

## Na4.25Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters

Diala Salloum, Patrick Gougeon, Philippe Gall

### ▶ To cite this version:

Diala Salloum, Patrick Gougeon, Philippe Gall. Na4.25Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters. Acta Crystallographica Section E: Structure Reports Online [2001-2014], 2014, 70 (Pt 6), pp.E70, i30. 10.1107/S160053681401201X . hal-01016047

## HAL Id: hal-01016047 https://hal.science/hal-01016047

Submitted on 30 Jun 2014

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

# Na<sub>4.25</sub>Mo<sub>15</sub>S<sub>19</sub>: a novel ternary reduced molybdenum sulfide containing Mo<sub>6</sub> and Mo<sub>9</sub> clusters

### D. Salloum, P. Gougeon and P. Gall

Acta Cryst. (2014). E70, i30

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.





Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The average publication time is less than one month. Articles are published in a short-format style with enhanced supplementary materials. Each publication consists of a complete package – the published article, HTML and PDF supplements, CIF, structure factors, graphics, and any other submitted supplementary files.

### Crystallography Journals Online is available from journals.iucr.org

### inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### $Na_{4,25}Mo_{15}S_{19}$ : a novel ternary reduced molybdenum sulfide containing Mo<sub>6</sub> and Mo<sub>9</sub> clusters

### D. Salloum,<sup>a</sup> P. Gougeon<sup>b\*</sup> and P. Gall<sup>b</sup>

<sup>a</sup>Faculty of Science III, Lebanese University, PO Box 826, Kobbeh-Tripoli, Lebanon, and <sup>b</sup>Unité Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I - INSA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

Received 21 May 2014; accepted 23 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (Mo–S) = 0.001 Å; disorder in solvent or counterion; R factor = 0.030; wR factor = 0.079; data-toparameter ratio = 22.7.

The structure of tetrasodium pentadecamolybdenum nonadecasulfide, Na<sub>4,25</sub>Mo<sub>15</sub>S<sub>19</sub>, is isotypic with Na<sub>3,9</sub>Mo<sub>15</sub>Se<sub>19</sub> [Salloum et al. (2013). Acta Cryst. E69, i67-i68]. It is characterized by  $Mo_6S_8^iS_6^a$  and  $Mo_9S_{11}^iS_6^a$  (where *i* represents inner and a apical atoms) cluster units that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2*c*, and have point-group symmetry  $\overline{3}$  and  $\overline{6}$ , respectively. The clusters are interconnected through additional Mo-S bonds. The Na<sup>+</sup> cations occupy interunit voids formed by six or seven S atoms. One Mo, one S and one Na site [occupancy 0.751 (12)] are situated on mirror planes, and two other S atoms and one Na site (full occupancy) are situated on threefold rotation axes.

### **Related literature**

For previous reports on the crystal structure of the  $In_{\sim 3}Mo_{15}Se_{19}$  compounds, see: Grüttner *et al.* (1979). For physical properties of this type of compounds, see: Seeber et al. (1979). The crystal structures of the substituted selenides Ho<sub>0.76</sub>In<sub>1.68</sub>Mo<sub>15</sub>Se<sub>19</sub> and In<sub>0.87</sub>K<sub>2</sub>Mo<sub>15</sub>Se<sub>19</sub> were reported by Salloum et al. (2006; 2007). For the isotypic sulfides In<sub>3.7</sub>Mo<sub>15</sub>S<sub>19</sub>, In<sub>1.6</sub>Rb<sub>2</sub>Mo<sub>15</sub>S<sub>19</sub>, In<sub>2.2</sub>CsMo<sub>15</sub>S<sub>19</sub>, ScTl<sub>2</sub>Mo<sub>15</sub>S<sub>19</sub> and Na<sub>3.9</sub>Mo<sub>15</sub>Se<sub>19</sub>, see: Salloum et al. (2004a,b, 2013) and for V<sub>142</sub>In<sub>183</sub>Mo<sub>15</sub>Se<sub>19</sub>, see: Gougeon et al. (2010). For details of the *i*- and *a*-type ligand notation, see: Schäfer & von Schnering (1964).

### **Experimental**

#### Crvstal data

| Na <sub>4.25</sub> Mo <sub>15</sub> S <sub>19</sub> | Z = 2                                     |
|-----------------------------------------------------|-------------------------------------------|
| $M_r = 2145.95$                                     | Mo $K\alpha$ radiation                    |
| Hexagonal, $P6_3/m$                                 | $\mu = 7.44 \text{ mm}^{-1}$              |
| a = 9.5340 (1)  Å                                   | T = 293  K                                |
| c = 18.9803 (3) Å                                   | $0.18 \times 0.14 \times 0.08 \text{ mm}$ |
| V = 1494.11 (3) Å <sup>3</sup>                      |                                           |

#### Data collection

| Nonius KappaCCD diffractometer             |
|--------------------------------------------|
| Absorption correction: analytical          |
| (de Meulenaar & Tompa, 1965)               |
| $T_{\rm min} = 0.363, T_{\rm max} = 0.591$ |

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ 66 parameters  $wR(F^2) = 0.079$  $\Delta \rho_{\rm max} = 1.51 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -1.85$  e Å<sup>-3</sup> S = 1.131500 reflections

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

16576 measured reflections 1500 independent reflections

 $R_{\rm int} = 0.085$ 

1322 reflections with  $I > 2\sigma(I)$ 

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system at the Centre de diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

Supporting information for this paper is available from the IUCr electronic archives (Reference: RU2060).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
- Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
- Gougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.
- Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285-292.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014-1018.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands
- Salloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004a). J. Solid State Compds 177 1672-1680.
- Salloum, D., Gougeon, P. & Gall, P. (2013). Acta Cryst. E69, i67-i68.
- Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83-i85.
- Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8-i10.
- Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004b). J. Alloys Compd, 383 57-62
- Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-845.
- Seeber, B., Decroux, M., Fisher, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419-423.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supplementary materials

Acta Cryst. (2014). E70, i30 [doi:10.1107/S160053681401201X]

