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ABSTRACT: The use of a finite elements based Digital Volume Correlation (FE-DVC) leads to lower measurement uncertainties

in comparison to subset-based approaches. However, the associated computing time may become prohibitive when dealing with

high resolution measurements. To overcome this limitation, a PGD solver was recently applied to 2D digital image correlation. In

this paper, this method is extended to measure volumetric displacements from 3D digital images. In addition, a multigrid PGD

algorithm is developed, which allows to use different discretizations in each term of the decomposition. Associated to a coarse

graining of the digital images, this allows to avoid local minima, especially in presence of large displacements. Synthetic and

practical cases are analyzed with the present approach and measurement uncertainties are compared with standard FE-DVC. Results

show that such an approach reduces the computational cost (when compared to FE-DVC) while maintaining lower measurement

uncertainties than standard subset-based DVC.

KEY WORDS: Digital image correlation, Digital volume correlation, Full-field kinematic measurements, Multigrid, Proper Gen-

eralized Decomposition

Introduction

Today, heterogeneous materials are intensively studied

in many engineering fields (as aeronautics, automobile,

marine and biomechanics). Their effective properties

calls for 3D micro/macro-mechanical characterization

[11]. Consequently, volumetric full-field measurements

may be convenient, since a large amount of information

can be retrieved through a reduced number of experi-

ments (when compared with classical instrumentation

techniques).

Among the full-field displacement measurement meth-

ods, the Digital Volume Correlation (DVC) [3] (which is

a 3D extension of the Digital Image Correlation - DIC -

technique [36]) has been applied to many materials over

the last years, such as trabecular bone [3, 4], wood [11],

granular materials [21, 34], cast iron [20, 30], and stone

wool [13], for instance. Since it is a non-contact tech-

nique, DVC is very attractive in experimental conditions

where classical instrumentation techniques may be un-

successful. Basically, it compares a sequence of textured

3D images of the same object (under different loading

conditions) in order to obtain the associated displacement

field of a chosen region of interest (ROI). Any volumetric

images acquired by any imaging techniques, like Mag-

netic Resonance Imaging (MRI) or computed tomogra-

phy (CT), can be used.

Recently, a global formulation of DIC/DVC was pro-

posed by [5, 31], which seeks the displacement field over

an entire ROI. It relies on a weak formulation of the as-

sumption of brightness conservation [16], leading to the

inversion of a system whose solution yields the displace-

ments over the entire ROI. The interpolation of this dis-

placement field can be varied. An interesting route
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consists in using Finite Elements (FE) shape functions

(FE-based DIC/DVC) [5, 35, 31, 9]. It thus enables a

direct link with numerical simulations. It can be help-

ful during the identification and validation of constitu-

tive laws and numerical models [15]. However, the high

number of degrees of freedom (DOF) associated to re-

fined meshes or large structures, can lead to computing

time issues [20, 27]. As an example, a 3D image of

1000 × 1000 × 1000 voxels may lead to more than 106

DOF when using elements size of 10 voxels. This re-

quires the inversion of a large system at each iteration in

classical FE-based algorithm, whose computational cost

may become significant.

These issues have already been addressed in compu-

tational mechanics. For instance, the Proper General-

ized Decomposition method (PGD) [1, 18] has been em-

ployed to speed-up the resolution of complex problems,

enabling to obtain solution to problems that could not be

addressed before. It uses a separated representation of

a multi-dimensional function. Specifically, it consists in

approximating an N-dimensional function as a sum of

products of k-dimensional functions, with k < N . This

method was originally used for treating space-time prob-

lems [17]. It has been extended to multi-dimensional

problems like complex fluids modeling [1], stochastic

simulations [23], multi-scale problems [25], parametric

models [29], structural dynamics [7], 3D-spatial mod-

els [6] and numerical homogenization [12], for instance.

For a comprehensive review of PGD applications, readers

may refer to [8].

