Borel chromatic number of closed graphs

Dominique LECOMTE and Miroslav ZELENÝ ${ }^{1}$

December 6, 2014

- Université Paris 6, Institut de Mathématiques de Jussieu, Projet Analyse Fonctionnelle Couloir 16-26, 4ème étage, Case 247, 4, place Jussieu, 75252 Paris Cedex 05, France dominique.lecomte@upmc.fr
- Université de Picardie, I.U.T. de l'Oise, site de Creil, 13, allée de la faïencerie, 60107 Creil, France
- ${ }^{1}$ Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis Sokolovská 83, 18675 Prague, Czech Republic zeleny@karlin.mff.cuni.cz

Abstract

We construct, for each countable ordinal ξ, a closed graph with Borel chromatic number two and Baire class ξ chromatic number \aleph_{0}.

[^0]
1 Introduction

The study of the Borel chromatic number of analytic graphs on Polish spaces was initiated in [K-S-T]. In particular, the authors prove in this paper that the Borel chromatic number of the graph generated by a partial Borel function has to be in $\left\{1,2,3, \aleph_{0}\right\}$. They also provide a minimum graph \mathcal{G}_{0} of uncountable Borel chromatic number. This last result had a lot of developments. For example, B. Miller gave in [Mi] some other versions of it, which helped him to generalize a number of known dichotomy theorems in descriptive set theory. The first author generalized in [L2] the \mathcal{G}_{0}-dichotomy to any dimension making sense in classical descriptive set theory, and also used versions of \mathcal{G}_{0} to study the non-potentially closed subsets of a product of two Polish spaces (see [L1]).

A study of the $\boldsymbol{\Delta}_{\xi}^{0}$ chromatic number of analytic graphs on Polish spaces was initiated in [L-Z1] and was motivated by the \mathcal{G}_{0}-dichotomy. More precisely, let B be a Borel binary relation, on a Polish space X, having a Borel countable coloring (i.e., a Borel map $c: X \rightarrow \omega$ such that $c(x) \neq c(y)$ if $(x, y) \in B)$. Is there a relation between the Borel class of B and that of the coloring? In other words, is there a map $k: \omega_{1} \backslash\{0\} \rightarrow \omega_{1} \backslash\{0\}$ such that any Π_{ξ}^{0} binary relation having a Borel countable coloring has in fact a $\Delta_{k(\xi)}^{0}$-measurable countable coloring, for each $\xi \in \omega_{1} \backslash\{0\}$?

In [L-Z2], the authors give a negative answer: for each countable ordinal $\xi \geq 1$, there is a partial injection with disjoint domain and range $i: \omega^{\omega} \rightarrow \omega^{\omega}$, whose graph

- is $D_{2}\left(\Pi_{1}^{0}\right)$ (i.e., the difference of two closed sets),
- has Borel chomatic number two,
- has no $\boldsymbol{\Delta}_{\xi}^{0}$-measurable countable coloring.

On the other hand, they note that an open binary relation having a finite coloring c has also a Δ_{2}^{0}-measurable finite coloring (consider the differences of the $\overline{c^{-1}(\{n\})}$'s, for n in the range of the coloring). Note that an irreflexive closed binary relation on a zero-dimensional space has a continuous countable coloring (this coloring is $\boldsymbol{\Delta}_{2}^{0}$-measurable in non zero-dimensional spaces). So they wonder whether we can build, for each countable ordinal $\xi \geq 1$, a closed binary relation with a Borel finite coloring but no $\boldsymbol{\Delta}_{\xi}^{0}$-measurable finite coloring. This is indeed the case:

Theorem Let $\xi \geq 1$ be a countable ordinal. Then there exists a partial injection with disjoint domain and range $f: \omega^{\omega} \rightarrow \omega^{\omega}$ whose graph is closed (and thus has Borel chromatic number two), and has no $\boldsymbol{\Delta}_{\xi}^{0}$-measurable finite coloring (and thus has $\boldsymbol{\Delta}_{\xi}^{0}$ chromatic number \aleph_{0}).

