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ABSTRACT

Functional magnetic resonance imaging (IMRI) time series
generally demonstrate serial dependence. This endogenous
auto-correlation typically exhibits long-range dependence
described by a §-like power law. In this paper, we present
a novel wavelet-based methodology for characterising the
noise structure in short-medium length (shortish) IMRI ume
series. Mono-fractality 1s assessed in terms of the Hurst ex-
ponent and the noise vanance. We then investigate potential
local stationarity of the Hurst exponent in MR data and
present a Uniformly Most Powerful test for its time con-
stancy. A novel bootstrap approachis presented as an alter-
native to the Normal assumption and its advantages are dis-
cussed. From several datasets investigated, we specifically
show that the & model is particularly suited to desenbe color
m fMRI noise. We also demonstrate that even if most of the
brain voxels are mono-fractal, there are many locations m
the brain where time constancy of the Hurst exponent is vi-
olated, 1.c., the noise structure is poly-fractal.

1. INTRODUCTION

Even in the absence of an experimental effect, functional
magnetic resonance imagmg (IMRI) tme series generally
demonstrate serial dependence. This colored noise or en-
dogenous auto correlation typically hasdisproportionate spec-
tral power at low frequencies, i.c., its spectrum is f-likc‘.
We have previously investigated the long-range dependence

of the noise in IMRI data to make parametric and non-parametric

statistical inferences in the wavelet domain [2][3]. This
scheme exploits the general whitening or decorrelating prop-
erty of the orthogonal wavelet transform. For ‘%-likc or
fractal noises, ¢.g., realisations of fractional Gaussian noise
(1Gn) parametensed by the Hurst exponent () < ff < 1.
Several sources of color in IMRI have been suggested, n-
cluding hemonamically-convolved neuronal or instrumen-
tal (white) noise, aliased cardiorespiratory pulsation, uncor-

"The term —::-!ikc is used in preference to the simpler % partly because
many fractional noises are not wide-sense stationary [ 1),

rected head movement. and experimentally-induced van-
ance that is not well-modelled by the design matrix. It is
clear from phantom studies that colored noise may arise in
the absence of physiological processes and must therefore
be due, at least partly, to physical effects [4]. It is also
known that the magnitude and form of residual autocorre-
lation may vary considerably from voxel to voxel within
the brain and may be influenced by expenmental parame-
ters including the repetition time (TR) between consecutive
time points in the series. The characterisation of IMRI noise
as a %-like process does not by itself disciminate between
physical and physiological sources. +-like processes, which
have non-integer fractal dimensions in the time domain, are
naturally ubiquitous. Physical systems in which many par-
ticles are relaxing from excited states at different rates are
well known generators of 4-like noise, which seems po-
tentially relevant to fMRL "And physiological time series
recorded by clectrocardiography and clectroencephalogra-
phy (sec [3]) have demonstrated fractal properties, indicat-
ing that this may be a common mode of dynamic behavior
for human biological processes also. The format of this pa-
per 1s as follows. We first mtroduce some notation aspects
about orthonormal wavelet transform and long-memory pro-
cesses. More comprehensive accounts are provided else-
where. We then describe our local-statonarity test and re-
lated aspects such as type-1 and type-11 error probabilities
and the choice of the number of blocks. Finally, these meth-
ods are applied to real datasets with and without experimen-
tal designs.

2. WAVELETS AND LONG-MEMORY PROCESSES

The dyadic orthonormal wavelet transform of a finite energy

signal ::(t) 1s defined as the inner product [5]:

dig = {J ) = 2792 / wlth (279 — k) dt, (k)
(1)

The coefficient djg. 1s the detail coefficient (or the wavelet
coefficient) at scale j and position k. The function ¥ 1s the



wavelet function, whose collection of dilations § and trans-
lations % form an orthonormal basis in the Hilbertian space
L2(K). Any continuous function qualifies if the admissi-
bility conditions are satisfied: 4 has a compact support and
oscillates ( f @ (t}dt = (). These conditionscan be strength-
ened to include more vanmshing moments (up o an order 12)
and/or higher order continuous derivatives. From a filter-
bank point of view, the wavelet ¥ 35 can be viewed as an oc-
tave bandpass filter in [—7/2¢, —7 /2341 U 7/ 20+ 7129
In the present work, for a signal length 2, the indices (7, k)
are chosen to be inthe set R = {j = {1,...,Jhk =
10,... N2 —111
Intheir simplest form, % processes are random with a power-
law spectrum that diverges at the onigin as:
g gy SN )
3(S) s T 2

Where « 1s linear function of the Hurst exponent (e.g., v =
217 — 1 for an fGn). Two key properties of the wavelet co-
efficients of these processes are to crucial for the validity of
the mono-fractality test:
P1: Provided ¥ > (v — 1)/2 the collection of coefficients
;¥ h are zero-mean stationary. their variances reproduce
precisely the power law underlying the scale invariance of
the process; i.e. Var{d;) = o2 21¢
P2: It has been shown that the wavelet coefficients of such
a process have a correlation structure whose magnitude de-

