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Borel chromatic number of closed graphs
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We construct, for each countable ordinal ξ, a closed graph with Borel chromatic number two and Baire class ξ chromatic number ℵ 0 .

Introduction

The study of the Borel chromatic number of analytic graphs on Polish spaces was initiated in [K-S-T]. In particular, the authors prove in this paper that the Borel chromatic number of the graph generated by a partial Borel function has to be in {1, 2, 3, ℵ 0 }. They also provide a minimum graph G 0 of uncountable Borel chromatic number. This last result had a lot of developments. For example, B. Miller gave in [Mi] some other versions of it, which helped him to generalize a number of known dichotomy theorems in descriptive set theory. The first author generalized in [L2] the G 0 -dichotomy to any dimension making sense in classical descriptive set theory, and also used versions of G 0 to study the non-potentially closed subsets of a product of two Polish spaces (see [L1]).

A study of the ∆ 0 ξ chromatic number of analytic graphs on Polish spaces was initiated in [L-Z1] and was motivated by the G 0 -dichotomy. More precisely, let B be a Borel binary relation, on a Polish space X, having a Borel countable coloring (i.e., a Borel map c :

X → ω such that c(x) = c(y) if (x, y) ∈ B).
Is there a relation between the Borel class of B and that of the coloring? In other words, is there a map k : ω 1 \ {0} → ω 1 \ {0} such that any Π 0 ξ binary relation having a Borel countable coloring has in fact a ∆ 0 k(ξ) -measurable countable coloring, for each ξ ∈ ω 1 \{0}?

In [L-Z2], the authors give a negative answer: for each countable ordinal ξ ≥ 1, there is a partial injection with disjoint domain and range i : ω ω → ω ω , whose graph -is D 2 (Π 0 1 ) (i.e., the difference of two closed sets), -has Borel chomatic number two, -has no ∆ 0 ξ -measurable countable coloring.

On the other hand, they note that an open binary relation having a finite coloring c has also a ∆ 0 2 -measurable finite coloring (consider the differences of the c -1 ({n})'s, for n in the range of the coloring). Note that an irreflexive closed binary relation on a zero-dimensional space has a continuous countable coloring (this coloring is ∆ 0 2 -measurable in non zero-dimensional spaces). So they wonder whether we can build, for each countable ordinal ξ ≥ 1, a closed binary relation with a Borel finite coloring but no ∆ 0 ξ -measurable finite coloring. This is indeed the case:

Theorem Let ξ ≥ 1 be a countable ordinal. Then there exists a partial injection with disjoint domain and range f : ω ω → ω ω whose graph is closed (and thus has Borel chromatic number two), and has no ∆ 0 ξ -measurable finite coloring (and thus has ∆ 0 ξ chromatic number ℵ 0 ).

The previous discussion shows that this result is optimal. Its proof uses, among other things, the method used in [L-Z2] improving Theorem 4 in [M]. This method relates topological complexity and Baire category.

Mátrai sets

Before proving our main result, we recall some material from [L-Z2].

Notation. The symbol τ denotes the usual product topology on the Baire space ω ω . Definition 2.1 We say that a partial map f :

ω ω → ω ω is nice if its graph Gr(f ) is a (τ ×τ )-closed subset of ω ω ×ω ω .
The construction of P ξ and τ ξ , and the verification of the properties (1)-(3) from the next lemma (a corollary of Lemma 2.6 in [L-Z2]), can be found in [M], up to minor modifications. Lemma 2.2 Let 1 ≤ ξ < ω 1 . Then there are P ξ ⊆ ω ω , and a topology τ ξ on ω ω such that (1) τ ξ is zero-dimensional perfect Polish and

τ ⊆ τ ξ ⊆ Σ 0 ξ (τ ), (2) P ξ is a nonempty τ ξ -closed nowhere dense set, (3) if S ∈ Σ 0 ξ (ω ω , τ ) is τ ξ -nonmeager in P ξ , then S is τ ξ -nonmeager in ω ω , (4) if V, W are nonempty τ ξ -open subsets of ω ω , then we can find a τ ξ -dense G δ subset H of V \P ξ , a τ ξ -dense G δ subset L of W \P ξ ,
and a nice (τ ξ , τ ξ )-homeomorphism from H onto L.

The following lemma (a corollary of Lemma 2.7 in [L-Z2]) is a consequence of the previous one. It provides, among other things, a topology T ξ that we will use in the sequel.

