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December 6, 2014
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1 Introduction

The study of the Borel chromatic number of analytic graphs on Polish spaces was initiated in

[K-S-T]. In particular, the authors prove in this paper that the Borel chromatic number of the graph

generated by a partial Borel function has to be in {1, 2, 3,ℵ0}. They also provide a minimum graph

G0 of uncountable Borel chromatic number. This last result had a lot of developments. For example,

B. Miller gave in [Mi] some other versions of it, which helped him to generalize a number of known

dichotomy theorems in descriptive set theory. The first author generalized in [L2] the G0-dichotomy

to any dimension making sense in classical descriptive set theory, and also used versions of G0 to

study the non-potentially closed subsets of a product of two Polish spaces (see [L1]).

A study of the ∆
0
ξ chromatic number of analytic graphs on Polish spaces was initiated in [L-Z1]

and was motivated by the G0-dichotomy. More precisely, let B be a Borel binary relation, on a Polish

space X, having a Borel countable coloring (i.e., a Borel map c : X → ω such that c(x) 6= c(y) if

(x, y)∈B). Is there a relation between the Borel class of B and that of the coloring? In other words,

is there a map k : ω1 \{0} → ω1 \{0} such that any Π
0
ξ binary relation having a Borel countable

coloring has in fact a ∆
0
k(ξ)-measurable countable coloring, for each ξ∈ω1\{0}?

In [L-Z2], the authors give a negative answer: for each countable ordinal ξ≥ 1, there is a partial

injection with disjoint domain and range i :ωω→ωω, whose graph

- is D2(Π
0
1) (i.e., the difference of two closed sets),

- has Borel chomatic number two,

- has no ∆
0
ξ-measurable countable coloring.

On the other hand, they note that an open binary relation having a finite coloring c has also a

∆
0
2-measurable finite coloring (consider the differences of the c−1({n})’s, for n in the range of the

coloring). Note that an irreflexive closed binary relation on a zero-dimensional space has a continuous

countable coloring (this coloring is ∆0
2-measurable in non zero-dimensional spaces). So they wonder

whether we can build, for each countable ordinal ξ ≥ 1, a closed binary relation with a Borel finite

coloring but no ∆
0
ξ-measurable finite coloring. This is indeed the case:

Theorem Let ξ≥1 be a countable ordinal. Then there exists a partial injection with disjoint domain

and range f :ωω → ωω whose graph is closed (and thus has Borel chromatic number two), and has

no ∆
0
ξ-measurable finite coloring (and thus has ∆0

ξ chromatic number ℵ0).

The previous discussion shows that this result is optimal. Its proof uses, among other things, the

method used in [L-Z2] improving Theorem 4 in [M]. This method relates topological complexity and

Baire category.

2 Mátrai sets

Before proving our main result, we recall some material from [L-Z2].

Notation. The symbol τ denotes the usual product topology on the Baire space ωω .

2



Definition 2.1 We say that a partial map f : ωω → ωω is nice if its graph Gr(f) is a (τ×τ)-closed

subset of ωω×ωω.

The construction of Pξ and τξ, and the verification of the properties (1)-(3) from the next lemma

(a corollary of Lemma 2.6 in [L-Z2]), can be found in [M], up to minor modifications.

Lemma 2.2 Let 1 ≤ ξ < ω1. Then there are Pξ⊆ωω, and a topology τξ on ωω such that

(1) τξ is zero-dimensional perfect Polish and τ⊆τξ⊆Σ
0
ξ(τ),

(2) Pξ is a nonempty τξ-closed nowhere dense set,

(3) if S∈Σ
0
ξ(ω

ω, τ) is τξ-nonmeager in Pξ , then S is τξ-nonmeager in ωω,

(4) if V,W are nonempty τξ-open subsets of ωω, then we can find a τξ-dense Gδ subset H of

V \Pξ , a τξ-dense Gδ subset L of W \Pξ , and a nice (τξ, τξ)-homeomorphism from H onto L.

The following lemma (a corollary of Lemma 2.7 in [L-Z2]) is a consequence of the previous one.

It provides, among other things, a topology Tξ that we will use in the sequel.

