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Abstract
This paper investigates schedulability analysis for thermal-aware real-time sys-

tems. Thermal constraints are becoming more and more critical in new generation
miniaturized embedded systems, e.g. medical implants. As part of this work, we
adapt the PFPASAP algorithm proposed in [1] for energy-harvesting systems to
thermal-aware ones. We prove its optimality for non-concrete fixed-priority task
sets and propose a response-time analysis based on worst-case upper bounds. We
evaluate the efficacy of the proposed bounds via extensive simulation over randomly-
generated task systems.

1 Introduction
The main purpose of real-time systems is to guarantee predictable timing behavior for
controlled devices. Therefore, the correctness of the results provided by such systems
depends not only on the logical correctness of the output but also on the time at which
it is yielded. Several formal models of real-time behavior have been proposed (e.g. task
models such as sporadic, periodic, aperiodic, DAG, etc.). Prior research in real-time
systems have also addressed a wide array of hardware architectures (e.g. monoprocessor,
multiprocessors, memory caches, etc). However, for a new generation of real-time systems
applications, e.g. medical implants, the physical environment poses additional design
challenges.

One such new challenge is the necessity of managing the energy and the thermal be-
havior of systems. As technology scales, chips power consumption and power density are
increasing rapidly. Indeed, the miniaturization of small embedded systems has allowed
new real-time applications. Implantable medical devices (IMD) are an example of these
new embedded systems where managing the thermal aspect is essential. IMDs are in-
creasingly being used in medical treatments (e.g. pacemakers for heart diseases or neural
implants to restore hearing/vision). However, recent studies [20, 13] have shown that the
heat generated by IMDs due to the processor activity is non-negligible. Thus, designing
thermal aware IMDs becomes critical as medical research has shown that a temperature
increase of even 1C◦ can damage tissues [12] and may cause death in extreme cases [18].

Therefore, thermal-aware real-time systems must respect not only timing constraints,
expressed with deadlines, but also thermal constraints which are expressed as a maximum
temperature not to be exceeded. For fixed-priority real-time scheduling on monoprocessor
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platforms, considering this constraint requires the schedulers to add cooling periods. This
additional idle times must be taken into account by scheduling algorithms and included
in schedulability analysis.

Thermal-aware system design presents challenges similar to the design of energy-
harvesting systems. The later collects the environmental energy to store it and use it
to supply real-time systems. The real-time scheduling of these kind of systems must re-
spect tasks deadlines without running out of energy. The similarities with thermal-aware
systems come from the fact that the scheduling for energy-harvesting system has to con-
sider a battery replenishment time (which is analogous to the cooling periods required in
thermal-aware systems). In this work we use the PFPASAP scheduling algorithm proposed
in [1], which was proved to be optimal for non-concrete fixed-priority energy-harvesting
systems, to build a reactive thermal-aware scheduling approach and an approximate sch-
edulability analysis based on upper and lower bounds of tasks worst-case response-time.

The remainder of this paper is organized as follows. Section 2 gives a brief state of the
art about thermal-aware real-time systems. Section 3 specifies and describes the model
and the scope of this work. Section 4 presents the PFPASAP scheduling algorithm and
its optimality for non-concrete systems. Section 5 details an approximate response-time
analysis based on upper and lower bounds of tasks worst-case response time. Section 6
shows some simulations results to evaluate the effectiveness of the proposed schedulability
analysis. Finally, Section 7 concludes this paper.

2 Related Work
In this section we give a brief overview of prior research related to thermal-aware and
energy-aware real-time scheduling. Most works addressing this problem consider Dynamic
Voltage and Frequency Scaling (DVFS) strategies. DVFS consists of scaling down the
CPU speed and thereby lengthening task execution times to reduce energy consumption
and lower the peak temperature [10, 21, 22, 23].

Among existing work, the proposed techniques can be divided into reactive and proac-
tive approaches. The difference between these two approaches is that reactive schemes
adapt to the temperature of the system when it reaches the maximum temperature or a
specific trigger by switching the CPU speed or by changing scheduling decisions. In this
scope, Wang et al. proposed a schedulability analysis for speed scaling scheme for frame-
based task model in [23], and they completed this with a worst-case response time analysis
for FIFO and fixed priority scheduling in [22, 23]. In contrast, proactive approaches set
the configuration of the system judiciously beforehand (CPU speed and scheduling de-
cisions) so that the maximum temperature is never reached [10, 16, 17]. In this scope,
Chen et al. proposed in [9, 10] a proactive EDF-based scheduling approach that changes
the processor speed proactively by requests issued by the scheduler.

There exists also some works that address this scheduling problem without DVFS
schemes by considering processors with only one frequency. In this scope, Ahmed et al.
[2] proposed a technique that computes proactively the length of execution and cooling
intervals so that a certain temperature is never reached. This idea was extended in [11] to
support unpredictable ambient temperature fluctuations. Rehan et al. proposed in [3, 4]
a kind of thermal utilization of the system (using a fluid schedule) and leveraged it to
obtain a necessary and sufficient conditions for systems thermal feasibility.

All the mentioned work have the following limitations :
1) Except for work in the previous paragraph [2, 3, 4, 11], all the proposed solutions

rely on speed scaling to manage energy and temperature. These approaches cannot be
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Figure 1: Thermal model

applied to systems without DVFS capabilities.
2) Most of the scheduling solutions proposed in the literature are EDF-based. Knowing

that static fixed-priority scheduling is highly used in industry, it deserves more attention
and effort to study the fixed-priority real-time scheduling under thermal constraints.

