
HAL Id: hal-01016114
https://hal.science/hal-01016114v2

Submitted on 20 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Response Time Analysis for Thermal-Aware Real-Time
Systems Under Fixed-Priority Scheduling

Younès Chandarli, Nathan Fisher, Damien Masson

To cite this version:
Younès Chandarli, Nathan Fisher, Damien Masson. Response Time Analysis for Thermal-
Aware Real-Time Systems Under Fixed-Priority Scheduling. IEEE 18th International Symposium
on Real-Time Distributed Computing (ISORC), Apr 2015, Auckland, New Zealand. pp.84-93,
�10.1109/ISORC.2015.34�. �hal-01016114v2�

https://hal.science/hal-01016114v2
https://hal.archives-ouvertes.fr

Response Time Analysis for Thermal-Aware
Real-Time Systems Under Fixed-Priority

Scheduling

Younès Chandarli, Nathan Fisher, Damien Masson

October 20, 2015

Abstract

This paper investigates schedulability analysis for thermal-aware real-
time systems. Thermal constraints are becoming more and more critical
in new generation miniaturized embedded systems, e.g. medical implants.
As part of this work, we adapt the PFPASAP algorithm proposed in [1]
for energy-harvesting systems to thermal-aware ones. We prove its opti-
mality for non-concrete1 fixed-priority task sets and propose a response-
time analysis based on worst-case response-time upper bounds. We eval-
uate the efficacy of the proposed bounds via extensive simulation over
randomly-generated task systems.

1 Introduction
The main purpose of real-time systems is to guarantee predictable timing be-
havior for controlled devices. Therefore, the correctness of the results provided
by such systems depends not only on the logical correctness of the output but
also on the time at which it is yielded. Several formal models of real-time behav-
ior have been proposed (e.g. task models such as sporadic, periodic, aperiodic,
DAG, etc.). Prior research in real-time systems have also addressed a wide
array of hardware architectures (e.g. monoprocessor, multiprocessors, memory
caches, etc). However, for a new generation of real-time systems applications,
e.g. medical implants, the physical environment poses additional design chal-
lenges.

One such new challenge is the necessity of managing the energy and the
thermal behavior of systems. As technology scales, chips power consumption
and power density are increasing rapidly. Indeed, the miniaturization of small
embedded systems has allowed new real-time applications. Implantable medical
devices (IMD) are an example of these new embedded systems where managing
the thermal aspect is essential. IMDs are increasingly being used in medical

1I.e., we make no assumptions on tasks first release times and the initial battery level or
temperature.

1

treatments (e.g. pacemakers for heart diseases or neural implants to restore
hearing/vision). However, recent studies [22, 14] have shown that the heat gen-
erated by IMDs due to the processor activity is non-negligible. Thus, designing
thermal aware IMDs becomes critical as medical research has shown that a tem-
perature increase of even 1C◦ can damage tissues [13] and may cause death in
extreme cases [20].

Therefore, thermal-aware real-time systems must respect not only timing
constraints, expressed with deadlines, but also thermal constraints which are
expressed as a maximum temperature not to be exceeded. For fixed-priority
real-time scheduling on monoprocessor platforms, considering this constraint
requires the schedulers to add cooling periods. These additional idle times must
be taken into account by scheduling algorithms and included in schedulability
analysis.

Thermal-aware system design presents challenges similar to the design of
energy-harvesting systems. The later collects the environmental energy to store
it and use it to supply real-time systems. The real-time scheduling of these kind
of systems must respect tasks deadlines without running out of energy. The
similarities with thermal-aware systems come from the fact that the schedul-
ing for energy-harvesting system has to consider a battery replenishment time
(which is analogous to the cooling periods required in thermal-aware systems).
In this work we use the PFPASAP scheduling algorithm proposed in [1], which
was proved to be optimal for non-concrete fixed-priority energy-harvesting sys-
tems, to build a reactive thermal-aware scheduling approach and an approximate
schedulability analysis based on upper and lower bounds of tasks worst-case
response-time.

The remainder of this paper is organized as follows. Section 2 gives a brief
state of the art about thermal-aware real-time systems. Section 3 specifies and
describes the model and the scope of this work. Section 4 presents the PFPASAP
scheduling algorithm and its optimality for non-concrete systems. Section 5
details an approximate response-time analysis based on upper and lower bounds
of tasks worst-case response time. Section 6 shows some simulations results
to evaluate the effectiveness of the proposed schedulability analysis. Finally,
Section 7 concludes this paper.

2 Related Work
In this section we give a brief overview of prior research related to thermal-aware
and energy-aware real-time scheduling. Most works addressing this problem
consider Dynamic Voltage and Frequency Scaling (DVFS) strategies. DVFS
consists of scaling down the CPU speed and thereby lengthening task execution
times to reduce energy consumption and lower the peak temperature [11, 23,
24, 25].

Among existing work, the proposed techniques can be divided into reactive
and proactive approaches. The difference between these two approaches is that
reactive schemes adapt to the temperature of the system when it reaches the

2

maximum temperature or a specific trigger by switching the CPU speed or by
changing scheduling decisions. In this scope, Wang et al. proposed a sched-
ulability analysis for speed scaling scheme for frame-based task model in [25],
and they completed this with a worst-case response time analysis for FIFO and
fixed priority scheduling in [24, 25]. In contrast, proactive approaches set the
configuration of the system judiciously beforehand (CPU speed and scheduling
decisions) so that the maximum temperature is never reached [11, 18, 19]. In
this scope, Chen et al. proposed in [10, 11] a proactive EDF-based scheduling
approach that changes the processor speed proactively by requests issued by the
scheduler.

There exists also some works that address this scheduling problem without
DVFS schemes by considering processors with only one frequency. In this scope,
Ahmed et al. [2] proposed a technique that computes proactively the length of
execution and cooling intervals so that a certain temperature is never reached.
This idea was extended in [12] to support unpredictable ambient temperature
fluctuations. Rehan et al. proposed in [3, 4] a kind of thermal utilization of
the system (using a fluid schedule) and leveraged it to obtain a necessary and
sufficient conditions for systems thermal feasibility.