: o |—L—2R
Pk — 2|

caysas (2 J [1). where R is the num-

ber of vanishing moments. Therefore, for 0 < ff < 1.
the residual correlation can be reasonably ignored for any
wavelet with sufficient number of vanishing moments, Max-
imum likelthood estimators (MLE) provide an alternative
approach to estimation, classification, discrimination or pre-
diction of long-memory or % errors and have been devel-
oped in the wavelet domain by several authors: see [1] for
review. The MLE exists, 1s unique, efficient and consistent.
Moreover, the MLE has a Normal distnbution asymptoti-
cally which can then be exploited to test the time constancy
of the fractal noise parameter £, It can be shown that the
MLE of £{ has a closed-form expression of the Cramér-Rao
lower bound which is independent of the true parameter [1].
Thus in the following, we assume that the variance of 17 is
known a priori.

3. PARAMETRIC ff LOCAL STATIONARITY TEST

The estimation procedure and its statistical performanceare
the same regardless of the scaling behaviour of the process.
Moreover, to an excellent assumption MLE of £1 is Gaus-
sian and unbiased with variance that only depends on .J and
2. Estimates taken over adjacent but non-overlapping seg-
ments are uncorrelated. These statements were tested statis-
tically via Monte-Carlo (MC) simulations, shown in Fig.1,

It is worth noting that in all simulations in this paper. the
data length ¥ 1s deliberately chosen to be smaller than 512
which is in the range of IMRI time senes length. The cor-
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Fig. 1. (a) I vs Gaussianity. (b) Correlation of the es-
timates between blocks. For these MC simulations, the
following settings are used: 107 simulations, £ = (.8,
N = 2%, Daubechies=2, the data vector was split intw 2
to 4 segments.

relation test 1s derived using a Fisher z-transformation on
the correlation coefficient calculated between the estimates
from distinct non-overlapping blocks. It is clearly shown
from these results that the normal assumption is valid and
that the estimates taken from adjacent blocks are indeed
uncorrelated. The latter properies are essential which in-
spire the following local-stationarity test of the Hurst expo-
nent. We suppose that the data is obtained by blending a
collection of v mutually independent stationary processes.
We estimate IF; for each segment and the corresponding
known variance. Then, testing the time constancy of £f
amounts to test whether the collection of mutually indepen-
dent Gaussian vanables I}} with known variances have the
same mean. Therefore, the null hypothesis 17, to be tested
s i, = ... = I, = II against the allemative that £1;
are not all equal. This allows to construct a test with op-
timal known properties. Particularly, this test 1s Uniformly
Most Powerful Invanant [6] under specific settings where
the Normal assumption is valid (1.c., reasonably large num-
ber of samples in cach block). The set of alternatives can be
restricted to include only level shift models.

3.1. Means homogeneity test

The problem now 1s reduced to that of testing the equality of
means of n independent variables f7; ~ A({. @?), where
a? areknown. The problem of testing £4; reduces toa linear
hypothesis with known vanance through the transformation
1! = I }a;, and the UMPI test under suitable group of



linear transformations rejects 7, when:

. 2
T 'Ej ;l ll;:uu
s Z i | ke (3)

= = !

¥
where €' 1s the eritical level determined by [("‘ Y2 (1)l =
¢x, and ¢x 18 the significance level. The non-centrality param-
cter & can be caleulated replacing £; by {; in (3).

3.2. Statistical properties

The statistical properties of the wavelet-based time constancy
test of £1 1s tightly related to the Normality and indepen-

dence assumptions made along the paper. The Nomality

is clearly violated for short-medium (shortish) time seres,

a situation encountered in practice (¢.g., routinely m fMRI

only hundred of data points are collected by the expen-

menter). But how would the mon-fractality test behave un-

der these circumstances? The other major issue is the prior

choice of the number of segments v, which is a crucial step

in the algonthm.

Type 1 error control 1t is clear that for small samples, the
parametric test will fail to control the significance level such
that the actual probability of type-1 error equals the nominal
error rate. This has been checked numerically a posterior:
using MC simulations. 1000 512-dimensional fGn sample
paths were synthesised with constant £7 = (0.8. Each vector
was split into n segments. Counting the number of times
out of 10% that V7 fell in the critical region with a nominal
significance level of 100 x (1 — ¢) = 93% gives the ob-
served type-1 error. It s clear that for high v, the number of
available samples in each segment decreases and the Nor-
mal assumption is no longer valid. In addition, the effect
of residual correlation between wavelet coefficents tends to
increase with small samples, and then affects the type-1 er-
ror probability. This 1s evidenced from simulations in Fig.2,
where the test systematically results in an inflated or uncon-
trolled type-l error.