The previous discussion shows that this result is optimal. Its proof uses, among other things, the method used in [L-Z2] improving Theorem 4 in [M]. This method relates topological complexity and Baire category.

2 Mátrai sets

Before proving our main result, we recall some material from [L-Z2].
Notation. The symbol τ denotes the usual product topology on the Baire space ω^{ω}.

Definition 2.1 We say that a partial map $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is nice if its graph $\operatorname{Gr}(f)$ is a $(\tau \times \tau)$-closed subset of $\omega^{\omega} \times \omega^{\omega}$.

The construction of P_{ξ} and τ_{ξ}, and the verification of the properties (1)-(3) from the next lemma (a corollary of Lemma 2.6 in [L-Z2]), can be found in [M], up to minor modifications.

Lemma 2.2 Let $1 \leq \xi<\omega_{1}$. Then there are $P_{\xi} \subseteq \omega^{\omega}$, and a topology τ_{ξ} on ω^{ω} such that
(1) τ_{ξ} is zero-dimensional perfect Polish and $\tau \subseteq \tau_{\xi} \subseteq \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$,
(2) P_{ξ} is a nonempty τ_{ξ}-closed nowhere dense set,
(3) if $S \in \Sigma_{\xi}^{0}\left(\omega^{\omega}, \tau\right)$ is τ_{ξ}-nonmeager in P_{ξ}, then S is τ_{ξ}-nonmeager in ω^{ω},
(4) if V, W are nonempty τ_{ξ}-open subsets of ω^{ω}, then we can find a τ_{ξ}-dense G_{δ} subset H of $V \backslash P_{\xi}$, a τ_{ξ}-dense G_{δ} subset L of $W \backslash P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism from H onto L.

The following lemma (a corollary of Lemma 2.7 in [L-Z2]) is a consequence of the previous one. It provides, among other things, a topology T_{ξ} that we will use in the sequel.

Lemma 2.3 Let $1 \leq \xi<\omega_{1}$. Then there is a disjoint countable family \mathcal{G}_{ξ} of subsets of ω^{ω} and a topology T_{ξ} on ω^{ω} such that
(a) T_{ξ} is zero-dimensional perfect Polish and $\tau \subseteq T_{\xi} \subseteq \Sigma_{\xi}^{0}(\tau)$,
(b) for any nonempty T_{ξ}-open sets V, V^{\prime}, there are disjoint $G, G^{\prime} \in \mathcal{G}_{\xi}$ with $G \subseteq V, G^{\prime} \subseteq V^{\prime}$, and there is a nice $\left(T_{\xi}, T_{\xi}\right)$-homeomorphism from G onto G^{\prime},
and, for every $G \in \mathcal{G}_{\xi}$,
(c) G is nonempty, T_{ξ}-nowhere dense, and in $\Pi_{2}^{0}\left(T_{\xi}\right)$,
(d) if $S \in \Sigma_{\xi}^{0}\left(\omega^{\omega}, \tau\right)$ is T_{ξ}-nonmeager in G, then S is T_{ξ}-nonmeager in ω^{ω}.