All the mentioned work have the following limitations:
1) Except for work in the previous paragraph [2, 3, 4, 12], all the proposed

solutions rely on speed scaling to manage energy and temperature. These ap-
proaches cannot be applied to systems without DVFS capabilities.

2) Most of the scheduling solutions proposed in the literature are EDF-based.
Knowing that static fixed-priority scheduling is highly used in industry, it de-
serves more attention and effort to study the fixed-priority real-time scheduling
under thermal constraints.

Recently, some results for the scheduling problem of energy-harvesting sys-
tems, which seem to be similar to the thermal aware model, were proposed. In
[1, 5, 17] some scheduling algorithms and schedulability analysis were proposed.
It consists of keeping the battery level high enough to permit task execution.
The algorithm proposed in [1] behaves like a reactive approach in the thermal-
aware model. In this paper we use the PFPASAP algorithm proposed in [1] to
build a reactive approach for the thermal-aware and fixed-priority real-time sys-
tems. We propose a schedulability analysis based on tasks worst-case response
time approximation techniques.

3 Models

3.1 Task Model
We consider a classical non-concrete real-time task set defined by a set of n
priority-ordered sporadic and independent tasks {τ1, τ2, . . . , τn} where τn is
the lowest priority task. Each task τi is characterized by its priority Pi, its
worst-case execution time Ci, its minimum inter-arrival time Ti, its deadline
Di and its first release time Oi. Deadlines are constrained or implicit, i.e.,

3

R

C
TA

T(t)

P(t)

Figure 1: Thermal model

 0 10 20 30 40 50

T(
t)

t

Cooling and Heating functions

cooling(x)
Tmax

a/b
heating(x)

Figure 2: Cooling and Heating Functions

∀ i, Di ≤ Ti.

3.2 Thermal Model
In our model, the temperature of the system fluctuates due to heat dissipation
when real-time tasks are executed on the CPU. The temperature must stay
between two thresholds TA and Tmax where Tmax is the maximum tolerated
temperature and TA is the ambient energy. The temperature of the system at
time t is denoted as T (t). To cool down the system, we consider that tasks
execution is temporarily suspended. Furthermore, we assume that the system
may be in one of two states at any given time: active (i.e., heating) during
which tasks may execute or inactive (i.e., cooling) during which tasks are not
permitted to execute.

3.2.1 Heating Model

The thermal behavior of a processor can be modeled using an RC circuit [21]
shown in Figure 1. In this model, the heating is modeled by the current de-
noted P (t) passing through a thermal resistance R. The thermal capacitance
is denoted C. Using this model, the derivative of the system temperature with

4

respect to time can be calculated with Fourier’s law [23] given by Equation 1.

T ′(t) =
P (t)

C
− T (t)− TA

R× C
(1)

The current passing through the resistance can be separated into two parts:
the dynamic part PD(t) that evolves linearly with the processor frequency, de-
noted s, and the part corresponding to the energy leakage PL(t) which is a
function of the temperature.

P (t) = PD(t) + PL(t) (2)
PD(t) = β0s

α (3)
PL(t) = β1T (t) + β2 (4)

Equations 2 to 4 give the formula to compute P (t), where α, β0, β1 and
β2 are system specific constants [23]. We consider only a monoprocessor with
active/inactive modes; thus, during active periods, PD(t) is constant. Let us
denote a = β0s

α

C , b = 1
R·C −

β1

C and scale T (t) to be T (t)− Rβ2−TA
Rβ1−1 to shift TA to

0. We can now recognize in Equation 1 a classical linear differential equation:

T ′(t) = a− b× T (t) (5)

Then, the solution is given by:

T (t) =
a

b
+
(
T (t0)− a

b

)
· e−b(t−t0) (6)

In this work, we assume that heating comes mainly from processor activity
and that the heating produced by the other components of the system has
negligible impact on its global thermal behavior. For this reason, the considered
heating function only depends on time and constants and is not task-specific.

Recall that the parameters a and b are processor specific constants. Typical
settings for these two variables are b ≈ 0.228, and a > 1 with α ≈ 3 (See [2]).

3.2.2 Cooling Model

During the cooling phases, the processor is inactive. In this paper, we assume
for simplicity that the frequency s is 0. (However, this can easily be generalized
to allow some fixed power dissipation during inactive phases). Then a = 0 and
the equation becomes:

T (t) = T (t0) · e−b(t−t0). (7)

Again, the cooling function only depends on time and is not task specific.
Figure 2 shows the curves of cooling and heating functions. We can see that
the cooling function slows down rapidly because of the exponential function.
This means that cooling for several short intervals is better for temperature and
thereby for tasks response time than few and long ones.

5

4 The PFPASAP algorithm
In [1], a scheduling algorithm for energy harvesting systems called PFPASAP
was introduced. This algorithm is a fixed-priority one which takes into account
tasks energy consumption and the battery capacity during scheduling operations
for energy-harvesting systems. Tasks are executed according to their priority
when the available energy is enough to execute and only replenishes the bat-
tery otherwise, jobs execution can be suspended to replenish energy as much as
needed to execute at least one time unit. This algorithm was proved to be op-
timal for non-concrete fixed-priority energy-harvesting systems. In this section
we adapt this algorithm to thermal-aware systems and we explore its optimality
for the model described in Section 3.

With the thermal constraints, the behavior of PFPASAP becomes as follow-
ing: it executes jobs whenever the temperature is enough below Tmax to execute
at least one time unit without exceeding Tmax, then, it idles the system to cool
down as long as needed to resume executions.

Below, we first address the PFPASAP worst-case scenario, then we discuss
its optimality from real-time scheduling point of view.

4.1 Worst-case scenario
The aim of this section is to prove that critical instant or the worst-case scenario
for non-concrete fixed-priority thermal-aware systems is still the synchronous
release of all tasks but with T (0) = Tmax.

