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Abstract

The present analysis deals with the regularity of solutions of bilinear control systems of the type
x′ = (A+ u(t)B)x where the state x belongs to some complex in�nite dimensional Hilbert space,
the (possibly unbounded) linear operators A and B are skew-adjoint and the control u is a real
valued function. Such systems arise, for instance, in quantum control with the bilinear Schrödinger
equation. For the sake of the regularity analysis, we consider a more general framework where A
and B are generators of contraction semi-groups.

Under some hypotheses on the commutator of the operators A and B, it is possible to extend
the de�nition of solution for controls in the set of Radon measures to obtain precise a priori energy
estimates on the solutions, leading to a natural extension of the celebrated noncontrollability result
of Ball, Marsden, and Slemrod in 1982.
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1 Introduction

A bilinear control system in a Banach space X is given by an evolution equation

d

dt
x(t) = (A+ u(t)B)x(t) (1.1)

where A and B are two (possibly unbounded) linear operators on X and u is a real-valued function,
the control. Well-posedness of bilinear evolution equations of type (1.1) for a given control u is usually
a di�cult question. If K is a subset of R, we de�ne PC(K) the set of right-continuous piecewise
constant taking value in K.

If K, A and B are such that for every u in K, A+ uB generates a C0 semi-group t 7→ et(A+uB),
then for every T ≥ 0 and every u in PC(K), the restriction of u on [0, T ) writes

u =

p∑
j=1

ujI[τj ,τj+1) (1.2)

with p ∈ N, u1, . . . , up ∈ K and τ1 < τ2 < . . . < τp+1 = T , and one de�nes the associated propagator
of (1.1) by

Υu
t,τ1 = e(t−τj)(A+ujB) ◦ e(τj−τj−1)(A+uj−1B) ◦ · · · ◦ e(τ2−τ1)(A+u1B),

for every t in (τj , τj+1). The solution of (1.1) with initial value x0 at time τ1 is t 7→ Υu
t,τ1ψ0. When

τ1 = 0, we denote Υu
t := Υu

t,0.
It is of particular interest in the applications to study the set of points that can be attained in

�nite time from a given initial datum ψ0 using a set of admissible controls Z

AttZ(ψ0) = ∪t≥0{Υu
t ψ0|u ∈ Z}

where Z is a subset of PC(K) or, possibly, a larger set (provided that a suitable extension of Υ to
Z makes sense). The set AttZ(ψ0) is called attainable set from ψ0 with controls Z.

The precise description of the propagators is, in principle, a hard task. To guarantee the control-
lability of (1.1), i.e. to bound the attainable set from below, is a challenging issue as well. One could
try to use the regularity of the solutions of (1.1) to provide upper bounds of these attainable sets of
bilinear systems. This will provide obstructions to the controllability of (1.1). This is the purpose of
the present analysis.

1.1 Elementary obstructions to controllability in a Banach space

There are several upper bounds on the attainable sets that can be obtained by natural properties of
the system. We list below some of them.

1.1.1 Conservation of the norm

In the Hilbertian case, in which X is a Hilbert space, the propagator t 7→ Υu
t is unitary as soon as

A+ uB is essentially skew-adjoint for every u in K. If PC(K) is endowed with a topology for which
u 7→ Υu

Tψ0 is continuous for every T > 0 and every ψ0 in X , then any continuous extension of the
mapping u 7→ Υu

Tψ0 to a subset of the closure of PC(K) takes value in the sphere of radius ‖ψ0‖.
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1.1.2 Continuity of the propagators

In the general case in which X is a Banach space, assume that PC(K) is endowed with a topology
for which u 7→ Υu

Tψ0 is continuous for every T > 0 and every ψ0 in X , and that u 7→ Υu
Tψ0 admits

a (necessarily unique) continuous extension to Z ⊃ PC(K). If Z0 ⊂ Z, endowed with a topology
�ner than the one induced by Z, is sequentially compact (for its own topology), then for every ψ0

in X , for every T > 0, the attainable set at time T from ψ0 with controls in Z0, {Υu
Tψ0|u ∈ Z0} is

compact.
If (Zi)i∈N is a countable covering of Z, Z = ∪i∈NZi, Zi is sequentially compact for every i, and

the topology of Zi is �ner than the topology induced by Z, then the attainable set at time T from
ψ0 with controls in Z, {Υu

Tψ0|u ∈ Z} = ∪i∈N{Υu
Tψ0|u ∈ Zi} is a countable union of compact sets in

X (hence is a meager set in the sense of Baire as soon as X is in�nite dimensional).
Notice that if the input-output mapping PC(K) 3 u 7→ Υuψ0 ∈ C0([0, T ],X ) is continuous, then

the above results can be generalized to show that the attainable set from ψ0 at time less than T
∪0≤t≤T {Υu

t ψ0|u ∈ Z} = ∪i∈N ∪0≤t≤T {Υu
Tψ0|u ∈ Zi} is an union of compact sets.

This principle is an abstraction of the proof of of the following result by Ball, Marsden, and
Slemrod.

Theorem (Theorem 3.6 in [BMS82]). Let X be an in�nite dimensional Banach space, A generate a
C0 semi-group of bounded linear operators on X , and B be a bounded linear operator on X . Then for
any T ≥ 0, the input-output mapping u 7→ Υu

T admits a unique continuous extension to L1([0, T ],R)
and the attainable set ⋃

r>1

⋃
T≥0

⋃
u∈Lr([0,T ],R)

{Υu
t ψ0, t ∈ [0, T ]} (1.3)

is contained in a countable union of compact subsets of X , and, in particular, has dense complement.

In this case, for any T ≥ 0 Z = ∪r>1L
r([0, T ],R) endowed with weak-∗ topology, Zi,j =

∪r≥1+ 1
j
{f ∈ Lr([0, T ],R), ‖f‖Lr([0,T ]) ≤ i} and the sequential-compactness of Zi,j is granted by

Banach�Alaoglu�Bourbaki Theorem. The main di�culty in [BMS82] is to prove the continuity of the
input-output mapping u 7→ Υuψ0 for the weak-∗ topology.

Remark 1. The above argument does not hold anymore if one considers controls in L1, since L1 is
not a re�exive space. This is the content of [BMS82, Remark 3.8], where the question of possible
extensions of the above result to r = 1 is left open except in the so-called (see [Sle84]) diagonal case,
see [BMS82, Theorem 5.5].

Another example of the same obstruction is given below in Corollary 9 with Z equal to the set of
functions with bounded variations. In this case, the sequential compactness in Z is given by Helly's
selection theorem.

1.1.3 Invariance of the domain

In the case in which A and B are bounded operators on X , if F is a closed subspace of X left invariant
by A + uB for every u in K, then for every u, the C0 semi-group generated by A + uB leaves F
invariant. Thus, for every u in PC(K) and every t ≥ 0, Υu

t leaves F invariant. If, moreover, the
dynamics is time-reversible, then for every ψ0 in X , for every u in PC(K), for every t > 0, Υu

t ψ0 ∈ F
if and only if ψ0 ∈ F .

Even in the unbounded case, the same conclusion holds if F a subspace of X left invariant by the
dynamics Υu

t and its time-reverse dynamics (when it makes sense).
We will see in Section 4.2 below that these invariance properties remain true in the Hilbert case

when F is the domain of a power of A left invariant by B.
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1.2 Attainable sets in quantum control

The main motivation for the present analysis is due to questions on the controllability of closed
quantum systems. The state of a quantum system evolving on a �nite dimensional Riemannian
manifold Ω, with associated measure µ, is described by its wave function, represented as a point in
the unit sphere of L2(Ω,C). In the absence of interactions with the environment and neglecting the
relativistic e�ects, the time evolution of the wave function is given by the Schrödinger equation

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t),

where ∆ is the Laplace-Beltrami operator on Ω and V : Ω → R is a real function (usually called
potential) accounting for the physical properties of the system. When submitted to an excitation by
an external �eld (e.g. a laser), the Schrödinger equation reads

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t) + u(t)W (x)ψ(x, t), (1.4)

where W : Ω → R is a real function accounting for the physical properties of the external �eld and
u is a real function of time accounting for the intensity of it.

In the last decades, many e�orts have been made to describe the attainable set of (1.4). In [Tur00],
Turinici adapted the Ball, Marsden and Slemrod [BMS82, Theorem 3.6] to (1.4) with a measurable
bounded W . The �rst positive result known, up to now, has been obtained by Beauchard in [Bea05],
and improved in [BL10, BM14], for Ω = (0, π) with Dirichlet boundary conditions, V = 0 and
W : x 7→ x2, see Section 6.2 for more details. In the case of the quantum harmonic oscillator: Ω = R,
V (x) = x2 and W : x 7→ x, the attainable set is �nite dimensional due to symmetries of the system,
see Rouchon and Mirrahimi in [MR04] and Section 6.3. Instead of lower bounds of the attainable
sets, many works have considered lower bounds of its closure (in di�erent natural norms) which is
su�cient from a physical point of view. We can, for instance, cite the work by Nersesyan [Ner09],
in Sobolev spaces by means of Lyapunov technics for bounded domains and potentials. Concerning
unbounded domains but with bounded potentials, we can cite [Mir09] with Lyapunov technics as well.
Geometrical methods has been used to prove the density of the attainable set in L2-norm when the
spectrum is purely discrete and nonresonance conditions are satis�ed, see [CMSB09, MS10, BCCS12,
Cha12, BCS14, CS17]. The present work, similarly to [Ner09], considers the question of the regularity
of a solution of (1.1) but in a more general way, following the spirit of [BCC13].

1.3 Main results

1.3.1 Upper bound for attainable sets of bilinear control systems

Our aim is to give upper bounds for attainable set of bilinear control systems. The main result is the
following.

Theorem 1. Let H be an in�nite dimensional Hilbert space, A be a maximal dissipative operator on

H with domain D(A), and B be an operator on H such that B − c and −B − c′ generate contraction
semi-groups leaving D(A) invariant for some real constants c ≥ 0 and c′ ≥ 0. Assume that A + uB
is maximal dissipative with domain D(A) for every u in R and that the map t ∈ R 7→ etBAe−tB ∈
L(D(A),H) is locally Lipschitz. Then, for every T > 0, there exists a unique continuous extension

to L1([0, T ],R) of the input-output mapping u 7→ Υu
T ∈ L(H,H) of (1.1), and for every ψ0 in H, the

set

AttL1(ψ0) :=
⋃
T≥0

⋃
u∈L1([0,T ],R)

{Υu
t,0ψ0, t ∈ [0, T ]}

is contained in a countable union of compact subsets of H.
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Proof. See Section 3.2.

As a consequence of Theorem 1,⋃
α≥0

⋃
T≥0

⋃
u∈L1([0,T ],R)

{αΥu
t,0ψ0, t ∈ [0, T ]}

is a meager set in H and hence it has dense complement.
In the special case where the control operator B is bounded, using a di�erent construction, we

obtain a simpli�ed statement similar to the one of [BMS82] and dealing with L1 controls.

Proposition 2. Let X be an in�nite dimensional Banach space, A generate a C0 semi-group of

bounded linear operators on X , and B be a bounded linear operator on X . Then for every T > 0, there
exists a unique continuous extension to L1([0, T ],R) of the input-output mapping u 7→ Υu

T ∈ L(H,H)
of (1.1) and, for every ψ0 in H,

AttL1(ψ0) :=
⋃
T≥0

⋃
u∈L1([0,T ],R)

{Υu
t ψ0, t ∈ [0, T ]}

is contained in a countable union of compact subsets of X and, in particular, has dense complement.

Proof. See Section 5.

These results set the open question by Ball, Marsden, and Slemrod in [BMS82, Remark 3.8]. The
scheme of the proofs of Theorem 1 and Proposition 2 follows the structure of the proof of [BMS82,
Theorem 3.6]. The lack of re�ectiveness of L1 leads us to consider Radon measures as controls,
the weak-compactness of bounded sequences is ensured by Helly's Selection Theorem. The main
di�culty is to de�ne a continuous input-output mapping associated with (1.1) in such a way to
guarantee compactness properties for the attainable sets.

Remark 2. Theorem 1 still holds true for Radon measures controls, as stated in Corollary 16 below.
Here the result is presented in term of L1 controls for the sake of readability, indeed the de�nition of
the propagator associated with Radon measures requires preliminary notions presented in Section 3.1.
The hypotheses of Theorem 1 are needed in order to prove continuity of the propagators after a
particular change of variable (the interaction framework presented in Section 3). The key result in
the proof of the continuity is an adaptation of a classical result by Kato [Kat53] (see Proposition 7).

1.3.2 Higher regularity

The Lipschitz assumption on the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) in Theorem 1 is crucial for
our analysis when B is unbounded, however it may be hard to check in practice. For bilinear systems
encountered in quantum physics, one can take advantage of the skew-adjointness of the operators to
make the analysis simpler. For instance, it is possible to replace the Lipschitz assumption of Theorem
1 by a hypothesis of boundedness of the commutator of operators A and B as stated in the following
result.

Theorem 3. Let H be an in�nite dimensional Hilbert space, k a positive number, A and B be two

skew-adjoint operators such that:

(i) A is invertible with bounded inverse from D(A) to H,

(ii) for any t ∈ R, etBD(|A|k/2) ⊂ D(|A|k/2),
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(iii) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semi-groups on

D(|A|k/2) for the norm ‖ · ‖k/2,

(iv) B is A-bounded with ‖B‖A = 0 (see (2.2) below for the precise de�nition).

Then, for every T > 0, there exists a unique strongly continuous extension to BV ([0, T ],R), endowed
with the ‖ · ‖L1 + TV(·, ([0, T ],R))-norm, of the end-point mapping u 7→ Υu

T of (1.1). Moreover, for

every ψ0 in D(|A|k/2), the set ⋃
α≥0

⋃
T≥0

⋃
u∈BV ([0,T ],R)

{αΥu
t ψ0, t ∈ [0, T ]},

is contained in a countable union of compact subsets of D(|A|k/2).

Proof. See Section 4.2.

Remark 3. Theorem 3 is a reformulation of Theorem 1 in the smaller functional framework of
conservative dynamics. Theorem 3 is an immediate consequence of Corollary 24 below in the case
of bounded variation controls. For extension of this result to Radon measures controls we refer to
Section 4.3.

Notice that Corollary 24 allows an extension of Theorem 3 from D(|A|k/2) to D(|A|k/2+1−ε) if ψ0

is in D(|A|k/2+1−ε), for ε ∈ (0, 1).

Remark 4. A simple checkable condition for a pair of skew-adjoint operators (A,B) to satisfy
assumptions (i) − (iii) in Theorem 3 is to be weakly coupled in the sense of [BCC13, De�nition 1].
See Lemma 19 below.

Remark 5. Recall that there exists c ≥ 0 and c′ ≥ 0 such that B−c and −B−c′ generate contraction
semi-groups on D(|A|k/2) if and only if these operators are maximal dissipative in the functional space
D(|A|k/2). Assumption (iii) in Theorem 3 is, in some sense, an assumption on the commutator of A
and B, see Section 4.

1.3.3 Applications to the bilinear Schrödinger equation

Here we consider the motion of a nonrelativistic quantum charged particle trapped in an in�nte square
potential well excited by an external electric �eld. That is the dynamics governed by a Schrödinger
equation on the interval (0, 1) with a control potential W : (0, 1)→ R, which writesi

∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x)− u(t)W (x)ψ(t, x), x ∈ (0, 1), t ∈ (0, T ),

ψ(t, 0) = ψ(t, 1) = 0.
(1.5)

We denote by Hs
(0)((0, 1),C) the domain of |A|s/2 where A is the Laplace�Dirichlet operator on (0, 1),

and by ϕk, k ∈ N its (normalized) eigenvectors associated respectively to λk, k ∈ N its increasing
sequence of eigenvalues (which are known to be simple). Let us recall the main result of [BL10].

Theorem (Theorem 1 in [BL10]). Let T > 0 and W ∈ H3((0, 1),R) be such that there exists c > 0
verifying c

k3
6 |〈Wϕ1, ϕk〉|, for all k ∈ N. There exists δ > 0 and a C1 map Γ : VT → L2((0, T ),R)

where
VT := {ψf ∈ H3

(0)((0, 1),C) | ‖ψf‖ = 1, ‖ψf − ψ1(T )‖H3 < δ},

such that, Γ(ψ1(T )) = 0 and for every ψf ∈ VT , the solution of (1.5) with initial condition ψ(0) = ϕ1

and control u = Γ(ψf ) satis�es ψ(T ) = ψf .
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The above result applies for instance to W : x 7→ x2. The techniques introduced in this paper
provide estimates from above and from below for the attainable set when using di�erent classes of
admissible controls:

Proposition 4. Let W : x 7→ x2. Then, for every T > 0, the input-output mapping u 7→ Υu
T of (1.5)

admits a unique continuous extension to L1([0, T ],R).
The attainable set from ϕ1 with L1 controls,

AttL1(ϕ1) =
⋃
T≥0

⋃
u∈L1([0,T ],R)

{Υu
t ϕ1|0 ≤ t ≤ T},

satis�es AttL1(ϕ1) ⊂
⋂

s<5/2

Hs
(0)((0, 1),C).

The attainable set from ϕ1 with bounded variation (BV ) controls,

AttBV (ϕ1) =
⋃
T≥0

⋃
u∈BV ((0,T ],R)

{Υu
t ϕ1|0 ≤ t ≤ T},

is a Hs-dense subset of {ψ ∈ L2((0, 1),C) | ‖ψ‖ = 1} ∩Hs
(0)((0, 1),C) for every s < 9/2.

1.4 Organization of our analysis

In Section 2 we consider bilinear evolution equations (not necessarily conservative) from an abstract
point of view and we de�ne the solution for controls with bounded variations. We also prove the
well-posedness within this framework and prove the continuity of the propagators with respect to the
control parameters.

