
in
1 ) · · · βN (tinN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This completes the proof of the following.
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Proposition 4.6. With the above notation. Take a homogenous polynomial P ∈ C[Z0, . . . , ZN ] of degree
e − a − Nε− N − 1 and let Q ∈ C[z1, . . . , zN ] be the dehomogenization of P with respect to Z0. Then, for
any I = (i1, . . . , in) ∈ {1, . . . , c}n6=, the symmetric differential form

ωI,Q
0 (t) := Q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1(t
1
1) · · · bN(t1N )

...
...

b1(t
c
1) · · · bN(tcN )

β1(t
i1
1 ) · · · βN (ti1N )

...
...

β1(t
in
1 ) · · · βN (tinN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ H0(U0 ∩X,SnΩX)

extends to a twisted symmetric differential form ωI,P ∈ H0(X,SnΩX(−a)).

4.3 Estimating the base locus

4.3.1 Dimension count lemmas

We will need some elementary results. The following is classical, we provide a proof because we will use the
idea of it again afterwards.

Lemma 4.7. Let p, q ∈ N such that n 6 p. Fix a rank n matrix A ∈ Matn,p(C). For any r ∈ N∗ with r < n,
let

Σp,q
r := {B ∈ Matp,q(C) such that rkAB 6 r} .

Then, dimΣp,q
r 6 pq − (q − r)(n − r).

Proof. Set
∆ := {(B,Γ) ∈ Matp,q(C)×Grass(r,Cn) such that im(AB) ⊆ Γ}

Let pr1 : ∆ → Matp,q(C) and pr2 : ∆ → Grass(r,Cn) be the natural projections. For any Γ ∈ Grass(r,Cn)
we consider ∆Γ = pr1(pr

−1
2 (Γ)). Of course,

∆Γ = {B ∈ Matp,q(C) such that im(AB) ⊆ Γ} =
{
B ∈ Matp,q(C) such that im(B) ⊆ A−1(Γ)

}

But since rkA = n, A is surjective and therefore dim(A−1(Γ)) = r+p−n. Therefore, ∆Γ
∼= Hom(Cq,Cr+p−n)

and thus dim(∆Γ) = q(r + p− n). In particular,

dim∆ = q(r + p− n) + dimGrass(r,Cn) = q(r + p− n) + r(n− r) = qp− (q − r)(n − r).

Since Σp,q
r = pr1(∆), the result follows.

From the previous lemma one can easily deduce the following.

Corollary 4.8. Let M,N, c ∈ N∗ such that c 6 N . Let ℓ1, . . . , ℓN ∈ (CM )∨ be non-zero linear forms. For
any r ∈ N∗ such that r < c, let

Σr =




(xj

i )
16j6c
16i6N ∈ (CM )Nc such that rk




ℓ1(x
1
1) · · · ℓN (x1

N )
...

...
ℓ1(x

c
1) · · · ℓN (xc

N )


 6 r





.

Then, dim(Σr) 6 MNc− (N − r)(c − r).

The following lemma will be crucial to us.

32



Lemma 4.9. Take c, n,M ∈ N∗ such that n 6 c and let N := n+c. Take linear forms ℓ1, . . . , ℓn, λ1, . . . , λn ∈
(CM )∨ such that for any i ∈ {1, . . . , c}, λi 6= 0 and ker ℓi 6= kerλi. Fix A ∈ Glc(C) and B ∈ Matc(C). For
any x = (xj

i )
16j6c
16i6n ∈ (CM )cn consider

S (x) =




ℓ1(x
1
1) · · · ℓn(x

1
n)

A
...

...
ℓ1(x

c
1) · · · ℓn(x

c
n)

λ1(x
1
1) · · · λn(x

1
n)

B
...

...
λ1(x

c
1) · · · λn(x

c
n)




.

For any r ∈ {c, . . . , N − 1}, let

Σr :=
{
x ∈ (CM )cn such that rkS (x) 6 r

}
⊆ (CM )cn.

Then, dim(Σr) 6 Mnc− (N − r)(2c− r).