Figure 3(a) illustrates the case where all tasks are requested simultaneously.
If at least one higher priority task is requested later, the response time of lower
priority tasks decreases as illustrated in Figure 3(c). Then, if higher priority
tasks are requested earlier, the response time of lower priority tasks cannot
be longer than the one of the synchronous scenario as shown in Figures 3(d).
Furthermore, if the initial temperature of the system is lesser than Tmax, then,
less cooling time is needed which leads to shorter response times for all tasks.

Theorem 1. Let Γ denote a non-concrete task set composed of n priority-
ordered tasks with constraint or implicit deadlines. The PFPASAP worst-case
scenario for any task of Γ occurs whenever this task is requested simultaneously
with requests of all higher priority tasks and the system temperature is at the
maximum level Tmax.

Proof. Let {τ1, τ2, . . . , τn} be a set of n priority-ordered tasks where τn is the
task with the lowest priority. Let Ssi denote the scenario where task τi and all
higher priority tasks are requested simultaneously at the maximum temperature
Tmax. The worst-case scenario for a task τi is the one that maximizes its response
time, i.e. the scenario that delays the most the termination date of the first job
of the ith priority level.

If Ssi is not the worst scenario, there must be an other one leading to a
greater response time for the ith priority level.

6

0 2 4 6 8 10
0

4

8

12

16

20

24

28

32T
max

T
min

1,1 1,2

0 2 4 6 8 10

τ
1

2,1 2,1

0 2 4 6 8 10

τ
2

R = 9
2

(a) Synchronous

0 2 4 6 8 10
0

4

8

12

16

20

24

28

32T
max

T
min

1,1 1,2

0 2 4 6 8 10

τ
1

2,1

0 2 4 6 8 10

τ
2

R = 5
2

(b) T (0) < Tmax

0 2 4 6 8 10 12
0

4

8

12

16

20

24

28

32T
max

T
min

1,1 1,2

0 2 4 6 8 10 12

τ
1

2,1 2,1

0 2 4 6 8 10 12

τ
2

R = 7
2

(c) Asynchronous

0 2 4 6 8 10
0

4

8

12

16

20

24

28

32T
max

T
min

1,1 1,2

0 2 4 6 8 10

τ
1

2,1 2,1

0 2 4 6 8 10

τ
2

R = 5
2

(d) Asynchronous

Figure 3: Worst-case scenario

7

Firstly, we consider the scenario where T (0) < Tmax. In this case the system
is not heated at the maximum. Therefore, the system needs shorter cooling
time than the scenario where T (0) = Tmax, and PFPASAP introduces shorter
or equal cooling periods that lead to a shorter response time for all the tasks.
This is in contradiction with our hypothesis, thus, such a scenario cannot lead
to longer response times.

Secondly, we consider the scenario with different offsets. Let us denote Sai
as the scenario where T (0) = Tmax and all tasks have different offsets. In this
case we distinguish two possibilities:
(i) Where at least a task of higher priority than τi is requested later: knowing
that all the tasks heat the system following the same pattern, i.e., by considering
that the heating comes only from processor activity and that heating is faster
than cooling, task τi will undergo less higher priority interferences (as in the
classical critical instant proved by Liu and Layland in [15]), and then, it need
less cooling to finish. Therefore, the final response time of τi is lesser than or
equal to the one given by scenario Ssi which is a contradiction. Thus, such a
scenario cannot lead to longer response times.
(ii) Where at least a task of higher priority than τi is requested earlier: when τi
is requested later than a higher priority task, it undergoes less interference from
this task because, first, a part of it was executed before τi request time, and
second, the increase of temperature due to the higher priority task execution
cannot be higher than Tmax, and finally, if τi is requester much later than the
higher priority task, we just have shift the landscape to fit case (i). Therefore,
shifting higher priority tasks request times cannot increase the response time of
lower priority tasks and this scenario cannot be worse than Ssi .

Therefore, in all possible situations, the response-time of a task τi is lesser
or equal to the one led by a synchronous release of all higher priority tasks when
the temperature is at the maximum level.

4.2 The optimality of PFPASAP

The PFPASAP algorithm was proved to be optimal for the fixed-priority sch-
eduling problem off non-concrete energy-harvesting systems [1] which is close
to the same scheduling problem of thermal-aware systems. “Optimality” here
means that if the optimal algorithm fails to schedule a given task set, then, no
other algorithm of the same class of algorithms (i.e., processor-speed scheduling
under fixed-priority) can do it.

In this subsection we extend the optimality of PFPASAP to non-concrete
thermal-aware systems.

Theorem 2. The PFPASAP scheduling algorithm is optimal for fixed-priority
thermal-aware non-concrete task sets with constrained or implicit deadlines.

Proof. Let Γ denote a non-concrete task set. We suppose that Γ is feasible using
a fixed-priority assignment, but not schedulable with PFPASAP using the same
priority assignment. This means that at least one task denoted as τk misses its

8

deadline in the worst-case scenario (see Theorem 1). Indeed, it is sufficient to
consider only the first job because the deadlines are constrained wich means that
there is no overlapping with two jobs of the same task. According to PFPASAP
rules, a deadline miss can occur in the worst-case scenario only in two cases:
1) the workload2 is greater than the available time, 2) the workload plus the
accumulated cooling time is greater than the available time.

1) if the workload from the critical instant (time 0) to time Dk, the first
deadline of τk, is alone greater than time interval [0, Di], then, it is obviously
impossible to schedule the first job of τk and higher priority jobs without missing
Dk, this is not possible even without thermal constrains because the available
time is not sufficient to schedule all the workload within [0, Dk]. Then, in
this case the task set cannot be feasible with any algorithm and the supposed
algorithm cannot exist.