Recently, some results for the scheduling problem of energy-harvesting systems, which
seem to be similar to the thermal aware model, were proposed. In [1, 5, 15] some scheduling
algorithms and schedulability analysis were proposed. It consists of keeping the battery
level enough high to permit task execution. The algorithm proposed in [1] behaves like
a reactive approach in the thermal-aware model. In fact, it delays executions until the
battery is enough replenished to execute at least one time unit. This behavior is similar
to reactive approach that delays executions or switch CPU speed when the maximum
temperature is reached. In this paper we use the PFPASAP algorithm proposed in [1]
to build a reactive approach for the thermal-aware and fixed-priority rel-time systems.
We propose a schedulability analysis based on worst-case response time approximation
techniques.

3 Models

3.1 Task Model
We consider a classical non-concrete real-time task set defined by a set of n sporadic and
independent tasks {τ1, τ2, . . . , τn}. Each task τi is characterized by its priority Pi, its
worst-case execution time Ci, its minimum inter-arrival time Ti, its deadline Di and its
first release time Oi. Deadlines are constrained or implicit, i.e., ∀ i, Di ≤ Ti.

3.2 Thermal Model
In our model, the temperature of the system fluctuates due to heat dissipation when real-
time tasks are executed on the CPU. The temperature must stay between two thresholds
TA and Tmax where Tmax is the maximum tolerated temperature and TA is the ambient
energy. The temperature of the system at time t is denoted as T (t). The only way to
cool down the system is to temporarily suspend task execution. Furthermore, we consider
that the system may be one of two states at any given time: active (i.e., heating) during
which tasks may execute or inactive (i.e., cooling) during which tasks are not permitted
to execute.
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Figure 2: Cooling and Heating Functions

3.2.1 Heating Model

The thermal behavior of a processor can be modeled using an RC circuit [19] shown in
Figure 1. In this model, the heating is modeled by the current denoted P (t) passing
through a thermal resistance R. The thermal capacitance is denoted C. Using this
model, the derivative of the system temperature with respect to time can be calculated
with Fourier’s law [21] given by Equation 1.

T ′(t) = P (t)
C
− T (t)− TA

R× C
(1)

The current passing through the resistance can be separated into two parts: the dy-
namic part PD(t) that evolves linearly with the processor frequency, denoted s, and the
part corresponding to the energy leakage PL(t) which is a function of the temperature.

P (t) = PD(t) + PL(t) (2)
PD(t) = β0s

α (3)
PL(t) = β1T (t) + β2 (4)

Equations 2 to 4 give the formula to compute P (t), where α, β0, β1 and β2 are system
specific constants [21]. We consider only a monoprocessor with active/inactive modes;
thus, during active periods, PD(t) is constant. Let us denote a = β0sα

C
, b = 1

R·C −
β1
C

and
scale T (t) to be T (t) − Rβ2−TA

Rβ1−1 to shift TA to 0. We can now recognize in Equation 1 a
classical linear differential equation:

T ′(t) = a− b× T (t) (5)

Then, the solution is given by:

T (t) = a

b
+
(
T (t0)− a

b

)
· e−b(t−t0) (6)

The heating function only depends on time and constants and is not task-specific.
Recall that the parameters a and b are processor specific constants. Typical settings

for these two variables are b0.228, and a > 1 with α3 (See [2]).
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3.2.2 Cooling Model

During the cooling phases, the processor is inactive. In this paper, we assume for simplicity
that the frequency s is 0. (However, this can easily be generalized to allow some fixed
power dissipation during inactive phases.) Then a = 0 and the formula becomes:

T (t) = T (t0) · e−b(t−t0). (7)

Again, the cooling function only depends on time and is not task specific. Figure 2
shows the curves of cooling and heating functions. We can see that the cooling function
slows down rapidly because of the exponential function. This means that cooling for
several short intervals is better for temperature and thereby for tasks response time than
few and long ones.

4 The PFPASAP algorithm
In [1], a scheduling algorithm for energy harvesting systems called PFPASAP was intro-
duced. This algorithm is a fixed-priority one which takes into account the tasks energy
cost and the battery capacity during scheduling operations for energy-harvesting systems.
Tasks are executed according to their priority when the available energy is enough to ex-
ecute and only replenishes the battery otherwise, jobs execution can be suspended to
replenish energy as much as needed to execute at least one time unit. This algorithm was
proved to be optimal for non-concrete fixed priority energy-harvesting systems. In this
section we adapt this algorithm to thermal-aware systems and we explore its optimality
for the model described in Section 3.

With the thermal constraints, the behavior of PFPASAP becomes as following: it
executes jobs whenever the temperature is enough below Tmax to execute at least one
time unit without exceeding, then, it idles the system to cool down for as long as needed
to resume executions (one time unit is sufficient).

Below, we will first address the PFPASAP worst-case scenario, then we will discuss its
optimality.

4.1 Worst-case scenario
The aim of this section is to prove that the worst-case scenario for non-concrete fixed-
priority thermal-aware systems is still the synchronous activation of tasks but with T (0) =
Tmax.

Figure 3(a) illustrates the case where all the tasks are requested simultaneously. If at
least one higher priority task is requested later, the response time of lower priority tasks
decreases as illustrated in Figure 3(c). Then, if higher priority tasks are requested earlier,
the response time of lower priority tasks cannot be longer than the one in the synchronous
scenario as shown in Figures 3(d). Furthermore, if the initial temperature of the system
is less than Tmax, then, less cooling time is needed which leads to a shorter response time
for all tasks.

Theorem 1. Let Γ denote a non concrete task set composed of n priority-ordered tasks
with constraint or implicit deadlines. The PFPASAP worst-case scenario for any task of
Γ occurs whenever this task is requested simultaneously with requests of all higher priority
tasks and the system temperature is at the maximum level Tmax.
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Figure 3: Worst-case scenario
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To prove this theorem we compare jobs response times in the scenario proposed by the
theorem with all other possible ones. The response time of a job is the difference between
its termination time and its offset or request time.