# $Na_{4.25}Mo_{15}S_{19}$ : a novel ternary reduced molybdenum sulfide containing $Mo_6$ and $Mo_9$ clusters

### D. Salloum, P. Gougeon and P. Gall

### 1. Comment

The reduced molybdenum compounds  $In_{3+x}Mo_{15}X_{19}$  (X = S, Se) (Grüttner *et al.*, 1979; Salloum *et al.*, 2004*a*) crystallize in an interesting structural type characterized by an equal mixture of Mo<sub>6</sub> and Mo<sub>9</sub> clusters and by In atoms that occupy two or three different crystallographically positions depending on their formal oxidation state of +1 or +3. Subsequently, isomorphous compounds such as Ho<sub>0.76</sub>In<sub>1.68</sub>Mo<sub>15</sub>Se<sub>19</sub> (Salloum *et al.*, 2006), In<sub>0.87</sub>K<sub>2</sub>Mo<sub>15</sub>Se<sub>19</sub> (Salloum *et al.*, 2007),  $V_{1.42}In_{1.83}Mo_{15}Se_{19}$  (Gougeon *et al.*, 2010), In<sub>3.7</sub>Mo<sub>15</sub>S<sub>19</sub> (Salloum *et al.*, 2004*a*), In<sub>1.6</sub>Rb<sub>2</sub>Mo<sub>15</sub>S<sub>19</sub>, In<sub>2.2</sub>CsMo<sub>15</sub>S<sub>19</sub> and ScTl<sub>2</sub>Mo<sub>15</sub>S<sub>19</sub> (Salloum *et al.*, 2004*b*) have been synthesized. In the latter compounds, the Ho, V and Sc atoms replace the trivalent indium and the K, Cs, and Tl atoms the monovalent one. Recently, we described the crystal structure of Na<sub>3.9</sub>Mo<sub>15</sub>Se<sub>19</sub> (Salloum *et al.*, 2013) in which the sodium replaces the monovalent as well as the trivalent indium for the first time. We present here the sulfide analogue Na<sub>4.25</sub>Mo<sub>15</sub>S<sub>19</sub>.

The Mo–S framework of the title compound consists of the cluster units  $Mo_6S_{18}^iS_{6}^a$  and  $Mo_9S_{11}^iS_{6}^a$  in a 1:1 ratio (for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)). Both components are interconnected through additional Mo—Se bonds (Figs. 1 and 2). The first unit can be described as an Mo<sub>6</sub> octahedron surrounded by eight face-capping inner S<sup>i</sup> and six apical S<sup>a</sup> ligands. The Mo<sub>9</sub> cluster is surrounded by 11 S<sup>i</sup> atoms capping one or two faces of the bioctahedron and six  $S^a$  ligands above the apical Mo atoms. The Mo<sub>6</sub>S<sup>i</sup><sub>8</sub>S<sup>a</sup><sub>6</sub> and Mo<sub>9</sub>S<sup>i</sup><sub>11</sub>S<sup>a</sup><sub>6</sub> units are centered at Wyckoff positions 2 b and 2c and have point-group symmetry  $\overline{3}$  and  $\overline{6}$ , respectively. The Mo—Mo distances within the  $Mo_6$  cluster are 2.6900 (5) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7098 (6) Å for the distances between these triangles. The Mo-Mo distances within the Mo<sub>2</sub> clusters are 2.6349 (5) and 2.6756 (7) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7081 (4) and 2.7303 (4) Å for those between the  $Mo_{2_3}$  and  $Mo_{3_3}$  triangles. All the latter Mo—Mo distances are closed to those observed in the selenide analogue indicating that the cationic charge transfer towards the Mo<sub>6</sub> and Mo<sub>9</sub> clusters are similar in both compounds. The S atoms bridge either one (S1, S2, S4 and S5) or two (S3) triangular faces of the Mo clusters. Moreover, atoms S1 and S2 are linked to an Mo atom of a neighboring cluster. The Mo-S bond distances range from 2.4184 (14) to 2.5624 (10) Å within the  $Mo_{6}S_{18}^{i}S_{6}^{a}$  unit, and from 2.4033 (13) to 2.5947 (8) Å within the  $Mo_{9}S_{11}^{i}S_{6}^{a}$  unit. In both cases, the shortest bonds involve the S4 and S5 terminal atoms and the longest ones correspond to the interunit Mo1-S2 and Mo2—S1 bonds. Each Mo<sub>9</sub>Si<sub>11</sub>S<sup>a</sup><sub>6</sub> cluster is thus interconnected to six Mo<sub>6</sub>Si<sub>8</sub>S<sup>a</sup><sub>6</sub> units (and vice versa) via Mo2—S1 bonds (and Mo1—S2 bonds, respectively), forming the three-dimensional Mo—S framework, the connective formula of which is  $Mo_9S_{15}^iS_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/2}S_{1-6/$ distance is 3.5202 (6) Å, indicating only weak metal-metal interactions between the Mo clusters. The Na1<sup>+</sup> cations are surrounded by seven S atoms forming a distorted tricapped tetrahedron. The S5 and S2 atoms forming the tetrahedron are at 2.699 (5) and 3.1669 (13) Å from the Na1 atom, and the capping S1 atoms are at 3.3609 (19) Å. The Na2<sup>+</sup> cations

occupy partially at 75.1% a triangular group of distorted octahedral cavities around the threefold axis, which are formed by two  $Mo_6S_8^iS_6^a$  and three  $Mo_9S_{11}^iS_6^a$  units. The Na2—S distances are in the 2.538 (4) - 3.055 (4) Å range.

### 2. Experimental

Single crystals of  $Na_{4,25}Mo_{15}S_{19}$  were prepared from an ion exchange reaction on single crystals of  $In_{3+x}Mo_{15}S_{19}$  with an excess of NaI at 1073 K. The mixture was sealed under vacuum in a long silica tube. The end of tube containing the crystals of  $In_{3+x}Mo_{15}S_{19}$  and InI was placed in a furnace with about 5 cm of the other end out from the furnace, at about the room temperature. The furnace was heated at 1073 K for 48 h. After reaction, crystals of InI were observed at the cool end of the tube. The black crystals of the title compound were subsequently washed with water to remove the excess of InI. Qualitative microanalyses using a Jeol JSM 6400 scanning electron microscope equipped with a Oxford INCA energy- dispersive-type X-ray spectrometer did not reveal the presence of indium in the crystals and indicated roughly stoichiometries comprised between 3.8 and 4.4 for the Na content.

### 3. Refinement

No significant deviation from full occupancy was observed for Na1. The site occupation factor of Na2 was refined freely leading to the final stoichiometry  $Na_{4.25}$  (4) $Mo_{15}S_{19}$ .



### Figure 1

View of Na<sub>4.25</sub>Mo<sub>15</sub>S<sub>19</sub> along [110]. Displacement ellipsoids are drawn at the 97% probability level.



### Figure 2

Plot showing the atom-numbering scheme and the interunit linkage of the  $Mo_9S_{11}S_6$  and  $Mo_6S_8S_6$  cluster units. Displacement ellipsoids are drawn at the 97% probability level.