2) if a deadline is missed with PFPASAP even though the workload is lesser
than the available time, then, this means that the workload of time interval
[0, Dk] and the needed cooling time is greater than the available time, i.e Dk

time units. Knowing that the cooling periods produced by PFPASAP are as long
as needed to execute at least one time unit, this means that they are as short
as possible. Furthermore, we know that the cooling function is exponentially
decreasing (See Equation 7), then, the shorter cooling periods are, the shorter
the total needed cooling time is. This is true because the longer cooling is, the
less efficient it is, as we mentioned in Section 3. More formally, cooling x times
one time unit decreases more the temperature than only one cooling period of
length x time units; observe that e−bx ≤ xe−b for all x ≥ 1. Thus, Equation 7)
implies

T (0)− T (0) · e−b·x ≥ T (0)− x× T (0) · e−b(1−0) (8)

Therefore, any other schedule than PFPASAP ’s one has necessarily cooling pe-
riods of same length or longer, then, the response time of τk produced by the
supposed algorithm is necessarily greater than Dk. Thus, in this case, no other
algorithm can schedule this task set.

Then, we prove that PFPASAP is optimal for non-concrete fixed-priority
thermal-constrained task sets with constrained or implicit deadlines.

5 Response-Time Analysis
This section provides a response-time analysis for the schedule produced by the
optimal algorithm PFPasap in the worst-case scenario, i.e., the synchronous
release of all the tasks when T (0) = Tmax. We discuss the difficulty of an exact
analysis and then we propose an approximate one.

2the execution time of the considered task and the ones of higher priority tasks

9

Tmax

Tmin

c h

hc

0

Ri

T'mincooling he
at
in
g

Figure 4: First Upper Bound (UBTmin)

5.1 Exact Analysis
The exact analysis provides the exact response time of all tasks. Thus, it must
estimate accurately the length of all cooling and heating periods.

However, this cannot be done with a generic equation because due to the dis-
crete time, all cooling periods are not of the same length in the actual schedule.
Furthermore, without the effective values of parameters, it is hard to estimate
the order and the number of long and short cooling periods which have a sig-
nificant impact on the response time value. Therefore, the remaining way to
get an exact analysis is to simulate the schedule of PFPASAP in the worst-case
scenario and compute the response time of the first job of each task.

5.2 Approximate Analysis
The aim of this work is to propose a schedulability analysis for thermal-aware
real-time systems. Such an analysis must consider not only the processor work-
load but also the additional cooling time needed to respect the thermal con-
straints. To cope with the difficulty of providing an exact analysis, one can
propose an approximate one that can be only sufficient instead of necessary and
sufficient. This can be achieved by upper bounding tasks worst-case response
time produced by PFPASAP algorithm.

5.2.1 First Upper bound (UBTmin):

Knowing that PFPASAP cools down the system enough to execute at least
one time unit, cooling periods are as short as possible. Furthermore, we know
also that the cooling function is exponentially decreasing and the heating is
asymptotically increasing, then, one can lengthen jobs response times by putting
the cooling units together and the heating ones together such that Tmax is never
exceeded. By doing so, the cooling slows down after a while and the system
needs more time to cool down, and heating becomes faster which heats up the
system in a shorter amount of time.

10

Description The upper bound of task τi worst-case response time according
to UBTmin is described by Figure 4. It consists of:

• cooling down the system from Tmax to Tmin, where Tmin > TA,3

• a ceiling function applied to the time from Tmax to Tminto ensure an
integer number of time units (this is safe since it only over estimates the
time required to reach Tmin),

• executing jobs and heating up the system until Tmax is reached or there
is no pending workload,

• repeating this cycle of cooling-heating until there is no pending workload,

• the last cycle may be shorter because of the remaining workload which is
shorter than a full cycle. The corresponding cooling time is adjusted.

The response time upper bound of task τi of priority level-i that is requested
simultaneously with higher priority tasks with T (0) = Tmax is given by Equation
9 {

wn+1
i = N(wni)× (∆c + ∆h) + ∆′c + ∆′h

R
UBTmin
i = wn+1

i = wni
(9)

where :

• N(w) is the number of full cooling-heating cycles needed to execute the
workload w without exceeding Tmax:

N(w) =

⌊
w

∆h

⌋
(10)

• w is the workload of time interval [0, wni]:

w =
∑
j≤i

⌈
wni
Tj

⌉
× Cj (11)

• ∆h is the time to execute jobs and heat up the system from Tmin to Tmax.
(Obtained by solving Equation 6):

∆h =

 ln
(
b·Tmin−a
b·Tmax−a

)
b

 (12)

• ∆c is the time to cool down the system from Tmax to Tmin. (Obtained by
solving Equation 7):

∆c =

⌈
ln(Tmax)− ln(Tmin)

b

⌉
(13)

3Observe that a low Tmin value may result in an extremely pessimistic upper bound due
to the nature of the cooling function; It decreases asymptotically to TA, so waiting until Tmin

is too pessimistic because of the nature of the cooling function.

11

Tmax

Tmin

h

0

cooling

he
at

in
g

x
UBx

Actual schedule UBx schedule

Figure 5: Parametric Upper Bound UBx

• ∆′h is the remaining execution time of the busy period:

∆′h = w −N(wni)×∆h (14)

• ∆′c is the cooling time needed for ∆′h:

∆′c =

⌈
ln(Tmax)− ln(T ′min)

b

⌉
(15)

• T ′min is the maximum temperature needed to execute the remaining part
of the workload ∆′h without exceeding Tmax:

T ′min = (Tmax − a/b)eb∆
′
h + a/b (16)

Theorem 3. An upper bound on the worst-case response time for task τi in
the worst-case scenario described in Section 4.1 can be obtained from a sequence
of execution units of higher priority jobs and the necessary cooling time units
where the cooling periods are as long as needed to cool down the system from
Tmax to Tmin (Tmin > 0) and the heating periods are as long as needed to reach
Tmax starting from Tmin, as described by Equation 9.

Proof. Due to space limitation, the proof is not included in the paper. However,
it can be found in the technical report [9].