Proof. Using elementary operations on the c first columns, we see that we may suppose that A = Ic is
the identity matrix of size c. We will write everything in matricial notation. For any i ∈ {1, . . . ,M} any
j ∈ {1, . . . , c} and any x = (xj

i )
16j6c
16i6n ∈ (CM )cn we let

Li = (ℓi,1, . . . , ℓi,M ) ∈ (CM )∨, Λi = (λi,1, . . . , λi,M ) ∈ (CM )∨ and Xj
i =




xj
i,1
...

xj
i,M


 ∈ CM

such that ℓi(x
j
i ) = LiX

j
i and λi(x

j
i ) = ΛiX

j
i . For any matrix Q we denote the transposed of Q by tQ. Set

moreover

L :=




tL1 · · · 0
...

. . .
...

0 · · · tLn


 , Λ :=




tΛ1 · · · 0
...

. . .
...

0 · · · tΛn


 and X :=




tX1
1 · · · tX1

n
...

...
tXc

1 · · · tXc
n


 .

With those notations, S(x) =
(

Ic XL
B XΛ

)
, and by elementary operations on the lines we get that

rk(S(x)) = rk

(
Ic XL
0 XΛ−BXL

)
= c+ rk(XΛ−BXL).

Write B = (bi,j)16i,j6c. By a straightforward computation we obtain that for any j ∈ {1, . . . , n} the j-th
column of the matrix XΛ−BXL is exactly KjXj where

Xj =




X1
j

...
Xc

j


 and Kj =




Λj · · · 0
...

. . .
...

0 · · · Λj


−




b11Lj · · · b1cLj

...
...

bc1Lj · · · bccLj




In particular, we have XΛ−BXL =
(
K1X1 · · · KnXn

)
. An easy computation shows that under our

hypothesis on the ℓ′is and the λ′
is, rkKj = c for all j ∈ {1, . . . , n}. The end of the proof goes as in Lemma 4.8.

Let
∆ :=

{
(X,Γ) ∈ (CM )nc ×Grass(r − c,Cc) such that im(XΛ−BXL) ⊆ Γ

}
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Let pr1 : ∆ → (CM )cn and pr2 : ∆ → Grass(r−c,Cc) be the natural projections. For any Γ ∈ Grass(r−c,Cc)
let ∆Γ = pr1(pr

−1
2 (Γ)). Then

∆Γ =
{
X ∈ (CM )nc such that im(XΛ−BXL) ⊆ Γ

}

=
{
X ∈ (CM )nc such that im

(
K1X1 · · · KnXn

)
⊆ Γ

}

=
{
X ∈ (CM )nc such that im(X1) ⊆ K−1

1 (Γ), . . . , im(Xn) ⊆ K−1
n (Γ)

}

Since for each j ∈ {1, . . . , n}, Kj is surjective, we obtain that dim(K−1
j (Γ)) = r− c+Mc− c = Mc+ r− 2c.

In particular ∆Γ
∼= Hom(C,CMc+r−2c)⊕n, which implies that dim(∆Γ) = n(Mc+ r − 2c). And therefore,

dim(∆) = n(Mc+r−2c)+dimGrass(r−c,Cc) = n(Mc+r−2c)+(r−c)(2c−r) = Mnc−(n+c−r)(2c−r).

But since Σr = pr1(∆), this concludes the proof of the lemma.

We are also going to need the following elementary algebraic geometry lemma.

Lemma 4.10. Let X and Y be two algebraic varieties (not necessarily irreducible). Let f : X → Y be a
regular map. Suppose that Y = Y0 ∪ · · · ∪ Yr such that Yi ∩ Yj = ∅ if i 6= j. For each i ∈ {0, . . . , r} take
ni ∈ N. Suppose that for each y ∈ Yi and for each i ∈ {0, . . . , r} , dimXy 6 ni. Then

dimX 6 max
06i6r

(dim(Yi) + ni).

4.3.2 Proof of Lemma 4.4

We are now in position to prove Lemma 4.4. It will be a immediate consequence of the following more precise
statement.