Proof. Let {τ1, τ2, . . . , τn} be a set of n priority-ordered tasks where τn is the task with
the lowest priority. Let Ssi denote the scenario where task τi and all higher priority tasks
are requested simultaneously at the lower battery level Emin. The worst-case scenario for
a task τi is the one that maximizes its response time, i.e. the scenario that maximizes the
termination date of the first job of the ith priority level.

If Ssi is not the worst scenario, there must be an other one leading to a greater response
time for the ith priority level.

Firstly, we consider the scenario where T (0) < Tmax. In this case the system is not
heated at the maximum. Therefore, the system may need less cooling periods than the
scenario where T (0) = Tmax, and PFPASAP introduces shorter or equal cooling periods
and leads to a shorter response time for all the tasks. This is in contradiction with our
hypothesis, thus, such a scenario cannot lead to longer response times.

Secondly, we consider the scenario with different offsets. Let us denote Sai as the
scenario where T (0) = Tmax and all tasks have different offsets. In this case we distinguish
two possibilities:
(i) Where at least a task of higher priority than τi is requested later: knowing that all the
tasks consume energy and heat the system following the same pattern, i.e., by considering
that the heating comes only from processor energy consumption and that heating is greater
than cooling, task τi will undergo less higher priority interferences, and then, it may need
less cooling to finish. Therefore, the final response time of τi is less than or equal to the
one given by scenario Ssi which is a contradiction. Thus, such a scenario cannot lead to
longer response times.
(ii) Where at least a task of higher priority than τi is requested earlier: when τi is requested
later than a higher priority task, it undergoes less interference from this task because, first,
a part of it was executed before τi request time, and second, the increase of temperature
due to the higher priority task execution cannot be higher than Tmax, and finally, if τi is
requester much later than the higher priority tasks, we just shift the landscape and will
have case (i) like illustrated in Figure 3(d). Therefore, this scenario cannot be worse than
Ssi .

Therefore, in all possible situations, the response-time of a task τi is lesser or equal to
the one led by a synchronous activation of all higher priority tasks when the temperature
is at maximum level.

4.2 The optimality of PFPASAP

The PFPASAP algorithm was proved to be optimal for the fixed-priority scheduling prob-
lem off non-concrete energy-harvesting systems [1] which is close to the same schedul-
ing problem of thermal-aware systems. In this subsection we extend the optimility of
PFPASAP to non-concrete thermal-aware systems.

Theorem 2. The PFPASAP scheduling algorithm is optimal for fixed-priority thermal-
aware non-concrete task sets with constrained or implicit deadlines.

Proof. Let Γ denote a non concrete task set. We suppose that Γ is feasible using a
fixed-priority assignment, but not schedulable with PFPASAP using the same priority
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assignment. This means that at least one task denoted as τk misses its deadline in the
worst-case scenario (see Theorem 1). Indeed, it is sufficient to consider only the first
job because we are dealing only with constrained or implicit deadlines. According to
PFPASAP rules, a deadline miss can occur in the worst-case scenario only in two cases:
1) the workload is greater than the available time, 2) the workload plus the accumulated
cooling time is greater than the available time.

1) if the workload from the critical instant (time 0) to time Dk the first deadline of
τk is alone greater than time interval [0, Di], then, it is obviously impossible to schedule
the first job of τk and higher priority jobs without missing Dk, this is not possible even
without thermal constrains because the available time is not sufficient to schedule all
the workload within [0, Dk]. Then, in this case the task set cannot be feasible with any
algorithm and the supposed algorithm cannot exist.

2) if a deadline is missed with PFPASAP even thought the workload is lesser than the
available time, then, this means that the sum of workload of time interval [0, Dk] and the
needed cooling time is greater than the available time, i.e Dk time units. Knowing that
the cooling periods produced by PFPASAP are as long as needed to execute at least one
time unit which means that they are as short as possible. Furthermore, we know that the
cooling function is exponentially decreasing (See Equation 7), then, the shorter cooling
periods are, the shorter the total needed cooling time is. This is true because the longer
cooling is, the less efficient it is, as we mentioned in Section 3. More formally, cooling x
times one time unit is greater than one time cooling period of length x time units; observe
that e−bx ≤ xe−b for all x ≥ 1. Thus Equation 7) implies

T (0)− T (0) · e−b·x ≥ T (0)− x× T (0) · e−b(1−0) (8)

Therefore, any other schedule than PFPASAP ’s one has necessarily cooling periods of
same length or longer, then, the response time of τk produced by the supposed algorithm
is necessarily greater than Dk. Thus, in this case, no other algorithm can schedule this
task set.

Then we prove that PFPASAP is optimal for non concrete fixed-priority thermal-
constrained task sets with constrained or implicit deadlines.

5 Response-Time Analysis
This section provides a response-time analysis for the schedule produced by the optimal
algorithm PFPasap in the worst-case scenario, i.e., the synchronous release of all the tasks
when T (0) = Tmax. We discuss the difficulty of an exact analysis and then we propose an
approximate one.

5.1 Exact Analysis
The exact analysis provides the exact response time of all tasks. Thus, it must estimate
accurately the length of all cooling and heating periods.

However, this cannot be done with a generic equation because due to the discrete
time, all cooling periods are not of the same length in the actual schedule. Furthermore,
without the effective values of parameters, it is hard to estimate the order and the number
of long and short cooling periods which have a significant impact on the response time
value. Therefore, the only way to get an exact analysis is to simulate the schedule of
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PFPASAP in the worst-case scenario and compute the response time of the first job of
each task.