### Tetrasodium pentadecamolybdenum nonadecasulfide

Crystal data

Na<sub>4.25</sub>Mo<sub>15</sub>S<sub>19</sub>  $M_r = 2145.95$ Hexagonal,  $P6_3/m$  a = 9.5340 (1) Å c = 18.9803 (3) Å V = 1494.11 (3) Å<sup>3</sup> Z = 2F(000) = 1962

### Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  scans ( $\kappa = 0$ ) + additional  $\omega$  scans  $D_x = 4.770 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71069 \text{ Å}$ Cell parameters from 16576 reflections  $\theta = 2.2-30.0^{\circ}$  $\mu = 7.44 \text{ mm}^{-1}$ T = 293 KMulti-faceted crystal, black  $0.18 \times 0.14 \times 0.08 \text{ mm}$ 

Absorption correction: analytical (de Meulenaar & Tompa, 1965)  $T_{min} = 0.363$ ,  $T_{max} = 0.591$ 16576 measured reflections 1500 independent reflections

| 1322 reflections with $I > 2\sigma(I)$                          | $h = -12 \rightarrow 13$                                       |
|-----------------------------------------------------------------|----------------------------------------------------------------|
| $R_{\rm int} = 0.085$                                           | $k = -13 \rightarrow 11$                                       |
| $\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.2^\circ$ | $l = -22 \rightarrow 26$                                       |
| Refinement                                                      |                                                                |
| Refinement on $F^2$                                             | Secondary atom site location: difference Fourier               |
| Least-squares matrix: full                                      | map                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.030$                                 | $w = 1/[\sigma^2(F_o^2) + (0.0337P)^2 + 5.1576P]$              |
| $wR(F^2) = 0.079$                                               | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| <i>S</i> = 1.13                                                 | $(\Delta/\sigma)_{\rm max} = 0.001$                            |
| 1500 reflections                                                | $\Delta \rho_{\rm max} = 1.51 \text{ e } \text{\AA}^{-3}$      |
| 66 parameters                                                   | $\Delta \rho_{\rm min} = -1.85 \text{ e } \text{\AA}^{-3}$     |
| 0 restraints                                                    | Extinction correction: SHELXL97 (Sheldrick,                    |
| Primary atom site location: structure-invariant                 | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| direct methods                                                  | Extinction coefficient: 0.00266 (19)                           |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У             | Ζ              | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1)  |
|-----|--------------|---------------|----------------|-----------------------------|------------|
| Mo1 | 0.84424 (3)  | 0.01344 (3)   | -0.058496 (18) | 0.01072 (12)                |            |
| Mo2 | 0.50077 (4)  | -0.18303 (4)  | 0.131678 (19)  | 0.01177 (12)                |            |
| Mo3 | 0.34797 (5)  | -0.16448 (5)  | 0.2500         | 0.01301 (13)                |            |
| S1  | 0.71650 (10) | 0.02755 (11)  | 0.05118 (5)    | 0.01268 (18)                |            |
| S2  | 0.36949 (11) | -0.01601 (11) | 0.13948 (5)    | 0.01344 (19)                |            |
| S3  | 0.05126 (16) | -0.30754 (17) | 0.2500         | 0.0171 (3)                  |            |
| S4  | 0.0000       | 0.0000        | -0.15617 (9)   | 0.0184 (3)                  |            |
| S5  | 0.3333       | -0.3333       | 0.03365 (9)    | 0.0156 (3)                  |            |
| Na2 | 0.7703 (5)   | -0.0623 (4)   | -0.2500        | 0.0283 (12)                 | 0.751 (12) |
| Na1 | 0.3333       | -0.3333       | -0.1085 (3)    | 0.0789 (17)                 |            |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|------------|--------------|--------------|--------------|--------------|---------------|---------------|
| Mo1        | 0.01252 (16) | 0.01051 (16) | 0.00816 (19) | 0.00505 (11) | 0.00061 (10)  | -0.00031 (9)  |
| Mo2        | 0.01434 (17) | 0.01410 (17) | 0.00778 (19) | 0.00778 (12) | -0.00017 (10) | -0.00005 (10) |
| Mo3        | 0.0153 (2)   | 0.0159 (2)   | 0.0075 (2)   | 0.00754 (17) | 0.000         | 0.000         |
| <b>S</b> 1 | 0.0121 (4)   | 0.0138 (4)   | 0.0121 (4)   | 0.0064 (3)   | 0.0013 (3)    | 0.0005 (3)    |
| S2         | 0.0154 (4)   | 0.0143 (4)   | 0.0112 (4)   | 0.0079 (3)   | 0.0001 (3)    | 0.0008 (3)    |
| S3         | 0.0185 (6)   | 0.0198 (6)   | 0.0133 (7)   | 0.0098 (5)   | 0.000         | 0.000         |
| S4         | 0.0228 (5)   | 0.0228 (5)   | 0.0095 (8)   | 0.0114 (2)   | 0.000         | 0.000         |
| S5         | 0.0187 (4)   | 0.0187 (4)   | 0.0093 (7)   | 0.0094 (2)   | 0.000         | 0.000         |
| Na2        | 0.040 (2)    | 0.0256 (19)  | 0.026 (2)    | 0.0218 (16)  | 0.000         | 0.000         |
|            |              |              |              |              |               |               |