In [27], PGD is integrated with DIC in order to speed-

up measurements of 2D displacements fields. The un-

known displacement field, sought as a sum of products

of uni-dimensional functions, is corrected at each approx-

imation of the correlation problem using a fixed-point al-

gorithm. This new method, denoted PGD-DIC, requires

only 1D meshes in each dimension, reducing the numer-

ical complexity. It preserves all the advantages of the

FE-DIC approaches (such as the continuity and the di-

rect link with numerical simulations) at the same time

it reduces their main drawback, namely the associated

computational cost.

In this paper, we propose to extend this technique to

measure 3D continuous volumetric displacement fields,

to cope with the expected computational issue. It is based

on the 2D formulation proposed by [27]. The unknown

displacement field is sought as a sum of products of uni-

dimensional functions in the three spatial dimensions.

When inserted in the DVC formulation, a coupled sys-

tem (one problem for each spatial dimension) is obtained.

A fixed point algorithm (or alternating dimension algo-

rithm) is used to solve these problems independently.

Only few iterations of this algorithm are enough to com-

pute a new best rank one approximation, which is used to

compute the linear prediction of the correlation problem.

Hence, the computational time associated to the inversion

of the FE system is further reduced.

More than that, a multigrid PGD algorithm is devised

in this paper. It allows to use different discretizations in

each term of the sum in the PGD approximation. There-

fore, one can use coarser meshes at the early iterations and

refine them during convergence. This algorithm is associ-

ated to a coarse graining of the volumetric digital images.

As studied in [5, 9, 33, 14], it improves convergence and

also avoids local minima, which occurs for instance when

large displacement magnitudes are involved.

This article is organized as follows. Section 2 recalls

the main features of the global DVC formulation. Sec-

tion 3 presents the basis of PGD and how it is integrated

with DVC. The multigrid strategy and a regularization

method are also presented. Section 4 validates the pro-

posed method by comparing the uncertainties associated

with the FE-based DVC (considered as reference) and

analyses a synthetic example. In Section 5 the method is

used to measure volumetric displacement measurements

in a trabecular bone subjected to compression [4]. The

results are compared to those obtained from a FE-based

DVC. Finally, in Section 6, the characteristics of the pro-

posed method are discussed and new perspectives are

exposed.

Digital Volume Correlation (DVC)

Digital Volume Correlation was firstly introduced in

[3]. It basically consists in a volumetric extension of

subset based approaches classically used for DIC. In this

section, the main principles of a more recent global for-

malism [5, 31] are presented.

The main idea behind DVC is to determine the optical

flow between image sequences, assuming the brightness

conservation [16]. Let us consider two different volu-
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metric images of the same object f(x) (at rest) and g(x)
(after loading), where x is the position of a point in the

image. Each image f and g collects the gray level of

each position x, and, under the hypothesis of gray level

conservation, they are related by:

f(x) = g (x+ u(x)) (1)

where u(x) denotes the unknown displacement field.

This three-components vector reads:

u(x) = u(x, y, z) =





u(x, y, z)
v(x, y, z)
w(x, y, z)



 (2)

Determining the displacement field that verifies the as-

sumption (1) is an ill-posed problem. In practice, the gray

level information of images f and g is indeed not suffi-

cient to determine all the displacement components at

each voxel. Then, a classical sum of squared differ-

ences computed over the entire ROI (Ω) is prefered:

Φ2 =

∫

Ω

[f(x)− g(x+ u(x))]
2
dx (3)

The problem turns out to find the best u(x) that min-

imizes (3). Because of the nonlinearity of this equation,

an iterative process is employed assuming that the cor-

rection of the displacement field, δu(x), at each iteration

m, is small enough to allow for a first order Taylor ex-

pansion:

g(x+um(x)) ≈ g(x+um−1(x))+δu(x)T∇g(x+um−1(x))
(4)

where AT denotes the transpose of A , and δu(x) =
um(x)− um−1(x). This approximation is inserted into

(3) to linearize this formulation:

Φ2 =

∫

Ω

[
f(x)− gmu (x)− δu(x)T∇gmu (x)