5.2 Approximate Analysis
The aim of this work is to propose a schedulability analysis for thermal-aware real-time
systems. Such an analysis must consider not only the processor workload but also the
additional cooling time needed to respect the thermal constraints. To cope with the
difficulty of providing an exact analysis, one can propose an approximate one that can be
only sufficient instead of necessary and sufficient. This can be achieved by upper bounding
tasks worst-case response time produced by PFPASAP algorithm.

5.2.1 First Upper bound (UBTmin):

Knowing that PFPASAP cools down the system enough to execute at least one time unit,
cooling periods are as short as possible. Furthermore, we know also that the cooling
function is exponentially decreasing and the heating is asymptotically increasing, then,
one can lengthen jobs response times by putting the cooling units together and the heating
ones together such that Tmax is never exceeded. By doing so, the cooling slows down after
a while and the system needs more time to cool down, and heating becomes faster which
heats up the system in a shorter amount of time.

Description The upper bound of task τi worst-case response time according to UBTmin

is described by Figure 4. It consists of:

• cooling down the system from Tmax to Tmin, where Tmin > TA,1

1Observe that a low Tmin value may result in an extremely pessimistic upper bound due to the nature
of the cooling function; It decreases asymptotically to TA, so waiting until Tmin is too pessimistic because
of the nature of the cooling function.
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• a ceiling function applied to the time from Tmax to Tminto ensure an integer number
of time units (this is safe since it only over estimates the time required to reach
Tmin),

• executing jobs and heating up the system until Tmax is reached or there is no pending
workload,

• repeating this cycle of cooling-heating until there is no pending workload,

• the last cycle may be shorter because of the remaining workload which is shorter
than a full cycle. The corresponding cooling time is adjusted.

The response time upper bound of task τi of priority level-i that is requested simulta-
neously with higher priority tasks with T (0) = Tmax is given by Equation 9{

wn+1
i = N(wni )× (∆c + ∆h) + ∆′c + ∆′h

R
UBTmin
i = wn+1

i = wni
(9)

where :

• N(w) is the number of full cooling-heating cycles needed to execute the workload
w without exceeding Tmax:

N(w) =
⌊
w

∆h

⌋
(10)

• w is the workload of time interval [0, wni [:

w =
∑
j≤i

⌈
wni
Tj

⌉
× Cj (11)

• ∆h is the time to execute jobs and heat up the system from Tmin to Tmax. (Obtained
by solving Equation 6):

∆h =

 ln
(
b·Tmin−a
b·Tmax−a

)
b

 (12)

• ∆c is the time to cool down the system from Tmax to Tmin. (Obtained by solving
Equation 7):

∆c =
⌈

ln(Tmax)− ln(Tmin)
b

⌉
(13)

• ∆′h is the remaining execution time of the busy period:

∆′h = w −N(wni )×∆h (14)

• ∆′c is the cooling time needed for ∆′h:

∆′c =
⌈

ln(Tmax)− ln(T ′min)
b

⌉
(15)

• T ′min is the maximum temperature needed to execute the remaining part of the
workload ∆′h without exceeding Tmax:

T ′min = (Tmax − a/b)eb∆
′
h + a/b (16)
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Theorem 3. An upper bound on the worst-case response time for task τi in the worst-case
scenario described in Section 4.1 can be obtained from a sequence of execution units of
higher priority jobs and the necessary cooling time units where the cooling periods are as
long as needed to cool the system from Tmax to Tmin (Tmin > 0) and the heating periods
are as long as needed to reach Tmax starting from Tmin, as described by Formula 9.

Proof. See appendix A

5.2.2 Parametric Upper bound (UBx):

Description The idea of this upper bound is to keep the same behavior of the PFPASAP
algorithm by cooling down for some time units and then executing jobs until reaching Tmax.
The approximation comes from the fact that time is discrete and that cooling periods are
of a fixed length x (where x ∈ N∗) instead of the minimum length needed to execute at
least one time unit. Then, the execution or the heating periods may not reach Tmax in an
integer number of time units. Thus, we consider only the integer part of heating periods
(with floor function) and that Tmax is exactly or nearly reached at the end of each heating
period which adds additional cooling time than the actual schedule. Figure 5 describes
the scenario used to obtain UBx. It consists of:

• Cooling down the system for x time units, where x a is positive integer that must
be greater or equal to ∆UBx

c the minimum time needed to decrease the temperature
such that the system can execute at least one time unit, i.e. x ≥ ∆UBx

c . Equation
17 computes ∆UBx

c ; the ceiling function is used to respect the discrete time and to
ensure that the system is enough cold to execute at least one time unit.

∆UBx
c =


ln
(

bTmax
(bTmax−a)eb+a

)
b

 (17)

• Then, executing jobs and heating up the system until Tmax is reached (without
exceeding) or there is no pending workload. The length of this period is an integer.
The floor function is used to ensure not exceeding Tmax.
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• Repeating the cooling-heating cycles until there is no pending workload.

• The length of the last cooling period is still the same even if the remaining workload
is smaller.

The upper bound according to UBx of task τi of priority level-i that is requested
simultaneously with higher priority tasks with T (0) = Tmax is given by Equation 18.{

wn+1
i = N(wni )× x+ w

RUBx
i = wn+1

i = wni
(18)

where :

• N(w) is the number of cooling periods needed to execute the workload w without
exceeding Tmax:

N(w) =
⌈

w

∆UBx
h

⌉

• w is the workload of time interval [0, wni [:

w =
∑
j≤i

⌈
wni
Tj

⌉
× Cj

• ∆UBx
h is the time to execute jobs and heat up the system from the temperature

reached after x time units of cooling to Tmax:

∆UBx
h =

 ln
(
b·Tmax·e−b·x−a

b·Tmax−a

)
b

 (19)

We choose cooling periods longer or equal to ∆UBx
c , i.e. x ≥ ∆UBx

c , because it is sufficient
to execute at least one time unit without exceeding Tmax which is close the behavior of
PFPASAP algorithm.