Lemma 2.3 Let 1 ≤ ξ < ω1. Then there is a disjoint countable family Gξ of subsets of ωω and a

topology Tξ on ωω such that

(a) Tξ is zero-dimensional perfect Polish and τ⊆Tξ⊆Σ
0
ξ(τ),

(b) for any nonempty Tξ-open sets V, V ′, there are disjoint G,G′ ∈Gξ with G⊆V , G′⊆V ′, and

there is a nice (Tξ, Tξ)-homeomorphism from G onto G′,

and, for every G∈Gξ ,

(c) G is nonempty, Tξ-nowhere dense, and in Π
0
2(Tξ),

(d) if S∈Σ
0
ξ(ω

ω, τ) is Tξ-nonmeager in G, then S is Tξ-nonmeager in ωω.

The construction of Gξ and Tξ ensures that Tξ is (τξ)
ω , where τξ is as in Lemma 2.2. This topology

is on (ωω)ω , identified with ωω . We will need the following consequence of the construction of Gξ

and Tξ .

Lemma 2.4 Let 1 ≤ ξ < ω1, and V be a nonempty Tξ-open set. Then V
τ

is not τ -compact.

Proof. The fact that Tξ is (τξ)
ω gives a finite sequence U0, ..., Un of nonempty open subsets of

(ωω, τξ) with U0×...×Un×(ωω)ω⊆V . Thus V
τ

contains the τ -closed set U0
τ
×...×Un

τ
×(ωω)ω , and

it is enough to see that this last set is not τ -compact. This comes from the fact that the Baire space

(ωω, τ) is not compact. �

3 Proof of the main result

Before proving our main result, we give an example giving the flavour of the sequel. In [Za], the

author gives a Hurewicz-like test to see when two disjoint subsets A,B of a product Y ×Z of Polish

spaces can be separated by an open rectangle. We set A :={(n∞, n∞) | n∈ω},

B0 :=
{(

0m+1(n+1)∞, (m+1)n+10∞
)

| m,n∈ω
}

and B1 :=
{(

(m+1)n+10∞, 0m+1(n+1)∞
)

| m,n ∈ ω
}

. Then A is not separable from B by an

open rectangle exactly when there are ε∈ 2 and continuous maps g :ωω → Y , h :ωω →Z such that

A⊆(g×h)−1(A) and Bε⊆(g×h)−1(B).
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Example. Here we are looking for closed graphs with Borel chromatic number two and of arbitrarily

high finite ∆
0
ξ chromatic number n. There is an example with ξ=1 and n=3 where B0 is involved.

We set C :=
{(

(2m)∞, (2m+1)∞
)

| m∈ω
}

∪ B0,

D :={(2m)∞ | m∈ω} ∪ {0m+1(n+1)∞ | m,n∈ω},

R :={(2m+1)∞ | m∈ω} ∪ {(m+1)n+10∞ | m,n∈ω},

f
(

(2m)∞
)

:=(2m+1)∞ and f
(

0m+1(n+1)∞
)

:=(m+1)n+10∞.

This defines f :D→R whose graph is C . The first part of C is discrete, and thus closed. Assume

that (αk, βk) :=
(

0mk+1(nk+1)∞, (mk+1)nk+10∞
)

∈ B0 and converges to (α, β) ∈ ωω×ωω as k
goes to infinity. We may assume that (mk) is constant, and (nk) too, so that (α, β) ∈ B0, which is

therefore closed. This shows that C is closed. Note that D,R are disjoint and Borel, so that C has

Borel chromatic number two. Let ∆ be a clopen subset of ωω . Let us prove that C∩∆2 or C∩(¬∆)2

is not empty. We argue by contradiction. Then ∆ or ¬∆ has to contain 0∞. Assume that it is ∆, the

other case being similar. Then 0m+1(n+1)∞∈∆ if m is big enough. Thus (m+1)n+10∞ /∈∆ if m
is big enough. Therefore (m+1)∞ /∈∆ if m is big enough. Thus

(

(2m)∞, (2m+1)∞
)

∈C ∩ (¬∆)2

if m is big enough, which is absurd.