]2
dx

(5)

with gmu (x) = g(x + um−1(x)). This requires an

interpolation of g at non-integer voxel positions. Here,

a basic linear interpolation was used for the sake of sim-

plicity. The term (f(x)− gmu (x)) is the correlation

residual field (or discrepancy map). It is used as an in-

dicator of the approximation quality of the displacement

fieldu(x). If the convergence of the algorithm is reached,

then gmu (x) ≈ f(x) and one can approximate ∇gmu (x)
by ∇f(x) , which circumvents the gradient computa-

tion at every iteration. For determining ∇f(x), a

centred finite difference approximation is used. The sta-

tionnarity condition associated with the minimization of

(3), ∀δu⋆(x), reads:

∫

Ω

[
(δu⋆(x))T∇f(x)

] [
δu(x)T∇f(x)

]
dx =

∫

Ω

[
(δu⋆(x))T∇f(x)

]
[f(x)− gmu (x)] dx

(6)

The problem turns to find the best δu(x) that verifies

(6). In a general approach, the unknown displacement

field is interpolated as [5]:

δu(x) =
∑

n

Φn(x)qn (7)

where Φn(x) are chosen basis functions and qn the asso-

ciated DOF. The problem consists then in determining the

best qn, which consequently determines the best δu(x)
within the choice of the considered displacement fields.

Different choices are possible to specify the basis func-

tion Φn(x), like piecewise polynomial (equivalent to

sub-set approaches) [3], Fourier expansions [37], or pre-

computed numerical functions [19] for instance. Another

choice consists in the shape functions [35, 5, 31] used in

the finite element (FE) method. It ensures the continuity

of the displacement field, which reduces measurement

uncertainties [15]. In addition, it provides a direct link

with numerical simulations, which can be of particular

interest for identification and validation purposes [19, 2].

Remark: As shown later, when using a multigrid

approach, the basis function may be adjusted for each it-

eration (different discretizations are used).

In this way, inserting (7) into (6), the following linear

system must be solved at each iteration m of the DVC

algorithm:

[M ]{q}m = {b}m (8)

with:

© 2014 The Authors – Journal: Strain 3



Multigrid PGD-based measurements of 3D displacement fields : L.A. Gomes Perini et al.

[Mab] =

∫

Ω

[
Φa(x)

T∇f
] [

∇fTΦb(x)
]

dx (9)

{ba}m =

∫

Ω

[
Φa(x)

T∇f
]
[f(x)− gmu (x)] dx (10)

Since a Taylor expansion (equation (4)) is used , one

has to solve system (8) iteratively for different values of

the right-hand side (vector {b}) until convergence. De-

spite its advantages, the choice of FE shape functions

(Φn(x) in (7)) may lead to the inversion of a set of linear

systems (8) involving a high number of DOF. Conse-

quently, the computational cost may become prohibitive.

The following section presents a technique to integrate

PGD with FE-based DVC, in order to speed-up (with ap-

propriate accuracy) DVC measurements. It is based on

the PGD-DIC method proposed in [27].

The PGD-DVC method

In this section, the basis of the PGD method and a de-

tailed formulation of the integration of such an approach

in the DVC are presented. A multigrid strategy and a

regularization technique are also presented and included

in the algorithm. The general structure of the PGD-DVC

algorithm is then exposed.

Formulation

PGD uses a separated representation of a generic mul-

tidimensional function F (x1, x2, ..., xn). It consists in

approximating this function by a finite sum of products

involving low-dimensional functions:

F (x1, x2, ..., xn) ≈
k∑

i=1

f i
1(x1) · f

i
2(x2) · ... · f

i
n(xn)

(11)

The separated dimensions can be, for instance, space

and time variables [18], deterministic and stochastic vari-

ables [23], space variables and parameters [29], but

also different dimensions of space independently [6, 27].