The construction of \mathcal{G}_{ξ} and T_{ξ} ensures that T_{ξ} is $\left(\tau_{\xi}\right)^{\omega}$, where τ_{ξ} is as in Lemma 2.2. This topology is on $\left(\omega^{\omega}\right)^{\omega}$, identified with ω^{ω}. We will need the following consequence of the construction of \mathcal{G}_{ξ} and T_{ξ}.
Lemma 2.4 Let $1 \leq \xi<\omega_{1}$, and V be a nonempty T_{ξ}-open set. Then \bar{V}^{τ} is not τ-compact.
Proof. The fact that T_{ξ} is $\left(\tau_{\xi}\right)^{\omega}$ gives a finite sequence U_{0}, \ldots, U_{n} of nonempty open subsets of $\left(\omega^{\omega}, \tau_{\xi}\right)$ with $U_{0} \times \ldots \times U_{n} \times\left(\omega^{\omega}\right)^{\omega} \subseteq V$. Thus \bar{V}^{τ} contains the τ-closed set ${\overline{U_{0}}}^{\tau} \times \ldots \times{\overline{U_{n}}}^{\tau} \times\left(\omega^{\omega}\right)^{\omega}$, and it is enough to see that this last set is not τ-compact. This comes from the fact that the Baire space $\left(\omega^{\omega}, \tau\right)$ is not compact.

3 Proof of the main result

Before proving our main result, we give an example giving the flavour of the sequel. In [Za], the author gives a Hurewicz-like test to see when two disjoint subsets A, B of a product $Y \times Z$ of Polish spaces can be separated by an open rectangle. We set $\mathbb{A}:=\left\{\left(n^{\infty}, n^{\infty}\right) \mid n \in \omega\right\}$,

$$
\mathbb{B}_{0}:=\left\{\left(0^{m+1}(n+1)^{\infty},(m+1)^{n+1} 0^{\infty}\right) \mid m, n \in \omega\right\}
$$

and $\mathbb{B}_{1}:=\left\{\left((m+1)^{n+1} 0^{\infty}, 0^{m+1}(n+1)^{\infty}\right) \mid m, n \in \omega\right\}$. Then A is not separable from B by an open rectangle exactly when there are $\varepsilon \in 2$ and continuous maps $g: \omega^{\omega} \rightarrow Y, h: \omega^{\omega} \rightarrow Z$ such that $\mathbb{A} \subseteq(g \times h)^{-1}(A)$ and $\mathbb{B}_{\varepsilon} \subseteq(g \times h)^{-1}(B)$.

Example. Here we are looking for closed graphs with Borel chromatic number two and of arbitrarily high finite Δ_{ξ}^{0} chromatic number n. There is an example with $\xi=1$ and $n=3$ where \mathbb{B}_{0} is involved. We set $C:=\left\{\left((2 m)^{\infty},(2 m+1)^{\infty}\right) \mid m \in \omega\right\} \cup \mathbb{B}_{0}$,

$$
D:=\left\{(2 m)^{\infty} \mid m \in \omega\right\} \cup\left\{0^{m+1}(n+1)^{\infty} \mid m, n \in \omega\right\}
$$

$R:=\left\{(2 m+1)^{\infty} \mid m \in \omega\right\} \cup\left\{(m+1)^{n+1} 0^{\infty} \mid m, n \in \omega\right\}$,

$$
f\left((2 m)^{\infty}\right):=(2 m+1)^{\infty} \text { and } f\left(0^{m+1}(n+1)^{\infty}\right):=(m+1)^{n+1} 0^{\infty} .
$$

This defines $f: D \rightarrow R$ whose graph is C. The first part of C is discrete, and thus closed. Assume that $\left(\alpha_{k}, \beta_{k}\right):=\left(0^{m_{k}+1}\left(n_{k}+1\right)^{\infty},\left(m_{k}+1\right)^{n_{k}+1} 0^{\infty}\right) \in \mathbb{B}_{0}$ and converges to $(\alpha, \beta) \in \omega^{\omega} \times \omega^{\omega}$ as k goes to infinity. We may assume that $\left(m_{k}\right)$ is constant, and $\left(n_{k}\right)$ too, so that $(\alpha, \beta) \in \mathbb{B}_{0}$, which is therefore closed. This shows that C is closed. Note that D, R are disjoint and Borel, so that C has Borel chromatic number two. Let Δ be a clopen subset of ω^{ω}. Let us prove that $C \cap \Delta^{2}$ or $C \cap(\neg \Delta)^{2}$ is not empty. We argue by contradiction. Then Δ or $\neg \Delta$ has to contain 0^{∞}. Assume that it is Δ, the other case being similar. Then $0^{m+1}(n+1)^{\infty} \in \Delta$ if m is big enough. Thus $(m+1)^{n+1} 0^{\infty} \notin \Delta$ if m is big enough. Therefore $(m+1)^{\infty} \notin \Delta$ if m is big enough. Thus $\left((2 m)^{\infty},(2 m+1)^{\infty}\right) \in C \cap(\neg \Delta)^{2}$ if m is big enough, which is absurd.