To prove that UBx upper bounds the actual response time, we first check the case when
x = ∆UBx

c . We know that in the actual schedule, the accumulation of the temperature
gained at the end of each heating period, due to the discrete time, is lesser than Tmax.
We denote the gap δ.Thus, this accumulated temperature can be used at least by one
heating period which is supposed to be longer as shown in Figure 6. Then, we compare
the length of the new heating period ∆′h (See Equation 20) to the one of UBx, i.e. ∆UBx

h ,
and the total number of cooling/heating produced by UBx, i.e., NUBx(w), and the one
produced by the actual schedule denoted N ′(w).

{
Tmax = (a+ (b · T2 − a)e−b·∆′h)/b
T2 = (Tmax − δ)e−b·x

∆′h =

 ln
(
b·(Tmax−δ)·e−b·x−a

b·Tmax−a

)
b

 (20)
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Lemma 1. For x = ∆UBx
c , each heating interval of the actual schedule ∆′h given by

Equation 20 is greater or equal than UBx’s ones, i.e. ∆UBx
h ≤ ∆′h.

Proof. Let’s suppose that ∆UBx
h > ∆′h, then:

∆UBx
h > ∆′h ⇒ ln
(
b·Tmax·e−bx−a

bTmax−a

)
b

 >
 ln

(
b(Tmax−δ)e−bx−a

bTmax−a

)
b


⇒

ln
(
bTmaxe−bx−a
bTmax−a

)
b

>
ln
(
b(Tmax−δ)e−bx−a

bTmax−a

)
b

⇒ bTmaxe
−bx − a

bTmax − a
>
b(Tmax − δ)e−bx − a

bTmax − a
Knowing that bTmax < a, then:

∆UBx
h > ∆′h ⇒ bTmaxe

−bx − a < b(Tmax − δ)e−bx − a
⇒ δ < 0

Contradiction because b < 1, δ ≥ 0 and b · Tmax < a.
Therefore, we prove by contradiction that ∆UBx

h ≤ ∆′h
Lemma 2. For x = ∆UBx

c , the number of cooling periods produced by a PFPASAP actual
schedule denoted N ′(w) is lesser or equal to the ones produced by UBx, i.e. N ′(w) ≤
NUBx(w).

Proof. Let’s suppose that N ′(w) > NUBx(w). From Lemma 1 we know that ∆UBx
h ≤ ∆′h

at least for one time, then:

N ′(w) =
⌈
w −∆′h
∆UBx
h

⌉
+ 1 =

⌈
w − (∆UBx

h + δ)
∆UBx
h

⌉
+ 1

where δ ≥ 0. Then, N ′(w) can be written as following:

N ′(w) =
⌈
w − δ
∆UBx
h

⌉
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Therefore, if N ′(w) > NUBx(w), then:

N ′(w) > NUBx(w) ⇒
⌈
w−δ

∆UBx
h

⌉
>
⌈

w

∆UBx
h

⌉
⇒ w−δ

∆UBx
h

> w

∆UBx
h

⇒ δ < 0

Contradiction, because ∆′h ≥ ∆UBx
h and δ ≥ 0. Therefore, we prove that N ′(w) ≤

NUBx(w)

Theorem 4. An upper bound on the worst-case response time for task τi in the worst-case
scenario described in Section 4.1 can be obtained from a sequence of execution units of τi
and those of higher priority jobs and the necessary cooling time units where the cooling
periods are of x time units and the heating periods are integers and as long as needed to
reach Tmax (without exceeding) after x time units of cooling, as described by Formula 18.

Proof. To prove this theorem, we have to first the case where x = ∆UBx
c , and the one

where x > ∆UBx
c .

Case where x = ∆UBx
c From Lemma 1 and Lemma 2 we know that N ′(w) ≤ NUBx(w),

then:

N ′(w) ≤ NUBx(w) ⇒ N ′(wni )x+ wni ≤ NUBx(wni )x+ wni
⇒ w′i ≤ wUBxi ⇒ R′i ≤ RUBx

i

⇒ R′i ≤ RUBx
i

Hence, when x = ∆UBx
c , UBx is an upper bound of tasks worst-case response time ac-

cording to PFPASAP algorithm.

Case where x > ∆UBx
c Lengthening cooling periods by increasing the x parameter

is expected to increase the pessimism of UBx by increasing tasks response time over
estimation given by Equation 18. To prove that, one can check if the UBx’s response time
computation function is increasing. From Equation 18, the response time function can be
written as follows:

wn+1
i =


w ln

(
b·Tmax·e−b·x−a

b·Tmax−a

)
b




× x+ w

Recall that the ceil function is used to ensure a non null integer length for cooling pe-
riod, and that floor function is used ensure never exceeding Tmax after a heating period.
Even though, these two functions contribute to increase the pessimism of UBx, removing
them does not change the response time function monotonicity. Then, we can study the
monotonicity of this new function that we call f(x) by computing its derivative function
as follows:

f(x) = w · b · x
ln
(
b·Tmax·e−b·x−a

b·Tmax−a

) + w
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Figure 7: f ′(x)’s sign

f ′(x) =
b · ln

(
b·Tmax·e−b·x−a

b·Tmax−a

)
+ b3·Tmax·x·e−b·x

b·Tmax·e−b·x−a(
ln
(
b·Tmax·e−b·x−a

b·Tmax−a

))2

Due to the lack of space, we do not show the whole study of f(x)’s sign, we do this
only with deductions. Thus, the sign of f ′(x) depends only on the numerator part of the
fraction, we denote this part g(x). Then, knowing that g(0) = ln(a/(a− bTmax)) > 0, we
can say that g(x) is positive in interval [1,+∞[ because first the left part (the logarithm
part) is positive, because of the logarithm function, and increasing, due to to the reverse
exponential function; and second the right part is negative, because b · Tmax < a, and
slightly decreasing from 0 for a while and then it increases asymptotically to 0 as shown
in Figure 7. Therefore, f ′(x) is positive which means that f(x) is increasing in interval
[1,+∞[, and then tasks response time according to UBx increases when x is increasing.