In Section 3, we use a reparametrization, inspired by physics, the interaction framework, to extend
the results of Section 2 to the case where the control is a Radon measure. This provides a proof of
Theorem 1.

When considering closed quantum systems, the operators A and B appearing in (1.1) are skew-
adjoint. Section 4 is devoted to the regularity analysis of the solution obtained so far when further
assumptions are made on the control potential and to the proof of Theorem 3.

Section 5 is dedicated to the case where B is bounded and to the proof of Proposition 2.
Section 6 presents various examples.

Acknowledgments We acknowledge for this work the �nancial support of the INRIA Color and
CNRS Dé� InFIniti project DISQUO. This long term analysis was possible due to the support of our
respective institutions (the universities of Bourgogne Franche-Comté and Lorraine and the CNAM)
as well as the facilities o�ered by the CNRS, the PIMS and the University of Victoria during the stay
of the �rst author.

We are also grateful to many colleagues for the useful discussions that lead to many improvements
since our �rst result, among them we especially thank Farid Ammar-Khodja, Alain Haraux, Marcelo
Laca, and Gilles Lancien.

1.5 Notations and De�nitions

Throughout this analysis, T will be a positive real and I a bounded interval of R.

Bounded operators space Let X and Y be two Banach spaces, L(X ,Y) is the space of linear
bounded operator acting on X with values in Y. If X = Y we write L(X ) := L(X ,Y).
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Weak and strong topology Let (An)n∈N a sequence in L(X ,Y), let A in L(X ,Y). We say that
An converges to A in the strong sense, or strongly, if for any ψ in X , (Anψ)n∈N converges to Aψ in
Y. We say that An converges to A in the weak sense, or weakly, if for any ψ in X and φ in Y∗, the
topological dual of Y, (φ(Anψ))n∈N converges to φ(Aψ) in C.

Maximal dissipative operators on Hilbert spaces An operator A on a Hilbert space H is
dissipative if for any φ ∈ D(A), <〈φ,Aφ〉 ≤ 0. It is maximal dissipative if it has no proper dissipative
extension.

Graph topology Consider an operator A on a Hilbert space H with domain D(A), the graph
topology on D(A) is the topology associated with the norm ψ ∈ D(A) 7→ ‖ψ‖H + ‖Aψ‖H ∈ [0,∞).

Bounded variation functions Let E ⊂ X for X Banach space. A family t ∈ I 7→ u(t) ∈ E is in
BV (I, E), i.e. is a bounded variation function from I to E, if there exists N ≥ 0 such that

n∑
j=1

‖u(tj)− u(tj−1)‖X ≤ N,

for any partition (ti)
n
i=0 of the interval I. The mapping

u ∈ BV (I, E) 7→ sup
(ti)i

n∑
j=1

‖u(tj)− u(tj−1)‖X

is a semi-norm on BV (I, E) denoted by TV(·, (I, E)) and it is called total variation.
The space BV (I, E) endowed with the norm ‖ ·‖BV (I) := ‖ ·‖L1 +TV(·, (I, E)) is a Banach space.
In what follows we consider, on BV (I, E), the topology associated with the convergence given

below: (un)n∈N ∈ BV (I, E) converges to u ∈ BV (I, E) if (un)n∈N is a bounded sequence in BV (I, E)
pointwise convergent to u ∈ BV (I, E).

Notice that convergence in the norm ‖ · ‖BV (I) implies pointwise convergence.
The Jordan Decomposition Theorem provides that any bounded variation function is the di�erence
of two nondecreasing bounded functions. This fact, together with Helly's Theorem provides the
well-known Helly's Selection Theorem (see for example [Hel12, Nat55]).

Theorem (Helly's Selection Theorem). Let I be compact and (fn)n∈N be a sequence in BV (I,R).
If

(i) there exists M > 0 such that for all n ∈ N, TV(fn, (I,R)) < M ,

(ii) there exists x0 ∈ I such that (fn(x0))n∈N is bounded.

Then (fn)n∈N has a pointwise convergent subsequence.

Radon measures We consider the space R(I) of (signed) Radon measures on I. Recall that a
positive Radon measure is a Borel measure which is locally �nite and inner regular. Using Hahn
decomposition [Dos80] any signed Radon measure µ is the di�erence µ = µ+ − µ− of two positive
Radon measures µ+ and µ− (at least one being �nite) with disjoint support. We denote the total
variation of µ by |µ|(I), where |µ| = µ+ +µ−. In the rest of the work we consider only Radon measure
with bounded total variation. In particular both µ+ and µ− are �nite.

Here we only consider �nite measures on I so the inner regularity requirement in the de�nition can
be dropped. In the more general σ-�nite case, this requirement can be dropped as well. In the �rst
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case, a positive Radon measures is a �nite Borel measures, while in the second case a positive Radon
measure is a locally �nite Borel measure. Note that, sometimes Borel measures are by de�nition
locally �nite. Sometimes the outer regularity is added to the de�nition of Radon measures, which
again is redundant for �nite measures.

We say that (µn)n∈N ∈ R([0, T ]) converges to µ ∈ R([0, T ]) if supn |µn|([0, T ]) < +∞ (i.e.
(µn)n∈N has uniformly bounded total variations) and µn((0, t]) → µ((0, t]) for every t ∈ (0, T ] as n
tends to ∞. Note that this notion of convergence is not the same as the topology induced by the
norm of total variation, see also Remark 14 below.

The cumulative function u(t) = µ((0, t]) of a Radon measure µ is locally of bounded variation
and the associated total variation (which does not depend on the choice of the cumulative function)
coincides with the total variation of the Radon measure.

Every function in u ∈ L1
loc(I,R) can be seen as the density of an absolutely continuous Radon

measure µ, namely µ(J) =
∫
J ufλ for every J ⊂ I borelian. When it does not create ambiguity

we identify the function u with the associated Radon measure µ. Moreover we have the following
convergence.

Lemma. Let (un)n∈N ⊂ L1(I,R) and u ∈ L1(I,R) such that un → u in L1(I,R) as n tends to ∞.
Let (µn)n∈N ⊂ R(I) and µ ∈ R(I) be the associated Radon measures. Then (µn)n∈N converges to µ
in R(I).

Note that for u in L1(I,R) the total variation of the associated Radon measure is the L1-norm
of u and hence L1(I,R) is closed for the total variation topology.

The topology induced by our de�nition of convergence on BV is stronger than the weak topology
on measures, see [EG92, Section 1.9] and weaker than the strong or total variation topology. It is also
stronger than the narrow topology (also called weak topology in [Bil99, Kle14, Mat95]). For instance,

the sequence
(
δ 1
n

)
n∈N

converges narrowly to δ0 but is not convergent according to our de�nition.

Other notations For any interval I ⊂ R, we de�ne

∆I := {(s, t) ∈ I2 | s ≤ t }.

In a metric space E, the notation BE(v0, r) stands for the open ball of radius r and center v0 in E.
For a densely de�ned operator B on a Hilbert space, B∗ stands for its adjoint. Recall that B∗ is
densely de�ned if and only if B is closable, in such a case B∗ is closed.
The set C1

0 (I,X ) is the set of of functions from an interval I to a Banach X of class C1 with compact
support in the interior of I.

2 Well-posedness and continuity for BV controls

In this section, we present global well-posedness results for a class of nonautonomous perturbations
of a maximal dissipative linear Cauchy problem as well as a continuity criterion for a convergence
problem.

2.1 Abstract framework: de�nitions and notations

Here we consider a general framework for bilinear dynamics in Hilbert spaces. Classical de�nitions and
tools in this context can be found in [RS75, Section X.8], as well as the associated notes and problems.
Notice that however we consider an opposite sign for the generators. Thus, following [Phi59], we use
the word dissipative instead of accretive (see also [RS75, Notes of Section X.8]). As we restrict our
analysis to the Hilbert space framework, generators of contraction (Lipschitz maps with Lipschitz
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constant less than one) semi-groups and maximal dissipative operators coincide (see [Phi59, Theorem
1.1.3]). The equivalence between these two notions is important in our analysis at many levels, in
particular, for what concerns mild coupling in Section 4.

Let H be a Hilbert space (possibly in�nite dimensional) with scalar product 〈·, ·〉 and correspond-
ing norm ‖ · ‖. Let A,B be two (possibly unbounded) dissipative operators on H. We consider the
formal bilinear control system

d

dt
ψ(t) = Aψ(t) + u(t)Bψ(t), (2.1)

where the scalar control u is to be chosen in a set of real functions.
In general, given an initial data ψ(0) = ψ0 ∈ H, the solution of system (2.1) may not be well-

de�ned. Indeed, even the de�nition of A+ B is not obvious when A and B are unbounded. To this
aim it is usually assumed that the operators A and B satisfy the following condition.

De�nition 1. Let (A,B) be a couple of operators acting on H. Then B is said relatively bounded

with respect to A, or A-bounded, if D(A) ⊂ D(B) and there exist a, b > 0 such that for every ψ in
D(A), ‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖.

It is well-known that if A is skew-adjoint and B skew-symmetric, from Kato�Rellich Theorem,
(see for example [RS75, Theorem X.12]), if B is relatively bounded with respect to A, then for every
real constant u such that |u| < 1/a (with a from De�nition 1), A+ uB is skew-adjoint with domain
D(A) and generates a group of unitary operators. System (2.1) is then well-posed for every initial
condition. From [RS75, Corollary to Theorem X.50], A + uB is maximal dissipative with domain
D(A) and generates a contraction semi-group when A is maximal dissipative, B is dissipative, B is
A-bounded and 0 ≤ u < 1/a (again a is from De�nition 1).

In most of the examples in Section 6, we consider the skew-adjoint case and a arbitrary small, so
that we can de�ne the solutions of (2.1) for every piecewise constant control u with real values.

In the general case, we will refer to the following assumptions.

Assumption 1. (A,B,K) is a triple where A is a maximal dissipative operator on H, B is an
operator on H with D(A) ⊂ D(B), and K a real interval containing 0, such that for any u ∈ K,
A+ uB is a maximal dissipative operator on H with domain D(A).

Assumption 1 implies that the operator B is A-bounded from D(A) to H and allows us to de�ne

‖B‖A := inf
λ>0
‖B(λ−A)−1‖. (2.2)

The number ‖B‖A is the lower bound of all possible constants a in De�nition 1 and in principle it
can be zero. We also have,

‖B‖A = lim inf
λ→+∞

‖B(λ−A)−1‖. (2.3)

We consider also the following assumption in order to extend the de�nition of propagator to the
case of Radon measures controls (see Section 3.1).

Assumption 2. (A,B,K) is a triple where A is a maximal dissipative operator on H, K a real
interval containing 0, and

(A2.1) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semi-groups on
H leaving D(A) invariant,

(A2.2) for every u ∈ R([0, T ]), with u((0, t]) ∈ K for any t ∈ [0, T ],

t ∈ [0, T ] 7→ A(t) := eu((0,t])BAe−u((0,t])B

is a family of maximal dissipative operators with common domain D(A) such that :
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• supt∈[0,T ]

∥∥(1−A(t))−1
∥∥
L(H,D(A))

< +∞,

• A has �nite total variation from [0, T ] to L(D(A),H).

Remark 6. From Assumption 2, B et −B, with same domains, are generators of continuous semi-
groups. We can prove e−tB = (etB)−1, for any real t, and thus B generates a continuous group.

The triple (A,B,K) satis�es Assumption 2 for any interval K containing 0 if the pair (A,B)
satis�es the following one.

Assumption 3. (A,B) is a pair such that

(A3.1) A is a maximal dissipative operator on H with domain D(A),

(A3.2) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semi-groups on
H leaving D(A) invariant,

(A3.3) the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) is locally Lipschitz.

Remark 7. Assumption (A3.3) is a strong assumption on the regularity of B with respect to the
scale of A. Indeed it implies that B is the generator of a strongly continuous semi-group on D(A)
since the semi-groups generated by B or −B are continuous on H from Assumption (A3.2) and∥∥Ae−tBψ −Aψ∥∥ ≤ ect ∥∥etBAe−tBψ − etBAψ∥∥

≤ ect
∥∥etBAe−tB −A‖‖ψ‖+ ‖etBAψ −Aψ

∥∥ ,
for t > 0 and ψ ∈ D(A), which provides the continuity on D(A). In Section 4, we consider higher
regularity assumptions in the skew-adjoint case and operators on D(|A|k) with k > 1.

2.2 Propagators

Since the problem (2.1) is nonautonomous, the notion of semi-group is replaced by the following

De�nition 2 (Propagator on a Hilbert space). A family (s, t) ∈ ∆I 7→ X(s, t) of linear contractions
on a Hilbert space H, strongly continuous in t and s and such that

(i) X(t, s) = X(t, r)X(r, s), for any s < r < t,

(ii) X(t, t) = IH,

is called a contraction propagator on H.

Remark 8. In Section 3 below, we introduce a generalized notion of propagators, see De�nition 4,
with relaxed assumptions on the continuity of (s, t) 7→ X(s, t) in order to extend to the framework
to Radon measure controls.

Following [Kat53] in the construction of propagators, we introduce the following

Assumption 4. Let D be a dense subset of H

(A4.1) A(t) is a maximal dissipative operator on H with domain D for every t ∈ I,

(A4.2) t 7→ A(t) has bounded variation from I to L(D,H), where D is endowed with the graph topology
associated with A(a) for some a ∈ I,

(A4.3) M := supt∈I
∥∥(1−A(t))−1

∥∥
L(H,D)

<∞.
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In the following Assumption 4 will apply mainly to the family of operators A(t) = A+ u(t)B or
A(t) = e−u((0,t])BAeu((0,t])B.

Remark 9. In Assumption (A4.2), the bounded variation of t 7→ A(t) ensures that any choice of
a ∈ I will be equivalent.

Remark 10. As A(t) is a maximal dissipative operator, that is the generator of a contraction semi-
group, its resolvent set contains the positive half line and from Hille�Yosida Theorem [RS75, Theorem
X.47a] (see also Proposition 17 below) any generator of a contraction semi-group satis�es

sup
t∈I

∥∥(1−A(t))−1
∥∥
L(H)

<∞.

Note that ‖(1− A(t))−1‖L(H,D) < +∞ for every t ∈ I and the essence of Assumption (A4.3) is that∥∥(1−A(t))−1
∥∥
L(H,D)

is uniformly bounded with respect to t ∈ I.
We do not assume t 7→ A(t) to be continuous. However, as a consequence of Assumption (A4.2)

(see [Edw57, Theorem 3]) it admits right and left limit in L(D,H), denoted byA(t−0) := limε→0+ A(t− ε)
and A(t+ 0) := limε→0+ A(t+ ε), for all t ∈ I, and A(t− 0) = A(t+ 0) for all t ∈ I except, at most
a countable set.

The core of our analysis is the following result due to Kato (see [Kat53, Theorem 2 and Theorem
3]) providing su�cient conditions for the well-posedness of system (2.1).

Theorem 5. If t ∈ I 7→ A(t) satis�es Assumption 4, then there exists a unique contraction propagator

X : ∆I → L(H) such that if ψ0 ∈ D then X(t, s)ψ0 ∈ D and is strongly right di�erentiable in t with
derivative A(t+ 0)X(t, s)ψ0.

Moreover, with M from Assumption (A4.3),

‖A(t)X(t, s)ψ0‖ ≤MeMTV(A,(I,L(D,H)))‖A(s)ψ0‖, for (t, s) ∈ ∆I and ψ0 ∈ D,

and X(t, s)ψ0 is left di�erentiable in s with derivative −A(s− 0)ψ0 when t = s.
In the case in which t 7→ A(t) is continuous and skew-adjoint, if ψ0 ∈ D then t ∈ (s,+∞) 7→

X(t, s)ψ0 is strongly continuously di�erentiable in H with derivative A(t)X(t, s)ψ0.

Proof. The statement of this theorem is obtained by gathering statements of [Kat53]. The point
which may not be stated clearly with respect to [Kat53] is the existence of C > 0 such that

‖A(t)X(t, s)ψ0‖ ≤ C‖A(s)ψ0‖,

for (t, s) ∈ ∆I and for any ψ0 ∈ D. This is in [Kat53, �3.10] with C = M exp(MN) and

M = sup
t∈I

∥∥(1−A(t))−1
∥∥
L(H,D)

and N = TV(A, (I, L(D,H))).

We call t 7→ X(t, s)φ0 a �mild� solution in H of{
d
dtφ(t) = A(t)φ(t),

φ(s) = φ0,
(2.4)

even if, in general, it is not di�erentiable.

Remark 11. If (A,B,K) satis�es Assumption 2, the operator t ∈ [0, T ] 7→ A(t) := eu((0,t])BAe−u((0,t])B

de�ned in Assumption (A2.2) satis�es Assumption 4 for any Radon measure u on (0, T ) with
u((0, t]) ∈ K for any t ∈ (0, T ]. If (A,B) satis�es Assumption 3 then (A,B,R) satis�es Assumption 2.
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The fact that Assumption 1 is stronger, in some sense, than Assumption 4 is the content of the
following lemma.

Lemma 6. If (A,B,K) satis�es Assumption 1 and u : [0, T ] 7→ K has bounded total variation such

that u([0, T ]) ⊂ K then A(t) := A+ u(t)B satis�es Assumption 4 with I = [0, T ].