Here, extending the work of [27] to DVC measurements,

the unknown displacement field u(x, y, z) is written in a

separated form for each of its components (u, v, w) using

unidimensional functions only:

u(x, y, z) =





u(x, y, z)
v(x, y, z)
w(x, y, z)





≈

m∑

i=1





ux
i (x) · u

y
i (y) · u

z
i (z)

vxi (x) · v
y
i (y) · v

z
i (z)

wx
i (x) · w

y
i (y) · w

z
i (z)





(12)

where the functions ux
i , u

y
i , u

z
i , v

x
i , v

y
i , v

z
i , w

x
i , w

y
i , w

z
i

are unknown a priori. These functions are obtained with

a fixed point algorithm (power type method [23]) . At

iteration m of the DVC algorithm, the displacement field

is decomposed as:

u(x, y, z) =

m−1∑

i=1





ux
i (x) · u

y
i (y) · u

z
i (z)

vxi (x) · v
y
i (y) · v

z
i (z)

wx
i (x) · w

y
i (y) · w

z
i (z)





︸ ︷︷ ︸

um−1(x,y,z)

+





ux
m(x) · uy

m(y) · uz
m(z)

vxm(x) · vym(y) · vzm(z)
wx

m(x) · wy
m(y) · wz

m(z)





︸ ︷︷ ︸

δu(x,y,z)

(13)

where um−1 collects the terms calculated by all the pre-

vious iterations, and δu is composed of the unknown

functions at the present iteration m. By using this for-

mulation, the best correction um −um−1 minimizes the

least square formulation associated with the brightness

conservation (1).

Remark: Such a tensor decomposition is more likely

to handle parallelepipedic ROI shapes. However, as

shown in [26], there are no theoretical limitations for the

use of arbitrary shapes.

By using this approach, um−1(x, y, z) is con-

sidered fixed, whereas the set of 9 functions

ux
m, uy

m, uz
m, vxm, vym, vzm, wx

m, wy
m, wz

m are unknown.

The corresponding test field is classically assumed to be

written as [27, 29]:

4 Journal: Strain – © 2014 The Authors



Multigrid PGD-based measurements of 3D displacement fields : L.A. Gomes Perini et al.

δu⋆ =





ux⋆

m · u
y
m · u

z
m + ux

m · u
y⋆

m · u
z
m + ux

m · u
y
m · u

z⋆
m

vx⋆

m · v
y
m · v

z
m + vxm · v

y⋆

m · v
z
m + vxm · v

y
m · v

z⋆
m

wx⋆

m · w
y
m · w

z
m + wx

m · w
y⋆

m · w
z
m + wx

m · w
y
m · w

z⋆
m





(14)

Inserting δu⋆ and δu in problem (6) leads to a nonlin-

ear system composed of nine coupled variational formu-

lations. By gathering the unknown functions depending

on the same dimension, one can write (6) as 3 coupled

linear problems:

∫

z

γ⋆T A(z)γ dz =

∫

z

γ⋆T B(z) dz (15)

∫

y

β⋆T C(y)β dy =

∫

y

β⋆T D(y) dy (16)

∫

x

α⋆T E(x)α dx =

∫

x

α⋆T F(x) dx (17)

with

γ =





uz
m

vzm
wz

m



 β =





uy
m

vym
wy

m



 α =





ux
m

vxm
wx

m





where A(z),B(z),C(y),D(y),E(x),F(x) are, respec-

tively, three symmetric operators and three vectors com-

posed of only one-dimensional coefficients. For instance,

A(z) and B(z) writes:

A(z) =





A11(z) A12(z) A13(z)
A12(z) A22(z) A23(z)
A13(z) A23(z) A33(z)



 ;B(z) =





B1(z)
B2(z)
B3(z)





and

A11 =

∫

x

(ux
m)2

∫

y

(uy
m

∂f

∂x
)2 dydx

A12 =

∫

x

ux
m vxm

∫

y

uy
m vym

∂f

∂x

∂f

∂y
dydx

A13 =

∫

x

ux
m wx

m

∫

y

uy
m wy

m

∂f

∂x

∂f

∂z
dydx

B1 =

∫

x

ux
m

∫

y

uy
m (f − gu)

∂f

∂x
dydx

B2 =

∫

x

vxm

∫

y

vym (f − gu)
∂f

∂y
dydx

B3 =

∫

x

wx
m

∫

y

wy
m (f − gu)

∂f

∂z
dydx

Similarly, the group of coefficients

C(y),D(y),E(x),F(x) are only one-dimensional

operators. By applying an alternating directions fixed

point algorithm, one can compute the group of functions

(γ, β, α). It consists in, firstly, supposing β and α fixed,

so that β⋆ and α⋆ vanishes. Consequently, the system

(15)-(17) reduces to a problem involving only the z
dimension (equation (15)).