Acta Cryst. (2014). E70, i30

# supplementary materials

| Nal                 | 0.109 (3)                   | 0.109 (3) | 0.018 (2) | 0.0547 (14)                | 0.000           | 0.000       |  |
|---------------------|-----------------------------|-----------|-----------|----------------------------|-----------------|-------------|--|
| Geom                | Geometric parameters (Å, °) |           |           |                            |                 |             |  |
| Mo1-                | –S4 <sup>i</sup>            | 2.4184    | (14)      | S2—Mo1 <sup>iv</sup>       |                 | 2.5624 (10) |  |
| Mo1-                | -S1                         | 2.4492    | (10)      | S2—Na2 <sup>iv</sup>       |                 | 2.781 (2)   |  |
| Mo1-                | -S1 <sup>ii</sup>           | 2.4565    | (9)       | S2-Na1 <sup>iv</sup>       |                 | 3.1669 (13) |  |
| Mo1-                | -S1 <sup>iii</sup>          | 2.4830    | (9)       | S3—Mo3 <sup>viii</sup>     |                 | 2.4419 (14) |  |
| Mo1-                | $-S2^{iv}$                  | 2.5624    | (10)      | S3—Na2 <sup>xi</sup>       |                 | 2.538 (4)   |  |
| Mo1-                | -Mo1 <sup>v</sup>           | 2.6900    | (5)       | S3—Mo2 <sup>x</sup>        |                 | 2.5947 (8)  |  |
| Mo1-                | –Mo1 <sup>vi</sup>          | 2.6900    | (5)       | S3—Mo2 <sup>viii</sup>     |                 | 2.5947 (8)  |  |
| Mo1-                | –Mo1 <sup>iii</sup>         | 2.7098    | (6)       | S3—Na2 <sup>iv</sup>       |                 | 3.055 (4)   |  |
| Mo1-                | –Mo1 <sup>ii</sup>          | 2.7098    | (6)       | S4—Mo1 <sup>xii</sup>      |                 | 2.4184 (14) |  |
| Mo1-                | –Na2                        | 3.7042    | (8)       | S4—Mo1 <sup>xiii</sup>     |                 | 2.4184 (14) |  |
| Mo2-                | -S5                         | 2.4033    | (13)      | S4—Mo1 <sup>viii</sup>     |                 | 2.4184 (14) |  |
| Mo2-                | S2                          | 2.4733    | (9)       | S4—Na2xiii                 |                 | 2.649 (3)   |  |
| Mo2-                | $-S2^{vii}$                 | 2.5070    | (9)       | S4—Na2viii                 |                 | 2.649 (3)   |  |
| Mo2-                | S1                          | 2.5429    | (10)      | S4—Na2 <sup>xii</sup>      |                 | 2.649 (3)   |  |
| Mo2-                | –S3 <sup>vii</sup>          | 2.5947    | (8)       | S5—Mo2 <sup>viii</sup>     |                 | 2.4033 (13) |  |
| Mo2-                | –Mo2 <sup>vii</sup>         | 2.6349    | (5)       | S5—Mo2 <sup>vii</sup>      |                 | 2.4033 (13) |  |
| Mo2-                | –Mo2 <sup>viii</sup>        | 2.6349    | (5)       | S5—Na1                     |                 | 2.699 (5)   |  |
| Mo2-                | –Mo3 <sup>vii</sup>         | 2.7081    | (4)       | Na2—S3 <sup>xiv</sup>      |                 | 2.538 (4)   |  |
| Mo2-                | -Mo3                        | 2.7303    | (4)       | Na2—S4 <sup>i</sup>        |                 | 2.649 (3)   |  |
| Mo3-                | –S3 <sup>vii</sup>          | 2.4419    | (14)      | Na2—S4 <sup>xv</sup>       |                 | 2.649 (3)   |  |
| Mo3-                | S3                          | 2.4504    | (14)      | Na2—S2 <sup>xvi</sup>      |                 | 2.781 (2)   |  |
| Mo3-                | $-S2^{ix}$                  | 2.4810    | (10)      | Na2—S2 <sup>iv</sup>       |                 | 2.781 (2)   |  |
| Mo3-                | S2                          | 2.4810    | (10)      | Na2—Mo3 <sup>iv</sup>      |                 | 2.896 (3)   |  |
| Mo3-                | –Mo3 <sup>viii</sup>        | 2.6756    | (7)       | Na2—S3 <sup>iv</sup>       |                 | 3.055 (4)   |  |
| Mo3-                | –Mo3 <sup>vii</sup>         | 2.6756    | (7)       | Na2—Na2 <sup>v</sup>       |                 | 3.397 (6)   |  |
| Mo3-                | –Mo2 <sup>viii</sup>        | 2.7081    | (4)       | Na2—Na2 <sup>vi</sup>      |                 | 3.397 (6)   |  |
| Mo3-                | -Mo2 <sup>x</sup>           | 2.7081    | (4)       | Na2—Mo1 <sup>xvii</sup>    |                 | 3.7042 (8)  |  |
| Mo3-                | -Mo2 <sup>ix</sup>          | 2.7303    | (4)       | Na1—S2 <sup>xviii</sup>    |                 | 3.1669 (13) |  |
| Mo3-                | –Na2 <sup>iv</sup>          | 2.896 (   | 3)        | Na1—S2 <sup>iv</sup>       |                 | 3.1669 (13) |  |
| S1—N                | Ao1 <sup>iii</sup>          | 2.4565    | (9)       | Na1—S2 <sup>ii</sup>       |                 | 3.1669 (13) |  |
| S1—N                | Ao1 <sup>ii</sup>           | 2.4830    | (9)       | Na1—S1 <sup>iv</sup>       |                 | 3.3609 (19) |  |
| S1—N                | Va1 <sup>iv</sup>           | 3.3609    | (19)      | Na1—S1 <sup>xviii</sup>    |                 | 3.3609 (19) |  |
| S2—N                | Ao2 <sup>viii</sup>         | 2.5070    | (9)       | Na1—S1 <sup>ii</sup>       |                 | 3.3609 (19) |  |
| S4 <sup>i</sup> —I  | Mo1—S1                      | 171.81    | (4)       | Mo1—S1—Mo1 <sup>i</sup>    | ii              | 66.65 (3)   |  |
| S4 <sup>i</sup> —I  | Mo1—S1 <sup>ii</sup>        | 90.83 (   | (2)       | Mo1 <sup>iii</sup> —S1—Mo  | 1 <sup>ii</sup> | 65.99 (3)   |  |
| S1—N                | Mo1—S1 <sup>ii</sup>        | 89.17 (   | (2)       | Mo1—S1—Mo2                 |                 | 134.06 (4)  |  |
| S4 <sup>i</sup> —I  | Mo1—S1 <sup>iii</sup>       | 90.20 (   | (2)       | Mo1 <sup>iii</sup> —S1—Mož | 2               | 130.92 (4)  |  |
| S1—N                | Mo1—S1 <sup>iii</sup>       | 88.56 (   | (2)       | Mo1 <sup>ii</sup> —S1—Mo2  | 2               | 82.94 (3)   |  |
| S1 <sup>ii</sup> —  | Mo1—S1 <sup>iii</sup>       | 171.12    | (4)       | Mo1—S1—Na1 <sup>iv</sup>   | v               | 127.79 (8)  |  |
| S4 <sup>i</sup> —I  | Mo1—S2 <sup>iv</sup>        | 93.04 (   | (4)       | Mol <sup>iii</sup> —S1—Nal | iv              | 97.39 (3)   |  |
| S1—N                | Mo1—S2 <sup>iv</sup>        | 95.15 (   | (3)       | Mol <sup>ii</sup> —S1—Na1  | iv              | 153.45 (7)  |  |
| S1 <sup>ii</sup> —  | Mo1—S2 <sup>iv</sup>        | 91.20 (   | (3)       | Mo2—S1—Na1 <sup>iv</sup>   | V               | 94.64 (6)   |  |
| S1 <sup>iii</sup> — | -Mo1—S2 <sup>iv</sup>       | 97.55 (   | (3)       | Mo2—S2—Mo3                 |                 | 66.88 (3)   |  |
| S4 <sup>i</sup> —I  | Mo1—Mo1 <sup>v</sup>        | 56.21 (   | (2)       | Mo2—S2—Mo2                 | viii            | 63.88 (2)   |  |
| S1—N                | Mo1—Mo1 <sup>v</sup>        | 116.82    | (2)       | Mo3—S2—Mo2                 | viii            | 65.76 (2)   |  |