Lemma 4.11. Let N, c, e, ε, a ∈ N such that N > 2, c >
3N−2

4 , ε > 1 and e > N + 1 + a + Nε, set
q := e−(N+1+a+Nε). Set n := N−c. For any 0 6 j 6 N take sj ∈ A⊕N+1

ε such that X := Xs1∩· · ·∩Xsc

is a smooth complete intersection variety. For any i ∈ {0, . . . , N}, set Hi := (Zi = 0) and Wi := X∩Hi. We
look at P(ΩWi

) as a subvariety of P(ΩX). Then, for a general choice of s1, . . . , sc, there exists E ⊆ P(ΩX)
such that dimE 6 0 and

Bs(LX(−a)) ⊆
⋂

I∈{1,...,c}n
6=

P∈C[Z0,...,ZN ]q

(ωI,P = 0) =

N⋃

i=0

P(ΩWi
) ∪ E.

Where ωI,P ∈ H0(P(ΩX),Ln
X(−a)) ∼= H0(X,SnΩX(−a)) is the symmetric differential form constructed in

Proposition 4.6 viewed as a global section of Ln
X(−a).

Proof. For simplicity, we only treat the chart U0, the other charts are dealt with in the exact same way. Let
us precise the notation of Proposition 4.6: for any (u, z, ξ) ∈ Aε × CN × PN−1 we set

bq(u, z) := zqu(z), and βq(u, z, ξ) := zqduz(ξ) + eu(z)ξq.

Moreover, for any t = (t1, . . . , tc) = (tji )
16j6c
16i6N ∈ (AN

ε )c and for any (z, ξ) ∈ CN × PN−1 we set

B(t, z) :=




b1(t
1
1, z) · · · bN (t1N , z)
...

...
b1(t

c
1, z) · · · bN (tcN , z)


 and B′(t, z, ξ) :=




β1(t
1
1, z, ξ) · · · βN (t1N , z, ξ)
...

...
β1(t

c
1, z, ξ) · · · βN (tcN , z, ξ)


 .

From now on we make the identification P(ΩPN |U0
) ∼= CN × PN−1. So that if for any j ∈ {1, . . . , c} we take

sj ∈ AN+1
ε such that Xs = (Fs1 = 0)∩ · · · ∩ (Fsc = 0) is a smooth complete intersection in PN and if for any

34



j ∈ {1, . . . , c}, we let tj be the dehomogeneization on sj , ftj be the dehomogeneization of Fsj and Xt = Xs,
then, one naturally has

P(ΩXt∩U0
) =

{
(x, ξ) ∈ CN × PN−1 such that

{
ft1(z) = · · · = ftc(z) = 0

dft1,z(ξ) = · · · = dftc,z(ξ) = 0

}
⊆ CN × PN−1 ∼= P(ΩU0

)

Moreover, set W :=
⋃N

i=1 ((zi = 0) ∩ (ξi = 0)) ∼=
⋃N

i=1 P(ΩHi∩U0
), where Hi = (Zi = 0). Our aim is to prove

that, for a general t ∈ A(N+1)c
ε , there exists E ⊆ P(ΩXt∩U0

) such that dimE 6 0 and

P(ΩXt∩U0
) ∩
⋂

I,Q

(
ωI,Q
0 (t, z, ξ) = 0

)
= (P(ΩXt∩U0

) ∩W ) ∪ E.

The first thing to observe is that if (x, ξ) ∈ W then for any I ∈ {1, . . . , c}n6= and any Q ∈ C[z1, . . . , zN ]6q one

has ωI,Q(t, z, ξ) = 0, and therefore W ⊆
⋂

I,Q

(
ωI,Q
0 (t, z, ξ) = 0

)
. The more difficult part is to prove that,

generically, this is actually an equality up to a finite number of points.
Observe that if rk(B(t, z)) < c, then ωI,Q

0 (t, z, ξ) = 0 for all I and all Q. On the other hand, if
rk(B(t, z)) = c then

ωI,Q
0 (t, z, ξ) = 0 ∀I, ∀Q ⇐⇒ rk

(
B(t, z)

B′(t, z, ξ)

)
< N.

Therefore, for any t ∈ A(N+1)c
ε , the locus

⋂
I,Q

(
ωI,Q
0 (t, z, ξ) = 0

)
is precisely

{
(z, ξ) ∈ CN × PN−1 such that rkB(t, z) < c or rkB(t, z) = c and rk

(
B(t, z)

B′(t, z, ξ)

)
< N

}

To understand this locus for general t ∈ A(N+1)c
ε we will consider the problem in family, and study the

corresponding incidence varieties. Let us introduce some more notation. Consider the natural projections

ρ1 : A(N+1)c
ε × CN → A(N+1)c

ε ρ2 : A(N+1)c
ε × CN → CN p1 : A(N+1)c

ε × CN × PN−1 → A(N+1)c
ε

p12 : A(N+1)c
ε × CN × PN−1 → A(N+1)c

ε × CN p23 : A(N+1)c
ε × CN × PN−1 → CN × PN−1.