We now turn to the general case. Our main lemma is as follows. We equip ω^{m} with the discrete topology τ_{d}, for each $m>0$.

Lemma Let $\xi \geq 1$ be a countable ordinal, $n \geq 1$ be a natural number, and $X:=\omega \times \omega^{\omega}$. Then we can find a partial injection $f: X \rightarrow X$ and a disjoint countable family \mathcal{F} of subsets of X such that
(a) f has disjoint domain and range,
(b) $\operatorname{Gr}(f)$ is $\left(\left(\tau_{d} \times \tau\right) \times\left(\tau_{d} \times \tau\right)\right)$-closed,
(c) there is no sequence $\left(\Delta_{i}\right)_{i<n}$ of Δ_{ξ}^{0} subsets of $\left(X, \tau_{d} \times \tau\right)$ such that
(i) $\forall i<n G r(f) \cap \Delta_{i}^{2}=\emptyset$,
(ii) $\bigcup_{i<n} \Delta_{i}$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in X,
(d) \mathcal{F} has the properties $(b)-(d)$ in Lemma 2.3, where $\mathcal{G}_{\xi}, \omega^{\omega}, T_{\xi}$ and τ are respectively replaced with $\mathcal{F}, X, \tau_{d} \times T_{\xi}$ and $\tau_{d} \times \tau$,
$(e)(\bigcup \mathcal{F}) \cap($ Domain $(f) \cup$ Range $(f))=\emptyset$.
Proof. We argue by induction on n.
The basic case $n=1$
Let \mathcal{G}_{ξ} be the family given by Lemma 2.3. We split \mathcal{G}_{ξ} into two disjoint subfamilies \mathcal{G}_{ξ}^{0} and \mathcal{G}_{ξ}^{1} having the property (b) in Lemma 2.3. This is possible since the elements of \mathcal{G}_{ξ} are T_{ξ}-nowhere dense. Let $G_{0}, G_{1} \in \mathcal{G}_{\xi}^{0}$ be disjoint, and φ be a nice $\left(T_{\xi}, T_{\xi}\right)$-homeomorphism from G_{0} onto G_{1}. We then set $f(0, \alpha):=(0, \varphi(\alpha))$ if $\alpha \in G_{0}$, and $\mathcal{F}:=\left\{\{n\} \times G \mid n \in \omega \wedge G \in \mathcal{G}_{\xi}^{1}\right\}$. It remains to check that the property (c) is satisfied. We argue by contradiction, which gives $\Delta_{0} \in \Delta_{\xi}^{0}$. By property (d) in Lemma 2.3, $\Delta_{0} \cap\left(\{0\} \times G_{\varepsilon}\right)$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{0\} \times G_{\varepsilon}$ for each $\varepsilon \in 2$. As f is a $\left(\tau_{d} \times T_{\xi}, \tau_{d} \times T_{\xi}\right)$-homeomorphism, $\Delta_{0} \cap\left(\{0\} \times G_{0}\right) \cap f^{-1}\left(\Delta_{0} \cap\left(\{0\} \times G_{1}\right)\right)$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{0\} \times G_{0}$, which contradicts the fact that $\operatorname{Gr}(f) \cap \Delta_{0}^{2}=\emptyset$.