One should notice that the linear formulation of the

correlation problem has become nonlinear (system

(15)-(17)). However, it is convenient because a problem

of cubic complexity (or quadratic in 2D problems) is

substituted by various problems of linear complexity.

It can be solved by any numerical method, as finite

elements, which needs only 1D mesh in this case. Then,

the unknown vector field γ(z) is written as:

γ =





∑n
j=1 Nj(z)aj

∑n
j=1 Nj(z)bj

∑n
j=1 Nj(z)cj



 = Nz qγ (18)

where Nz is a matrix collecting all the FE shape func-

tions and qγ the associated DOF vector.

Remark: By using this PGD approach, only 1D

meshes in each direction are needed. Then, the total

number of DOF involved (DOFPGD) is lower than that

obtained with a FE-based approach (DOFFE), for a

same elements size:

DOFPGD = 3 · (nx + ny + nz)

DOFFE = 3 · (nx · ny · nz)
(19)

© 2014 The Authors – Journal: Strain 5
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where n is the number of nodes in each direction.

By inserting (18) into (15), the following linear system

is obtained:

A qγ = B (20)

with

A =

∫

z

(Nz)TA(z)Nz dz B =

∫

z

(Nz)TB(z) dz

Similarly to the z dimension problem, this procedure

is made for the other two dimensions (x and y). Then, the

fixed point algorithm consists in solving three linear sys-

tems (corresponding to each dimension, see (20)), which

must be repeated until convergence. The following cri-

terion of stagnation is used [27]:

η2f =
‖γk − γk−1‖

2

‖γk‖2
+
‖βk − βk−1‖

2

‖βk‖2
+
‖αk − αk−1‖

2

‖αk‖2
< ǫf

(21)

where ‖ · ‖ is the Eucledian norm, k is the current itera-

tion of the fixed point algorithm, and ǫf is a user-specified

convergence parameter. The choice of ǫf and the maxi-

mum number of fixed point iterations kmax are discussed

in section 5.3.

It is important to notice that the fixed point algorithm

is a step inside the global correlation algorithm. Fol-

lowing [27], the proposed PGD-DVC algorithm com-

putes only one best rank-one approximation at each

nonlinear update of g(x + u(x)), associated with the

correlation iterations. Specifically, each approximation

of the fixed point algorithm will provide new functions

ux, uy, uz, vx, vy, vz, wx, wy, wz used to correct the dis-

placement field um−1 (see equation (13)).

By using rank-one approximations, the total number

of correlation iterations is dependent on the separability

of the unknown field. However, as shown in [27], when

a high number of modes are necessary for approximating

a hardly separable field, the PGD approach still allows

for a reduction of the CPU time (compared to a FE ap-

proach).

To measure the convergence of the correlation prob-

lem, the following stagnation indicator (based on the

relative norm of each 3D field correction component) is

introduced [27]:

η2c =
‖δu‖2

‖u‖2
+
‖δv‖2

‖v‖2
+
‖δw‖2

‖w‖2
< ǫc (22)

where ‖ · ‖ is the Eucledian norm and ǫc is a user-

specified convergence parameter of the correlation prob-

lem. The accuracy of the converged displacement field

can also be assessed by the stagnation of a norm of the

correlation residual field (discrepancy map).

Multigrid PGD

The use of a Taylor expansion for the linearization pro-

cess of the correlation problem (4), requires a low ratio

between the displacement (δu(x)) and the spatial varia-

tions of the image gray levels∇gu. Then, large displace-

ments with a poor texture may lead to a non-convergence

of the correlation algorithm. To circumvent this issue,

a coarse graining strategy is usually used [5, 33, 14]. It

relies on one or more coarser grids to enlarge the mesh

size and smooth the texture, which decreases the ratio

displacement/texture. Then, δu(x) remains small and

a Taylor expansion can be applied, increasing the max-

imum measurable displacement obtained with conven-

tional DIC/DVC techniques [14].