Proof. The only point to verify is Assumption (A4.3). First the set C := u([0, T ]) is a bounded closed
subset of K and thus is a compact of K. Then the map

u 7→ (1−A)(1−A− uB)−1,

is continuous from K to L(H). Indeed

(1−A)(1−A− uB)−1−(1−A)(1−A− vB)−1

= (1−A)
(
(1−A− uB)−1 − (1−A− vB)−1

)
= (v − u)(1−A)

(
(1−A− uB)−1B(1−A− vB)−1

)
= (v − u)(1−A)

(
(1−A− uB)−1B(1−A)−1(1−A)(1−A− vB)−1

)
so that

(1−A)(1−A− uB)−1 − (1−A)(1−A− vB)−1

− (v − u)(1−A)(1−A− uB)−1B(1−A)−1
(
(1−A)(1−A− vB)−1 − (1−A)(1−A− uB)−1

)
= (v − u)(1−A)

(
(1−A− uB)−1B(1−A)−1(1−A)(1−A− uB)−1

)
De�ne

L(u) = ‖(1−A)(1−A− uB)−1‖L(H) and b = ‖B(1−A)−1‖

so that

(1− |v − u|bL(u))‖(1−A)(1−A− uB)−1 − (1−A)(1−A− vB)−1‖ ≤ |v − u|L(u)2b, (2.5)

which provides the desired continuity. Then as |u(t)− u(0)| ≤ ‖u‖BV (I) for any t ∈ I, u(t) is in C a
compact subset of K for all t ∈ I thus the closure of its image is compact and

t ∈ I 7→ ‖(1−A− u(t)B)−1‖L(H,D)

is bounded.

2.3 Continuity

In this section we focus on the continuity of the propagators with respect to the control u. The main
tool is a consequence of the work by Kato [Kat53], Proposition 7 below.

De�nition 3. Let (An)n be a family of generators of contraction semi-groups and A a generator of
a contraction semi-group. The family (An)n tends to A in the strong resolvent sense if

(λ−An)−1φ→ (λ−A)−1φ as n→∞,

for every φ in H and for some λ ≥ 0 (and hence all λ, see [RS72, Section VIII.7]).

Proposition 7. Let (An)n∈N and A satisfy Assumption 4. Let (Dn)n∈N and D be their respective

domains (for any t ∈ I). Let Xn (respectively X) be the contraction propagator associated with An
(respectively A).

Assume that
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(i) supn∈N supt∈I ‖(1−An(t))−1‖L(H,Dn) < +∞,

(ii) An(τ) converges to A(τ) in the strong resolvent sense for almost every τ ∈ I as n tends to

in�nity,

(iii) supn∈N TV(An, (I, L(Dn,H))) < +∞,

(iv) For every φ ∈ H, δ > 0, n ∈ N there exists ψn ∈ Dn with ‖φ − ψn‖ < δ such that

supn∈N ‖An(a)ψn‖ < +∞ for some a ∈ I.

Then Xn(t, s) tends strongly to X(t, s) locally uniformly in s, t ∈ ∆I .

Proof. Following [Kat53, �3.8] it is su�cient to prove the statement for piecewise constant controls
(i.e. replacing Xn and X by any of their Riemann products). Let ∆ := {s = t0 < t1 < . . . < tn = t}

be a partition of the interval (t, s) andXn(∆) be the propagator associated with
n∑
j=1

An(tj−1)χ[tj−1,tj).

Then, for every n,

‖ (Xn(t, s; ∆)−Xn(t, s))φ‖ ≤MeM NN |∆|‖An(a)φ‖, for every φ ∈ Dn

where

M = max{sup
t∈I

sup
n∈N

∥∥(1−An(t))−1
∥∥
L(H,Dn)

, sup
t∈I

∥∥(1−A(t))−1
∥∥
L(H,D)

},

N = max{sup
n∈N

TV(An, (I, L(Dn,H))),TV(A, (I, L(D,H)))},

and |∆| = sup1≤j≤n |tj − tj−1|. Similarly we de�ne X(∆) as the propagator associated with

n∑
j=1

A(tj−1)χ[tj−1,tj).

We have
‖ (X(t, s; ∆)−X(t, s))φ‖ ≤MeM NN |∆|‖A(a)φ‖, for every φ ∈ D.

Following the proof of [RS75, Theorem X.47a (Hille�Yosida)] (see also Proposition 17 below), we have
that ∥∥∥etAn(τ)φ− etAλn(τ)φ

∥∥∥ ≤ t ∥∥∥An(τ)φ−Aλn(τ)φ
∥∥∥ , for every φ ∈ Dn,

with Aλn(τ) := λ(λ−An(τ))−1An(τ), for λ > 0, and∥∥∥etA(τ)φ− etAλ(τ)φ
∥∥∥ ≤ t ∥∥∥A(τ)φ−Aλ(τ)φ

∥∥∥ , for every φ ∈ D,

with Aλ(τ) := λ(λ−A(τ))−1A(τ).
Since An are generators of contraction semi-groups, then ‖λ(λ− An(τ))−1‖ ≤ 1 for every λ > 0,

in particular it is uniformly bounded in n and τ .
By assumption (iv) for every φ ∈ H and δ > 0 there exist ψ ∈ D and ψn ∈ Dn such that

‖φ− ψ‖ ≤ δ and ‖φ− ψn‖ ≤ δ,

and supn∈N ‖An(a)ψn‖ < +∞ for a ∈ I. We deduce that λ(λ− An(τ))−1ψn tends to ψn as λ→∞
uniformly in n and τ . Similarly Aλ(τ)ψ tends strongly to A(τ)ψ uniformly in τ as λ→∞. So that∥∥∥etA(τ)φ− etAn(τ)φ

∥∥∥ ≤ 4δ +
∥∥∥etA(τ)ψ − etAλ(τ)ψ

∥∥∥+
∥∥∥etAλ(τ)φ− etAλn(τ)φ

∥∥∥+
∥∥∥etAλn(τ)ψn − etAn(τ)ψn

∥∥∥
≤ 4δ + t

∥∥∥A(τ)ψ −Aλ(τ)ψ
∥∥∥+

∥∥∥etAλ(τ)φ− etAλn(τ)φ
∥∥∥+ t

∥∥∥An(τ)ψn −Aλn(τ)ψn
∥∥∥ .
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It su�cies to show convergence of
∥∥∥etAλ(τ)φ− etAλn(τ)φ

∥∥∥ as n→∞ in order to prove the Proposition.

Since etA
λ
n(τ) = e−λtetλ

2(λ−An(τ))−1
and etA

λ(τ) = e−λtetλ
2(λ−A(τ))−1

(see [RS75, Theorem X.47a (Hille-
Yosida)]), we have that∥∥∥etAλ(τ)φ− etAλn(τ)φ

∥∥∥ =
∥∥∥e−λtetλ2(λ−An(τ))−1

φ− e−λtetλ2(λ−A(τ))−1
φ
∥∥∥

= e−λt
∥∥∥etλ2(λ−An(τ))−1

φ− etλ2(λ−A(τ))−1
φ
∥∥∥ .

Recall that ‖(λ−An(τ))−1‖ ≤ 1
λ (see Proposition 17 with ω = 0) and hence ‖etλ2(λ−An(τ))−1‖ ≤ eλt.

Duhamel's identity writes, for 0 ≤ t ≤ T ,∥∥∥etλ2(λ−An(τ))−1
φ− etλ2(λ−A(τ))−1

φ
∥∥∥

=

∥∥∥∥∫ t

0
λ2e(t−s)λ2(λ−An(τ))−1 {

(λ−An(τ))−1 − (λ−A(τ))−1
}
esλ

2(λ−A(τ))−1
φ ds

∥∥∥∥ (2.6)

≤ λ2eTλ
∫ T

0

∥∥∥{(λ−An(τ))−1 − (λ−A(τ))−1
}
esλ

2(λ−A(τ))−1
φ
∥∥∥ ds.

The result follows from Lebesgue Dominated Convergence Theorem, using the convergence of An(τ)
to A(τ) in the strong resolvent sense for almost every τ ∈ I as n tends to in�nity.

Remark 12. In the case in which Dn = D, for all n ∈ N, the assumptions of Proposition 7 are
veri�ed whenever:

(i)′ supn∈N supt∈I ‖(1−An(t))−1‖L(H,D) < +∞,

(ii)′ An(τ) converges to A(τ) in the strong sense in D for almost every τ ∈ I as n→∞,

(iii)′ supn∈N TV(An, (I, L(D,H))) < +∞.

This can be proved by adapting [RS72, Theorem VIII.25] to the maximal dissipative case and using
Banach�Steinhaus Theorem to prove that assumption (iv) of Proposition 7 follows from (ii)′.

Corollary 8. Let (A,B,K) satisfy Assumption 1. Let (un)n∈N be a sequence in BV (I,K) converging
to u ∈ BV (I,K). Let An(t) = A + un(t)B, A(t) = A + u(t)B and let Xn (respectively X) be the

contraction propagators associated with An (respectively A). If ∪n∈Nun([0, T ]) ⊂ K, then Xn(t, s)
tends strongly to X(t, s) locally uniformly in (s, t) ∈ ∆I .

Proof. The proof consists in verifying that the hypotheses of Proposition 7 are satis�ed. To this aim,
we just have to check points (i)', (ii)' and (iii)' of Remark 12.

Point (i)': the mapping L : s ∈ K 7→ ‖(1 − A)(1 − A − sB)−1‖ has been de�ned in the proof of
Lemma 6 where it is shown to be continuous. By hypothesis, there exists a compact set K1 ⊂ K
such that for every n in N and every t in [0, T ], un(t) ∈ K1. Hence, supn∈N supy∈[0,T ] ‖(1 − A)(1 −
A− un(t)B)−1‖ ≤ supC(K1) < +∞ which proves point (i)'

Point (ii)' is immediate from the assumption that (un)n∈N converges toward u.
Point (iii)': for every n in N ,

TV(An, (I, L(D,H))) = TV(unB, (I, L(D,H))) = ‖B‖L(D,H)TV(un, (I,R)).

This last quantity is bounded as n tends to in�nity since (un)n∈N converges to u.

16



Corollary 9. Assume that (A,B,K) satisfy Assumption 1. Let ψ0 ∈ H. Then

{Υu
t (ψ0) | u ∈ BV ([0,∞),K), t ≥ 0}

is contained in a countable union of compact subsets of H.

Proof. We follow the principle presented in Section 1.1.2. We �rst introduce a nondecreasing sequence
(Ki)i∈N of compact subsets of K such that K = ∪i∈NKi, and the subset

Zi,j,n = u ∈ BV ([0,∞),Ki),TV(u, ([0, n],Ki)) ≤ j}

of the set of functions with bounded variations. By Helly's selection Theorem, Zi,j,n is sequentially
compact. By Corollary 8, the set {Υu

t (ψ0) | u ∈ Zi,j,n} is compact in H for every (n, i, j) in N3.
Hence

{Υu
t (ψ0) | u ∈ BV ([0,∞),K), t ≥ 0} ⊂
∪n∈N ∪i∈N ∪j∈N{Υu

t (ψ0) | u ∈ Zi,j,n, 0 ≤ t ≤ n}

is contained is a countable union of compact sets of H.

Recall that I is bounded and that convergence for a sequence of Radon measures is in the sense
given in Section 1.5.

Corollary 10. Let (A,B,K) satisfy Assumption 2. Let I = [0, T ] for some T > 0. Let (vn)n∈N
be a sequence in R(I) converging to v ∈ R(I). Assume that vn((0, t]) ∈ K and v((0, t]) ∈ K for

every t ∈ (0, T ] and n ∈ N. Let An(t) = e−vn((0,t])BAevn((0,t])B and A(t) = e−v((0,t])BAev((0,t])B

and let Xn (respectively X) be the contraction propagators associated with An (respectively A). If

supn∈N TV(An, (I, L(D(A),H))) < +∞, then Xn(t, s) tends strongly to X(t, s) locally uniformly in

(s, t) ∈ ∆I .

Proof. The proof consists in checking that the assumptions of Proposition 7 are ful�lled. Here D =
D(A).

(i) We have supn∈N supt∈I ‖(1−An(t))−1‖L(H,D) <∞. Indeed

‖(1−A)(1−An(t))−1‖L(H)

= ‖(1−A)evn((0,t])B(1−A)−1e−vn((0,t])B‖L(H)

≤ ‖evn((0,t])B‖L(H)‖e−vn((0,t])B(1−A)evn((0,t])B(1−A)−1‖L(H)‖e−vn((0,t])B‖L(H)

= ‖evn((0,t])B‖L(H)‖(1−An(t))(1−A)−1‖L(H)‖e−vn((0,t])B‖L(H)

≤ ‖evn((0,t])B‖L(H)

(
‖An(t)−An(0)‖L(D,H) + ‖1−A‖L(D,H)

)
‖e−vn((0,t])B‖L(H)

≤ ‖evn((0,t])B‖L(H) (TV(An, (I, L(D,H))) + 1) ‖e−vn((0,t])B‖L(H). (2.7)

Notice that since (vn)n∈N converges to v then by de�nition vn((0, t]) is uniformly bounded in
n ∈ N and t ∈ [0, T ]. Then from Assumption (A2.1), there exists ω ∈ R such that

‖evB‖L(H) ≤ eω|v|, for every v ∈ R, (2.8)

which provides the desired boundedness.
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(ii) The sequence An(t) tends to A(t) in the strong resolvent sense for all t ∈ [0, T ] as n → ∞.
Indeed from

(1−An(t))−1 − (1−A(t))−1 = e−vn((0,t])B(1−A)−1evn((0,t])B − e−v((0,t])B(1−A)−1e−v((0,t])B

we have

(1−An(t))−1 − (1−A(t))−1 = (e−vn((0,t])B − e−v((0,t])B)(1−A)−1evn((0,t])B

+ e−v((0,t])B(1−A)−1(evn((0,t])B − ev((0,t])B)

then using (2.8) the boundedness of the sequence (vn) and the strong continuity of t ∈ R 7→ etB,
we conclude the strong resolvent convergence.

(iii) By Assumption (A2.2) we have supn∈N TV(An, (I, L(D(A),H))) < +∞.

(iv) Assumption (iv) of Proposition 7 follows from An(0) = A and the fact that the domain D of A
is dense in H.

Remark 13. The last assumption of Corollary 10, namely supn∈N TV(An, (I, L(D,H))) < +∞
for An(t) = e−un((0,t])BAeun((0,t])B, is a consequence of Assumption (A3.3) since this provides the
existence of a real constant LI(A,B) such that for every s, t ∈ I,

‖e−tBAetB − e−sBAesB‖L(D,H) ≤ LI(A,B)|t− s|. (2.9)

We also notice that with s = 0 it provides

‖e−tBAetB‖L(D,H) ≤ LI(A,B)|t|+ 1 (2.10)

as ‖A‖L(D,H) ≤ 1.

3 Interaction framework

In this section we consider the framework of Assumptions 2 or 3. We show that these assumptions
lead to a notion of weak solution for (2.1) when the control is integrable and we provide the proofs
of Theorem 1 and Proposition 2 in the general Radon measure case.

3.1 Generalized propagators

In this section, we explain the link between Assumptions 1 and 2 and thus emphasize the fact that
(2.1) admits solutions associated with a Radon measure u.

We use the following result of approximation of Radon measures by piecewise constant functions.

Lemma 11. For every u ∈ R([0, T ]) there exists a sequence (un)n of piecewise constant functions

such that
∫ t

0 un tends to u((0, t]) and
∫ t

0 |un| tends to |u|((0, t]) for all t in [0, T ] as n tends to in�nity

with
∫ T

0 |un| ≤ |u|((0, T ]). If u is positive, the sequence (un)n can be chosen in such a way that

t 7→
∫ t

0 un(τ)dτ is nondecreasing for every n. If t 7→ u((0, t]) is M -Lipschitz continuous on [0, T ] then
(un)n can be chosen in such a way that |un| ≤M .

Proof. It is not restrictive to prove the statement for positive Radon measures since by Hahn�Jordan
decomposition, any Radon measure u is the di�erence of two nonnegative Radon measures with
disjoint supports.
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Let us assume u positive. Then U : t ∈ (0, T ] 7→ u((0, t]) is an increasing function (with bounded
variation). Except on an at most countable set, U is continuous. So U is the sum of an increasing
step function, possibly with an in�nite number of steps, and an increasing continuous function. Both
can be approximated by an increasing sequences of increasing continuous piecewise a�ne functions.

The last statement follows by considering approximation of Lipschitz continuous functions by
continuous piecewise a�ne ones.

Remark 14. This lemma explains why we excluded the total variation topology while it seems more
natural at �rst sight.

Note that, for a positive u ∈ R([0, T ]) the sequence (un)n of piecewise constant functions such
that

∫ t
0 un tends to u((0, t]) pointwise is, in our construction, an increasing sequence. Since each

t 7→
∫ t

0 un is continuous, if t 7→ u((0, t]) is not continuous then the same result in the total variation
topology is excluded. Indeed the convergence in total variation of measures sequences implies the
uniform convergence of the corresponding sequence of cumulative functions.

Notice as well that, it is not possible to associate with a general positive u ∈ R([0, T ]) a sequence
(un)n∈N of piecewise constant functions such that t 7→ u((0, t])−

∫ t
0 un be both positive and increasing

in t. Otherwise, we would have |u((0, t])−
∫ t

0 un| ≤ |u((0, T ])−
∫ T

0 un| for any t, implying convergence
in the total variation topology.

De�nition 4. Let (A,B,K) satisfy Assumption 2. Let u ∈ R([0, T ]). For any v ∈ BV ([0, T ],K) with
distributional derivative u let t 7→ Y u

t be the contraction propagator with initial time s = 0 associated
with Av(t) := e−v(t)BAev(t)B. We de�ne the generalized propagator associated with A + u(t)B with
initial time zero, to be Υdv

t,0 = ev(t)BY u
t for every t in [0, T ] and v in BV ([0, T ],K) such that v′ = u

in the distributional sense.

Remark 15. Let u ∈ R([0, T ]) and de�ne v0(t) = u((0, t]) the associated right-continuous cumulative
function and let v ∈ BV ([0, T ],R) be such that v′ = u. Then v − v0 is in BV ([0, T ],R) and it is
almost everywhere 0 since it is supported on the at most countable set where v is not right-continuous.
A somehow pathological example could be u = 0 and v any characteristic function of a negligible set.