The induction step from n to $n+1$

The induction assumption gives f and \mathcal{F}. Here again, we split \mathcal{F} into two disjoint subfamilies \mathcal{F}^{0} and \mathcal{F}^{1} having the property (b) in Lemma 2.3, where $\mathcal{G}_{\xi}, \omega^{\omega}, T_{\xi}$ and τ are respectively replaced with $\mathcal{F}, X, \tau_{d} \times T_{\xi}$ and $\tau_{d} \times \tau$. Let $\left(V_{p}\right)$ be a basis for the topology $\tau_{d} \times T_{\xi}$ made of nonempty sets. Fix $p \in \omega$. By Lemma 2.4, there is a countable family $\left(W_{q}^{p}\right)_{q \in \omega}$, with $\left(\tau_{d} \times \tau\right)$-closed union, and made of pairwise disjoint $\left(\tau_{d} \times \tau\right)$-clopen subsets of X intersecting V_{p}.

- Let $b: \omega \rightarrow \omega^{2}$ be a bijection. We construct, for $\vec{v}=(p, q) \in \omega^{2}$ and $\varepsilon \in 2$, and by induction on $b^{-1}(\vec{v})$,

$$
\begin{aligned}
& \text { - } G_{\varepsilon}^{\vec{v}} \in \mathcal{F}^{0}, \\
& \text { - a nice }\left(\tau_{d} \times T_{\xi}, \tau_{d} \times T_{\xi}\right) \text {-homeomorphism } \varphi^{\vec{v}}: G_{0}^{\vec{v}} \rightarrow G_{1}^{\vec{v}}
\end{aligned}
$$

We want these objects to satisfy the following:

$$
\begin{aligned}
& -G_{0}^{\vec{v}} \subseteq\left(V_{p} \cap W_{q}^{p}\right) \backslash\left(\bigcup_{m<b^{-1}(\vec{v})}{\overline{G_{0}^{b(m)} \cup G_{1}^{b(m)}}{ }^{\tau_{d} \times T_{\xi}}}\right), \\
& -G_{1}^{\vec{v}} \subseteq V_{q} \backslash\left(G_{0}^{\vec{v}} \cup \bigcup_{m<b^{-1}(\vec{v})}{\left.\overline{G_{0}^{b(m)} \cup G_{1}^{b(m)}}{ }^{\tau_{d} \times T_{\xi}}\right) ~}\right.
\end{aligned}
$$

- We now define the desired partial map $\tilde{f}: \omega \times \omega \times \omega^{\omega} \rightarrow \omega \times \omega \times \omega^{\omega}$, as well as $\tilde{\mathcal{F}} \subseteq 2^{\omega \times \omega \times \omega^{\omega}}$, as follows:

$$
\tilde{f}(l, x):=\left\{\begin{array}{l}
\left(p+1, \varphi^{p, q}(x)\right) \text { if } l=0 \wedge x \in G_{0}^{p, q} \\
(l, f(x)) \text { if } l>0 \wedge x \in \operatorname{Domain}(f)
\end{array}\right.
$$

and $\tilde{\mathcal{F}}:=\left\{\{l\} \times G \mid l \in \omega \wedge G \in \mathcal{F}^{1}\right\}$. Note that \tilde{f} is well-defined and injective, by disjointness of the $\left(G_{0}^{\vec{v}} \cup G_{1}^{\vec{v}}\right)$'s. Identifying X with $\omega \times \omega \times \omega^{\omega}$, we can consider \tilde{f} as a partial map from X into itself and $\tilde{\mathcal{F}}$ as a family of subsets of X (this identification is based on the identification of ω with $\omega \times \omega$).
(a), (d) and (e) are clearly satisfied.
(b) Assume that $\left(\left(l_{k}, x_{k}\right),\left(m_{k}, y_{k}\right)\right) \in \operatorname{Gr}(\tilde{f})$ tends to $((l, x),(m, y)) \in(\omega \times X)^{2}$ as k goes to infinity. We may assume that $\left(l_{k}\right)$ and $\left(m_{k}\right)$ are constant.