In this way, a multigrid version of the PGD approach

proposed in [27] is developed. Indeed, thanks to its ad-

ditive nature, PGD can use different grids for each term

in the decomposition. Thus the multigrid-PGD approx-

imation reads:

u(x, y, z) ≈
∑

i





ux
i (x) · u

y
i (y) · u

z
i (z)

vxi (x) · v
y
i (y) · v

z
i (z)

wx
i (x) · w

y
i (y) · w

z
i (z)





︸ ︷︷ ︸

1st grid

+ . . .

+
∑

i





ux
i (x) · u

y
i (y) · u

z
i (z)

vxi (x) · v
y
i (y) · v

z
i (z)

wx
i (x) · w

y
i (y) · w

z
i (z)





︸ ︷︷ ︸

hth grid

(23)

Initially, large elements are used along each axis, and

then the unidimensional meshes are refined during con-

vergence. This multigrid PGD is associated to the above

coarse graining strategy applied to the images.

The general form of the algorithm can be visualized

6 Journal: Strain – © 2014 The Authors
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Initialization: create coarser images;

for h← hmax to 0 do
Mesh coarse image;

if h = hmax then
Rigid body translation;

→ [γ, β, α]o;

else
Interpolation using [γ, β, α]h+1;

→ [γ, β, α]o;

end

Correlation solver: [γ, β, α]o → [γ, β, α]h;

Fill [γ, β, α]h−1 with [γ, β, α]h;

end

[γ, β, α]o = [γ, β, α]h;

Figure 1: The PGD-based multigrid algorithm. Each

coarser level h computes a new solution, used at the next

level h− 1.

in Figure 1. First, coarser images of the reference image

are generated for each level h = 0, 1, ..., hmax, in order

to smooth the texture of the images. At each level, the

original size of the ROI is divided by 2h. The new im-

age is coarse-textured by combining groups of 2× 2× 2
voxels into a single voxel (by using the mean value of

gray-levels in each direction) so the number of voxels

per element remains constant at each level. Then, start-

ing from coarser level hmax, three first unidimensional

meshes are generated (one for each dimension). At this

first stage a rigid body translation is used as a primarily

initialization. For all the other levels, three new unidi-

mensional meshes are generated (one for each dimension)

and the mesh is refined by 2 with respect to the previous

grid. After convergence, the algorithm yields a multi-

scale solution that is expressed on multiple grids. These

grids may have nonconforming discretizations (different

nodes positions). Note that the grids exchange informa-

tion directly through the images, avoiding the need of

projection or intergrid operations [30].

A representation of coarser images and their meshes

is demonstrated in Figure 2, using 4 coarsening levels.

In sections 4 and 5 the proposed strategy is applied to

synthetic and real examples, in order to present its effect

to the convergence of the correlation problem.

Regularization

The determination of the optical flow (1) is an ill-posed

problem. Then, there is no unique motion explaining an

image brightness change [22, 16]. In this way, a regular-

ization process integrated to each scale of the multigrid

correlation problem may be advantageous to reach lower

residuals. Following [16], a spatial constraint (or smooth

constraint) is introduced in the global least square ap-

proach (3):

Φ2
reg = Φ2 + λ Φ2

L (24)

The parameter λ weights the influence of the regular-

ization on the correlation problem. The general idea is

to smooth the displacement field, which can be based on

the Laplace operator:

Φ2
L =

∫

x

(

du(x)

dx

2

+
du(x)

dy

2

+
du(x)

dz

2
)

dx (25)

For this paper, λ was chosen empirically, based on the

residuals of the correlation problem. The use of a reg-

ularized formulation allows the use of smaller elements

size, which may improve the spatial resolution. It will

be discussed later, in section 5.2. For more details of the

regularization formulation using a PGD approach, read-

ers may refer to [27].

A representation of the general PGD-DVC algorithm

is presented in Figure 3 (mmax is chosen by the user, in

order to avoid infinite iterations when the convergence is

not possible). In this work, a Matlab code with C++ sub-

routines was developed. In the next section the proposed

method is validated by using artificial images. The results

are compared with a standard FE-based DVC, considered

as reference.