5.2.2 Parametric Upper bound (UBx):

Description The idea of this upper bound is to keep the same behavior as the
PFPASAP algorithm by cooling down for some time units and then executing
jobs until reaching Tmax. The approximation comes from the fact that time is
discrete and that cooling periods are of a fixed length x (where x ∈ N∗) instead
of the minimum length needed to execute at least one time unit. Then, the
execution or the heating periods may not reach Tmax in an integer number of

12

time units. Thus, we consider only the integer part of heating periods (with
floor function) and that Tmax is exactly or nearly reached at the end of each
heating period which adds additional cooling time than the actual schedule.
Figure 5 describes the scenario used to obtain UBx. It consists of:

• Cooling down the system for x time units, where x a is positive integer that
must be greater or equal to ∆UBx

c the minimum time needed to decrease
the temperature such that the system can execute at least one time unit,
i.e. x ≥ ∆UBx

c . Equation 17 computes ∆UBx
c ; the ceiling function is used

to respect the discrete time and to ensure that the system is enough cold
to execute at least one time unit.

∆UBx
c =


ln
(

bTmax
(bTmax−a)eb+a

)
b

 (17)

• Then, executing jobs and heating up the system until Tmax is reached
(without exceeding) or there is no pending workload. The length of this
period is an integer. The floor function is used to ensure not exceeding
Tmax.

• Repeating the cooling-heating cycles until there is no pending workload.

• The length of the last cooling period is still the same even if the remaining
workload is smaller.

The upper bound according to UBx of task τi of priority level-i that is
requested simultaneously with higher priority tasks with T (0) = Tmax is given
by Equation 18. {

wn+1
i = N(wni)× x+ w

RUBxi = wn+1
i = wni

(18)

where :

• N(w) is the number of cooling periods needed to execute the workload w
without exceeding Tmax:

N(w) =

⌈
w

∆UBx
h

⌉

• w is the workload of time interval [0, wni]:

w =
∑
j≤i

⌈
wni
Tj

⌉
× Cj

13

• ∆UBx
h is the time to execute jobs and heat up the system from the tem-

perature reached after x time units of cooling to Tmax:

∆UBx
h =

 ln
(
b·Tmax·e−b·x−a

b·Tmax−a

)
b

 (19)

We choose cooling periods longer or equal to ∆UBx
c , i.e. x ≥ ∆UBx

c , because it
is sufficient to execute at least one time unit without exceeding Tmax which is
close the behavior of PFPASAP algorithm.

Tmax

Tmin

h
x UBx

Proof schedule UBx schedule

x '
h

UBx

T1

T2

delta

Figure 6: UBx proof insight

To prove that UBx upper bounds the actual response time, we first check the
case when x = ∆UBx

c . We know that in the actual schedule, the accumulation
of the temperature gained at the end of each heating period, due to the discrete
time, is lesser than Tmax. We denote the gap δ.Thus, this accumulated temper-
ature can be used at least by one heating period which is supposed to be longer
as shown in Figure 6. Then, we compare the length of the new heating period
∆′h (See Equation 20) to the one of UBx, i.e. ∆UBx

h , and the total number of
cooling/heating produced by UBx, i.e., NUBx(w), and the one produced by the
actual schedule denoted N ′(w).

{
Tmax = (a+ (b · T2 − a)e−b·∆

′
h)/b

T2 = (Tmax − δ)e−b·x

∆′h =

 ln
(
b·(Tmax−δ)·e−b·x−a

b·Tmax−a

)
b

 (20)

Lemma 1. For x = ∆UBx
c , each heating interval of the actual schedule ∆′h

given by Equation 20 is greater or equal than UBx’s ones, i.e. ∆UBx
h ≤ ∆′h.

14

Proof. Let’s suppose that ∆UBx
h > ∆′h, then:

∆UBx
h > ∆′h ⇒ ln
(
b·Tmax·e−bx−a

bTmax−a

)
b

 >
 ln

(
b(Tmax−δ)e−bx−a

bTmax−a

)
b


⇒

ln
(
bTmaxe

−bx−a
bTmax−a

)
b

>
ln
(
b(Tmax−δ)e−bx−a

bTmax−a

)
b

⇒ bTmaxe
−bx − a

bTmax − a
>
b(Tmax − δ)e−bx − a

bTmax − a
Knowing that bTmax < a, then:

∆UBx
h > ∆′h ⇒ bTmaxe

−bx − a < b(Tmax − δ)e−bx − a
⇒ δ < 0

Contradiction because b < 1, δ ≥ 0 and b · Tmax < a.
Therefore, we prove by contradiction that ∆UBx

h ≤ ∆′h

Lemma 2. For x = ∆UBx
c , the number of cooling periods produced by a PFPASAP

actual schedule denoted N ′(w) is lesser or equal to the ones produced by UBx,
i.e. N ′(w) ≤ NUBx(w).

Proof. Let’s suppose that N ′(w) > NUBx(w). From Lemma 1 we know that
∆UBx
h ≤ ∆′h at least for one time, then:

N ′(w) =

⌈
w −∆′h
∆UBx
h

⌉
+ 1 =

⌈
w − (∆UBx

h + δ)

∆UBx
h

⌉
+ 1

where δ ≥ 0. Then, N ′(w) can be written as following:

N ′(w) =

⌈
w − δ
∆UBx
h

⌉
Therefore, if N ′(w) > NUBx(w), then:

N ′(w) > NUBx(w) ⇒
⌈
w−δ

∆UBx
h

⌉
>
⌈

w

∆UBx
h

⌉
⇒ w−δ

∆UBx
h

> w

∆UBx
h

⇒ δ < 0

Contradiction, because ∆′h ≥ ∆UBx
h and δ ≥ 0. Therefore, we prove that

N ′(w) ≤ NUBx(w)

Theorem 4. An upper bound on the worst-case response time for task τi in the
worst-case scenario described in Section 4.1 can be obtained from a sequence of
execution units of τi and those of higher priority jobs and the necessary cooling
time units where the cooling periods are of x time units and the heating periods
are integers and as long as needed to reach Tmax (without exceeding) after x
time units of cooling, as described by Equation 18.

15

Proof. To prove this theorem, we have to first solve the case where x = ∆UBx
c ,

and the one where x > ∆UBx
c .