The propagator Y u
t will not depend on the choice of v being right-continuous, or not, at its

discontinuities. Indeed the latter is a negligible set and a Duhamel formula provides the equality of
the propagators. On the other hand, the factor evB depends crucially on this choice. This explains
the notation Υdv instead of Υu.

The reason for introducing the notion of generalized propagator is that imposing any extra require-
ment on the choice of v will lead to loss of the compactness provided by Helly's Selection Theorem.
This will for instance make more complicate the presentation of the principle exposed in Section 1.1.2.

Notice that for any v1 and v2 in BV ([0, T ],K) with the same distributional derivative one has

Υdv1 = e(v1−v2)BΥdv2 .

Lemma 12. Let (A,B,K1) satisfy Assumption 1 and (A,B,K2) satisfy Assumption 2. Let u :

[0, T ] 7→ K1 be of bounded total variation with u([0, T ]) ⊂ K1 and such that
∫ T

0 |u(s)|ds ∈ K2. Let

Υu
t be the propagator associated with A+u(t)B with initial time s = 0. Let U(t) :=

∫ t
0 u(s)ds and let

t 7→ Y u
t be the contraction propagator associated with A(t) := e−U(t)BAeU(t)B with initial time s = 0.

Then

Υu
t = eU(t)BY u(t)

(
= Υ

dU(t)
t

)
,

for every t ∈ [0, T ].
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Proof. Let ψ0 ∈ D(A) and de�ne the continuous function Ψ : t 7→ e−
∫ t
0 u(s)dsBΥu

t (ψ0). By Theorem 5,
Ψ(t) ∈ D(A) is strongly right di�erentiable in t with derivative

−u(t+ 0)BΨ(t) + e−U(t)B(A+ u(t+ 0)B)Υu
t (ψ0) = e−U(t)BAeU(t)BΨ(t).

By uniqueness, see Theorem 5, Ψ(t) = Y u
t ψ0 for every t ∈ [0, T ].

Proposition 13. Let (A,B, [0,+∞)) satisfy Assumption 1 and (A,B,K) satisfy Assumption 2.

Then for every ψ0 ∈ H and t ∈ [0, T ] the map Υt(ψ0) : u 7→ Υu
t (ψ0) ∈ H admits a unique continuous

extension on {u ∈ R([0, T ]) positive | u([0, T ]) ∈ K} denoted by Υt(ψ0) which satis�es

Υu
t (ψ0) = eu((0,t])BY u

t (ψ0), for every t ∈ [0, T ]. (3.1)

Proof. For every u ∈ R([0, T ]) positive with u([0, T ]) ∈ K let (un)n∈N be a sequence of (right-
continuous) positive piecewise constant functions on [0, T ] such that

∫ T
0 |un| ∈ K converging to u and

which existence is given by Lemma 11.
From Remark 13 and Corollary 10, for every ψ0 ∈ H, Y un

t (ψ0) tends to Y u
t (ψ0) as n tends to ∞.

We set Υu
t (ψ0) = eu((0,t])BY u

t (ψ0). Then Υun
t (ψ0) tends to Υu

t (ψ0) as n tends to ∞. The uniqueness
of the extension is guaranteed by Lemma 12.

Remark 16. With respect to De�nition 4, Proposition 13 �xes the choice of antederivative of u to
the right-continuous one, accordingly to the arbitrary choice of the notion of convergence made for
Radon measures in Section 1.5. Other choices would have led to another choice of antederivative for
u. Qualitatively speaking, any choice would provide the same results in the sequel.

Remark 17. The de�nition of propagator associated with positive Radon measures given in (3.1)
can be extended to signed Radon measures provided that (A,B,R) satis�es Assumption 1. Notice,
however, that if (A,B,R) satis�es Assumption 1 then B is necessarily symmetric.

In the case in which B is not symmetric the de�nition of propagator can be extended to signed
Radon measures provided that (A,B,K) sati�es Assumption 2. The uniqueness of the continuous
extension can be obtained if (A,B− c, [0,∞)) and (A,−B − c′, [0,∞)) satisfy Assumption 1. Indeed
consider u ∈ BV ([0, T ],R) and split u in the di�erence of positive part u+ := max{u, 0} and negative
part u− := max{−u, 0}. Then A(t) = A+ u+(t)(B − c) + u−(t)(−B − c′) satis�es Assumption 4.

Proposition 14. Let (A,B) satisfy Assumption 3 and D(A) ⊂ D(B). Then for every ψ0 in D(A),
for every u ∈ L1([0, T ],R), the map t 7→ Υu

t (ψ0) satis�es∫
[0,T ]
〈f ′(t),Υu

t (ψ0)〉dt =

∫
[0,T ]
〈f(t), AΥu

t (ψ0)〉dt+

∫
[0,T ]
〈f(t), BΥu

t (ψ0)〉u(t)dt , (3.2)

for every f ∈ C1
0 ([0, T ],H).

A mapping t 7→ Υu
t (ψ0) satisfying (3.2) is called weak solution of (2.1) with initial condition ψ0.

Proof. For every u ∈ L1([0, T ]) let (un)n∈N be a sequence of piecewise constant functions on [0, T ]
that converges to u for the topology of R([0, T ]).

For every f ∈ C1
0 ([0, T ],H),

−
∫

[0,T ]
〈f ′(t),Υun

t (ψ0)〉dt =

∫
[0,T ]
〈f(t), AΥun

t (ψ0)〉dt+

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉un(t)dt

since from Theorem 5, Y un
t (ψ0) ∈ D(A) for any t ∈ [0, T ].
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Recall that the adjoint of A is also maximal dissipative as soon as A is maximal dissipative [TW09,
Chapter 3.1]. We can restrict to f ∈ C1

0 ([0, T ], D(A∗)) by replacing f with λ(λ−A∗)−1f , where λ is
a large positive real.

We have the following convergences

lim
n→∞

∫
[0,T ]
〈f ′(t),Υun

t (ψ0)〉dt =

∫
[0,T ]
〈f ′(t),Υu

t (ψ0)〉dt,

lim
n→∞

∫
[0,T ]
〈f(t), AΥun

t (ψ0)〉dt =

∫
[0,T ]
〈f(t), AΥu

t (ψ0)〉dt,

and

lim
n→∞

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉un(t)dt =

∫
[0,T ]
〈f(t), BΥu

t (ψ0)〉u(t)dt.

Indeed, for this last term we have∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉un(t)dt−
∫

[0,T ]
〈f(t), BΥu

t (ψ0)〉u(t)dt

=

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉(un − u)(t)dt+

∫
[0,T ]

(〈f(t), BΥun
t (ψ0)〉 − 〈f(t), BΥu

t (ψ0)〉)u(t)dt. (3.3)

The convergence for the second term of the right-hand side of the last identity can be proved similarly
as in the other terms, for instance,

lim
n→∞

∫
[0,T ]
〈f ′(t),Υun

t (ψ0)〉dt =

∫
[0,T ]
〈f ′(t),Υu

t (ψ0)〉dt,

by using Lebesgue Dominated Convergence Theorem being the integrand uniformly bounded. Finally,
from Theorem 5, estimates (2.7), (2.8) and (2.9), there exists C > 0 and ω > 0 depending on A and
B only, such that∣∣∣∣∣

∫
[0,T ]
〈f(t), BΥun

t (ψ0)〉(u− un)(t)dt

∣∣∣∣∣
≤ C sup

t∈[0,T ]
‖f(t)‖‖B‖A(1 + CL[0,‖u‖1](A,B)‖u‖1)e2ω‖u‖1×

× e(1+CL[0,‖u‖1](A,B)‖u‖1)e2ω‖u‖1CL[0,‖u‖1](A,B)‖u‖1‖ψ0‖D(A)‖u− un‖1
→n→∞ 0

since f(0) = 0 and using Lemma 11 and |u−un| = |u+−u+
n |+ |u−−u−n | the sequence (un) converges

to u in L1-norm.

Remark 18. An interesting question would be to understand the relation between the assumptions
associated with the two constructions of propagators considered in this section. For example, on what
extent does Assumption 3 ensure that A+ uB has a maximal dissipative closure for u ∈ R?

This seems to be a hard question. However in the skew-adjoint case, the following considerations
are in place. Let A and B be skew-adjoint with D(A) ⊂ D(B). For any v ∈ H, any u ∈ D(A) the
map

t ∈ K 7→ 〈(1− εA)−1v, etBAe−tB(1− εA)−1u〉

is Lipschitz, its distributional derivative is bounded uniformly in ε by the Banach-Steinhaus theorem.
So that [A,B] ∈ L(D(A) ∩D(B), (D(A) ∩D(B))∗) extends to an operator such that

[A,B] ∈ L(D(A),H).
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with a slight abuse of notation and hence for any u ∈ R

[A,A+ uB] ∈ L(D(A),H).

The Nelson commutator theorem, see [RS75, Section X.5], gives that A+uB is essentially skew-adjoint
for any u ∈ R.

Remark 19. Considering De�nition 2, X(t, s) = ev(t)BY u
t,se
−v(s)B de�nes a propagator when v is

continuous, that is when u has no atoms. Otherwise, we no longer require any continuity keeping in
mind that v0 the right-continuous cumulative function of u will lead to a right-continuous propagator
which is compatible with the requirements on the initial conditions.

From Proposition 14, when v is absolutely continuous, X(t, s) = ev(t)BY u
t,se
−v(s)B de�nes a weak

solution of (2.1). The question of the extension of this proposition to Radon measures is then natural.
If one considers A = 0 and B bounded, as in Section 5.2 below, the solution of (2.1) is 1 + H(t)B,
where H is a Heaviside function jumping at 0. This is di�erent from eH(t)B provided by our analysis.

Proposition 14 can be extended to measures with singular continuous part. Indeed any Radon
measure is in the closure of the set of absolute continuous measures for the topology we imposed.
Notice that in Lemma 11 the sequence is also narrow convergent. Since the propagators associated
with absolute continuous and singular continuous are bounded continuous, the �rst term in (3.3) will
tend to 0.

Nonexistence of bounded solution propagators for unbounded control potentials in the

skew-adjoint case We comment in the possible extension of Proposition 14. For (A,B) a couple
of skew-adjoint operators. We exhibit here an example of system (2.1) with a Radon measure control
for which it is not possible to construct a strong solution which is obtained by a bounded propagator
applied to the initial condition (even if it is in the domain of the generator).

Let ψ0 ∈ D(A) and ψ1 ∈ D(B) with Bψ1 ∈ D(A) then for any solution of (2.1) for u = δT/2 with
initial condition ψ0 at t = 0 the jump at T/2 is exactly Bψ(T/2) (after integration of (2.1) around
T/2). So setting ψ(T/2) = ψ1, we have

Υu
t (ψ0) =


etAψ0 for t ∈ [0, T2 ),

ψ1 for t = T
2 ,

etAψ0 + e(t−T
2

)ABψ1 for t ∈ (T2 , T ].

The determination of ψ1 leads to a uniqueness issue and a modelling interpretation. A way to
overcome this issue is to impose a continuity at t = T/2. Note that the left-continuity leads to

ψ1 = e
T
2
Aψ0 +Bψ1.

So if 1 is in the spectrum of B then for some ψ0 this is not solvable. Note that with u = αδT/2 the
problem is the same when α is in the spectrum of B. This excludes the possibility to construct a
left-continuous propagator.

A natural requirement seems to be the right-continuity and thus ψ1 = e
T
2
Aψ0. Then, when B is

unbounded, a issue is to extend continuously the propagator from D(A) to H as for some ψ0 ∈ H,
e
T
2
Aψ0 6∈ D(B).
By convexity, a linear combination of left and right continuity will lead to the same kind of

contradictions.
In conclusion, when B is unbounded one cannot expect to construct bounded solutions with

Radon controls in the skew-adjoint case. In Section 5, we prove that when B is bounded, there exists
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a strongly regulated propagator de�ning a weak solution of (2.1). This propagator is not necessarily
a contraction.

Similar questions arise for ODEs. We refer for instance to [PD82].
Nonetheless, with absolutely continuous Radon measures, we have built proper propagators and

the extension to Radon measures presented in this work has consequences in the analysis of the
attainable sets that we present in the sequel.

3.2 The attainable set

The key result in the proof of Theorem 1 is given by the following proposition.

Proposition 15. Let T > 0. Let ψ0 ∈ H. Let (A,B) satisfy Assumption 3. Then, for every L > 0,
the set

{Υu
t (ψ0) : u ∈ R([0, T ]), |u|((0, T ]) ≤ L, t ∈ [0, T ]}

is relatively compact in H.
Proof. For every u ∈ R([0, T ]) consider v(t) = u((0, t]). Then v ∈ BV ([0, T ]) and TV(v, ([0, T ]),R)) ≤
L. Note that ‖v‖L∞ = supt∈[0,T ] |v(t) − v(0)| ≤ TV(v, ([0, T ]),R)) ≤ L since v(0) = u(∅) = 0.
Consider a sequence (un)n∈N ⊂ R([0, T ]) such that |un|((0, T ]) ≤ L for every n. By Helly's Se-
lection Theorem the sequence vn : t 7→ un((0, t]), has a subsequence pointwise converging to some
v ∈ BV ([0, T ]), ‖v‖ ≤ L. Let u the Radon measure associated with v. Thus the sequence (un)n∈N
has a subsequence converging to u ∈ R([0, T ]). We relabel this convergent subsequence by (un)n∈N.

From (2.9) we have thatAn(t) = e−un((0,t])BAeun((0,t])B is uniformly bounded inBV ([0, T ], L(D,H))
by L‖[A,B]‖L(D,H). By Corollary 10, t 7→ Y un

t (ψ0) converges uniformly for t ∈ [0, T ] to t 7→ Y u
t (ψ0)

as n → ∞. For any sequence (tn)n, (vn((0, tn])n is a bounded sequence and so is (evn((0,tn])B)n. In
particular, it has a strongly convergent subsequence. Finally t 7→ Υun

t (ψ0) converges pointwise in
t ∈ [0, T ] to t 7→ Υdv

t (ψ0).

Remark 20. Note that the set {Υu(ψ0) : u ∈ L1([0, T ],R), ‖u‖L1 ≤ L} is relatively compact in
L∞([0, T ],H). However, despite the compactness of [0, T ], the set {Υu(ψ0) : u ∈ R([0, T ]), |u|((0, T ]) ≤
L} may be not relatively compact in L∞([0, T ],H). Indeed, if this set were relatively compact, then
the generalized propagator associated with A+u(t)B would be strongly continuous, due to the point-
wise density of solutions of (2.1) which are continuous. This is not the case in general due to the
factor eu((0,t])B in (3.1).

From the above result the attainable set is a countable union of totally bounded sets.

Corollary 16. Let ψ0 ∈ H. If (A,B) satis�es Assumption 3 then

AttR(ψ0) := {Υu
t (ψ0), u ∈ R([0,+∞)), t ≥ 0}

is contained in a countable union of compact subsets of H.
Proof. The attainable set can be rewritten as⋃

L,T>0

{Υu
t (ψ0), u ∈ R([0, T ]), |u|((0, T ]) ≤ L, t ∈ [0, T ]}

and this union can be, in fact, restricted to L, T in a countable set, for instance N2. Then Proposi-
tion 15 tells that each set of the union is relatively compact in H and thus with empty interior.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The well-posedness result for L1 controls is a consequence of Proposition 14
proved for Radon controls. The conclusion on the attainable set for L1 controls is a consequence of
Corollary 16 proved for Radon controls.
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4 Higher order norm estimates for mildly coupled systems

In the following we will restrict our analysis to the skew-adjoint case. The motivation for this
assumption is twofold. On the one hand this is the case for most of the mathematical objects
appearing in quantum mechanics and, on the other hand, the restriction to self-adjoint operators
makes the analysis simpler avoiding technicalities.

Our aim in this section is to analyze under which conditions the solution built in the previous
sections are smoother in the scale of A. This is indeed the case of Assumptions 1, 2 or 3 are stated in
D(|A|k/2) instead of H. Our aim is to provide a somewhat simpler criteria showing that the extension
of assumptions on B will be su�cient. To this aim, the A-boundedness of B as operators acting on
D(|A|k/2) is crucial and it is stated in Lemma 21 which is the cornerstone of the analysis of this
section. This is especially important if we want to obtain the regularity of propagators in the scale of
A up to the order k/2. For lower orders, a simple interpolation argument provides the desired results.
The criteria will be used in a perturbative framework (Kato-Rellich type argument) and we will not
consider the whole of K for the values of u, unless we assume that the domain of powers of A+ uB
are the same for any u ∈ K. We recall that in the dissipative framework in order to use Kato�Rellich
criterion u has to be nonnegative when B is dissipative, below we assume that both B and −B have
dissipativity properties (up to a shift by a constant as in Assumption (A2.1) or (A3.2)) so that the
sign of u does not play any role.

This shows that for time reversible systems, the input-output mapping does not change the
regularity with respect to A in the spirit of Section 1.1.3. Since eigenvectors belong to any D(|A|k)
this shows that exact controllability clearly relies on the regularity of B in the scale of A.

4.1 The mild coupling

Given a skew-adjoint operator A and k ≥ 0, k ∈ R, we de�ne

‖ψ‖k/2 =
√
〈|A|kψ,ψ〉.

De�nition 5 (mild coupling). Let k be a nonnegative real. A pair of skew-adjoint operators (A,B)
is k-mildly coupled if

(i) A is invertible with bounded inverse from D(A) to H,

(ii) for any real t, etBD(|A|k/2) ⊂ D(|A|k/2),

(iii) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semi-groups on
D(|A|k/2) for the norm ‖ · ‖k/2.