Acta Cryst. (2014). E70, i30

# electronic reprint

| S1 <sup>ii</sup> —Mo1—Mo1 <sup>v</sup>      | 117.37 (2)              | Mo2—S2—Mo1 <sup>iv</sup>                                   | 129.13 (4)             |
|---------------------------------------------|-------------------------|------------------------------------------------------------|------------------------|
| S1 <sup>iii</sup> —Mo1—Mo1 <sup>v</sup>     | 56.53 (2)               | Mo3—S2—Mo1 <sup>iv</sup>                                   | 132.33 (4)             |
| S2 <sup>iv</sup> —Mo1—Mo1 <sup>v</sup>      | 135.73 (2)              | Mo2 <sup>viii</sup> —S2—Mo1 <sup>iv</sup>                  | 82.07 (3)              |
| $S4^{i}$ —Mo1—Mo1 <sup>vi</sup>             | 56.21 (2)               | Mo2—S2—Na2 <sup>iv</sup>                                   | 133.09 (7)             |
| S1—Mo1—Mo1 <sup>vi</sup>                    | 117.46 (2)              | Mo3—S2—Na2 <sup>iv</sup>                                   | 66.52 (6)              |
| S1 <sup>ii</sup> —Mo1—Mo1 <sup>vi</sup>     | 57.48 (2)               | Mo2 <sup>viii</sup> —S2—Na2 <sup>iv</sup>                  | 100.94 (8)             |
| S1 <sup>iii</sup> —Mo1—Mo1 <sup>vi</sup>    | 116.43 (2)              | Mo1 <sup>iv</sup> —S2—Na2 <sup>iv</sup>                    | 87.68 (6)              |
| S2 <sup>iv</sup> —Mo1—Mo1 <sup>vi</sup>     | 131.85 (2)              | Mo2—S2—Na1 <sup>iv</sup>                                   | 101.03 (3)             |
| Mo1 <sup>v</sup> —Mo1—Mo1 <sup>vi</sup>     | 60.0                    | Mo3—S2—Na1 <sup>iv</sup>                                   | 122.15 (9)             |
| S4 <sup>i</sup> —Mo1—Mo1 <sup>iii</sup>     | 116.37 (2)              | Mo2 <sup>viii</sup> —S2—Na1 <sup>iv</sup>                  | 160.14 (7)             |
| S1—Mo1—Mo1 <sup>iii</sup>                   | 56.60 (2)               | Mo1 <sup>iv</sup> —S2—Na1 <sup>iv</sup>                    | 100.15 (7)             |
| S1 <sup>ii</sup> —Mo1—Mo1 <sup>iii</sup>    | 115.84 (3)              | Na2 <sup>iv</sup> —S2—Na1 <sup>iv</sup>                    | 98.88 (10)             |
| S1 <sup>iii</sup> —Mo1—Mo1 <sup>iii</sup>   | 56.08 (2)               | Mo3 <sup>viii</sup> —S3—Mo3                                | 66.31 (4)              |
| S2 <sup>iv</sup> —Mo1—Mo1 <sup>iii</sup>    | 138.14 (2)              | Mo3 <sup>viii</sup> —S3—Na2 <sup>xi</sup>                  | 157.19 (11)            |
| Mo1 <sup>v</sup> —Mo1—Mo1 <sup>iii</sup>    | 60.241 (8)              | Mo3—S3—Na2 <sup>xi</sup>                                   | 136.50 (11)            |
| Mo1 <sup>vi</sup> —Mo1—Mo1 <sup>iii</sup>   | 90.0                    | Mo3 <sup>viii</sup> —S3—Mo2 <sup>x</sup>                   | 65.57 (3)              |
| S4 <sup>i</sup> —Mo1—Mo1 <sup>ii</sup>      | 116.37 (2)              | Mo3—S3—Mo2 <sup>x</sup>                                    | 64.86 (3)              |
| S1—Mo1—Mo1 <sup>ii</sup>                    | 57.27 (2)               | Na2 <sup>xi</sup> —S3—Mo2 <sup>x</sup>                     | 119.39 (3)             |
| S1 <sup>ii</sup> —Mo1—Mo1 <sup>ii</sup>     | 56.34 (2)               | Mo3 <sup>viii</sup> —S3—Mo2 <sup>viii</sup>                | 65.57 (3)              |
| S1 <sup>iii</sup> —Mo1—Mo1 <sup>ii</sup>    | 115.54 (3)              | Mo3—S3—Mo2 <sup>viii</sup>                                 | 64.86 (3)              |
| S2 <sup>iv</sup> —Mo1—Mo1 <sup>ii</sup>     | 134.12 (2)              | Na2 <sup>xi</sup> —S3—Mo2 <sup>viii</sup>                  | 119.39 (3)             |
| Mo1 <sup>v</sup> —Mo1—Mo1 <sup>ii</sup>     | 90.0                    | Mo2 <sup>x</sup> —S3—Mo2 <sup>viii</sup>                   | 119.89 (5)             |
| Mo1 <sup>vi</sup> —Mo1—Mo1 <sup>ii</sup>    | 60.241 (8)              | Mo3 <sup>viii</sup> —S3—Na2 <sup>iv</sup>                  | 128.66 (8)             |
| Mo1 <sup>iii</sup> —Mo1—Mo1 <sup>ii</sup>   | 59.518 (16)             | Mo3—S3—Na2 <sup>iv</sup>                                   | 62.35 (7)              |
| S4 <sup>i</sup> —Mo1—Na2                    | 45.53 (6)               | Na2 <sup>xi</sup> —S3—Na2 <sup>iv</sup>                    | 74.15 (16)             |
| S1—Mo1—Na2                                  | 142.51 (6)              | $Mo2^{x}$ —S3—Na2 <sup>iv</sup>                            | 92.16 (5)              |
| $S1^{ii}$ Mo1 Na2                           | 83 36 (6)               | $M_0 2^{viii} = S_3 = N_a 2^{iv}$                          | 92.16 (5)              |
| $S1^{iii}$ —Mo1—Na2                         | 103 55 (6)              | $Mo1^{xii}$ S4 $Mo1^{xiii}$                                | 67 58 (5)              |
| $S^{iv}$ Mol Na2                            | 48 59 (6)               | $Mo1^{xii}$ S4 $Mo1^{viii}$                                | 67 58 (5)              |
| $Mo1^v - Mo1 - Na2$                         | 99.04 (6)               | $Mo1^{xiii}$ $S4$ $Mo1^{viii}$                             | 67 58 (5)              |
| $Mo1^{vi}$ — $Mo1$ — $Na2$                  | 88.97 (5)               | $Mo1^{xii}$ S4 $Na2^{xiii}$                                | 151 15 (7)             |
| $Mo1^{iii}$ $Mo1$ $Na2$                     | 156.07.(6)              | $Mo1^{xiii}$ $S4$ $Na2^{xiii}$                             | 93 82 (5)              |
| $Mo1^{ii}$ $Mo1$ $Na2$                      | 137.75(5)               | $Mo1^{viii}$ S4 Na2 <sup>xiii</sup>                        | 127 12 (7)             |
| S5_Mo2_S2                                   | 91 79 (2)               | $Mo1^{xii}$ $S4$ $Na2^{viii}$                              | 127.12(7)<br>127.12(7) |
| $S_{1} = M_{0} = S_{2}$                     | 90.96(2)                | $Mo1^{xiii} S4 Na2^{xiii}$                                 | 127.12(7)              |
| $\frac{33-1002-32}{2}$                      | 90.90(2)                | $M_0 1^{viii} = S4 = N_0 2^{viii}$                         | 131.13(7)<br>03.82(5)  |
| $S_2 = MO_2 = S_2$<br>S5 Mo <sub>2</sub> S1 | 172.09(4)               | $N_{2}2^{xiii} = S4 = N_{2}2^{xiii}$                       | 93.82 (3)<br>70 75 (0) |
| $S_{2} = M_{0} 2 = S_{1}$                   | 92.20(3)                | $M_{2} = 54 = M_{2}$                                       | 73.73(3)               |
| $S_2 = 1002 = S_1$                          | 09.00 (3)<br>07.44 (2)  | $M_0 1 = 54 = M_0 2xii$                                    | 93.62(3)               |
| $52^{$                                      | 97.44 (5)               | $M_0 1_{\text{min}} = S4 = N_0 2_{\text{min}}$             | 12/.12(7)              |
| $S_{2} = M_{0} 2 = S_{2} V_{ii}$            | 1/0.70(4)               | $N_{101} = 54 = N_{22}$                                    | 131.13(7)              |
| 52— $1002$ — $55$ ···                       | 80.02 (4)               | $INa2^{m} - 54 - INa2^{m}$                                 | 79.75 (9)              |
| $52^{}M02-53^{}$                            | 89.47 (4)               | $Na2^{m} = S4 = Na2^{m}$                                   | 79.75 (9)              |
| $S1 - MO2 - S3^{\text{vii}}$                | 96.89 (3)               | $MO2^{HII}$ $S5 - MO2$                                     | 66.48 (4)              |
| $S_{2} = M_{0} = M_{0} = M_{0}$             | 50.70(2)                | $M02^{11} - S5 - M02^{11}$                                 | 00.48 (4)              |
| $S_2$ — $NIO_2$ — $NIO_2^{**}$              | 118.30 (2)              | $1 \times 102 \longrightarrow 55 \longrightarrow 102^{11}$ | 00.48 (4)              |
| $S2^{}MO2^{}MO2^{++}$                       | 57.44 (2)<br>12( 00 (2) | 1VI02                                                      | 140.75 (3)             |
| S1—MO2—MO2 <sup>vin</sup>                   | 130.00 (2)              | MIO2-SO-Nal                                                | 140.73 (3)             |
| $55^{\text{m}}$ Mo2-Mo2 <sup>m</sup>        | 116.29 (3)              | $M102^{vn}$ 85 Nal                                         | 140.73 (3)             |
| $S5-Mo2-Mo2^{vm}$                           | 56.76 (2)               | $S3^{xiv}$ —Na2—S4 <sup>1</sup>                            | 89.92 (9)              |