Lemma 2.3 Let 1 ≤ ξ < ω 1 .
Then there is a disjoint countable family G ξ of subsets of ω ω and a topology T ξ on ω ω such that (a) T ξ is zero-dimensional perfect Polish and

τ ⊆ T ξ ⊆ Σ 0 ξ (τ ), (b) for any nonempty T ξ -open sets V, V ′ , there are disjoint G, G ′ ∈ G ξ with G ⊆ V , G ′ ⊆ V ′ ,
and there is a nice (T ξ , T ξ )-homeomorphism from G onto G ′ , and, for every G ∈ G ξ , (c) G is nonempty, T ξ -nowhere dense, and in

Π 0 2 (T ξ ), (d) if S ∈ Σ 0 ξ (ω ω , τ ) is T ξ -nonmeager in G, then S is T ξ -nonmeager in ω ω . The construction of G ξ and T ξ ensures that T ξ is (τ ξ ) ω
, where τ ξ is as in Lemma 2.2. This topology is on (ω ω ) ω , identified with ω ω . We will need the following consequence of the construction of G ξ and T ξ .

Lemma 2.4 Let 1 ≤ ξ < ω 1 , and V be a nonempty T ξ -open set. Then V τ is not τ -compact.

Proof. The fact that T ξ is (τ ξ ) ω gives a finite sequence U 0 , ..., U n of nonempty open subsets of (ω ω , τ ξ ) with U 0 ×...×U n ×(ω ω ) ω ⊆ V . Thus V τ contains the τ -closed set U 0 τ ×...×U n τ ×(ω ω ) ω , and it is enough to see that this last set is not τ -compact. This comes from the fact that the Baire space (ω ω , τ ) is not compact.

Proof of the main result

Before proving our main result, we give an example giving the flavour of the sequel. In [Za], the author gives a Hurewicz-like test to see when two disjoint subsets A, B of a product Y ×Z of Polish spaces can be separated by an open rectangle. We set

A := {(n ∞ , n ∞ ) | n ∈ ω}, B 0 := 0 m+1 (n+1) ∞ , (m+1) n+1 0 ∞ | m, n ∈ ω and B 1 := (m + 1) n+1 0 ∞ , 0 m+1 (n + 1) ∞ | m, n ∈ ω . Then A is not separable from B
by an open rectangle exactly when there are ε ∈ 2 and continuous maps g :

ω ω → Y , h : ω ω → Z such that A ⊆ (g×h) -1 (A) and B ε ⊆ (g×h) -1 (B).
Example. Here we are looking for closed graphs with Borel chromatic number two and of arbitrarily high finite ∆ 0 ξ chromatic number n. There is an example with ξ = 1 and n = 3 where B 0 is involved. We set

C := (2m) ∞ , (2m+1) ∞ | m ∈ ω ∪ B 0 , D := {(2m) ∞ | m ∈ ω} ∪ {0 m+1 (n+1) ∞ | m, n ∈ ω}, R := {(2m+1) ∞ | m ∈ ω} ∪ {(m+1) n+1 0 ∞ | m, n ∈ ω}, f (2m) ∞ := (2m+1) ∞ and f 0 m+1 (n+1) ∞ := (m+1) n+1 0 ∞ .
This defines f : D → R whose graph is C. The first part of C is discrete, and thus closed. Assume that (α k , β k ) := 0 m k +1 (n k + 1) ∞ , (m k + 1) n k +1 0 ∞ ∈ B 0 and converges to (α, β) ∈ ω ω × ω ω as k goes to infinity. We may assume that (m k ) is constant, and (n k ) too, so that (α, β) ∈ B 0 , which is therefore closed. This shows that C is closed. Note that D, R are disjoint and Borel, so that C has Borel chromatic number two. Let ∆ be a clopen subset of ω ω . Let us prove that C ∩ ∆ 2 or C ∩ (¬∆) 2 is not empty. We argue by contradiction. Then ∆ or ¬∆ has to contain 0 ∞ . Assume that it is ∆, the other case being similar. Then

0 m+1 (n+1) ∞ ∈ ∆ if m is big enough. Thus (m+1) n+1 0 ∞ / ∈ ∆ if m is big enough. Therefore (m+1) ∞ / ∈ ∆ if m is big enough. Thus (2m) ∞ , (2m+1) ∞ ∈ C ∩ (¬∆) 2 if m is big enough, which is absurd.
We now turn to the general case. Our main lemma is as follows. We equip ω m with the discrete topology τ d , for each m > 0.