The optimal exponential growth is de�ned by

ck(A,B) := sup
t∈R

log ‖etB‖L(D(|A|k/2),D(|A|k/2)

|t|
. (4.1)

Remark 21. As in Section 5, if
t 7→ etB

is a strongly continuous semi-group on D(|A|k/2) then there exists ω > 0 and C > 0 such that

‖etB‖L(D(|A|k/2),D(|A|k/2)) ≤ Ce
ωt, for all t > 0.

Consider the equivalent norm
sup
t>0
‖et(B−ω)ψ‖k/2
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then one can assume C = 1. However with this change of norm one may loose the hilbertian structure
and the skew-adjoint character of A.

Remark 22. Notice that the content of De�nition 5.(iii) is that the restriction to D(|A|k/2) of the
group generated by B − c, originally acting on H, de�nes a contraction semi-group. We thus have
two generators and due to De�nition 5.(ii) the domain of the second is included in the �rst and
the smallest domain is dense in H. The same comment can be made for −B − c′. Neglecting the
constant c and c′ and the minus sign, we identify these three operators (which are closed in H and
D(|A|k/2) respectively) and with an abuse of notation we denote them by the same symbol B as they
are restrictions of B. The domains of B− c and −B− c′ acting on D(|A|k/2) are actually both equal
to {φ ∈ D(|A|k/2) ∩D(B) | Bφ ∈ D(|A|k/2)}. They both contain this set as, if φ is in this set, then

e±tBφ− φ∓ tBφ =

∫ t

0
(e±tB − 1)Bφds = o(|t|),

in H or D(|A|k/2). They are obviously contained in this set since if t 7→ e±tBφ is di�erentiable in
D(|A|k/2) then it is also di�erentiable in H.

The invertibility of A is needed to ensure that ‖ · ‖k/2 is a norm equivalent to the graph norm of
D(|A|k/2). The use of the associated norm is due to the interpolation criterion handful in Lemma 20.

Remark 23. The quantity ck(A,B) is also the growth abscissa of B in D(|A|k/2), see [Prü84, Section
3]. The link between the growth abscissa and the spectral radius of a semigroup on a Hilbert space
is considered by Prüss in [Prü84, Section 3].

Remark 24. For many systems encountered in the physics literature, the operator A is skew-adjoint
with a spectral gap. Hence the invertibility of A can be obtained by replacing A by A − λi for a
suitable λ in R. Notice that this translation on A only induces a global phase shift on the propagator
that is physically irrelevant (i.e., undetectable by observations).

The following proposition gives another characterization of the mild coupling using Hille�Yosida
Theorem.

Proposition 17. Let k be a nonnegative real. A pair of skew-adjoint operators (A,B) with A
invertible is k-mildly coupled if and only if B is closed in D(|A|k/2), and there exists ω such that

‖(λI −B)−1‖L(D(|A|k/2),D(|A|k/2) ≤
1

|λ| − ω
, (4.2)

for every real λ, |λ| > ω in the resolvent set of B.
Moreover the smallest ω satisfying (4.2) is ck(A,B) given by (4.1).

Proof. If (A,B) be k-mildly coupled then B − ck(A,B) is the generator of a contraction semi-group
in D(|A|k/2). From Hille�Yosida Theorem, we deduce the equivalence with De�nition 5.

The following proposition gives an equivalent de�nition which may be easier to check in practice.

Proposition 18. Let k be a nonnegative real. A pair of skew-adjoint operators (A,B) with A invert-

ible is k-mildly coupled, if and only if for some ω > 0,

(ω ±B)−1D(|A|k/2) ⊂ D(|A|k/2)

and for any ψ ∈ (ω −B)−1D(|A|k/2) = (ω +B)−1D(|A|k/2), one has

|<〈|A|kψ,Bψ〉| ≤ ω‖ψ‖2
D(|A|k/2)

. (4.3)

Moreover the smallest ω satisfying (4.3) is ck(A,B) given by (4.1).
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Proof. We �rst notice that, for any ω in the resolvent sets of B and −B,

(ω ±B)−1D(|A|k/2) ⊂ D(|A|k/2)

implies (ω −B)−1D(|A|k/2) = (ω +B)−1D(|A|k/2). Indeed, from the resolvent identity, we deduce

(ω −B)−1D(|A|k/2) ⊂ (ω +B)−1D(|A|k/2).

Assume that (A,B) is k-mildly coupled, then since B−ck(A,B) and −B−ck(A,B) are generator
of contraction semi-groups on D(|A|k/2), they are closed and maximal dissipative on D(|A|k/2), their
respective resolvent sets contains positive half lines (by means of Hille�Yosida theorem) and their
domain, by de�nition of resolvent, is (ω ± B)−1D(|A|k/2) for any ω > ck(A,B). Since they are
maximal dissipative, we have that

|<〈|A|kψ,Bψ〉| ≤ ck(A,B)‖ψ‖2
D(|A|k/2)

.

for any ψ ∈ (ω −B)−1D(|A|k/2) = (ω +B)−1D(|A|k/2).
Reciprocally, B+ω and −B+ω are closed as operators on H and so they are closed on D(|A|k/2).

Since B+ω and −B+ω are dissipative onD(|A|k/2), they are generators of a contractions semi-groups
if they are surjective. So they are since (±B + ω)−1f ∈ D(|A|k/2) for any f ∈ D(|A|k/2).

The notion of mild coupling is related to the notion of �weak coupling� introduced in [BCC13].
The relation between these two de�nitions is given by the following lemma.

Lemma 19. Let (A,B) be a pair of linear operators such that A is invertible and skew-adjoint with

domain D(A), B is skew-symmetric with D(A) ⊂ D(B), A+ uB (seen as an operator acting on H)
is essentially skew-adjoint on D(A) for every u in R, D(|A + uB|k/2) = D(|A|k/2) for some k ≥ 1
and for any real u, and there exists a constant C such that for every ψ in D(|A|k),

|<〈|A|kψ,Bψ〉| ≤ C|〈|A|kψ,ψ〉|.

Then (A,B) is k-mildly coupled and ck(A,B) is the best possible constant C in the above inequality.

Proof. The assumption that there exists k ≥ 1 and a constant C such that for every ψ in D(|A|k),

|<〈|A|kψ,Bψ〉| ≤ C|〈|A|kψ,ψ〉|

and the Nelson Commutator Theorem, see [RS75, Section X.5], imply that B is essentially skew-
adjoint on the domain D(|A|k/2). Therefore B is essentially skew-adjoint on D(A). Then Trotter
Product Formula, see [RS72, Theorem VIII.31], implies that(

e
t
n

(A+uB)e−
t
n
A
)n
→ etuB

in the strong sense as n goes to in�nity. Since each of the term of the above sequence is bounded
on D(|A|k/2) with a bound eC|t||u|, see [BCC13, Proposition 2], we conclude that etB is bounded on
D(|A|k/2) with the same bound eC|t||u|. Then (A,B) is k-mildly coupled.

Remark 25. In general, (A,B) can be k-mildly coupled without being weakly coupled (in the
sense of [BCC13, De�nition 1]) or without satisfying the assumption of Lemma 19. Indeed for any
invertible skew-adjoint unbounded operator (A, iA2) is 2-mildly coupled and D(A) 6⊂ D(iA2) or
D(A+ iA2) = D(A2) 6= D(A).

Let us state state an interpolation result.
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Lemma 20. Let k be a positive real. If (A,B) is k-mildly coupled then (A,B) is s-mildly coupled for

any s ∈ [0, k] and

cs(A,B) ≤ s

k
ck(A,B).

Proof. We will consider s ∈ (0, k). Indeed, for s = k this is obvious and s = 0 there is nothing to
prove since B is skew-adjoint by assumption.

Moreover since B is skew-adjoint, for every ψ in D(|A|
k
2 ),

‖etBψ‖D(|A|k/2) = ‖|A|k/2etBψ‖ = ‖|A(t)|k/2ψ‖.

where A(t) = e−tBAetB (which is skew-adjoint with domain D(A)).
Since (A,B) is k-mildly coupled we deduce

1

‖A−1‖k
≤ |A(t)|k ≤ e2c|t||A|k.

which from Proposition 36 in Appendix A yields

|A(t)|s ≤ e2cs|t|/k|A|s,

that concludes the proof.

A corollary of this interpolation result is the following result which is crucial in our analysis. It
shows that if (A,B) is k-mildly coupled the A-boundedness of B extends naturally to D(|A|k/2).
Hence, from now on, we will work in D(|A|k/2), that is we consider H = D(|A|k/2).

Lemma 21. Let k be a nonnegative real. Let (A,B) be k-mildly coupled and such that B is A-bounded.
Then

inf
λ>0
‖B(A− λ)−1‖

L(D(|A|
k
2 ),D(|A|

k
2 ))
≤ ‖B‖A

Proof. Note that for any s in [0, k] due to Lemma 20, B is s-mildly coupled. The proof follows [RS75,
Section X.5]. The commutator [|A|k, B] = |A|kB − B|A|k is de�ned from D(|A|k+1) to D(|A|k)∗
which we identify with D(|A|−k) and since B is k-mildly coupled, for ψ ∈ D(|A|k+1), we have∣∣∣〈ψ, (|A|kB −B|A|k)ψ〉∣∣∣ = 2

∣∣∣<〈Bψ, |A|kψ〉∣∣∣ ≤ 2ck(A,B)‖|A|k/2ψ‖2.

This provides, after polarization, the boundedness of [|A|k, B] from D(|A|k/2) to D(|A|−k/2).
Recall B is A-bounded, that is B bounded from D(A) to H. As −B∗ is an extension of B and

is bounded from H to D(A)∗, by interpolation, see Appendix A, B is bounded from D(|A|1+s) to
D(|A|s) for any s ∈ [−1, 0]. We now provide a bound on the norm of B as an operator from D(|A|1+s)
to D(|A|s), s ∈ [−1, 0]. We have for any ε > 0 the existence of λε > 0 such that for any ψ ∈ D(A)

‖Bψ‖ ≤ (‖B‖A + ε)‖|A+ λε|ψ‖

and for ψ ∈ H
‖|A+ λε|−1Bψ‖ ≤ (‖B‖A + ε)‖ψ‖

and by interpolation for any s ∈ [0, 1] and any ψ ∈ D(|A|1−s)

‖|A+ λε|−sBψ‖ ≤ (‖B‖A + ε)‖|A+ λε|1−sψ‖.

Then since for any δ > 0 there exist C > 0 such that for x > 1

|x|−s ≤ C|x2 + λ2
ε |−1/2 + δ|x2 + λ2

ε |−s/2
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and
|x2 + λ2

ε |−s/2 ≤ C|x2 + λ2
ε |−1/2 + δ|x|−s/2

we deduce, for ψ ∈ D(A), that there exists Λε such that

‖|A|−sBψ‖ ≤ (‖B‖A + ε)‖|A|−s|A+ Λε|ψ‖.

Then, we deduce by density of D(A) in D(|A|−s)

inf
λ>0
‖B(A− λ)−1‖L(D(|A|−s),D(|A|−s)) ≤ ‖B‖A.

Hence if k ≤ 2, B|A|k is bounded from D(|A|k/2+1) to D(|A|−k/2). As |A|kB = B|A|k + [|A|k, B],
|A|kB extends as a bounded operator from D(|A|k/2+1) to D(|A|−k/2) and B is bounded from
D(|A|k/2+1) to D(|A|k/2). Hence B is bounded from D(|A|1+s) to D(|A|s) for any s ∈ [−1, k/2].
By duality B is bounded from D(|A|1+s) to D(|A|s) for any s ∈ [−1−k/2, 0] and by interpolation for
any s ∈ [−1−k/2, k/2]. As for the norm, for any ε there exists Lε such that, for any ψ ∈ D(|A|k/2+1),

‖Bψ‖k/2 = ‖|A|−k/2|A|kBψ‖

≤ ‖|A|−k/2B|A|kψ‖+ ‖|A|−k/2[|A|k, B]ψ‖
≤ (‖B‖A + ε)‖|A|−k/2|A|k|A+ Λε|ψ‖+ 2ck(A,B)‖|A|k/2ψ‖
≤ (‖B‖A + ε)‖A|k/2|A+ Lε|ψ‖.

Then, we deduce
inf
λ>0
‖B(A− λ)−1‖L(D(|A|−k/2),D(|A|−k/2)) ≤ ‖B‖A,

or, by interpolation, as done previously, we deduce

inf
λ>0
‖B(A− λ)−1‖L(D(|A|−s),D(|A|−s)) ≤ ‖B‖A,

for any s ∈ [−1− k/2, k/2].
Hence the Lemma is proved for k in [0, 2n] with n = 1, we now extend it by an induction n. Assume

for 0 ≤ k ≤ 2n, for some integer n, that B is bounded from D(|A|1−k/2) to D(|A|−k/2). Then as
|A|kB = B|A|k + [|A|k, B] and B|A|k is bounded from D(|A|k/2+1) to D(|A|k/2), we obtain |A|kB
extends as a bounded operator from D(|A|k/2+1) to D(|A|−k/2) and B is bounded from D(|A|k/2+1)
to D(|A|k/2). By duality B is bounded from D(|A|−k/2) to D(|A|−k/2−1). Hence by interpolation B
is bounded from D(|A|s+1) to D(|A|s) for any s ∈ [−1− k/2, k/2]. For instance B is bounded from
D(|A|1−(k+2)/2) to D(|A|−(k+2)/2) and thus we can extend the boundedness of B from D(|A|k/2+1)
to D(|A|k/2) with 0 ≤ k ≤ 2(n+ 1). The norm will follow as in the initialisation.

The following result shows su�cient conditions to have D(|A + uB|k/2) = D(|A|k/2) as required
in Lemma 19. Otherwise, in general, checking this property in practice is a di�cult task. Recall
that as D(A) ⊂ D(B), A + uB is self-adjoint with D(A + uB) = D(A) for su�ciently small u by
Kato�Rellich theorem.

Lemma 22. Let k be a positive real, (A,B) be k-mildly coupled, and u ∈ R such that |u| < 1/‖B‖A.
Then D(|A|s) = D(|A+ uB|s) for every s ∈ [0, k/2 + 1].

Proof. We proceed by induction on j to prove D(|A|k/2−bk/2c+j) = D(|A + uB|k/2−bk/2c+j) for j ≤
bk/2c + 1. By Kato�Rellich theorem, D(A) = D(A + uB) for every u in (−1/‖B‖A, 1/‖B‖A). By
interpolation, see Corollary 40 in Appendix A, D(|A|s) = D(|A+uB|s) for 0 ≤ s ≤ 1 and in particular
for s = k

2 − b
k
2c. This initializes the induction for j = 0.
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Let us assume that D(A`) = D((A+ uB)`) for some ` ≤ bk/2c. By de�nition,

D(A`+1) = {f ∈ D(A`)|Af ∈ D(A`)},

and, using the inductive hypothesis,

D(|A+uB|`+1) = {f ∈D(|A+uB|`)||A+uB|f ∈ D(|A+uB|`)} = {f ∈ D(|A|`)|(A+uB)f ∈ D(|A|`)}.

So that D(|A+ uB|`+1) is the domain of A+ uB as an operator acting on D(|A|`). The domain
of A as an operator acting on D(|A|`) is D(|A|`+1). Since A is skew adjoint on D(|A|`) and B − c
(or −B − c′) is dissipative, since ` ≤ k/2, in D(|A|`) due to Proposition 18, using Lemma 21 and
Kato-Rellich theorem we conclude that A+uB− c′ with domain D(|A|`+1) is maximal dissipative in
D(|A|`) for some constant c′ su�ciently large. This implies D(|A+ uB|`+1) = D(|A|`+1).

This completes the iteration and provides the conclusion.

Remark 26. Notice that if D(|A + uB|s) = D(|A|s) for some positive real s then the associated
norms are equivalent as the operators are closed.

4.2 Higher regularity

From Lemma 6 and Proposition 7, we deduce the following statement.

Proposition 23. Let k be a nonnegative real, (A,B) be k-mildly coupled, B be A-bounded, and

K = [−1/(2‖B‖A), 1/(2‖B‖A)]. For any u ∈ BV ([0, T ],K), the family of contraction propagators

Υu obtained in Theorem 5 with Lemma 6, satis�es Υu
t,s(D(|A|k/2)) ⊂ D(|A|k/2), for any (s, t) ∈ ∆[0,T ],

and:

(i) for any t ∈ [0, T ] and for any ψ0 ∈ D(|A|k/2)

‖Υu
t (ψ0)‖k/2 ≤ eck(A,B)

∫ t
0 |u|‖ψ0‖k/2.

(ii) for any t ∈ [0, T ] and for any ψ0 ∈ D(|A|1+k/2) there exists M (depending only on A, B, and
‖u‖L∞([0,T ]))

‖Υu
t (ψ0)‖1+k/2 ≤MeMTV(u,([0,t],K))eck(A,B)

∫ t
0 |u|‖ψ0‖1+k/2

Moreover, for every ε in (0, 1 + k/2), for every ψ0 in D(|A|k/2+1−ε), the end-point mapping

ΥT (ψ0) : BV ([0, T ],K)→ D(|A|k/2+1−ε)

u 7→ Υu
T (ψ0)

is continuous.

Proof. We prove the existence of propagator in D(|A|k/2). By Lemma 20, this is also valid for any
s ∈ [0, k]. This provides several propagators for di�erent exponents s. All of them are restrictions of
the one for s = 0 due to the uniqueness statement of Theorem 5 as D(|A|k/2) ⊂ H.

Below, we will obtain the �rst part of the statement, (i) and (ii), as a consequence of Theorem 5
and the continuity of the end-point mapping as a consequence both of Corollary 8 in H (for k = 0)
and an interpolation argument (Lemma 35) with statement (ii) that we prove below.