We now turn to the general case. Our main lemma is as follows. We equip ωm with the discrete

topology τd, for each m>0.

Lemma Let ξ≥1 be a countable ordinal, n≥1 be a natural number, and X :=ω×ωω. Then we can

find a partial injection f :X→X and a disjoint countable family F of subsets of X such that

(a) f has disjoint domain and range,

(b) Gr(f) is
(

(τd×τ)×(τd×τ)
)

-closed,

(c) there is no sequence (∆i)i<n of ∆0
ξ subsets of (X, τd×τ) such that

(i) ∀i<n Gr(f) ∩∆2
i =∅,

(ii)
⋃

i<n ∆i is (τd×Tξ)-comeager in X,

(d) F has the properties (b)-(d) in Lemma 2.3, where Gξ , ωω, Tξ and τ are respectively replaced

with F , X, τd×Tξ and τd×τ ,

(e) (
⋃

F) ∩
(

Domain(f) ∪ Range(f)
)

=∅.

Proof. We argue by induction on n.

The basic case n = 1

Let Gξ be the family given by Lemma 2.3. We split Gξ into two disjoint subfamilies G0
ξ and G1

ξ

having the property (b) in Lemma 2.3. This is possible since the elements of Gξ are Tξ-nowhere

dense. Let G0, G1 ∈ G0
ξ be disjoint, and ϕ be a nice (Tξ , Tξ)-homeomorphism from G0 onto G1.

We then set f(0, α) :=
(

0, ϕ(α)
)

if α ∈G0, and F :=
{

{n}×G | n ∈ ω ∧ G ∈ G1
ξ

}

. It remains to

check that the property (c) is satisfied. We argue by contradiction, which gives ∆0∈∆
0
ξ . By property

(d) in Lemma 2.3, ∆0 ∩ ({0}×Gε) is (τd×Tξ)-comeager in {0}×Gε for each ε ∈ 2. As f is a

(τd×Tξ, τd×Tξ)-homeomorphism, ∆0 ∩ ({0}×G0) ∩ f−1
(

∆0 ∩ ({0}×G1)
)

is (τd×Tξ)-comeager

in {0}×G0, which contradicts the fact that Gr(f) ∩∆2
0=∅.
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The induction step from n to n+1

The induction assumption gives f and F . Here again, we split F into two disjoint subfamilies F0

and F1 having the property (b) in Lemma 2.3, where Gξ , ωω, Tξ and τ are respectively replaced with

F , X, τd×Tξ and τd×τ . Let (Vp) be a basis for the topology τd×Tξ made of nonempty sets. Fix

p∈ω. By Lemma 2.4, there is a countable family (W p
q )q∈ω , with (τd×τ)-closed union, and made of

pairwise disjoint (τd×τ)-clopen subsets of X intersecting Vp.

• Let b : ω → ω2 be a bijection. We construct, for ~v = (p, q) ∈ ω2 and ε ∈ 2, and by induction on

b−1(~v),

- G~v
ε ∈F0,

- a nice (τd×Tξ, τd×Tξ)-homeomorphism ϕ~v :G~v
0→G~v

1.

We want these objects to satisfy the following:

- G~v
0⊆(Vp ∩W p

q )\(
⋃

m<b−1(~v) G
b(m)
0 ∪G

b(m)
1

τd×Tξ

),

- G~v
1⊆Vq\(G

~v
0 ∪

⋃

m<b−1(~v) G
b(m)
0 ∪G

b(m)
1

τd×Tξ

).

• We now define the desired partial map f̃ : ω×ω×ωω → ω×ω×ωω, as well as F̃ ⊆ 2ω×ω×ωω
, as

follows:

f̃(l, x) :=







(

p+1, ϕp,q(x)
)

if l=0 ∧ x∈Gp,q
0 ,

(

l, f(x)
)

if l>0 ∧ x∈Domain(f).

and F̃ :=
{

{l}×G | l∈ω ∧ G∈F1
}

. Note that f̃ is well-defined and injective, by disjointness of the

(G~v
0 ∪ G~v

1)’s. Identifying X with ω×ω×ωω, we can consider f̃ as a partial map from X into itself

and F̃ as a family of subsets of X (this identification is based on the identification of ω with ω×ω).