Lemma Let ξ ≥ 1 be a countable ordinal, n ≥ 1 be a natural number, and X := ω ×ω ω . Then we can find a partial injection f : X → X and a disjoint countable family F of subsets of X such that (a) f has disjoint domain and range, Proof. We argue by induction on n.

(b) Gr(f ) is (τ d ×τ )×(τ d ×τ ) -closed, (c) there is no sequence (∆ i ) i<n of ∆ 0 ξ subsets of (X, τ d ×τ ) such that (i) ∀i < n Gr(f ) ∩ ∆ 2 i = ∅, (ii) i<n ∆ i is (τ d ×T ξ )-comeager in X, ( 

The basic case n = 1

Let G ξ be the family given by Lemma 2.3. We split G ξ into two disjoint subfamilies G 0 ξ and G 1 ξ having the property (b) in Lemma 2.3. This is possible since the elements of G ξ are T ξ -nowhere dense. Let G 0 , G 1 ∈ G 0 ξ be disjoint, and ϕ be a nice (T ξ , T ξ )-homeomorphism from G 0 onto G 1 . We then set f (0, α) := 0, ϕ(α) if α ∈ G 0 , and

F := {n}× G | n ∈ ω ∧ G ∈ G 1
ξ . It remains to check that the property (c) is satisfied. We argue by contradiction, which gives ∆ 0 ∈ ∆ 0 ξ . By property (d) in Lemma 2.3,

∆ 0 ∩ ({0} × G ε ) is (τ d × T ξ )-comeager in {0} × G ε for each ε ∈ 2. As f is a (τ d ×T ξ , τ d ×T ξ )-homeomorphism, ∆ 0 ∩ ({0}×G 0 ) ∩ f -1 ∆ 0 ∩ ({0}×G 1
) is (τ d ×T ξ )-comeager in {0}×G 0 , which contradicts the fact that Gr(f ) ∩ ∆ 2 0 = ∅.

  d) F has the properties (b)-(d) in Lemma 2.3, where G ξ , ω ω , T ξ and τ are respectively replaced with F, X, τ d ×T ξ and τ d ×τ , (e) ( F) ∩ Domain(f ) ∪ Range(f ) = ∅.
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The induction step from n to n+1

The induction assumption gives f and F. Here again, we split F into two disjoint subfamilies F 0 and F 1 having the property (b) in Lemma 2.3, where G ξ , ω ω , T ξ and τ are respectively replaced with F, X, τ d ×T ξ and τ d ×τ . Let (V p ) be a basis for the topology τ d ×T ξ made of nonempty sets. Fix p ∈ ω. By Lemma 2.4, there is a countable family (W p q ) q∈ω , with (τ d ×τ )-closed union, and made of pairwise disjoint (τ d ×τ )-clopen subsets of X intersecting V p .

• Let b : ω → ω 2 be a bijection. We construct, for v = (p, q) ∈ ω 2 and ε ∈ 2, and by induction on b

We want these objects to satisfy the following:

-

).

• We now define the desired partial map f : ω ×ω ×ω ω → ω ×ω ×ω ω , as well as F ⊆ 2 ω×ω×ω ω , as follows:

and

Identifying X with ω ×ω ×ω ω , we can consider f as a partial map from X into itself and F as a family of subsets of X (this identification is based on the identification of ω with ω×ω). (b) Assume that (l k , x k ), (m k , y k ) ∈ Gr( f ) tends to (l, x), (m, y) ∈ (ω×X) 2 as k goes to infinity. We may assume that (l k ) and (m k ) are constant.

If l = 0, then there is p such that p+1 = m and (x k , y k ) ∈ G p,q k 0 ×G p,q k 1 . As G p,q k 0 ⊆ W p q k , we may also assume that (q k ) is also constant and equals q. As ϕ p,q is nice, (l, x), (m, y) ∈ Gr( f ).

(c) We argue by contradiction, which gives (∆ i ) i≤n . We may assume, without loss of generality, that

1 , for each q.

1 , for each q.

Claim The set

Indeed, we argue by contradiction. This gives W ∈ (τ d ×T ξ )\{∅} such that

×ω ω , which contradicts the induction assumption.

In order to get our main result, it is enough to apply the main lemma to each n ≥ 1. This gives f n : ω × ω ω → ω × ω ω . It remains to define f : n≥1 ({n} × ω × ω ω ) → n≥1 ({n} × ω × ω ω ) by f (n, x) := f n (x) (we identify (ω\{0})×ω×ω ω with ω ω ).