Let us begin with the case k = 0. By hypothesis, (A,B,K) satis�es Assumption 1 and, by Lemma
6, t 7→ A + u(t)B satis�es 4 for every u in BV (I,K). The statements (i) and (ii) for k = 0 follows
from Theorem 5. The continuity of the end-point mapping with value in H follows from Corollary 8.
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We now consider the case k > 0. If ck(A,B) = 0, Lemma 21 ensures that the triple (A,B,K)

satis�es Assumption 1 inD(|A|
k
2 ) and, for any u in BV (I,K), the mapping t 7→ A+u(t)B satis�es As-

sumption 4 in D(|A|
k
2 ). Statements (i) and (ii) follows from Theorem 5. In the case where ck(A,B) >

0, in order to obtain contraction semi-groups, we consider A(t) = A + u(t)B − ck(A,B)|u(t)|. This
induces minor technical variations in the proof to check that t 7→ A(t) satis�es Assumption 4. For
the reader's sake, we detail them below.

Using (A,B) to be k-mildly coupled, in Lemma 21 and Kato�Rellich theorem for dissipative
operators (see [RS78, Corollary of Theorem X.50]) provides that A(t) satis�es Assumption (A4.1)

with I = [0, T ] and D(|A|
k
2 ) instead of H. Notice that indeed the domain of A as an operator acting

on D(|A|
k
2 ) is D(|A|1+ k

2 ). In the following, we check Assumptions (A4.2) and (A4.3).
From Lemma 21, if a ∈ (‖B‖A, 2‖B‖A) we deduce that there exists ba such that for any ψ ∈

D(|A|1+k/2)

‖(1−A− uB + ck(A,B)|u|)ψ‖k/2 ≥ ‖(1−A)ψ‖k/2 − |u|‖Bψ‖k/2 − ck(A,B)|u|‖ψ‖k/2
≥ (1− a|u|)‖(1−A)ψ‖k/2 − |u|(ba + ck(A,B))‖ψ‖k/2

or

‖(1−A− uB + ck(A,B)|u|)ψ‖k/2 + |u|(ba + ck(A,B))‖ψ‖k/2 ≥ (1− a|u|)‖(1−A)ψ‖k/2.

Note that for the choice of K and a we have that a|u| < 1. Therefore

‖Bψ‖k/2 ≤ a‖(1−A)ψ‖k/2 ≤
a

1− a|u|
‖(1−A− uB + ck(A,B)|u|)ψ‖k/2 +

ba + ck(A,B)

1− a|u|
‖ψ‖k/2.

Hence,

‖(1−A(t))−1‖L(D(|A|k/2),D(|A|1+k/2)) = ‖A(1−A− u(t)B + ck(A,B)|u(t)|)−1‖k/2
≤ ‖(A+ u(t)B − ck(A,B)|u(t)|)(1−A− u(t)B + ck(A,B)|u(t)|)−1‖k/2

+ |u(t)|‖B(1−A− u(t)B + ck(A,B)|u(t)|)−1‖k/2

≤ 2 +
|u(t)|

1− a|u(t)|
(a+ ba + ck(A,B)) .

Recall that, by assumption, supt∈[0,T ] a|u(t)| ≤ a
2‖B‖A < 1. Taking the supremum on t ∈ [0, T ] leads

to
sup
t∈[0,T ]

‖(1−A(t))−1‖L(D(|A|k/2),D(|A|1+k/2)) ≤ 2 +
a

2‖B‖A − a
(a+ ba + ck(A,B)) . (4.4)

As moreover for An(t) = A + un(t)B − |un(t)|ck(A,B) and A(t) = A + u(t)B − |u(t)|ck(A,B)
and λ su�ciently large such that TV(An, ([0, T ], L(D(A),H))) ≤ TV(un, ([0, T ],K))(‖B‖L(D(A),H) +
ck(A,B)), ‖An(0)‖L(D(A),H)) ≤ 1 + |un(0)|(‖B‖L(D(A),H) + ck(A,B)), and

(An(t)− λ)−1 − (A(t)− λ)−1 =(un(t)− u(t))(An(t)− λ)−1B(A(t)− λ)−1

+ (|un(t)| − |u(t)|)(An(t)− λ)−1ck(A,B)(A(t)− λ)−1

so that the strong resolvent convergence of An to A turns to be a consequence of the convergence of
un to u in BV ([0, T ],K).

For any k, the proof of the continuity of the end-point mapping in D(|A|
k
2

+1−ε) is, as already
said, a consequence of Corollary 8 in H and an interpolation argument with statement (ii) (Lemma
35).

30



Remark 27. The bound on the control |u| ≤ 1/(2‖B‖A) in Proposition 23 is technical. We could
enlarge the set of admissible control and consider K = [−1/‖B‖A + ε, 1/‖B‖A − ε] for some ε > 0.
In this case the constant a in the proof would be in the open interval (‖B‖A, ‖B‖A/(1 − ε‖B‖A)),
the bound (4.4) would depend on ε, and would tend to in�nity as ε goes to 0.

We now state another version of Corollary 16.

Corollary 24. Let k be a nonnegative real. Let (A,B) be k-mildly coupled, B be A-bounded, and
K = (−1/(2‖B‖A), 1/(2‖B‖A)). Then, for every ε in (0, 1 + k/2) and every ψ0 in D(|A|1+k/2−ε)

{ Υu
t (ψ0), u ∈ BV ([0,+∞),K), t ≥ 0} is a countable union of relatively compact subsets in D(|A|

k
2

+1−ε).

Proof. The proof follows step-by-step the principle exposed in Section 1.1.2 and the proof of Corollary
9.

Proof of Theorem 3. Theorem 3 is consequence of Corollary 24 when the ‖B‖A vanishes.

A comment on the exact controllability associated with the time reversibility. Let
(A,B,K) satis�es Assumption 1 (or Assumptions 2) with A skew-adjoint and B skew-symmetric
then (−A,−B,K) satis�es Assumption 1 (or Assumptions 2). If (A,B) is k-mildly coupled then
(−A,−B) is k-mildly coupled.

For u, a bounded variation function (or a Radon measure) on (0, T ] with value in K and Υu the
associated contraction propagator. For any (t, s) ∈ ∆[0,T ], Υu

t,s is unitary and its inverse coincides

with Υ
u(T−·)
T−s,T−t where u(T − ·) denotes t ∈ [0, T ] 7→ u(T − t) in the framework of Assumption 1 (or

t ∈ [0, T ] 7→ u((0, T ])− u((0, t]) = u([t, T )) in the framework of Assumption 2).

4.3 Extension to Radon measures

The conclusion of Proposition 15 can be extended toD(|A|k/2) if Assumption (A3.3) is true inD(|A|
k
2 )

instead of H. This is indeed the only missing assumption needed in order to apply Corollary 10 with
D(|A|

k
2 ) instead of H. Without this assumption the following result together with the interpolation

result of Lemma 35 gives an interesting extension.

Proposition 25. Let k be a positive real. Let (A,B) satisfy Assumption 3 and be k-mildly coupled.

Then, for every s ∈ [0, k], ψ0 ∈ D(|A|s/2), for every T ≥ 0, one has Υdv
T (ψ0) ∈ D(|A|s/2) and

‖Υdv
T (ψ0)‖s/2 ≤ e

s
k
ck(A,B)|u|([0,T ])‖ψ0‖s/2

for every v in BV ([0, T ],K) with derivative v′ = u ∈ R([0, T ]).

Proof. We give the proof for s = k, then by Lemma 20 the proof easily extend to the case s < k.
Consider a sequence vn of piecewise constant functions converging to v pointwise with ‖vn‖BV ([0,T ]) ≤

K. Then vn is the cumulative function of v′n, a discrete sum of Dirac delta functions and, from (3.1),
Υdvn
t is a product of unitary operators of the form

evBe−vBetAevB = etAevB.

So that, for every ψ in D(|A|k/2),

‖evBe−vBetAevBψ‖k/2 = ‖evBψ‖k/2 ≤M(v)‖ψ‖k/2

where M(v) := ‖evB‖L(D(|A|k/2),D(|A|k/2)). From De�nition 5, equation (4.1), and M(v1 + v2) ≤
M(v1)M(v2) for any pair (v1, v2) in [0, δ]2 imply

M(v) ≤ eck(A,B)|v|, for all v ∈ R.
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Hence, for every n,
‖Υv′n

t (ψ0)‖k/2 ≤ eck(A,B)K‖ψ0‖k/2.

For every f in D(|A|k),
|〈|A|kf,Υv′n

t ψ0〉| ≤ ‖f‖k/2‖ψ0‖k/2eck(A,B)K .

Because of the continuity result (Proposition 7, Corollary 10 and Remark 13), the left hand side tends
to |〈|A|kf,Υu

t ψ0〉| as n tends to in�nity. Hence, for every f in D(|A|k)

|〈|A|kf,Υu
t ψ0〉| ≤ ‖f‖k/2‖ψ0‖k/2eck(A,B)K .

As a consequence, Υu
t ψ0 belongs to D((|A|k/2)∗) = D(|A|k/2) and

‖|A|k/2Υu
t ψ0‖ ≤ ‖ψ0‖k/2eck(A,B)K .

Remark 28. Assumption (A3.3) implies that (A,B) is 2-mildly coupled. Indeed, if (A,B) is a
pair of skew-adjoint operators operators satisfying Assumption 3, then Assumption (A3.3) implies,
see Remark 13, for small |t| that, for every ψ in D(A),

‖|A|e−tBψ‖ = ‖Ae−tBψ‖ = ‖etBAe−tBψ‖ ≤ ‖etBAe−tBψ −Aψ‖+ ‖Aψ‖
≤ (1 + L|t|)‖Aψ‖ ≤ eL|t|‖Aψ‖ = eL|t|‖|A|ψ‖

as the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) is locally Lipschitz with constant L. Thus (A,B) is
2-mildly coupled. We also refer to Remark 18.

As a consequence of Corollary 10 and Lemma 35 we have the following proposition.

Proposition 26. Let k be a positive real, let (A,B) satisfy Assumption 3, and let (A,B) be k-mildly

coupled. Then for any s ∈ [0, k), for every ψ0 in D(|A|s/2), the end-point mapping

Υ(ψ0) : BV ([0, T ],R)→ D(|A|s/2)

v 7→ Υdv
T (ψ0)

is continuous.

Proof. Let (vn)n∈N be a converging sequence in BV ([0, T ],R to some v in BV ([0, T ],R. Then
Υdvn
T (ψ0)−Υdv

T (ψ0) is uniformly bounded in D(|A|k/2) (by Proposition 25) and converges to 0 in H
(by Proposition 7, Corollary 10 and Remark 13). By Lemma 35 it converges to 0 in D(|A|s/2) for
s < k.

Remark 29. One can notice that under the assumptions of Proposition 26 both Proposition 15 and
Corollary 16 extend to D(|A|s/2) for s ∈ [0, k).

5 Bounded control potentials

5.1 Dyson expansion solutions

In the Hilbert setting, if A is maximal dissipative and B stabilizes D(A) Corollary 16 provides an
extension of [BMS82, Theorem 3.6] to L1 controls. This can be extended to the Banach framework
with A generator of strongly continuous semi-group since the assumption on B allows integration by
part in the Dyson expansion for the propagator (see (5.2) below) and thus reduces the analysis to
absolute continuous function. Hence the extra regularity in B compensates the lack of re�exivity of
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L1. Below we extend Corollary 16 with bounded control potentials, for L1 controls, in the Banach
framework without any other assumption in B.

Troughout this section only, we consider a Banach space X and we assume that A, acting on X ,
is the generator of a strongly continuous semi-group with domain D(A) and B is bounded. Then for
every u in R, A + uB is also a generator of a strongly continuous semi-group with domain D(A).
This can be deduced form an analysis of the Dyson expansion.

Since A generates a strongly continuous semi-group there exist CA > 0 and ω ∈ R such that

‖etA‖ ≤ CAeωt, ∀t > 0. (5.1)

For the equivalent norm
N(ψ) = sup

t>0
‖et(A−ω)ψ‖,

we have that A− ω is the generator of a contraction semi-group. An operator B ∈ L(X ) is bounded
for the norm N and let ‖B‖N be its norm. Now for every u ∈ BV ([0, T ], [−R,R]) we consider the
family of operators A−ω+u(t)B−R‖B‖N which satis�es the assumptions of [Kat53] in the Banach
space structure associated with the norm N . So that in this case the results of � 2.2 are still valid.

It is classical (see [BMS82]) that the input-output mapping Υ admits a unique continuous exten-
sion to L1(R,R). We consider below the extension to Radon measures. Recall that CA is de�ned
in (5.1).

Theorem 27. Let A, with domain D(A), be the generator of a strongly continuous semi-group on

X and let B be bounded on X . Then, for every ψ0 in X , for any u ∈ R([0, T ]), the Cauchy problem

(2.1) with initial condition ψ0, admits a unique mild solution t 7→ Ξut,sψ0 bounded in X uniformly on

[0, T ], that is for every (s, t) ∈ ∆[0,T ]

Ξut,sψ0 = e(t−s)Aψ0 +

∫
(s,t]

e(t−s1)ABΞus1,sψ0du(s1)

sup
(s,t)∈∆[0,T ]

‖Ξut,sψ0‖ <∞.

Moreover

(i) Ξu(t, t) = IX ,

(ii) Ξut,s = Ξu(t, r)Ξu(r, s), for any s < r < t,

(iii) if u has bounded variation on [0, T ], for any ψ0 ∈ X , (s, t) ∈ ∆[0,T ] 7→ Ξut,sψ0 is strongly

continuous in s and t and if ψ0 ∈ D(A) then it is strongly right di�erentiable in t with derivative
(A+ u(t+ 0)B)Υu(t, s)ψ0,

(iv) for any u ∈ R([0, T ]), Ξu satis�es

‖Ξut,s‖L(X ) ≤ CAeω|t−s|+|u|([s,t])CA‖B‖,

(v) for any r > 0, R > 0, ψ0 ∈ X with ‖ψ0‖ = r > 0, the set{
Ξut,sψ0, u ∈ R([0, T ]), |u|((0, T ]) ≤ R, (s, t) ∈ ∆[0,T ]

}
is relatively compact.
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Proof. Let u ∈ L1((0, T ),R). Let ψ0 in X . The associated propagator t 7→ Ξut,sψ0 is absolutely
continuous and satis�es, see [BMS82]

Ξut,sψ0 = e(t−s)Aψ0 +

∫
(s,t]

e(t−s1)Au(s1)BΞus1,sψ0ds1,

and replacing iteratively Ξut,sψ0 by its expression p times, we get the formal expansion

Ξut,sψ0 =e(t−s)Aψ0 +
∞∑
n=1

∫
s<s1<s2<...<sn<t

e(t−sn)ABe(sn−sn−1)A ◦ · · ·

· · · ◦Be(s2−s1)ABe(s1−s)Aψ0u(s1)u(s2) . . . u(sn)ds1 . . . dsn.

This allows us to extend the propagator to Radon measures. Namely let u ∈ R([0, T ]), de�ne for
every n ∈ N the linear operator

W u
(n)(t, s)ψ0 :=

∫
s<s1<s2<...<sn<t

e(t−sn)ABe(sn−sn−1)A . . . Be(s2−s1)ABe(s1−s)Aψ0du(s1)du(s2) . . . du(sn).

Notice that

W u
(0)(t, s)ψ0 = e(t−s)Aψ0, and W u

(n+1)(t, s)ψ0 =

∫
(s,t)

e(t−τ)ABW u
(n)(τ, s)ψ0du(τ).

As B is bounded,

‖W u
(n)(t, s)ψ0‖ ≤ eω(t−s)Cn+1

A ‖B‖n‖ψ0‖
∫
s<s1<s2<...<sn<t

d|u|(s1)d|u|(s2)| . . . d|u|(sn),

and since (s, t)n contains the disjoint union of {s < sσ(1) < sσ(2) < · · · < sσ(n) < t} over all
permutations σ of {1, 2, . . . , n}

‖W u
(n)(t, s)ψ0‖ ≤ eω(t−s)Cn+1

A ‖B‖n‖ψ0‖
|u|((s, t))n

n!
.

Note that

Ξut,s =
∞∑
n=0

W u
(n)(t, s), (5.2)

converges in norm in the set L(X ) of the bounded operators of X . This also provides

‖Ξut,s‖L(X ) ≤ CAeω|t−s|+|u|((s,t))CA‖B‖.

This provides a solution F of

F (t, s) = e(t−s)Aψ0 +

∫
(s,t]

e(t−s1)ABF (s1, s)du(s1).

Let us now consider the uniqueness, which amounts at proving

F (t, s) =

∫
(s,t]

e(t−s1)ABF (s1, s)du(s1) =⇒ F ≡ 0.

Note that

F (t, s) =

∫
(s,t]

e(t−s1)ABF (s1, s)du(s1) =⇒ ‖F (t, s)‖ ≤ eω(t−s)CA‖B‖|u|((s, t)) sup
s1∈(s,t)

‖F (s1, s)‖.
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so that eω(t−s)CA‖B‖|u|((s, t)) < 1 implies F ≡ 0. Alternatively, iterating the �xed point equation,
we end up with the estimate

‖F (t, s)‖ ≤ eω(t−s)CnA‖B‖n
|u|((s, t))n

n!
sup

s1∈(s,t)
‖F (s1, s)‖.

As for n large enough eω(t−s)CnA‖B‖n
|u|((s,t))n

n! < 1 the same conclusion holds.
Then we have that

Ξut,sψ0 = e(t−s)Aψ0 +

∫
(s,t]

e(t−s1)ABΞus1,sψ0du(s1)

= e(t−s)Aψ0 +

∫
(s,r]

e(t−s1)ABΞus1,sψ0du(s1)

+

∫
(r,t]

e(t−s1)ABΞus1,sψ0du(s1)

= e(t−r)AΞur,sψ0 +

∫
(r,t]

e(t−s1)ABΞus1,sψ0du(s1)

= Ξut,rΞ
u
r,sψ0

where we used the uniqueness in the last identity.
The di�erentiability properties in the bounded variation case are due to [Kat53, Theorem 1] since

A − ω is the generator of a contraction semi-group and since B in L(X ) then B is bounded for the
norm N . So that A − ω + u(t)B − R‖B‖N for any R > |u|∞ satis�es the assumptions of [Kat53,
Theorem 1] in the Banach space X with norm N .