(a), (d) and (e) are clearly satisfied.

(b) Assume that
(

(lk, xk), (mk, yk)
)

∈Gr(f̃) tends to
(

(l, x), (m, y)
)

∈(ω×X)2 as k goes to infinity.

We may assume that (lk) and (mk) are constant.

If l=0, then there is p such that p+1=m and (xk, yk)∈Gp,qk
0 ×Gp,qk

1 . As Gp,qk
0 ⊆W p

qk , we may

also assume that (qk) is also constant and equals q. As ϕp,q is nice,
(

(l, x), (m, y)
)

∈Gr(f̃).

If l>0, then (xk, yk)∈Gr(f). As Gr(f) is
(

(τd×τ)×(τd×τ)
)

-closed,
(

(l, x), (m, y)
)

∈Gr(f̃).

(c) We argue by contradiction, which gives (∆i)i≤n. We may assume, without loss of generality, that

({0}×ω×ωω)∩∆n is not meager in ({0}×ω×ωω, τd×Tξ). This gives p∈ω such that ({0}×Vp)∩∆n is

(τd×Tξ)-comeager in V ′
p :={0}×Vp. As V ′

p\∆n∈Σ
0
ξ(τd×τ), ({0}×G

p,q
0 )∩∆n is (τd×Tξ)-comeager

in {0}×Gp,q
0 for each q∈ω.
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As Gr(f̃) ∩∆2
n=∅ and the ϕ~v’s are (τd×Tξ, τd×Tξ)-homeomorphisms, ({p + 1}×Gp,q

1 ) ∩∆n

is (τd×Tξ)-meager in {p + 1}×Gp,q
1 , for each q.

As (ω×ω×ωω)\(
⋃

i≤n ∆i) is (τd×Tξ)-meager in ω×ω×ωω and ∆
0
ξ(τd×τ),

({p+ 1}×Gp,q
1 )\(

⋃

i≤n

∆i)

is (τd×Tξ)-meager in {p+1}×Gp,q
1 , for each q. Thus ({p+1}×Gp,q

1 )∩(
⋃

i<n ∆i) is (τd×Tξ)-comeager

in {p+ 1}×Gp,q
1 , for each q.

Claim The set ({p + 1}×ω×ωω) ∩ (
⋃

i<n ∆i) is (τd×Tξ)-comeager in {p + 1}×ω×ωω.

Indeed, we argue by contradiction. This gives W ∈(τd×Tξ)\{∅} such that

({p + 1}×W ) ∩ (
⋃

i<n

∆i)

is (τd×Tξ)-meager in W ′ := {p + 1}×W . Let q ∈ ω be such that Vq ⊆ W . Then Gp,q
1 ⊆W and

{p + 1}×Gp,q
1 ⊆W ′. As W ′ ∩ (

⋃

i<n ∆i)∈Σ
0
ξ(τd×τ) and ({p + 1}×Gp,q

1 ) ∩W ′ ∩ (
⋃

i<n ∆i)

is (τd×Tξ)-comeager in {p + 1}×Gp,q
1 , W ′ ∩ (

⋃

i<n ∆i) is not (τd×Tξ)-meager in W ′, which is

absurd. ⋄

Now we set ∆′
i :=({p+ 1}×ω×ωω) ∩∆i if i<n. Note that ∆′

i∈∆
0
ξ({p+ 1}×ω×ωω, τd×τ),

Gr(f̃) ∩ (∆′
i)
2 = ∅, and

⋃

i<n ∆′
i is (τd×Tξ)-comeager in {p + 1}×ω×ωω , which contradicts the

induction assumption. �

In order to get our main result, it is enough to apply the main lemma to each n≥ 1. This gives

fn : ω×ωω → ω×ωω. It remains to define f :
⋃

n≥1 ({n}×ω×ωω)→
⋃

n≥1 ({n}×ω×ωω) by

f(n, x) :=fn(x) (we identify (ω\{0})×ω×ωω with ωω).
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