| S2—Mo2—Mo2 <sup>viii</sup>                                           | 58.68 (2)                     | S3 <sup>xiv</sup> —Na2—S4 <sup>xv</sup>                     | 89.92 (9)                |
|----------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|--------------------------|
| S2 <sup>vii</sup> —Mo2—Mo2 <sup>viii</sup>                           | 117.32 (2)                    | S4 <sup>i</sup> —Na2—S4 <sup>xv</sup>                       | 84.49 (12)               |
| S1—Mo2—Mo2 <sup>viii</sup>                                           | 131.42 (2)                    | S3 <sup>xiv</sup> —Na2—S2 <sup>xvi</sup>                    | 112.74 (10)              |
| S3 <sup>vii</sup> —Mo2—Mo2 <sup>viii</sup>                           | 115.08 (3)                    | S4 <sup>i</sup> —Na2—S2 <sup>xvi</sup>                      | 154.21 (15)              |
| Mo2 <sup>vii</sup> —Mo2—Mo2 <sup>viii</sup>                          | 60.0                          | S4 <sup>xv</sup> —Na2—S2 <sup>xvi</sup>                     | 83.46 (4)                |
| S5—Mo2—Mo3 <sup>vii</sup>                                            | 118.14 (2)                    | S3 <sup>xiv</sup> —Na2—S2 <sup>iv</sup>                     | 112.74 (10)              |
| S2—Mo2—Mo3 <sup>vii</sup>                                            | 115.63 (3)                    | $S4^{i}$ —Na2—S2 <sup>iv</sup>                              | 83.46 (4)                |
| S2 <sup>vii</sup> —Mo2—Mo3 <sup>vii</sup>                            | 56.66 (2)                     | S4 <sup>xv</sup> —Na2—S2 <sup>iv</sup>                      | 154.21 (15)              |
| S1—Mo2—Mo3 <sup>vii</sup>                                            | 137.83 (3)                    | S2 <sup>xvi</sup> —Na2—S2 <sup>iv</sup>                     | 97.94 (11)               |
| S3 <sup>vii</sup> —Mo2—Mo3 <sup>vii</sup>                            | 54.99 (3)                     | S3 <sup>xiv</sup> —Na2—Mo3 <sup>iv</sup>                    | 145.61 (16)              |
| Mo2 <sup>vii</sup> —Mo2—Mo3 <sup>vii</sup>                           | 61.444 (11)                   | S4 <sup>i</sup> —Na2—Mo3 <sup>iv</sup>                      | 114.79 (9)               |
| Mo2 <sup>viii</sup> —Mo2—Mo3 <sup>vii</sup>                          | 90.670 (10)                   | S4 <sup>xv</sup> —Na2—Mo3 <sup>iv</sup>                     | 114.79 (9)               |
| S5—Mo2—Mo3                                                           | 117.29 (2)                    | S2 <sup>xvi</sup> —Na2—Mo3 <sup>iv</sup>                    | 51.78 (6)                |
| S2—Mo2—Mo3                                                           | 56.69 (2)                     | S2 <sup>iv</sup> —Na2—Mo3 <sup>iv</sup>                     | 51.78 (6)                |
| S2 <sup>vii</sup> —Mo2—Mo3                                           | 115.55 (3)                    | S3 <sup>xiv</sup> —Na2—S3 <sup>iv</sup>                     | 165.85 (15)              |
| S1—Mo2—Mo3                                                           | 133.65 (3)                    | S4 <sup>i</sup> —Na2—S3 <sup>iv</sup>                       | 79.65 (9)                |
| S3 <sup>vii</sup> —Mo2—Mo3                                           | 54.52 (3)                     | S4 <sup>xv</sup> —Na2—S3 <sup>iv</sup>                      | 79.65 (9)                |
| Mo2 <sup>vii</sup> —Mo2—Mo3                                          | 90.184 (10)                   | S2 <sup>xvi</sup> —Na2—S3 <sup>iv</sup>                     | 75.81 (8)                |
| Mo2 <sup>viii</sup> —Mo2—Mo3                                         | 60.600 (11)                   | $S2^{iv}$ —Na2—S3 <sup>iv</sup>                             | 75.81 (8)                |
| Mo3 <sup>vii</sup> —Mo2—Mo3                                          | 58.940 (16)                   | Mo3 <sup>iv</sup> —Na2—S3 <sup>iv</sup>                     | 48.54 (6)                |
| S3 <sup>vii</sup> —Mo3—S3                                            | 173.69 (4)                    | S3 <sup>xiv</sup> —Na2—Na2 <sup>v</sup>                     | 119.90 (13)              |
| S3 <sup>vii</sup> —Mo3—S2 <sup>ix</sup>                              | 89.88 (3)                     | $S4^{i}$ Na2 Na2 <sup>v</sup>                               | 50.13 (5)                |
| $S3 - Mo3 - S2^{ix}$                                                 | 93 48 (3)                     | $S4^{xv}$ Na <sup>2</sup> Na <sup>2</sup>                   | 50.13 (5)                |
| $S3^{vii}$ Mo3 $S2$                                                  | 89 88 (3)                     | $S^{xvi}$ Na2 Na2                                           | $105\ 50\ (12)$          |
| 83_Mo3_82                                                            | 93.48(3)                      | $S2^{iv}$ Na2 Na2                                           | 105.50(12)<br>105.50(12) |