For any k ∈ {0, . . . , N}, set Yk =
{
(z1, . . . , zN) ∈ CN / ∃I ∈ {1, . . . , N}k6= such that zi = 0 ⇐⇒ i ∈ I

}
.

Observe that dimYk = N − k. Moreover, set

Xc :=
{(

(t1, . . . , tc), z
)
∈ (A(N+1)

ε )c × CN such that ft1(z) = · · · = ftc(z) = 0
}

X
′
c :=

{(
(t1, . . . , tc), z, ξ

)
∈ (A(N+1)

ε )c × CN × PN−1 such that
{

ft1(z) = · · · = ftc(z) = 0
dft1,z(ξ) = · · · = dftc,z(ξ) = 0

}

∆c := {(t, z) ∈ Xc such that rkB(t, z) < c}

E0
c :=

{
(t, z, ξ) ∈ X

′
c such that rkB(t, z) = c and rk

(
B(t, z)

B′(t, z, ξ)

)
< N

}

∆′
c := p−1

12 (∆c) ∩ X
′
c , Ec := E0

c ∪∆′
c, Γc := Ec \ p

−1
23 (W ) and Γ0

c := E0
c \ p−1

23 (W ).

Of course, Xc
ρ1
→ A(N+1)c

ε is just the universal family of complete intersection of Fermat type we are con-
sidering (or to be precise, the dehomogeneization of it), and X ′

c is just the projectivization of the relative
cotangent bundle of Xc

ρ1
→ A(N+1)c

ε . For any t ∈ A(N+1)c
ε , we write Xc,t = ρ−1

1 (t) (and similarly for X ′
c,t,

∆c,t, etc.). By the above discussion, our aim is to prove that for a general t ∈ A(N+1)c
ε , Γc,t is finite. To

do so, we will prove that for a general t ∈ A(N+1)c
ε , ∆′

c,t is empty and dimΓ0
c,t 6 0. This will follow at once

from the two following claims.

Claim 1. dim∆c < dimA(N+1)c
ε
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Claim 2. dimΓ0
c 6 dimA(N+1)c

ε

Proof of Claim 1. Take k ∈ {0, . . . , N}. Fix (z1, . . . , zN) ∈ Yk. Without loss of generality, we may assume
that z1 = · · · = zk = 0 and that zk+1 · · · zN 6= 0. In particular,

rkB(t, z) = rk




t1k+1(z) · · · t1N (z)
...

...
tck+1(z) · · · tcN (z)


 .

Set ∆z
c := ρ1

(
ρ−1
2 ({z}) ∩∆c

)
. Of course,

∆z
c =





(
(tji )

16j6c
16i6N

)
∈ A(N+1)c

ε such that rk




t1k+1(z) · · · t1N (z)
...

...
tck+1(z) · · · tcN (z)


 < c, and ft1(z) = · · · = ftc(z) = 0





.

By Lemma 4.8 the set defined by rk




t1k+1(z) · · · t1N (z)
...

...
tck+1(z) · · · tcN (z)


 < c is of dimension less than dimA(N+1)c

ε −

max{0, N − c− k + 1}. Therefore,

dim∆z
c 6 dimA(N+1)c

ε −max{0, N − k − c+ 1} − c.

Indeed, for any j ∈ {1, . . . , c}, the equation ftj (z) = tj0(z) + tj1(z)z
e
1 + · · · + tjN (z)zeN = 0 is affine (in tji )

and involves the term tj0(z) which appears in none of the other equations defining ∆z
c . So that each of the

equations ftj (z) = 0 increases the codimension by one, and we get the announced dimension. Therefore by
Lemma 4.10 we obtain that

dim∆c 6 max
06k6N

(
dimYk + dimA(N+1)c

ε −max{0, N − k − c+ 1} − c
)

= max
06k6N

(
dimA(N+1)c

ε −max{0, N − k − c+ 1}+N − k − c
)
6 dimA(N+1)c

ε − 1 < dimA(N+1)c
ε .