Case where x = ∆UBx
c From Lemma 1 and Lemma 2 we know that N ′(w) ≤

NUBx(w), then:

N ′(w) ≤ NUBx(w) ⇒ N ′(wni)x+ wni ≤ NUBx(wni)x+ wni
⇒ w′i ≤ w

UBx
i ⇒ R′i ≤ R

UBx
i

Hence, when x = ∆UBx
c , UBx is an upper bound of tasks worst-case response

time according to PFPASAP algorithm.

Case where x > ∆UBx
c Lengthening cooling periods by increasing the x

parameter is expected to increase the pessimism of UBx by increasing tasks
response time over estimation given by Equation 18. To prove that, one can
check if the UBx’s response time computation function is increasing. From
Equation 18, the response time function can be written as follows:

wn+1
i =


w⌊

ln
(
b·Tmax·e−b·x−a

b·Tmax−a

)
b

⌋

× x+ w

Recall that the ceil function is used to ensure a non null integer length for
cooling period, and that floor function is used ensure never exceeding Tmax after
a heating period. Even though, these two functions contribute to increase the
pessimism of UBx, removing them does not change the response time function
monotonicity. Then, we can study the monotonicity of this new function that
we call f(x) by computing its derivative function as follows:

f(x) =
w · b · x

ln
(
b·Tmax·e−b·x−a

b·Tmax−a

) + w

f ′(x) =
b · ln

(
b·Tmax·e−b·x−a

b·Tmax−a

)
+ b3·Tmax·x·e−b·x

b·Tmax·e−b·x−a(
ln
(
b·Tmax·e−b·x−a

b·Tmax−a

))2

Due to the lack of space, we do not show the whole study of f(x)’s sign, we do
this only with deductions. Thus, the sign of f ′(x) depends only on the numerator
part of the fraction, we denote this part g(x). Then, knowing that g(0) =
ln(a/(a−bTmax)) > 0, we can say that g(x) is positive in interval [1,+∞[because
first the left part (the logarithm part) is positive, because of the logarithm
function, and increasing, due to to the reverse exponential function; and second
the right part is negative, because b · Tmax < a, and slightly decreasing from

16

 0 5 10 15 20

f'(
x)

x

f'(x) sign

left(x)
right(x)

g(x)

Figure 7: f ′(x)’s sign

0 for a while and then it increases asymptotically to 0 as shown in Figure
7. Therefore, f ′(x) is positive which means that f(x) is increasing in interval
[1,+∞[, and then tasks response time according to UBx increases when x is
increasing.

Therefore we prove that UBx upper bounds the actual PFPASAP worst-case
response time.

5.2.3 Lower bound (LBx=1):

Tmax

Tmin

h

cooling

he
at

in
g

1
LBx=1

Actual schedule LBx=1 schedule

Figure 8: Lower Bound (LBx=1)

Knowing that the actual schedule respects the discrete time constraint, we
can compute a lower bound of the actual tasks worst-case response time by
violating this constraint, i.e., allowing non-discrete execution times (See 8).
The following points summarize the behavior of LBx=1:

• Cooling down the system for one time unit. This is sufficient because
continous time allows executing less than one time unit.

17

• Then, executing jobs and heating up the system until Tmax is reached
or there is no pending workload; this length of period is not necessarily
integer.

• Repeat this cycle cooling-heating until there is not pending workload

The lower bound of task τi of priority level-i that is requested simultaneously
with higher priority tasks with T (0) = Tmax is given by Equation 21{

wn+1
i = N(wni) + w

Ri = wn+1
i = wni

(21)

where :

• N(w) is the number of cooling periods needed to execute the workload w
without exceeding Tmax:

N(w) =

⌈
w

∆LBx=1

h

⌉
(22)

• w is the workload of time interval]0, wni].

• ∆LBx=1

h is the time to execute jobs and heat up the system from the
temperature reached after one time unit of cooling to exactly Tmax:

∆LBx=1

h =
ln
(
b·Tmax·e−b−a
b·Tmax−a

)
b

(23)

Conjecture 1. A lower bound on the worst-case response time for task τi in
the worst-case scenario described in Section 4.1 can be obtained from a sequence
of execution units of τi and higher priority jobs and the necessary cooling time
units where the cooling periods are of one time unit and the heating periods
are continuous (not necessarily integers) and as long as needed to reach exactly
Tmax after one time unit of cooling, as described by Equation 21.

We do not prove the conjecture due to space limitation.

5.2.4 UBTmin vs. UBx

The tightness of the upper bound UBx relative to UBTmin depends on the
parameter x. In fact, the greater x is, the more pessimistic UBx is because
of the nature of the cooling function which is asymptotically decreasing to TA.
Then, for small values of x, UBx is tighter and for great values UBTmin is.
The experiments presented in Section 6 demonstrates the differences in practice
between UBx and UBTmin in term of tightness and complexity.

18

5.2.5 Utilization bound

Under thermal constraints, cooling periods are needed to prevent the system
to exceed Tmax. This means that for a certain processor utilization, which
determines the time in which the processor is occupied, more time is needed for
cooling which means that the processor cannot be used at 100%. One can use
this idea to propose a new maximum processor utilization that can respect the
thermal constraints. In the following we discuss utilization bounds that consider
cooling time.

Maximum utilization To compute the maximum supportable processor uti-
lization that takes into account cooling time, one can use the idea of over esti-
mating response times, by over estimating the cooling time needed to execute
the workload of one hyper-period. We can use for instance the idea of UBx to
compute an upper bound for the maximum supportable processor utilization.

Lemma 3. An upper bound of the processor utilization U =
∑

1≤i≤n Ci/Ti for
thermal-aware fixed-priority task sets can be obtained by Equation 24.