| S2 <sup>ix</sup> —Mo3—S2                                             | 11545(4)                      | $M_03^{iv}$ Na2 Na2                                         | 94 49 (15)               |
| $S2^{vii}$ Mo3 Mo3 $^{viii}$                                         | 117.49(4)                     | $S_{1}^{iv}$ $N_{2}^{iv}$ $N_{2}^{iv}$                      | 45 95 (11)               |
| $S_3 M_0 3 M_0 3^{viii}$                                             | 56 69 (4)                     | $S_{3xiv} N_{2} N_{2} N_{2}^{vi}$                           | 59 90 (13)               |
| $S^{ix}_{x} Mo^{3}_{y} Mo^{3}_{y}$                                   | 11847(2)                      | $S_{4i} = N_{2}^{i} = N_{2}^{i}$                            | 50.13 (5)                |
| $S_2 = M_0 S_1 = M_0 S_1^{viii}$                                     | 118.47(2)                     | S4 = 10a2 = 10a2<br>$S4^{xv} = Na2 = Na2^{vi}$              | 50.13 (5)                |
| $S2^{vii}$ Mo3 Mo3 <sup>vii</sup>                                    | 57.00(4)                      | $S^{xvi}$ No2 No2vi                                         | 130.76 (6)               |
| $S_2 = M_0 S_1 = M_0 S_1^{\text{vii}}$                               | $\frac{116}{60} \frac{60}{4}$ | $S_2 = 1 a_2 = 1 a_2$<br>$S_2^{iv} = Na_2 = Na_2^{vi}$      | 130.76 (6)               |
| $S_{\text{iv}} = M_{0}S_{\text{iv}}$                                 | 110.09(4)<br>116.54(2)        | $M_03^{iv}$ N <sub>2</sub> 2 N <sub>2</sub> 2 <sup>vi</sup> | 150.70(0)                |
| $S2 = M_0 S = M_0 S^{\text{vii}}$                                    | 110.34(2)<br>116.54(2)        | NI03 - Na2 - Na2<br>S <sup>2iv</sup> Na2 Na2 <sup>vi</sup>  | 104.49(13)<br>105.05(11) |
| $M_{0}2^{\text{viii}}$ $M_{0}2^{\text{viii}}$ $M_{0}2^{\text{viii}}$ | f10.34 (2)                    | $N_{0}2^{v}$ $N_{0}2^{v}$ $N_{0}2^{vi}$                     | 105.95 (11)<br>60.0      |
| 1003 - 1003 - 1003                                                   | 117,827,(15)                  | 1 Na2 - 1 Na2 - 1 Na2                                       | 00.0                     |
| $S_3 = M_0 S_2 = M_0 S_1^{\text{will}}$                              | 117.627(13)                   | $S_{4i} = Na_{2} = Ma_{1}$                                  | 97.90(3)                 |
| $S_{3}$ Mo $_{3}$ Mo $_{2}$ Mo $_{2}$ Viii                           | 150.01(2)                     | S4 Na2 Mol                                                  | 40.03(3)                 |
| $S2 - M_1 2 - M_2 2 v^{iii}$                                         | 150.01(5)                     | $S4^{\text{m}}$ Na2-Mol                                     | 124.10(12)               |
|                                                                      | 57.58(2)                      | $S2^{\text{AV}}$ Na2 No 1                                   | 139.27 (11)              |
| $M03^{\text{vm}}$ $M03^{\text{vm}}$ $M02^{\text{vm}}$                | 60.944 (12)                   | $S2^{n}$ —Na2—Mol                                           | 43.72 (2)                |
| $M03^{\text{vir}}$ $M03^{\text{vir}}$ $M03^{\text{vir}}$             | 89.804 (10)                   | $Mo3^{W}$ Na2-Mo1                                           | 87.79(5)                 |
| $S3^{\text{vi}}$ —Mo3—Mo2 <sup>*</sup>                               | 117.827 (15)                  | $S_3^{\text{IV}}$ —Na2—Mol                                  | 80.39 (5)                |
| $S3-Mo3-Mo2^{*}$                                                     | 60.149 (14)                   | Na2 <sup>v</sup> —Na2—Mol                                   | 79.33 (6)                |
| $S2^{IX}$ —Mo3—Mo2 <sup>X</sup>                                      | 57.58 (2)                     | $Na2^{m}$ $Na2^{m}$ $Na2^{m}$ $Na2^{m}$                     | 87.34 (5)                |
| $S2$ —Mo3—Mo $2^x$                                                   | 150.01 (3)                    | $S_{3^{AV}}$ Na2 Mol <sup>xvii</sup>                        | 97.96 (5)                |
| $M03^{vm}$ $M03$ $M02^{x}$                                           | 60.944 (12)                   | $S4^{\text{W}}$ Na2—Mo1 <sup>xvn</sup>                      | 124.10 (12)              |
| $M03^{vu}$ — $M03$ — $M02^{x}$                                       | 89.804 (10)                   | $S4^{xv}$ —Na2—Mol <sup>xvn</sup>                           | 40.65 (3)                |
| $Mo2^{vm}$ — $Mo3$ — $Mo2^{x}$                                       | 112.05 (2)                    | S2 <sup>Avi</sup> —Na2—Mo1 <sup>xvii</sup>                  | 43.72 (2)                |
| S3 <sup>vii</sup> —Mo3—Mo2 <sup>ix</sup>                             | 59.911 (14)                   | $S2^{iv}$ —Na2—Mo $1^{xvii}$                                | 139.27 (11)              |