We now consider the compactness property in the last statement. Without loss of generality by
linearity and up to scaling B, we can assume r = R = 1. Let us prove that, for ‖ψ0‖ = 1,{

Ξut,sψ0, u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
is totally bounded for the X topology. Then its closure will be totally bounded and complete and
thus compact.

Let us consider a radius ε > 0. In place of Ξut,sψ0, due to its norm convergence we can consider
one of the truncated series in (5.2), namely

nε∑
n=0

W u
(n)(t, s),

for some nε ∈ N such that

‖Ξut,s −
nε∑
n=0

W u
(n)(t, s)‖ ≤

∞∑
n=nε+1

eωTCn+1
A ‖B‖n‖ψ0‖

1

n!
≤ ε,

Since we consider a �nite number of W ·(n)(·, ·), namely nε of them, it is then enough to prove that

WT
n :=

{
W u
n (t, s)ψ0, u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
is totally bounded for the X topology for any integer n. This will be done by iteration on n ∈ N∪{0}:

• For n = 0, W u
0 (t, s)ψ0 = e(t−s)Aψ0 and since ∆[0,T ] is compact, the strong continuity provides

the compactness of WT
0 .
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• For any integer n, we now assume WT
n is totally bounded. The map

(τ, t, ψ) ∈ ∆[0,T ] ×X 7→ e(t−τ)ABψ ∈ X

is continuous. So

ZTn :=
{
e(t−τ)ABW u

n (τ, s)ψ0, u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, τ) ∈ ∆[0,T ], (τ, t) ∈ ∆[0,T ]

}
is totally bounded.

For any δ > 0, there exist ψ1, . . . , ψNδ in X such that

ZTn ⊂ ∪
Nδ
j=1BX (ψj , δ).

Let φ1, . . . , φNδ be a partition of the unity in ZTn such that supp φj ⊂ BX (ψj , 2δ) and π : ψ ∈
X 7→

∑Nδ
j=1 ψjφj(x).

De�ne pun(t, τ, s) := π(e(t−τ)ABW u
n (τ, s)ψ0) and φun,j(t, τ, s) := φj(e

(t−τ)ABW u
n (τ, s)ψ0), then

pun(t, τ, s) =

Nδ∑
j=1

ψjφ
u
n,j(t, τ, s)

and
‖e(t−τ)ABW u

n (τ, s)ψ0 − pun(t, τ, s)‖ ≤ 2δ.

Thus WT
n+1 is totally bounded if

PTn :=

{∫
(s,t)

pun(t, τ, s)u(τ)dτ, u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, τ) ∈ ∆[0,T ], (τ, t) ∈ ∆[0,T ]

}

is totally bounded. Since for u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, τ) ∈ ∆[0,T ] and (τ, t) ∈ ∆[0,T ]∫
(s,t)

pun(t, τ, s)du(τ) =

Nδ∑
j=1

ψj

∫
(s,t)

φun,j(t, τ, s)du(τ)

and ∣∣∣∣∣
∫

(s,t)
φun,j(t, τ, s)du(τ)

∣∣∣∣∣ ≤ |u|((0, T ]) ≤ 1

this implies PTn is relatively compact (and thus totally bounded).

This concludes the iteration. We thus have the relative compactness of{
Ξut,sψ0, u ∈ R([0, T ]), |u|((0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
.

Corollary 28. Let A be the generator of a strongly continuous semi-group on X , let B be bounded

and denote with Ξ the propagator de�ned in Theorem 27. Then for every ψ0 in X , the set

AttΞR(ψ0) :=
⋃
T≥0

⋃
u∈R([0,T ])

{Ξut,0ψ0|t ∈ [0, T ]}

is contained in a countable union of compact subsets of X .
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Proof. Due to Theorem 27, the proof is similar to the one of Corollary 16.

We are now ready to prove Proposition 2.

Proof of Proposition 2. As already mentioned, the well-posedness result is classical (see [BMS82] for
instance), while the property of the attainable set with L1 controls follows from Corollary 28.

Remark 30. If X is an Hilbert spaceH, A is skew-adjoint, B is bounded inD(|A|k/2), thenD(|A|k/2)
can be considered in place of X in all the analysis of the present section. These leads to result similar
to Section 4 on the mild coupling theory in a simpler way.

5.2 On the notion of solution in the Radon framework

The previous theorem does not state the continuity with respect to the control u for the R([0, 1])
topology. With a Dirac measure δt0 , t0 ∈ (0, T ], it turns out that the solution built here is

Ξut,sψ0 = e(t−s)Aψ0 + e(t−t0)ABe(t0−s)Aψ0I(s,t](t0). (5.3)

This does not coincide with the generalized propagator in De�nition 4 even if the framework is set
similarly for instance, as in Remark 19, when A = 0 as the latter is

Υu
t,sψ0 = eBI(s,t](t0)ψ0

Both expansions coincide only up to the �rst order term in the control. This discrepancy is due to
the noncontinuity of the cumulative function of the control.

If we restrict the analysis to controls with continuous cumulative functions and set the topology
to the one of the total variation, the continuity is restored and both constructions thus coincide.

Consequently the propagator in Theorem 27 is not continuous in u and is not the extension of the
corresponding propagator for, say, controls with continuous cumulative functions when the topology
is the one we choose for R([0, T ]). This also induce that the accumulations points of the compact set{

Ξut,sψ0, u ∈ R([0, T ]), t 7→ u((0, t]) is continuous , |u|((0, T ]) ≤ 1, (s, t) ∈ ∆[0,T ]

}
are not given by values of the propagator in Theorem 27 and thus actual solutions but the propagator
in De�nition 4.

5.3 Noninvariance of the domain

In this section, we consider the invariance of the domain of A, in the framework of Theorem 27, by
Ξu when u is in L1([0, T ],R). Notice that if u is in L1([0, T ],R), Υu and Ξu coincide if Assumption 2
is ful�lled and, hence, the invariance of the domain is a consequence of Theorem 5. The question is
whether this is still true when B is bounded but the corresponding C0-semi-group does not preserve
D(A). The answer is negative and we provide a counter-example.

Let X = L2(R), A = ∂x with D(A) = H1(R) and B = iw for some bounded measurable
function w. This provides a controlled transport equation and the corresponding solution of (1.1)
with u ∈ L1(R) is given by

Ξut (ψ0)(x) = e
i
2

∫ t−x
−t−x u( t−x+τ

2
)w( t+x−τ

2
) dτψ0(t+ x)

which rewrites as
Ξut (ψ0)(x) = ei

∫ t+x
x u(t−s)w(s) dsψ0(t+ x).
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Let us set w = I[0,+∞) and get for t ≥ 0 and x ≥ 0

Ξut (ψ0)(x) = e
i
∫
[−x,t−x] u(s) ds

ψ0(t+ x).

For �xed time t, the function x 7→ e
i
∫
[−x,t−x] u(s) ds is absolutely continuous and the distributional

derivative of x 7→ Ξut (ψ0)(x) is given by

Ξut (ψ0)(x) = e
i
∫
[−x,t−x] u(s) ds (

ψ′0(t+ x) + i(u(−x)− u(t− x))ψ0(t+ x)
)

for t > 0 and x > 0.
If ψ0 is in H1(R) then Ξut (ψ0) is in H1(R) if and only if

v : x 7→ (u(−x)− u(t− x))ψ0(t+ x)

is in L2(R).
Set u : t 7→ |1− t|−1/2, which is integrable but not square integrable, and ψ0 a smooth compactly

supported function equal to 1 in [1−ε, 1+ε], for some ε ∈ (0, 1/2). Consider t ∈ [1−ε/2, 1+ε/2], x 7→
ψ0(t+x) is equal to 1 on [1−t−ε, 1−t+ε] ⊂ [−3

2ε,
3
2ε] ⊂ [−3/4, 3/4]. Hence −1 6∈ [1−t−ε, 1−t+ε].

While [−ε/2, ε/2] ⊂ [1− t− ε, 1− t+ ε] and x = t− 1 ∈ [−ε/2, ε/2]. This implies that v is not square
integrable on [1− t− ε, 1− t+ ε] for any t ∈ [1− ε/2, 1 + ε/2].

6 Examples

Most of the examples of bilinear control systems (2.1) encountered in the literature, also without any
relation to quantum control, deal with bounded control operator B. Proposition 2 applies and allows,
for instance, to complete the studies of the rod equation with clamped ends made in [BMS82, Section
6, Example 4] and [Bea08]. In the following, we concentrate on examples in relation with quantum
control.

6.1 Quantum systems with smooth potentials on compact manifolds

This example motivated the present analysis because of its physical importance. We consider Ω a
compact Riemannian manifold endowed with the associated Laplace-Beltrami operator ∆ and the
associated measure µ. For r a positive real, D(|∆|

r
2 ) = Hr(Ω,C). Since Ω is compact, for r > r′,

D(|∆|
r
2 ) ⊂ D(|∆|

r′
2 ) is a compact embedding.

Let k ∈ N. Let V,W : Ω→ R two functions of class C2(k−1), and the bilinear quantum system

i
∂ψ

∂t
= ∆ψ + V ψ + u(t)Wψ. (6.1)

With the notations of Section 2, H = L2(Ω,C) endowed with the Hilbert product 〈f, g〉 =
∫

Ω f̄gdµ,
A = −i(∆ + V ) and B = −iW . As V is continuous and so bounded, A has a spectral gap. Up to
substracting a su�ciently large constant, we can assume A is positive and invertible.

For r a positive real with r ≤ 2k, D(|A|
r
2 ) = Hr(Ω,C). Since B is bounded from D(|A|

s
2 ) to

D(|A|
s
2 ), for s a postive real with s ≤ 2(k−1), (A,B,R) satis�es Assumption 1 and (A,B) is s-mildly

coupled by Proposition 18.
In particular, the two notions of propagators Υ and Ξ de�ned in Proposition 13 and Theorem 27

respectively can be used and we have the following statement.
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Proposition 29. For every T > 0, for every ψ0 in H2(k−1)(Ω,C), the sets⋃
α≥0

⋃
T≥0

⋃
u∈R([0,T ])

{αΥu
t ψ0, t ∈ [0, T ]}

⋃
α≥0

⋃
T≥0

⋃
u∈R([0,T ])

{αΞut ψ0, t ∈ [0, T ]}

are contained in countable unions of compact subsets of H2(k−1)(Ω,C) and, in particular, they have

dense complement in H2(k−1).

For any ε ∈ (0, 1), if ψ0 in H2(k−ε)(Ω,C), the set⋃
α≥0

⋃
T≥0

⋃
u∈BV ([0,T ],R)

{αΥu
t ψ0, t ∈ [0, T ]}

contained in a countable union of compact subsets of H2(k−ε)(Ω,C) and, in particular, it has dense

complement in H2(k−ε)(Ω,C).

Proof. The �rst statement is an adaptation of Proposition 15 and Corollary 16, see Remark 29.
The second statement follows from Corollary 28.
The last statement is a consequence of Corollary 24.

Notice that from the compactness of the Sobolev embeddings and the conservation of the regularity
we can deduce less optimal result such as⋃

α≥0

⋃
T≥0

⋃
u∈R([0,T ])

{αΥu
t ψ0, t ∈ [0, T ]}

are contained in a countable union of totally bounded sets of H2(k−1)−δ for any δ ∈ (0, 1) whenever
ψ0 in H2(k−1).

6.2 Potential well with dipolar interaction

In this example, Ω = (0, π) endowed with the standard Lebesgue measure, V is the constant zero
function and W is some fucntion of classe Ck, for some integer k. This academic example is a
simpli�cation of the harmonic oscillator, presented in Section 6.3, in the sense that Ω is bounded. It
has been thoroughly studied by K. Beauchard in [Bea05, BL10]. These works give the �rst (and, at
this time, almost the only one) satisfying description of the reachable set with L2 controls from the
�rst eigenvector for systems of the type of (1.4). Using Lyapunov techniques, V. Nersessyan [Ner10]
gave practical algorithms for approximate controllability.

Equation (1.4) writes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− u(t)W (x)ψ (6.2)

with boundary conditions ψ(0) = ψ(π) = 0.
The linear operators A = i

2∆ de�ned on D(A) = (H2 ∩ H1
0 )((0, π),C) and B : ψ 7→ iWψ are

skew symmetric in the Hilbert space H = L2(Ω,C) endowed with the hermitian product L2(Ω,C),

〈f, g〉 =

∫ π

0
f(x)g(x)dx.

De�ning, for every k in N,

φk : x 7→
√

2

π
sin(kx)
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the family Φ = (φk)k∈N is an orthonormal basis of H made of eigenvectors of A.
The triple (A,B,R) satis�es Assumption 1.
Classical results of interpolation [LM68, Chapter 1] allow to �nd the domain of fractional derivative

operators. In particular, for any k in N and 0 ≤ s < 1, we get following ([NOS16]):

D(|A|k) = {ψ ∈ H2k|ψ[2l](0) = ψ[2l](π) = 0, l = 0...k − 1} for k ∈ N
D(|A|k+s) = D(|A|k) ∩H2s for s < 1/4

D(|A|k+ 1
4 ) = {ψ ∈ D(|A|k)||A|kψ ∈ H

1
2
00}

D(|A|k+s) = {ψ ∈ D(|A|k)||A|kψ ∈ H2s
0 } for 1/4 < s < 1/2

D(|A|k+s) = {ψ ∈ D(|A|k)||A|kψ ∈ H2s ∩H1
0} for 1/2 ≤ s ≤ 1

where

H
1
2
00 =

{
ψ ∈ H

1
2

∣∣∣ ∫ π

0
ψ2(x)

dx

sin(x)
< +∞

}
is the Lions-Magenes space.

Lemma 30. Let k and p in N, W : [0, π] → R be C2k+1 such that W [2l+1](0) = W [2l+1](π) = 0 for

l = 0 . . . p− 1. Then B is bounded from D(|A|a) to D(|A|a) for every a < p+ 1 + 1
4 .

Proof. Since W is C2k+1, B leaves invariant Hs for every s ≤ 2k + 1. If a is an integer, the result
follows from the Leibniz rule, using the vanishing of the derivatives of odd orders of W on the
boundary of [0, π]. For a − bac < 1/4, the interpolation result given above states that there is no
additional boundary conditions to check.

Theorem 3.6 in [BMS82] by Ball, Marsden and Slemrod implies (see [Tur00]) that equation (1.4)
is not controllable in (the Hilbert unit sphere of) L2(Ω) when ψ 7→ Wψ is bounded in L2(Ω).
Moreover, in the case in which Ω is a domain of Rn and W : Ω → R is C2, if the control u belongs
to Lp([0,+∞),R) with p > 1, then equation (1.4) is neither controllable in the Hilbert sphere S of
L2(Ω) nor in the natural functional space where the problem is formulated, namely the intersection
of S with the Sobolev spaces H2(Ω) and H1

0 (Ω).
The fact that the present system is not more than 5/2-mildly coupled is the purpose of the

following lemmas.

Lemma 31. Let k ∈ N ∪ {0}. Let F : [0, π]→ R of class C2k+3. If F (2j+1)(0) = F (2j+1)(π) = 0 for

j = 0, . . . , k − 1 and |F (2k+1)(π)|+ |F (2k+1)(0)| 6= 0 then Fφ1 is not in D(|A|a) if a ≥ k + 5
4 .

Proof. Consider, for any integer n, the following quantity

In(F ) :=
π

2
〈Fφ1, φn〉 =

∫ π

0
F (x) sin(x) sin(nx) dx.

Then we have the following In(F ) = 1
2(Jn−1(F )− Jn+1(F )) with

J`(F ) :=

∫ π

0
F (x) cos(`x) dx = −1

`

∫ π

0
F ′(x) sin(`x) dx

=
1

`2

(
(−1)`F ′(π)− F ′(0)

)
− 1

`2
J`(F

′′)

Now assume F (2j+1)(0) = F (2j+1)(π) = 0 for j = 0, . . . , k − 1, we deduce:

J`(F ) =
1

`2k+2

(
(−1)`F (2k+1)(π)− F (2k+1)(0)

)
− 1

`2k+2
J`(F

(2k+2)).
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It follows that

In(F ) =
1

2

(
1

(n− 1)2k+2
− 1

(n+ 1)2k+2

)(
−(−1)nF (2k+1)(π)− F (2k+1)(0)

)
− 1

2

1

(n− 1)2k+2
Jn−1(F (2k+2)) +

1

2

1

(n+ 1)2k+2
Jn+1(F (2k+2))

=
1

2

(
1

(n− 1)2k+2
− 1

(n+ 1)2k+2

)(
−(−1)nF (2k+1)(π)− F (2k+1)(0)

)
+

1

2

1

(n− 1)2k+3

∫ π

0
F (2k+3)(x) sin((n− 1)x) dx− 1

2

1

(n+ 1)2k+3

∫ π

0
F (2k+3)(x) sin((n+ 1)x) dx

As
1

(n− 1)2k+2
− 1

(n+ 1)2k+2
=

(n+ 1)2k+2

(n2 − 1)2k+2

(
1−

(
n− 1

n+ 1

)2k+2
)
∼

n→∞

4k + 4

n2k+3

If |F (2k+1)(π)| + |F (2k+1)(0)| 6= 0, then either F (2k+1)(π) − F (2k+1)(0) 6= 0 or F (2k+1)(π) +
F (2k+1)(0) 6= 0 and due to Riemann-Lebesgues Lemma,

• if F (2k+1)(π) + F (2k+1)(0) 6= 0 then

I2n(F ) ∼
n→∞

− 2k + 2

(2n)2k+3

(
F (2k+1)(π) + F (2k+1)(0)

)
and hence, (n2aIn(F ))n∈N is not square integrable if 2a− 2k − 3 ≥ −1

2 and consequently Fφ1

is not in D(|A|a) if a ≥ k + 5
4

• if F (2k+1)(π)− F (2k+1)(0) 6= 0 then

I2n+1(F ) ∼
n→∞

2k + 2

(2n+ 1)2k+3

(
F (2k+1)(π)− F (2k+1)(0)

)
and similarly Fφ1 is not in D(|A|a) if a ≥ k + 5

4 .