U ≤
∆UBx
h

∆UBx
h + x

(24)

Proof. We first upper bound the workload of one hyper period with UBx then
we compute the corresponding processor utilization, and finally we compute the
maximum achievable utilization. The workload of an hyper-period L can be
obtained by multiplying L by the processor utilization U . Then, we can replace
w by U · L in Equation 18 to compute the time needed (cooling + workload)
to satisfy the workload U · L. Finally, we can compute the new utilization u∗,
that considers cooling time, by dividing the time demand (cooling + workload)
by the available time L, Equation 25 shows how to compute U∗.

U∗ =

⌈
U ·L

∆UBx
h

⌉
· x+ U · L

L
(25)

For a task set to be feasible, the new utilization U∗ must be lesser than 1 because
the available time must be greater or equal to the time demand. Then,

U∗ ≤ 1 ⇒

⌈
U·L

∆
UBx
h

⌉
·x+U ·L

L ≤ 1

⇒
U·L·x
∆
UBx
h

+U ·L

L ≤ 1

⇒ U ·
(

x

∆UBx
h

+ 1
)
≤ 1

⇒ U ≤ ∆UBx
h

∆UBx
h +x

19

Liu and Layland bound We can use the same reasoning as the above uti-
lization upper bound to propose a sufficient feasibility test based on Liu and
Layland bound for Rate Monotonic priority assignment. In fact, we can compare
the total time utilization (processor and cooling) to Liu and Layland bound.

Lemma 4. An upper bound of the processor utilization U =
∑

1≤i≤n Ci/Ti for
thermal-aware fixed-priority task sets with implicit deadlines and Rate Mono-
tonic priority assignment can be obtained by Equation 26.

U ≤
∆UBx
h · n(n

√
2− 1)

∆UBx
h + x

(26)

The proof of the above lemma is not included as the steps are similar to
Lemma 3.

6 Performance Evaluation

6.1 Taskset generation
To evaluate the effectiveness of our proposed schedulability test, we perform
an empirical investigation. We randomly generated 100000 task sets, varying
the processor utilization. We varied U in the range [0.05, 1] in steps of 0.05.
Hence we obtained 5000 distinct task sets for each U step. Each tasks set
comprised 10 tasks. The thermal parameters was set as following, Tmax = 32
C◦, b = 0.228, and a = β0 · S3 = 8. These parameters are the ones of the
whole system (including an eventual cooling device) and correspond to a classical
Intel Pentium processor parameters [12]. The task parameters were randomly
generated as follows: task processor utilization (Ui = Ci/Ti) using the U-Unifast
Discard algorithm [7], and periods randomly generated between 2 and 25200
time units with a hyper-period limitation technique [16]. Task deadlines were
implicit.

We used YARISS as a simulation environment [8] which respects the follow-
ing hypotheses: discrete time (all scheduling operations are performed before or
after one time unit), the heating behavior follows the Fourier’s law (See Equa-
tion 6) and temperature values are real numbers.

6.2 Schedulability tests investigated
We investigated the performance of the following schedulability tests.

SIM : is an empirical necessary and sufficient test based on simulating the
schedule of PFPASAP over more than one hyper-period, starting with syn-
chronous release and the maximum temperature level which corresponds to the
worst-case scenario discussed in Section 4.1.

UBTmin : the sufficient test presented in Section 5.2.1, we consider that
Tmin = 1 C◦.

UBx: the sufficient test presented in Section 5.2.2, the parameter x is varied
from 1 to 18.

20

LBx=1: the necessary test presented in Section 5.2.3.
CFP : the exact test for fixed priority ignoring thermal and energy con-

straints. This was used to provide a schedulability bound, considering only
processing time.

UTZ: the necessary condition described in Section 5.2.5.
LnL: the sufficient condition described in Section 5.2.5.

6.3 Experiments

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sc
he

du
la

bl
e

Ta
sk

se
ts

 %

U %

Percentage of Schedulable Tasksets

SIM
UBTmin
UBx=1
LBx=1

CFP
UTZ
LnL

Figure 9: Percentage of Task sets that pass the test over U variation

Figure 9 shows how the percentage of task sets that are deemed schedulable
by each of the tests varies with processor utilization. The CFP test has notion-
ally the highest performance since it is widely optimistic and ignores thermal
considerations. When temperature is considered, UTZ, LBx=1 provide nec-
essary tests, upper bounding the number of task sets that are proved to be
schedulable by the exact empirical test SIM . We observe that the results con-
firm that UBTmin and UBx provide sufficient schedulability tests and that for
x = 1, UBx is tighter bound than UBTmin , with a larger improvement at higher
utilization levels. Furthermore, this experiment confirms also the validity of the
utilization bounds given in Section 5.2.5 and 5.2.5. With the considered thermal
parameters, the maximum achievable utilization for 10 tasks is 80% for UTZ
and the adapted Liu and Layland bound is 57%.

Figure 10 compares the pessimism of UBTmin based shcedulability test to
UBx’s one by varying the x parameter. We observe that UBx stays less pes-
simistic than UBTmin for small values (1 ≤ x ≤< 14 in this experiment), how-
ever, it becomes more pessimistic starting from x = 14. This result is as ex-
pected because the loner cooling periods are, the slower temperature decreases
and the longer response times are.

21

Figure 11 shows average deviation of bounds from the exact response time
given by simulations over processor utilization. The upper bounds have positive
values and lower bounds have negative values (the deviation of SIM is 0 because
it it gives the exact response time). We can see that deviation of UBx, LBx=1

and CFP are still stable over utilization variation in contrast of UBTmin which
behaves badly when utilization goes high. We notice also that when x = 1, UBx
and LBx=1 are very close to the actual response time which makes them very
interesting tools for approximate schedulability analysis. However, increasing x
leads UBx to be less precise, when x > 14, UBx behaves as bad as UBTmin or
worse.

We also perform further set of experiments showing how schedulability de-
pends on different parameters, including deadlines model and the number of
tasks, via the Weighted Schedulability Measure [6] (see our technical report [9]).
The conclusions are the following. By varying relative deadlines, we observe that
all of the schedulability tests are influenced by the tightness of deadlines to a
similar degree, with heavily constrained deadlines having significant impact on
schedulability in all cases. We observe also that when we measure the trade-off
between tests rate of schedulability and their overhead, the loss of schedulablity
is higher than the gain of overhead.