To prove Claim 2 we will need the following observation.

Claim 3. Let (x, ξ) ∈ CN ×PN−1 \W . For any q ∈ {1, . . . , N}, βq(·, z, ξ) 6= 0 and ker bq(·, z) 6= kerβq(·, z, ξ).

Proof of Claim 3. For k ∈ {1, . . . , N}, we set δk = (0, . . . , 0, 1, 0, . . . , 0) ∈ NN be the multi-index whose only
non-zero term is in the k-th slot. For any u ∈ Aε any (z, ξ) ∈ CN × PN−1 and any q ∈ {1, . . . , N} we have
by definition,

bq(u, z) = zq



∑

|I|6ε

uIz
I


 = zqu0 + z1zquδ1 + · · ·+ zNzquδN +

∑

26|I|6ε

zI+δquI

βq(u, z, ξ) = zq



∑

|I|6ε

N∑

k=1

ikuIz
I−δkξk


+ eξq



∑

|I|6ε

uIz
I




= eξqu0 + (zqξ1 + ez1ξq)uδ1 + · · ·+ (zqξN + ezNξq)uδN +
∑

26|I|6ε

(
zq

N∑

k=1

ikz
I−δkξk + ezIξq

)
uI .

Take (x, ξ) ∈ CN−1 × PN−1 \ W. Let q ∈ {1, . . . , N}. In view of the above expression, if βq = 0 then in
particular

eξq = zqξ1 + ez1ξq = · · · = zqξN + ezNξq = 0,
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and because (z, ξ) /∈ W , we get zq 6= 0, so that ξq = ξ1 = · · · = ξN = 0, which is not possible because
ξ ∈ PN−1. It remains to prove that ker bq(·, z) 6= kerβq(·, z, ξ). If bq(·, z) = 0, this is obvious. Suppose
bq(·, z) 6= 0 and therefore zq 6= 0. If ker bq(·, z) = kerβq(·, z, ξ), then from the above expression we get in
particular that ∣∣∣∣

1 z1
eξq zqξ1 + ez1ξq

∣∣∣∣ = · · · =

∣∣∣∣
1 zN
eξq zqξN + ezNξq

∣∣∣∣ = 0,

From which we deduce once again that ξ1 = · · · = ξN = 0.

Proof of Claim 2. For any K = (k1, . . . , kc) ∈ {1, . . . , N}c6= let

UK =




(t, z, ξ) ∈ A(N+1)c

ε × CN × PN−1 such that det




bk1
(t1k1

, z) · · · bkc
(t1kc

, z)
...

...
bk1

(tck1
, z) · · · bkc

(tckc
, z)


 6= 0





.

For any K, UK
Γ := UK∩Γ0

c is an open subset of Γ0
c and Γ0

c =
⋃

K UK
Γ , therefore for our dimension estimation,

we might as well restrict ourselves to U := U (1,...,c) and UΓ := U
(1,...,c)
Γ . Fix (z, ξ) ∈ CN × PN−1 and set

Uz,ξ
Γ := p1(p

−1
23 (z, ξ) ∩ UΓ). Using Claim 3 and Lemma 4.9 we see that the set defined in A(N+1)c

ε by

rk

(
B(t, z)

B′(t, z, ξ)

)
< N and (t, z, ξ) ∈ U

is of dimension less than dimA(N+1)c
ε − 2c+N − 1, and by the same argument as in the proof of Claim 1,

we obtain
dimUz,ξ

Γ 6 dimA(N+1)c
ε − 2c+N − 1− 2c.

Hence dimUΓ 6 dimA(N+1)c
ε − 4c+N − 1 + dim(CN × PN−1) = dimA(N+1)c

ε − 4c+N − 1 + 2N − 1. And
therefore (because the same argument holds for all the UK

Γ )

dimΓ0
c = dimA(N+1)c

ε − 4c+ 3N − 2.

In particular, dimΓ0
c 6 dimA(N+1)c

ε as soon as −4c + 3N − 2 6 0. This last condition is equivalent to
c > 3N−2

4 , which is exactly our hypothesis.
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