It 1s known that the use of bootstrap 1s tied to the concur-
rent availability of the Normal assumption. Then, to over-
come this major limitation, a bootstrap based inference ap-
proach can be used. We outline here its mam steps as this
method will be detailed in a forthcoming paper. Exploit-
ing the whitening property P2 of the orthornommal wavelet
transform and property P1, one can resample with replace-

ment the appropriately rescaled detail coefficients oz / [a"} 2t ]

mn each block. This gives the resampled bootstrap residuals
€k Under £4y. If; are all equal to £, and then the mean
i = \.'\'f ! = IF under £8;. Thus, we reconstruct the
bootstrap }csamplcs x” as the mverse wavelet transform of
the coefficients 277 ¢}, . The bootstrap statistic 77 is calcu-
lated replacing {Z; by their bootstrap versions [7]. We have

a bootstrap method which assumes that ff, is true. This
procedure guaranties that 17 mumicks the distnbution of 7
under £f;. The test that rejects £y if V7 is larger than the
1 — ex-quantile of the conditional distribution of 77 asymp-
totically has the level ey, with a higher correctness order than
the Normal assumption. This assertion has to be proved and
1s under current mvestigation. When this inference proce-
dure 1s used instead of the Normal assumption, the observed
type-1 error probability 1s excellent over the full range of
probability thresholds (see Fig.2). For high values of n, the
bootstrap method tends to be slightly conservative.

Fig. 2. Statistical properties of the Hurst exponent local-
stationarity test. Top: Confidence level. Bottom: Power of
the test. MC simulations settings: ¢ nominal level = (.03,
107 simulations, 7 = (.8, & = 2%, Daubechies=2, the data
vector was split into 2 segments.

Power of the test For this analysis, a simple level shift AZf
is applied at /2, keeping the other simulations settings as
stated in Fig.2. The ideal power (IP) functions assuming
non-central xi_ o under £f, are plotted with lines. The em-
pirical power (EP) functions are plotted with symbols. Itis
cleardy shown that for reasonable number of samples (e.g.,
512), the observed power is close but underestimated by the
test under Normal assumption. The difference 1s still ac-
ceptable and allows to say that the type-l1 error probability
is controlled in a reasonable range by this test. Comparison
to the bootstrap test under £7; needs also to be performed in
the future.



The effect of the number of segments The choice of the num-

ber of blocks 1s subject to the compromise between power
and time resolution to track fine changes in the Hurst expo-
nent with sufficient power. On the one hand, decreasing n
increases the variance in the estimate 17 proportionally to
ri. This increases uncertainty on the test decision and there-
fore yields a power degradation. This assertion is confirmed
by simulations in Fig.2. Consequently a limit on the small-
est value of n can therefore be fixed for a given required
power. Another practical issue encountered on this infe-
rior limit 1s the minimum number of octave bands required
for the estimation algonthm. Thus, for any given wavelet
with a support length Ly, the smallest scale must satisfy
Tl = lc;gQ(ﬁ:) > 2. On the other hand, decreasing n
coarsens the temporal resolution of the test and so does not
allow us to track fine changes in £f over time. A limit can
be imposed by the stationanty bandwith that can be esti-
mated from the signal [5]. Another approach would exploit
the unconditional adaptive time axis segmentation by an ap-
proprate Coifman-Meyer cosine packets basis, where the
covanance of the locally-stationary process 1s almost diag-
onal [5]. The latter alternatives are areas of future research.

4. APPLICATION TO FMRI DATA

These wavelet-based methods to characterise the fractality
of noise structures in shortish time series were applied to
fMRI datasets acquired with and without experimental stim-
ulation. Several datasets were investigated from two MR
scanners (10 1.5T and 6 3T datasets), and with different ac-
quisition parameters settings. Our findings were consistent
with previous results [4]. Fig.3 shows an example for a sin-
gle subject 3T dataset (T'R = 4. ¥ = 312, no expen-
mental paradigm). It is shown from £I maps that for most
voxels, the noise structure is clearly fractal with dispropor-
tionate % power law. This is confirmed by the goodness
of fit measure (GOF) based on the likelihood score. The
noise vanance 1§ not homogencously distributed but tends
to be larger in outer (cortical) arcas of the brain. These re-
sults were reproducible across all the datasets investigated
even for phantoms, demonstrating that mstrumental effects
are partly responsible for the long-range dependence in the
noise. Nevertheless, the f. model can be inappropnate in
some locations of the brain as revealed by the GOF mea-
sure, suggesting that the Hurst exponent might vary across
time. Then, the local-stationarity test was applied to these
voxels (n = 6). By inspection of Fig.3 it seems that though
many voxels are #'-Iikc. only cortical voxels are likely to
refute the 17y of monofractality. This suggests that though
some colored noise may be of instrumental ongin, partic-
ularly complex poly-fractal noise s most likely in cortical
voxels. This also points to the fact that ime constancy of
{7 and stationanty in general could be a gross assumption

particularly at these locations of the brain.

5. CONCLUSION

We presented a wavelet-based methodology for characteris-
ing the noise structure in time series with an application
fMRI. We also proposed a novel test for local-stationarity of
the Hurst exponent and showed the superionty of the boot-
strap based inference approach over the Nommal assump-
tion. The preliminary observations on IMRI are very en-
couraging and indicate that the methodology is feasible for
fMRI data analysis and may offer considerable advantages

over alternative estimators given the prevalence of long-memory

errors in these data.
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Fig. 3. Results for a single subject 3T dataset.
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