Therefore we prove that UBx upper bounds the actual PFPASAP worst-case response
time.

5.2.3 Lower bound (LBx=1):

Knowing that the actual schedule respects the discrete time constraint, we can compute
a lower bound of the actual tasks worst-case response time by violating this constraint,
i.e., allowing non-discrete execution times (See 8). The following points summarize the
behavior of LBx=1:

• Cooling down the system for one time unit. This is sufficient because continous
time allows executing less than one time unit.

• Then, executing jobs and heating up the system until Tmax is reached or there is no
pending workload; this length of period is not necessarily integer.

• Repeat this cycle cooling-heating until there is not pending workload

15
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The lower bound of task τi of priority level-i that is requested simultaneously with
higher priority tasks with T (0) = Tmax is given by Equation 21{

wn+1
i = N(wni ) + w

Ri = wn+1
i = wni

(21)

where :

• N(w) is the number of cooling periods needed to execute the workload w without
exceeding Tmax:

N(w) =
⌈

w

∆LBx=1
h

⌉
(22)

• w is the workload of time interval [0, wni [.

• ∆LBx=1
h is the time to execute jobs and heat up the system from the temperature

reached after one time unit of cooling to exactly Tmax:

∆LBx=1
h =

ln
(
b·Tmax·e−b−a
b·Tmax−a

)
b

(23)

Conjecture 1. A lower bound on the worst-case response time for task τi in the worst-
case scenario described in Section 4.1 can be obtained from a sequence of execution units
of τi and higher priority jobs and the necessary cooling time units where the cooling periods
are of one time unit and the heating periods are continuous (not necessarily integers) and
as long as needed to reach exactly Tmax after one time unit of cooling, as described by
Formula 21.

We do not prove the conjecture due to space limitation.

5.2.4 UBTmin vs. UBx

The tightness of the upper bound UBx relative to UBTmin depends on the parameter
x. In fact, the greater x is, the more pessimistic UBx is because of the nature of the
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cooling function which is asymptotically decreasing to TA. Then, for small values of x,
UBx is tighter and for great values UBTmin is. The experiments presented in Section 6
demonstrates the differences in practice between UBx and UBTmin in term of tightness
and complexity.

5.2.5 Utilization bound

Under thermal constraints, cooling periods are needed to prevent the system to exceed
Tmax. This means that for a certain processor utilization, which determines the time in
which the processor is occupied, more time is needed for cooling which means that the
processor cannot be used at 100%. One can use this idea to propose a new maximum
processor utilization that can respect the thermal constraints. In the following we discuss
utilization bounds that consider cooling time.

Maximum utilization Without considering thermal constraints, task sets cannot be
feasible with a processor utilization greater than 100% for monoprocessor platforms. Fur-
thermore, knowing that respecting the thermal constraints needs to add some cooling
time, then, it is obvious that a task sets with a processor utilization of 100% cannot be
feasible with PFPASAP . To compute the maximum supportable processor utilization that
take into account cooling time, one can use the idea of over estimating response times,
by over estimating the cooling time needed to execute the workload of one hyper-period.
We can use for instance the idea of UBx to compute an upper bound for the maximum
supportable processor utilization.
Lemma 3. An upper bound of the processor utilization U = ∑

1≤i≤nCi/Ti for thermal-
aware fixed-priority task sets can be obtained by Equation 24.

U ≤ ∆UBx
h

∆UBx
h + x

(24)

Proof. We first upper bound the workload of one hyper period with UBx then we compute
the corresponding processor utilization, and finally we compute the maximum achievable
utilization. The workload of an hyper-period L can be obtained by multiplying L by the
processor utilization U . Then, we can replace w by U · L in Equation 18 to compute the
time needed (cooling + workload) to satisfy the workload U ·L. Finally, we can compute
the new utilization u∗, that considers cooling time, by dividing the time demand (cooling
+ workload) by the available time L, Equation 25 shows how to compute U∗.

U∗ =

⌈
U ·L

∆UBx
h

⌉
· x+ U · L

L
(25)

For a task set to be feasible, the new utilization U∗ must be lesser than 1 because the
available time must be greater or equal to the time demand. Then,

U∗ ≤ 1 ⇒

⌈
U·L

∆UBx
h

⌉
·x+U ·L

L
≤ 1

⇒
U·L·x
∆UBx
h

+U ·L

L
≤ 1

⇒ U ·
(

x

∆UBx
h

+ 1
)
≤ 1

⇒ U ≤ ∆UBx
h

∆UBx
h

+x
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Liu and Layland bound We can use the same reasoning as the above utilization upper
bound to propose a sufficient and pessimistic feasibility test based on Liu and Layland
bound. In fact, we can compare the total time utilization (processor and cooling) to Liu
and Layland bound.

Lemma 4. An upper bound of the processor utilization U = ∑
1≤i≤nCi/Ti for thermal-

aware fixed-priority task sets with implicit deadlines can be obtained by Equation 26.

U ≤ ∆UBx
h · n( n

√
2− 1)

∆UBx
h + 1

(26)

Proof. To prove this Lemma we just have to compare the over estimated utilization U∗
given by Equation 25 to Liu and Layland bound.