Validation using an artificial example

In this section, an a priori performance of the PGD-

DVC method is analyzed and compared to a FE-based

DVC, using eight-noded hexahedron elements, consid-

ered as reference. Additionally, the effect of the multigrid

strategy to the convergence of the correlation problem is

analyzed. For these purposes, an artificial reference im-

age of 150 × 150 × 150 voxels was built based on an

© 2014 The Authors – Journal: Strain 7
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Figure 2: Representation of the PGD-based multigrid coarse images, with a reference ROI of 80× 80× 80 voxels and

element length of 10 voxels in each direction (using 4 coarsening levels).

extension to 3D of a Perlin noise [28]. The generated

image is shown in Figure 4a, and the histogram of gray

levels in Figure 4b. The image has 8-bit depth, the mean

value of gray levels is ≈ 128 gray levels, the typical size

of patterns are ≈ 3, 2 voxels and the standard deviation

≈ 18 gray levels. The 2D procedure for generating an

artificial image is described in details in [24].

Noise sensitivity

Firstly, to investigate the displacement resolution, a

noise sensitivity analysis is performed [5]. It consists

in adding a random noise with a standard deviation of

σn = 1 gray levels at each voxel of a reference image

f , generating a new image g. It represents the noise as-

sociated with the image acquisition [20]. Then, the DVC

algorithm is applied using this pair of images. The esti-

mated displacement field is expected to be zero, since no

displacement field is introduced on the image. Following

[20], the standard displacement uncertainty σu is such

that:

σu ∝
σn

L3/2
(26)

where L is the number of voxels in the considered el-

ement. The standard displacement uncertainty σu (

considering the voxels over the entire ROI ) as a function

of the element size can be viewed in Figure 5. The inter-

polation line is described by a power law A/Lα, where

α = 1.76 is in good agreement with equation (26).

Sub-pixel interpolation sensitivity

Additionally, another indicator was used to analyze

the uncertainty of PGD-DVC measurements. It consists

in generating a sequence of translated images gi from

the reference image f by an imposed displacement uref

(without noise) , as proposed by [5]. A translation was

interpolated linearly in the y-direction, with up
ref taking

the values p = {0.1, 0.2, ..., 1} pixel, as sub-pixels inter-

polations are the main source of errors [5]. The quality

of the measured displacement (up
m) of up

ref can be as-

sessed by the standard displacement uncertainty σu, and

the mean displacement error δu, defined by:

〈σu〉s =
1

10

1∑

p=0.1

〈(up
m − 〈u

p
m〉)

2〉1/2 (27)

〈δu〉s =
1

10

1∑

p=0.1

|〈up
m〉 − up

ref | (28)

where 〈u〉 defines the mean value of a displacement field

u over each voxel of the ROI and 〈·〉s the average over

the 10 shift values . Figure 6 shows 〈σu〉s and 〈δu〉s
as a function of the element size. The displacement un-

certainty decreases when the element size increases, as

expected [20, 5, 32]. The results also reveal that the

PGD-DVC method is in good agreement with FE-DVC

regarding measurement quality. Finally, one can observe

that for large element sizes (higher than 80 voxels in each

direction, in this case) the uncertainties increase, which

is justified by a poor statistical information (only one

8 Journal: Strain – © 2014 The Authors



Multigrid PGD-based measurements of 3D displacement fields : L.A. Gomes Perini et al.

Load f and g images;

ROI definition and mesh;

Compute gradient (∇f );

Multigrid solutions (uo);

Regularization operator construction;

=⇒ CORRELATION ITERATIONS;

Initialization: m = 1;

while (ηc > ǫc) and (m < mmax) do
Update residual f − gu;

=⇒ FIXED POINT ALGORITHM;

Initialization: [γ, β, α] ; k = 1;

while (ηf > ǫf ) and (k < kmax) do
(β, α) fixed: z-monodimensional problem;

→ Compute γ;

(γ, α) fixed: y-monodimensional problem;

→ Compute β;

(γ, β) fixed: x-monodimensional problem;

→ Compute α;

Fixed point stagnation indicator ηf ;

k = k + 1;
end

Convergence indicator ηc;

Displacement update:

uo = uo +





ux
m · u

y
m · u

z
m

vxm · v
y
m · v

z
m

wx
m · w

y
m · w

z
m



;

m = m+ 1;
end

Figure 3: The PGD-DVC algorithm. A fixed point algo-

rithm (which involves only uni-dimensional problems) is

integrated into the correlation iterations.