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sc
he

du
la

bl
e

Ta
sk

se
ts

 %

U %

Percentage of Schedulable Tasksets

UB_Tmin
UB_x=1
UB_x=2
UB_x=4
UB_x=6
UB_x=8

UB_x=10
UB_x=12
UB_x=14
UB_x=16
UB_x=18

Figure 10: Schedulability by Varying x

7 Conclusion
In this paper, we addressed the problem of fixed-priority real-time schedul-
ing for thermal-aware systems, where both time and thermal constraints have
to be met. Previous research showed that the scheduling policy PFPASAP is
optimal among all fixed-priority scheduling algorithms for non-concrete energy-

22

-50

 0

 50

 100

 150

 200

 250

 300

 350

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

av
g(

 |
 B

-W
CR

T
|

/
W

CR
T

%
)

U %

SIM
CFP

LB_x=1
UB_x=1

UB_x=6
UB_x=8

UB_x=10
UB_x=14

UB_Tmin

Figure 11: Bounds tightness over U variation

harvesting systems. The main contributions of this paper are as follows: we
adpated PFPASAP algorithm to the thermal-aware model, we proved its op-
timality and we proposed two schedulability tests based on response-time up-
per bounds UBTmin and UBx which is a parametric bound. Finally we per-
formed simulations to validate the theoretical results. As future work, we plan
to study deeply the possible similarities between energy-harvesting model and
the thermal-aware’s one and to explore more adaptable and extensible results
of each model.

Acknowledgments
This research has been supported in part by the US National Science Foundation via
a CAREER Grant (CNS-0953585) and a CRI Grant (CNS-1205338).

References
[1] Yasmina Abdeddaïm, Younès Chandarli, and Damien Masson. The Opti-

mality of PFPasap Algorithm for Fixed-Priority Energy-Harvesting Real-
Time Systems. In ECRTS, 2013.

[2] Masud Ahmed, Nathan Fisher, Shengquan Wang, and Pradeep Het-
tiarachchi. Minimizing peak temperature in embedded real-time systems
via thermal-aware periodic resources. In SCIS, 2011.

[3] Rehan Ahmed, Parameswaran Ramanathan, and K. Saluja Kewal. On ther-
mal utilization of periodic task sets in uni-processor systems. In RTCSA,
2013.

23

[4] Rehan Ahmed, Parameswaran Ramanathan, and K. Saluja Kewal. Nec-
essary and sufficient conditions for thermal schedulability of periodic real-
time tasks. In ECRTS, 2014.

[5] André Allavena and Daniel Mossé. Scheduling of frame-based embedded
systems with rechargeable batteries. In WPMRTES (with RTAS), 2001.

[6] Andrea Bastoni, BjÃűrn B. Brandenburg, and James H. Anderson. Cache-
related preemption and migration delays: Empirical approximation and
impact on schedulability. In OSPERTA (with RTAS), 2010.

[7] Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Sch-
edulability Tests. RTS, 2005.

[8] Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midonnet,
and Manar Qamhieh. YARTISS : A Tool to Visualize, Test, Compare and
Evaluate Real-Time Scheduling Algorithms. In WATERS, 2012.

[9] Younès Chandarli, Nathan Fisher, and Damien Masson. Approxi-
mate response time analysis for thermal-aware real-time systems un-
der fixed-priority scheduling and reactive control. http://hal.
archives-ouvertes.fr/hal-01016114, 2014.

[10] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization fo
the instantaneous temperature for periodic real-time tasks. In RTAS, 2007.

[11] Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Proactive speed sch-
eduling for real-time tasks under thermal constraints. In RTAS, 2009.

[12] Pradeep M. Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang,
ShinanWang, andWeisong Shi. The design and analysis of thermal-resilient
hard-real-time systems. In RTAS, 2012.

[13] LaManna Joseph C., McCracken Kimberly A., Patil Madhavi, and Pro-
haska Otto J. Stimulus-activated changes in brain tissue temperature in
the anesthetized rat. In Metabolic Brain Disease, pages 225–237, 1989.

[14] G. Lazzi. Thermal effects of bioimplants. In EMBM, 2005.

[15] C.L. Liu and James Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment, 1973.

[16] C. Macq and J. Goossens. Limitation of the hyper-period in real-time
periodic task set generation. In ICRTS, 2001.

[17] Clemens Moser, D Brunelli, L Thiele, and L Benini. Real-time scheduling
with regenerative energy. In ECRTS, 2006.

[18] Gang Quan and Yan Zhang. Leakage aware feasibility analysis for
temperature-constrained hard real-time periodic tasks. In ECRTS, 2009.

24

[19] Gang Quan, Yan Zhang, William Wiles, and Pei Pei. Guaranteed sched-
uling for repetitive hard real-time tasks under the maximal temperature
constraint. In CODES+ISSS, 2008.

[20] P.S. Ruggera, D.M. Witters, G. von Maltzahn, and H.I. Bassen. In vitro
assessment of tissue heating near metallic medical implants by exposure
to pulsed radio frequency diathermy. In Physics in Medicine and Biology,
pages 2919–2928, 2003.

[21] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang,
Sivakumar Velusamy, and David Tarjan. Temperature-aware microarchi-
tecture: Modeling and implementation. TACO, 2004.

[22] Kim Sohee, Tathireddy P., Normann R.A., and Solzbacher F. Thermal
impact of an active 3-d microelectrode array implanted in the brain. In
TNSRE, 2007.

[23] Shengquan Wang, Youngwoo Ahn, and Riccardo Bettati. Schedulability
analysis in hard real-time systems under thermal constraints. RTS, 2010.

[24] Shengquan Wang and Riccardo Bettati. Delay analysis in temperature-
constrained hard real-time systems with general task arrivals. In RTSS,
2006.

[25] Shengquan Wang and Riccardo Bettati. Reactive speed control in
temperature-constrained real-time systems. RTS, 2008.

25