U∗ ≤ n( n
√

2− 1) ⇒

⌈
U·L

∆UBx
h

⌉
·x+U ·L

L
≤ n( n

√
2− 1)

⇒
U·L·x
∆UBx
h

+U ·L

L
≤ n( n

√
2− 1)

⇒ U ·
(

x

∆UBx
h

+ 1
)
≤ n( n

√
2− 1)

⇒ U ≤ ∆UBx
h
·n( n
√

2−1)
∆UBx
h

+x

6 Performance Evaluation
In this section, we present the results of an empirical investigation, examining the effec-
tiveness of our sufficient schedulability tests.

6.1 Taskset generation
To perform these experiments, we randomly generated 100000 task sets, varying the
processor utilization. We varied U in the range [0.05, 1] in steps of 0.05. Hence we obtained
5000 distinct task sets for each U step. Each tasks set comprised 10 tasks. The thermal
parameters was set as following, Tmax = 32 C◦, b = 0.228, and a = β0 · S3 = 8. These
parameters are the ones of the whole system (including an eventual cooling device) and
correspond to a classical Intel Pentium processor parameters [11]. The task parameters
were randomly generated as follows: task processor utilization (Ui = Ci/Ti) using the
U-Unifast Discard algorithm [7], and periods randomly generated between 2 and 25200
time units with a hyper-period limitation technique [14]. Task deadlines were implicit.

We used YARISS as a simulation environment [8] which respects the following hy-
potheses: discrete time (all scheduling operations are performed before or after one time
unit), the heating behavior follows the Fourier’s law (See Equation 6) and temperature
values are real numbers.

6.2 Schedulability tests investigated
We investigated the performance of the following schedulability tests.

SIM : is an empirical necessary and sufficient test based on simulating the schedule
of PFPASAP over more than one hyper-period, starting with synchronous release and the
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maximum temperature level which corresponds to the worst-case scenario discussed in
Section 4.1.

UBTmin : the sufficient test presented in Section 5.2.1, we consider that Tmin = 1 C◦.
UBx: the sufficient test presented in Section 5.2.2, the parameter x is varied from 1

to 18.
LBx=1: the necessary test presented in Section 5.2.3.
CFP : the exact test for fixed priority ignoring thermal and energy constraints. This

was used to provide a schedulability bound, considering only processing time.
UTZ: the necessary condition described in Section 5.2.5.
LnL: the sufficient condition described in Section 5.2.5.

6.3 Experiments
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Figure 9: Percentage of Task sets schedulable over U variation

Figure 9 shows how the percentage of task sets that are deemed schedulable by each
of the tests varies with processor utilization. The CFP test has notionally the highest
performance since it is widely optimistic and ignores thermal considerations. When tem-
perature is considered, UTZ, LBx=1 provide necessary tests, upper bounding the number
of task sets that are proved to be schedulable by the exact empirical test SIM . We
observe that the results confirm that UBTmin and UBx provide sufficient schedulability
tests and that for x = 1, UBx is tighter bound than UBTmin , with a larger improvement
at higher utilization levels. Furthermore, this experiment confirms also the validity of the
utilization bounds given in Section 5.2.5 and 5.2.5, withe considered thermal parameters,
the maximum achievable utilization for 10 tasks is 80% for UTZ and the adapted Liu and
Layland bound is 57%.
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Figure 10: Schedulability by Varying x

Figure 10 compares the pessimism of UBTmin based shcedulability test to UBx’s one
by varying the x parameter. We observe that UBx stays less pessimistic than UBTmin

for small values (1 ≤ x ≤< 14 in this experiment), however, it becomes more pessimistic
starting from x = 14. This result is as expected because the loner cooling periods are,
the slower temperature decreases and the longer response times are.

Figure 11 shows average deviation of bounds from the exact response time given by
simulations over processor utilization. The upper bounds have positive values and lower
bounds have negative values (the deviation of SIM is 0 because it it gives the exact
response time). We can see that deviation of UBx, LBx=1 and CFP are still stable over
utilization variation in contrast of UBTmin which behaves badly when utilization goes high.
We notice also that when x = 1, UBx and LBx=1 are very close to the actual response
time which makes them very interesting tools for approximate schedulability analysis.
However, increasing x leads UBx to be less precise, when x > 14, UBx behaves as bad as
UBTmin or worse.

We also perform further set of experiments showing how schedulability depends on dif-
ferent parameters, including deadlines model and the number of tasks, via the Weighted
Schedulability Measure [6]. The conclusions are the following. By varying relatives dead-
lines, we observe that all of the schedulability tests are influenced by the tightness of
deadlines to a similar degree, with heavily constrained deadlines having significant im-
pact on schedulability in all cases. We observe also that when we measure the trade-off
between tests rate of schedulability and their overhead, the loss of schedulablity is higher
than the gain of overhead. More details about these experiments are available in the
Appendix.
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7 Conclusion
In this paper, we addressed the problem of fixed-priority real-time scheduling for thermal-
aware systems, where both time and thermal constraints have to be met. Previous research
showed that the scheduling policy PFPASAP is optimal among all fixed-priority scheduling
algorithms for non-concrete energy-harvesting systems. The main contributions of this
paper are as follows: we adpated PFPASAP algorithm to the thermal-aware model, we
proved its optimality and we proposed two schedulability tests based on response-time
upper bounds UBTmin and UBx which is a parametric bound. Finally we performed
simulations to validate the theoretical results. As future work, we plan to study deeply
the possible similarities between energy-harvesting model and the thermal-aware’s one
and to explore more adaptable and extensible results of each model.