Lemma 32. Let k ∈ N ∪ {0}. Let W : [0, π]→ R of class C2k+3 with W (2j+1)(0) = W (2j+1)(π) = 0
for j = 0, . . . , k − 1 and |W (2k+1)(π)|+ |W (2k+1)(0)| 6= 0.

Then for every a in (0,+∞), eπBφ1 ∈ D(|A|a)⇔ a <
5

4
+ k.

Proof. Set F = eiW and recall Faà di Bruno formula

(eiW )(n)(x) =
∑ n!

m1! 1!m1 m2! 2!m2 · · · mn!n!mn
eiW (x)

n∏
j=1

(
(iW )(j)(x)

)mj
,

where the sums is over the n-uplets (m1, . . . ,mn) inN∪{0} such that: 1m1+2m2+3m3+· · ·+nmn =
n.

If n is odd and (m1, . . . ,mn) is an n-uplets of N∪{0} such that 1m1 +2m2 +3m3 + · · ·+nmn = n
there exists ` such that 2` + 1 ≤ n and m2`+1 6= 0. It follows that F : [0, π] → R is of class C2k+3

with F (2j+1)(0) = F (2j+1)(π) = 0 for j = 0, . . . , k − 1 and |F (2k+1)(π)|+ |F (2k+1)(0)| 6= 0.
Then Lemmas 31 and 30 provide the conclusion.

We sum up our results in the following
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Proposition 33. Let k ∈ N ∪ {0}. Let W : [0, π] → R of class C2k+3 with W (2j+1)(0) =
W (2j+1)(π) = 0 for j = 0, . . . , k − 1 and |W (2k+1)(π)|+ |W (2k+1)(0)| 6= 0.

Then

AttR(φ1) =
⋃
T≥0

⋃
u∈R([0,T ])

{Υu
t,0φ1|0 ≤ t ≤ T} ⊂

⋂
s< 5

4
+k

D(|A|s)

AttΞR(φ1) =
⋃
T≥0

⋃
u∈R([0,T ])

{Ξut,0φ1|0 ≤ t ≤ T} ⊂
⋂

s< 5
4

+k

D(|A|s)

and both attainable sets are contained in a countable union of relatively compact subsets of D(|A|s),
for any s < 5

4 + k.
Moreover, we have

AttR(φ1) 6⊂ D(|A|
5
4

+k) and AttΞR(φ1) 6⊂ D(|A|
5
4

+k).

Recall that Υ is de�ned in Proposition 13 and Ξ in Theorem 27.

Proof. From Lemma 31, B is bounded from D(|A|a) to D(|A|a) for every a < p+ 5
4 and hence (A,B)

is a-mildly coupled, for every a < p + 5
4 , by Proposition 18. Then Proposition 25 provides the �rst

statement. While following Remark 30, Theorem 27 provides the second statement.
The relative compactnesses follow from Proposition 26 (similarly to Proposition 15) and Theo-

rem 27, respectively.
From (3.1), with u = πδt0 for some t0 > 0 and Lemma 32 we deduce the �rst noninclusion

statement. From (5.3) and Lemma 31, we deduce the last assertion.

Remark 31. Notice that [BL10, Theorem 2] states the exact controllability of (6.2) in D(|A|
5
2 ) with

H1
0 controls and W : x 7→ x. While Proposition 23 states no exact controllability of (6.2) in D(|A|s),

s < 9
4 , with BV controls for example with W : x 7→ x. Wether this 1/4 discrepancy is optimal is still

an open question.
Similarly [BL10, Theorem 1] states the exact controllability of (6.2) in D(|A|

3
2 ) with L2 controls

and W : x 7→ x. While Proposition 26 states the nonexact controllability of (6.2) in D(|A|s), s < 5
4 ,

with Radon controls and W : x 7→ x. But this time, the above statement states that the 1/4
discrepancy is optimal.

From [BCCS12], we know that {(k, k + 1)|k ∈ N} is a nondegenerate chain of connectedness for
(A+ηB,B) for almost every real η. Hence Proposition 42 guarantees the approximate controllability
of the system (6.2) from φ1 in D(|A + ηB|r) = D(|A|r), for 3

2 < r < 5
4 + 1. The global exact

controllability in D(|A|
3
2 ) (inside the unit sphere) with explicit controls follows from Proposition 42,

in order to reach a neighborhood of the target in D(|A|r), for 3
2 < r < 5

4 + 1 (see for instance
[BCC12]). It is then enough to concatenate the dynamics with L2 controls given by [BL10] for
exact local controllability. This explicit construction provides estimates on control time and norms,
see [Duc17].

6.3 Quantum harmonic oscillator

In this section, we present an example of s-mildly coupled, system, for any s > 0, with an unbounded
control potential on contrast with the previous examples.

The quantum harmonic oscillator with angular frequency ω describes the oscilations of a particle
of mass m subject to the potential V (x) = 1

2mωx
2. The corresponding uncontrolled Schrödinger

equation is

i
∂ψ

∂t
= − ~2

2m
∆ψ(x, t) +

1

2
mωx2ψ(x, t).
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With a suitable choice of units, it becomes

i
∂ψ

∂t
= −1

2
∆ψ(x, t) +

1

2
x2ψ(x, t)

The operator A =
i

2
∆− x2

2
is self-adjoint on L2(R,C), A has a pure discrete spectrum. The kth

eigenvalue (corresponding to the kth energy level) is equal to
2k + 1

2
i and is associated with the

eigenstate

φk : x 7→ 1√
2kk!
√
π

exp

(
−x

2

2

)
Hk(x)

where Hk is the kth Hermite polynomial, namely Hk(x) = (−1)kex
2 dk

dxk

(
e−x

2
)
.

When considering the classical dipolar interaction, the control potentialW takes the formW (x) =
x for every x in R. It is well known (see [MR04] and references therein) that the resulting control
system (1.4) is not controllable in any reasonable sense. Indeed the system splits in two uncoupled
subsystems. The �rst one is a �nite dimensional classical harmonic oscillator which is controllable.
The second one is a free (that is, without control) quantum harmonic oscillator, whose evolution does
not depend on the control and is therefore not controllable.

In [BCC13, Section IV], we show that (i(−∆ + V ), iW ) is s-mildly coupled for every s > 0.
The proof given in [MR04, ILT06] (and especially the decomposition of the system in two decoupled
systems) does not require more to the control than to be the derivative of a derivable function. Using
the continuity in Proposition 13, it can be extended to Radon measures.

Proposition 34. The system (1.4) with Ω = R, V : x 7→ x2 and W : x 7→ x is not approximately

controllable by means of Radon measures.

Although this example is not approximately controllable, an arbitrarily small perturbation of W
by some smooth localized functionW2 restores this feature, see [CMSB09, Proposition 6.4]. Nonethe-
less, the approximate controllability in arbitrarily small time is not possible, see [BCT14], recently
extended in [BCT16]. This does not a�ect the mild coupling at any order as (A, iW2) is also mildly
coupled at any order andW2 commutes withW which ensures that (A, i(W+W2)) is s-mildly coupled
for every s > 0.

Note that existence of the dynamics is obtained in [Fuj79] for measurable in time and and locally
bounded in space-time control potentials. It can be extended to Radon measures controls using
Section 3.1. Note that in the case of Radon measures without atoms, for instance L1-controls, the
resulting propagator is a weak solution of (1.5), see Proposition 14 and Remark 19.

A Interpolation

A.1 Convergence of sequences

Through the present analysis, the following simple interpolation lemma was useful.

Lemma 35. Let A be a skew-adjoint operator, let S be a set and (un)n∈N take value in the set of

functions from S to D(|A|k), such that (un)n∈N is uniformly bounded in S for the norm of D(|A|k),
k > 0. If (un)n∈N tends to zero in H uniformly in S, then (un)n∈N tends to zero in D(|A|l), uniformly

in S for every l < k.
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Proof. The proof follows from the logarithmic convexity of l ∈ [0, k] 7→ ‖|A|lu‖. Indeed

‖|A|
l+j
2 u‖ =

√
〈|A|lu, |A|ju〉 ≤ ‖|A|lu‖1/2‖|A|ju‖1/2.

If l < k then
‖|A|lun‖ ≤ ‖un‖

k−l
k ‖|A|kun‖

l
k .

Let C = supn∈N ‖|A|kun‖2 and N > 0 such that for any n > N , ‖un‖2 ≤ ε we obtain

n > N =⇒ ‖|A|lun‖2 ≤ ε
k−l
k C

l
k ,

which provides the lemma.

A.2 Interpolation of fractional powers of operators

Let us now state a more sophisticated result. The following result can also be deduced from the
content of [ABG96, Section 2.8] and its proof is an extension to the unbounded case of the result by
[Ped72].

Proposition 36. Let A and B be two self-adjoint positive operators in H such that there exists c > 0
with

c ≤ B ≤ A

in the form sense. Then for any α ∈ (0, 1), the following is true

cα ≤ Bα ≤ Aα.

Proof. The proof follows from the following series of lemma.
For a selfadjoint operatorH and z ∈ C\R, the functional calculus is the extension of the mapping:{

x ∈ R 7→ (x− z)−1
}
∈ B(R)→ (A− z)−1 ∈ B(H)

as a strong continuous ∗-algebra homomorphisme map on bounded borelian functions on the real line
with the bounded pointwise topology : B(R).

Let us recall the following functional calculus identity based on the Poisson formula, see [ABG96,
Lemma 6.1.1].

Lemma 37. Let A be a selfadjoint operator in H. Let f be a bounded borelian function. Then

f(A) := w − lim
ε→0+

1

2iπ

∫
R
f(λ)=(A− λ− iε)−1 dλ.

The notations w − lim refers to the weak limit.
We also recall the formula for α ∈ (0, 1) and x > 0

x−α =
π

sin(πα)

∫ ∞
0

w−α

x+ w
dw.

and then the Fubini theorem with Lemma 37 we obtain the

Lemma 38. Let A be a positive selfadjoint operator in H. Then for α ∈ (0, 1)

Aα =
π

sin(πα)

∫ ∞
0

w−1+αA

A+ w
dw

on D(A).
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The domain of validity of the above identity can be extended to any core of Aα that makes the
integral strongly convergent.

With this identity and the following lemma we have the proof of the proposition.

Lemma 39. Let A and B be two self-adjoint positive operators in H such that there exists c > 0 with

c ≤ B ≤ A.

Then

A−1 ≤ B−1.

Proof. First notice that both A and B are invertible from their domains to H as well as their square
roots. Then from √

c‖u‖ ≤ ‖
√
Bu‖ ≤ ‖

√
Au‖,

we deduce that
√
B
√
A
−1

is a bounded operator with norm at most 1.

In the other hand the operator
√
A
−1√

B de�ned on D(
√
B) extends as the adjoint of

√
B
√
A
−1

to a closed operator on H and hence is bounded with norm at most 1 and

‖
√
A
−1√

Bu‖ ≤ ‖u‖, ∀u ∈ D(
√
B)

and thus
‖
√
A
−1
u‖ ≤ ‖

√
B
−1
u‖.

and the result follows.

The proof of Proposition 36 then follows as

c ≤ B ≤ A

implies for any w > 0,
1− w(B + w)−1 ≤ 1− w(A+ w)−1.

and thus
w−1+αB

B + w
≤ w−1+αA

A+ w

integrating on w > 0 (�rst restricted top D(A)×D(A)) gives the desired inequality by density.

The above result can be extend to the case c = 0 by replacing A and B by A+ ε and B + ε as in
[Ped72], we obtain

0 ≤ Bα ≤ (B + ε)α ≤ (A+ ε)α.

The second inequality is immediate. We obtain

0 ≤ (A+ ε)−α/2Bα(A+ ε)−α/2 ≤ 1

so that taking ε to 0 giving
0 ≤ Bα ≤ Aα.

We immediately deduce the following corollary.

Corollary 40. Let A and B be two positive self-adjoint operators sharing the same domains. For

any α ∈ (0, 1), we have :

D(Aα) = D(Bα)
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Proof. As B is closed it is a bounded operator from D(A) to H. Thus

∃c > 0, ∀φ ∈ D(A), ‖Bφ‖ ≤ c‖Aφ‖.

Hence
B2 ≤ c2A2

from the above that B2α/2 is bounded from D(A2α/2) to H.
The proof being now symmetric in A and B we can conclude

B Su�cient conditions for approximate controllability with bounded

variation controls

The aim of this Section is to recall approximate controllability results obtained in other contexts and
how this results may be adapted in our context.

We �rst recall the following de�nitions from [CMSB09].

De�nition 6. Let (A,B,R) satisfy Assumptions 1 such that A and B are skew-symmetric. Let
Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for every k in N. A pair
(j, k) of integers is a nondegenerate transition of (A,B,Φ) if (i) 〈φj , Bφk〉 6= 0 and (ii) for every (l,m)
in N2, |λj − λk| = |λl − λm| implies (j, k) = (l,m) or 〈φl, Bφm〉 = 0 or {j, k} ∩ {l,m} = ∅.

De�nition 7. Let (A,B,R) satisfy Assumptions 1 such that A and B are skew-symmetric. Let
Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for every k in N. A
subset S of N2 is a nondegenerate chain of connectedness of (A,B,Φ) if (i) for every (j, k) in S, (j, k)
is a nondegenerate transition of (A,B) and (ii) for every ra, rb in N, there exists a �nite sequence
ra = r0, r1, . . . , rp = rb in N such that, for every j ≤ p− 1, (rj , rj+1) belongs to S.

Proposition 41. Let (A,B,R) satisfy Assumptions 1 such that A and B are skew-symmetric. Let

Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for every k in N. Let S
be a nondegenerate chain of connectedness of (A,B). Then, for every η > 0, (A,B) is simultaneously

approximately controllable in D(|A|1−η).

Proof. First of all, it is enough to prove the result for target propagators Υ̂ leaving invariant the
space of co-dimension 2 spanned by (φj , φk) for (j, k) in S

Υ̂ = eiνl(cos(θ)φ∗l φl + sin(θ)φ∗l φk) + eiνk(− sin(θ)φ∗kφl + cos(θ)φ∗l φk)

The result in H-norm is a consequence of [Cha12, Theorem 1]: for every piecewise constant u∗ : R→
R, 2π/|λj − λk|-periodic such that∫ 2π

|λj−λk|

0
u∗(τ)ei(λj−λk)τdτ 6= 0

and ∫ 2π
|λj−λk|

0
u∗(τ)ei(λl−λm)τdτ = 0

for every l,m such that (λl−λm) ∈ Z(λj −λk) and bl,m 6= 0, there exists T ∗ such that Υu∗/n(nT ∗, 0)

tends to Υ̂ as n tends to in�nity.
The conclusion follows using Lemma 35 and the estimate in A-norm of Theorem 5.

Let us just mention the following result in case of higher regularity.
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Proposition 42. Let k be a positive real. Let (A,B,R) satisfy Assumptions 1 such that (A,B) is

k-mildly coupled. Let Φ = (φk)k be a Hilbert basis of H made of eigenvectors of A, Aφk = iλkφk for

every k in N. Let S be a nondegenerate chain of connectedness of (A,B) such that, for every (j, k) in
S, the set {(l,m) ∈ N2|(λl − λm) ∈ Z(λj − λk) and 〈φl, Bφm〉 6= 0} is �nite. Then, for every η > 0,
(A,B) is simultaneously approximately controllable in D(|A|k/2+1−η).

Proof. The proof di�ers from the previous for the interpolation step and for the use of Proposition 23.

C Analytical perturbations

To apply our su�cient condition for approximate controllability (Proposition 42), we need to �nd a
nonresonant chain of connectedness, which may require some work on practical examples. A classical
idea we already used in this study is to introduce a new control ũ = u− ū and to consider the system
x′ = (A+ ūB) + (u− ū)B for a suitably chosen constant ū.

We have the following results by Kato [Kat66, Section VII.2].

De�nition 8. Let D0 be a domain of the complex plane, a family (T (z))z∈D0 of closed operators
from a Banach space X to a Banach space Y is said to be a holomorphic family of type (A) if

1. D(T (z)) = D is independent of z,

2. T (z)u is holomorphic for z in D0 for every u in D.

Theorem 43 ([Kat66, Theorem VII.3.9]). Let T (z) be a selfadjoint holomorphic family of type (A)

de�ned for z in a neighborhood of an interval I0 of the real axis such that T (z)∗ = T (z̄). Furthermore,

let T (z) have a compact resolvent. Then all eigenvalues of T (z) can be represented by functions which

are holomorphic in I0
1.

More precisely, there is a sequence of scalar-valued functions (z 7→ λn(z))n∈N and operator-valued

functions (z 7→ φn(z))n∈N, all holomorphic on I0, such that for z in I0, the sequence (λn(z))n∈N
represents all the repeated eigenvalues of T (z) and (φn(z))n∈N forms a complete orthonormal family

of the associated eigenvectors of T (z).

Proposition 44. If (A,B,K) satis�es Assumptions 1 then the family i(A + zB)z∈C,|z|<1/‖B‖A is

holomorphic of type (A).

Proof. The question of domain is solved by the Kato�Rellich Theorem. The holomorphy is immediate
as the family i(A+ zB) is a�ne in z.
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