If $l=0$, then there is p such that $p+1=m$ and $\left(x_{k}, y_{k}\right) \in G_{0}^{p, q_{k}} \times G_{1}^{p, q_{k}}$. As $G_{0}^{p, q_{k}} \subseteq W_{q_{k}}^{p}$, we may also assume that $\left(q_{k}\right)$ is also constant and equals q. As $\varphi^{p, q}$ is nice, $((l, x),(m, y)) \in \operatorname{Gr}(\tilde{f})$.

$$
\text { If } l>0 \text {, then }\left(x_{k}, y_{k}\right) \in \operatorname{Gr}(f) \text {. As } \operatorname{Gr}(f) \text { is }\left(\left(\tau_{d} \times \tau\right) \times\left(\tau_{d} \times \tau\right)\right) \text {-closed, }((l, x),(m, y)) \in \operatorname{Gr}(\tilde{f})
$$

(c) We argue by contradiction, which gives $\left(\Delta_{i}\right)_{i \leq n}$. We may assume, without loss of generality, that $\left(\{0\} \times \omega \times \omega^{\omega}\right) \cap \Delta_{n}$ is not meager in $\left(\{0\} \times \omega \times \omega^{\omega}, \tau_{d} \times T_{\xi}\right)$. This gives $p \in \omega$ such that $\left(\{0\} \times V_{p}\right) \cap \Delta_{n}$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $V_{p}^{\prime}:=\{0\} \times V_{p}$. As $V_{p}^{\prime} \backslash \Delta_{n} \in \boldsymbol{\Sigma}_{\xi}^{0}\left(\tau_{d} \times \tau\right),\left(\{0\} \times G_{0}^{p, q}\right) \cap \Delta_{n}$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{0\} \times G_{0}^{p, q}$ for each $q \in \omega$.

As $\operatorname{Gr}(\tilde{f}) \cap \Delta_{n}^{2}=\emptyset$ and the $\varphi^{\vec{v}}$'s are $\left(\tau_{d} \times T_{\xi}, \tau_{d} \times T_{\xi}\right)$-homeomorphisms, $\left(\{p+1\} \times G_{1}^{p, q}\right) \cap \Delta_{n}$ is $\left(\tau_{d} \times T_{\xi}\right)$-meager in $\{p+1\} \times G_{1}^{p, q}$, for each q.

As $\left(\omega \times \omega \times \omega^{\omega}\right) \backslash\left(\bigcup_{i \leq n} \Delta_{i}\right)$ is $\left(\tau_{d} \times T_{\xi}\right)$-meager in $\omega \times \omega \times \omega^{\omega}$ and $\Delta_{\xi}^{0}\left(\tau_{d} \times \tau\right)$,

$$
\left(\{p+1\} \times G_{1}^{p, q}\right) \backslash\left(\bigcup_{i \leq n} \Delta_{i}\right)
$$

is $\left(\tau_{d} \times T_{\xi}\right)$-meager in $\{p+1\} \times G_{1}^{p, q}$, for each q. Thus $\left(\{p+1\} \times G_{1}^{p, q}\right) \cap\left(\bigcup_{i<n} \Delta_{i}\right)$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{p+1\} \times G_{1}^{p, q}$, for each q.