A Proof of Theorem 3
In the computation of UBTmin , the cooling periods are as long as needed to cool down
the system from Tmax to Tmin and the execution periods are as long as needed to heat
up the system from Tmin to Tmax. Furthermore, we know that in the actual schedule
produced by PFPASAP algorithm for task τi in the critical instant, a cooling period is as
long as needed to execute at least one time unit. The length of this period is shorter or
equal than a cooling period of UBTmin , and thus, by repeating these short cooling/heating
cycles, it cools down the system faster than fewer and longer cooling periods. Then, to
prove Theorem 3, we suppose that the actual schedule has at least one short cycle and
we compare the two response times by using Fourier’s law described by Equation 1.
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As described in Figure 12, we suppose that the system cools down for one time unit
from Tmax to T1 (See Equation 27), and then heats up for one time unit reaching tem-
perature T2 (See Equation 27). After that, we follow the same schedule as UBTmin by
finishing the cooling period needed to finish the workload ∆h − 1 and reach Tmax (See
Equation 28). The temperature of the system after this cooling period is denoted T3 (See
Equation 27). 

T1 = Tmax · e−b

T2 = a

b
+
(
T1 −

a

b

)
e−b

Tmax = a

b
+
(
T3 −

a

b

)
e−b·(∆h−1)

T3 = a+ (b · Tmin − a) · e−b
b

T3 = T2 × e−b·∆
′′
c

∆′′c =
⌈

ln(T2)− ln(T3)
b

⌉
(27)

∆′′c =


ln
(
a+(b·Tmax·e−b−a)·e−b
a+(b·Tmin−a)·e−b

)
b

 (28)

Let’s now compare the response time given by this assumption and the one given by
UBTmin . Knowing that the first step of cooling, i.e., the first time unit or between Tmax
and T1, is the same for both cases, and by supposing that after reaching Tmax at the end
of the first heating cycle, i.e., form temperature T3 to Tmax, the actual schedule follows
the same pattern as UBTmin cycles (See Figure 12), if UBTmin does not upper bound the
actual response time, then the total cooling time needed for ∆h workload in the actual
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schedule is greater than the one of UBTmin , i.e., ∆′′c + 1 > ∆c. Knowing that ∆c can be
written as Equation 29

∆c = 1 +
⌈

ln(T1)−ln(Tmin)
b

⌉
= 1 +


ln
(
Tmax·e−b
Tmin

)
b

 (29)

Theretofore, if ∆′′c + 1 > ∆c, then,

∆′′c + 1 > ∆c ⇒
ln
(
a+(b·Tmax·e−b−a)·e−b
a+(b·Tmin−a)·e−b

)
b

 >


ln
(
Tmax·e−b
Tmin

)
b


⇒ ln

a+
(
b · Tmax · e−b − a

)
· e−b

a+ (b · Tmin − a) · e−b

 > ln
(
Tmax · e−b

Tmin

)

⇒
a+

(
b · Tmax · e−b − a

)
· e−b

a+ (b · Tmin − a) · e−b >
Tmax · e−b

Tmin

⇒ a+ (b · Tmin − a) · e−b
a+ (b · Tmax · e−b − a) · e−b <

Tmin
Tmax · e−b

⇒ 1− b · e−b(Tmaxė−b − Tmin)
a+ (b · Tmax · e−b − a) · e−b < 1− (Tmax · e−b − Tmin)

Tmax · e−b
⇒ b · e−2b · Tmax > a+ (b · Tmax · e−b − a) · e−b
⇒ b · e−2b · Tmax − b · e−2b · Tmax > a(1− e−b)
⇒ e−b > 1 contradiction!

Therefore, we prove by contradiction that ∆′′c+1 ≤ ∆c, and then UBTmin upper bounds
the actual worst-case response time.

B Weighted Schedulability
As well as processor utilization, task set schedulability is dependent on a number of other
key parameters, including: tasks deadlines model and the number of tasks. Evaluating
all possible combinations of these parameters is not possible, instead, the evaluation in
this section varies one parameter at a time, with the results presented in terms of the
weighted schedulability measure [6].

The figures in this section show the weighted schedulability measure Wy(p) for each
schedulability test y as a function of parameter p. For each value of p, this measure
combines results for all of the task sets Γ generated for all of a set of equally spaced
utilization levels (5% to 100% in steps of 5%). Deadlines are constrained or implicit.

Let Sy(Γ, p) be the binary result (1 or 0) of schedulability test y for a task set Γ with
parameter value p:

Wy(p) =
(∑
∀Γ
UΓ × Sy(Γ, p)

)
/
∑
∀Γ
UΓ (30)

where UΓ is the processor utilization of taskset Γ. The weighted schedulability measure
reduces what would otherwise be a 3-dimensional plot to 2 dimensions [6]. Weighting the
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individual schedulability results by task set utilization reflects the higher value placed on
being able to schedule higher utilization task sets.
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Figure 13: Varying relative deadlines in [Ci, Ti]

Figure 13 shows the impact of constrained deadlines on performance. Here we vary
the deadlines from heavily constrained where Di−Ci is 10% of Ti−Ci to 100% of Ti−Ci
(i.e. implicit deadlines). We observe that all of the schedulability tests are influenced by
the tightness of deadlines to a similar degree, with heavily constrained deadlines having
significant impact on schedulability in all cases.

Figure 14 shows the impact of the number of tasks on the effectiveness of the feasibility
tests. We can see that they the number of tasks does not alter the feasibility rate of all
the bounds.

Figure 15 shows the trade-off of schedulability and overhead between UBx and UBTin

over parameter x variation. The shown percentages represent the percentage of gained
or lost schedulability and overhead comparing to UBTmin . For example, for x = 1, The
schedulability test based on UBx=1 has more than 100% of schedulability and almost
40% more overhead than UBTin . Positive values mean better performances than UBTin

and negative value mean worse performances. We observe that increasing parameter x
decreases the percentage of schedulable task sets, however, it creases the test complexity
or overhead. We observe also that the loss of schedulablity is higher than the gain of
overhead.
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