| S3—Mo3—Mo2 <sup>ix</sup>                   | 117.957 (16) | Mo3 <sup>iv</sup> —Na2—Mo1 <sup>xvii</sup>   | 87.79 (5)   |
|--------------------------------------------|--------------|----------------------------------------------|-------------|
| S2 <sup>ix</sup> —Mo3—Mo2 <sup>ix</sup>    | 56.42 (2)    | S3 <sup>iv</sup> —Na2—Mo1 <sup>xvii</sup>    | 80.39 (5)   |
| S2—Mo3—Mo2 <sup>ix</sup>                   | 146.91 (3)   | Na2 <sup>v</sup> —Na2—Mo1 <sup>xvii</sup>    | 79.33 (6)   |
| Mo3 <sup>viii</sup> —Mo3—Mo2 <sup>ix</sup> | 89.333 (10)  | Na2 <sup>vi</sup> —Na2—Mo1 <sup>xvii</sup>   | 87.34 (5)   |
| Mo3 <sup>vii</sup> —Mo3—Mo2 <sup>ix</sup>  | 60.116 (12)  | Mo1—Na2—Mo1 <sup>xvii</sup>                  | 157.78 (11) |
| Mo2 <sup>viii</sup> —Mo3—Mo2 <sup>ix</sup> | 146.475 (18) | S5—Na1—S2 <sup>xviii</sup>                   | 100.69 (9)  |
| Mo2 <sup>x</sup> —Mo3—Mo2 <sup>ix</sup>    | 57.956 (12)  | S5—Na1—S2 <sup>iv</sup>                      | 100.69 (9)  |
| S3 <sup>vii</sup> —Mo3—Mo2                 | 59.911 (14)  | S2 <sup>xviii</sup> —Na1—S2 <sup>iv</sup>    | 116.64 (6)  |
| S3—Mo3—Mo2                                 | 117.957 (16) | S5—Na1—S2 <sup>ii</sup>                      | 100.69 (9)  |
| S2 <sup>ix</sup> —Mo3—Mo2                  | 146.91 (3)   | S2 <sup>xviii</sup> —Na1—S2 <sup>ii</sup>    | 116.64 (6)  |
| S2—Mo3—Mo2                                 | 56.42 (2)    | S2 <sup>iv</sup> —Na1—S2 <sup>ii</sup>       | 116.64 (6)  |
| Mo3 <sup>viii</sup> —Mo3—Mo2               | 89.333 (10)  | S5—Na1—S1 <sup>iv</sup>                      | 71.10 (8)   |
| Mo3 <sup>vii</sup> —Mo3—Mo2                | 60.116 (12)  | S2 <sup>xviii</sup> —Na1—S1 <sup>iv</sup>    | 66.58 (2)   |
| Mo2 <sup>viii</sup> —Mo3—Mo2               | 57.956 (12)  | S2 <sup>iv</sup> —Na1—S1 <sup>iv</sup>       | 65.67 (2)   |
| Mo2 <sup>x</sup> —Mo3—Mo2                  | 146.475 (18) | S2 <sup>ii</sup> —Na1—S1 <sup>iv</sup>       | 171.77 (17) |
| Mo2 <sup>ix</sup> —Mo3—Mo2                 | 110.679 (19) | S5—Na1—S1 <sup>xviii</sup>                   | 71.10(8)    |
| S3 <sup>vii</sup> —Mo3—Na2 <sup>iv</sup>   | 117.20 (8)   | S2 <sup>xviii</sup> —Na1—S1 <sup>xviii</sup> | 65.67 (2)   |
| S3—Mo3—Na2 <sup>iv</sup>                   | 69.11 (8)    | S2 <sup>iv</sup> —Na1—S1 <sup>xviii</sup>    | 171.77 (17) |
| S2 <sup>ix</sup> —Mo3—Na2 <sup>iv</sup>    | 61.70 (3)    | S2 <sup>ii</sup> —Na1—S1 <sup>xviii</sup>    | 66.58 (2)   |
| S2—Mo3—Na2 <sup>iv</sup>                   | 61.70 (3)    | S1 <sup>iv</sup> —Na1—S1 <sup>xviii</sup>    | 110.03 (8)  |
| Mo3 <sup>viii</sup> —Mo3—Na2 <sup>iv</sup> | 125.80 (8)   | S5—Na1—S1 <sup>ii</sup>                      | 71.10 (8)   |
| Mo3 <sup>vii</sup> —Mo3—Na2 <sup>iv</sup>  | 174.20 (8)   | S2 <sup>xviii</sup> —Na1—S1 <sup>ii</sup>    | 171.77 (17) |
| Mo2 <sup>viii</sup> —Mo3—Na2 <sup>iv</sup> | 93.43 (4)    | S2 <sup>iv</sup> —Na1—S1 <sup>ii</sup>       | 66.58 (2)   |
| Mo2 <sup>x</sup> —Mo3—Na2 <sup>iv</sup>    | 93.43 (4)    | S2 <sup>ii</sup> —Na1—S1 <sup>ii</sup>       | 65.67 (2)   |
| Mo2 <sup>ix</sup> —Mo3—Na2 <sup>iv</sup>   | 117.90 (3)   | S1 <sup>iv</sup> —Na1—S1 <sup>ii</sup>       | 110.03 (8)  |
| Mo2—Mo3—Na2 <sup>iv</sup>                  | 117.90 (3)   | S1 <sup>xviii</sup> —Na1—S1 <sup>ii</sup>    | 110.03 (8)  |
| Mo1—S1—Mo1 <sup>iii</sup>                  | 67.06 (3)    |                                              |             |

Symmetry odes: (i) x+1, y, z; (ii) x-y, x-1, -z; (iii) y+1, -x+y+1, -z; (iv) -x+1, -y, -z; (v) -x+y+2, -x+1, z; (vi) -y+1, x-y-1, z; (vii) -x+y+1, -x, z; (viii) -y, x-y-1, z; (ix) x, y, -z+1/2; (x) -y, x-y-1, -z+1/2; (xi) x-y-1, x-1, -z; (xii) -x+y+1, -x+1, z; (xiii) x-1, y, z; (xiv) y+1, -x+y, -z; (xv) x+1, y, -z-1/2; (xvi) -x+1, -y, -z-1/2; (xvii) x, y, -z-1/2; (xviii) y, -x+y, -z.