Claim The set $\left(\{p+1\} \times \omega \times \omega^{\omega}\right) \cap\left(\bigcup_{i<n} \Delta_{i}\right)$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{p+1\} \times \omega \times \omega^{\omega}$.
Indeed, we argue by contradiction. This gives $W \in\left(\tau_{d} \times T_{\xi}\right) \backslash\{\emptyset\}$ such that

$$
(\{p+1\} \times W) \cap\left(\bigcup_{i<n} \Delta_{i}\right)
$$

is $\left(\tau_{d} \times T_{\xi}\right)$-meager in $W^{\prime}:=\{p+1\} \times W$. Let $q \in \omega$ be such that $V_{q} \subseteq W$. Then $G_{1}^{p, q} \subseteq W$ and $\{p+1\} \times G_{1}^{p, q} \subseteq W^{\prime}$. As $W^{\prime} \cap\left(\bigcup_{i<n} \Delta_{i}\right) \in \boldsymbol{\Sigma}_{\xi}^{0}\left(\tau_{d} \times \tau\right)$ and $\left(\{p+1\} \times G_{1}^{p, q}\right) \cap W^{\prime} \cap\left(\bigcup_{i<n} \Delta_{i}\right)$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{p+1\} \times G_{1}^{p, q}, W^{\prime} \cap\left(\bigcup_{i<n} \Delta_{i}\right)$ is not $\left(\tau_{d} \times T_{\xi}\right)$-meager in W^{\prime}, which is absurd.

Now we set $\Delta_{i}^{\prime}:=\left(\{p+1\} \times \omega \times \omega^{\omega}\right) \cap \Delta_{i}$ if $i<n$. Note that $\Delta_{i}^{\prime} \in \Delta_{\xi}^{0}\left(\{p+1\} \times \omega \times \omega^{\omega}, \tau_{d} \times \tau\right)$, $\operatorname{Gr}(\tilde{f}) \cap\left(\Delta_{i}^{\prime}\right)^{2}=\emptyset$, and $\bigcup_{i<n} \Delta_{i}^{\prime}$ is $\left(\tau_{d} \times T_{\xi}\right)$-comeager in $\{p+1\} \times \omega \times \omega^{\omega}$, which contradicts the induction assumption.

In order to get our main result, it is enough to apply the main lemma to each $n \geq 1$. This gives $f_{n}: \omega \times \omega^{\omega} \rightarrow \omega \times \omega^{\omega}$. It remains to define $f: \bigcup_{n \geq 1}\left(\{n\} \times \omega \times \omega^{\omega}\right) \rightarrow \bigcup_{n \geq 1}\left(\{n\} \times \omega \times \omega^{\omega}\right)$ by $f(n, x):=f_{n}(x)$ (we identify $(\omega \backslash\{0\}) \times \omega \times \omega^{\omega}$ with $\left.\omega^{\omega}\right)$.

4 References

[K-S-T] A. S. Kechris, S. Solecki and S. Todorčević, Borel chromatic numbers, Adv. Math. 141 (1999), 1-44
[L1] D. Lecomte, On minimal non potentially closed subsets of the plane, Topology Appl. 154, 1 (2007), 241-262
[L2] D. Lecomte, A dichotomy characterizing analytic graphs of uncountable Borel chromatic number in any dimension, Trans. Amer. Math. Soc. 361 (2009), 4181-4193
[L-Z1] D. Lecomte and M. Zelený, Baire-class ξ colorings: the first three levels, Trans. Amer. Math. Soc. 366, 5 (2014), 2345-2373
[L-Z2] D. Lecomte and M. Zelený, Descriptive complexity of countable unions of Borel rectangles, Topology Appl. 166 (2014), 66-84
[M] T. Mátrai, On the closure of Baire classes under transfinite convergences, Fund. Math. 183, 2 (2004), 157-168
[Mi] B. Miller, The graph-theoretic approach to descriptive set theory, Bull. Symbolic Logic 18, 4 (2012), 554-575
[Za] R. Zamora, Separation of analytic sets by rectangles of low complexity, manuscript (see arXiv)

[^0]: 2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 54H05
 Keywords and phrases. Borel chromatic number, Borel class, coloring
 Acknowledgements. The main result was obtained during the first author's stay at Charles University in Prague in May 2014. The first author thanks Charles University in Prague for the hospitality.

 The research was supported by the grant GAČR P201/12/0436 for the second author.