Figure 4: (a) Artificial reference image f based on Perlin

noise. Mean value≈ 128 gray levels, standard deviation

≈ 18 gray levels ; (b) Histogram of gray levels.

Figure 5: Noise sensitivity analysis. σu as a function of

element size, for both methods.

element in each direction in this case) .
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Figure 6: Sub-pixel interpolation sensitivity. 〈σu〉s and

〈δu〉s as a function of element sizes, for both methods.

A first synthetic example

Last, a more complex displacement is imposed in or-

der to compare the measured displacement field obtained

by both methods. By using spherical coordinates, each

component of the imposed displacement field is written

as:

uimp(r, θ, φ) =





u(r, θ, φ)
v(r, θ, φ)
w(r, θ, φ)





=





r4 [a.cos(θ)− b.sin(φ)]
r4 [a.sin(θ)− b.cos(φ)]
r4 [a.cos(θ)− b.cos(φ)]





(29)

where a and b are weight parameters. The components

of the imposed displacement field are functions of all the

three spatial dimensions. Consequently, the decomposi-

tion by PGD of such field is nontrivial. The reference

image used here is the same as the one presented in Fig-

ure 4a. The x- component of the prescribed displacement

field is shown in Figure 7 (in this particular case, a = 2
and b = 5). The chosen ROI has 120 × 120 × 120
voxels, and the elements size is set to 20 voxels in each

direction.

The difference (residual) between the imposed and the

measured x− component of the displacement field (Uref
x

and U
PGD/FE
x , respectively), and the discrepancy map

( with respect to the dynamic range ) obtained for both

methods are presented in Figure 8. The mean value

and standard deviation corresponding to Figure 8a and

8b are ≈ 1.6 · 10−3 and ≈ 0.03, respectively. For Fig-

ure 8c and 8d, the mean value and standard deviation are

≈ 2.10−14% and ≈ 1.7%, respectively. The PGD-

DVC algorithm converged with m = 62 iterations (using

ǫc = 10−3). One can observe that the measured dis-

placement field obtained by PGD-DVC is very close to

the one measured with FE-DVC.

Figure 7: x- component of the prescribed displacement

field (voxels).

Effects of the multigrid strategy

To exemplify the use of a multigrid strategy, a more

important displacement field (≈ 30 voxels of magnitude

in the y- direction) utilizing (29) was imposed to the same

reference image (Figure 4a). Elements size of 20 voxels

in each direction was used, with a ROI of 80 × 80 × 80
voxels.

Following [33], Figure 9a shows that when only one

single grid is used without regularization, the conver-

gence of the correlation problem is not obtained (in this

case, ǫc = 10−3). When using three grids (without regu-

larization), the convergence is reached and the measure-

ment can be performed.

Additionally, Figure 9b shows that when no multigrid

nor regularization are used, the choice of the elements

size is restricted. Then, reaching lower residuals is only

possible when using both numerical strategies. These

10 Journal: Strain – © 2014 The Authors
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(c) FE-DVC discrepancy map 
wrt dynamic range (%)

(d) PGD-DVC discrepancy map 
wrt dynamic range (%)

Figure 8: Artificial example. Measurements results for FE-DVC and PGD-DVC. (a) and (b) Residual between the

imposed and the measured x− component of the displacement field (Uref
x and U

PGD/FE
x , respectively). Mean value

≈ 1.6 · 10−3, standard deviation ≈ 0.03 ; (c) and (d) Discrepancy map with respect to the dynamic range (mean value

≈ 2.10−14%, standard deviation ≈ 1.7% for both methods).

results show that a combination of multigrid and regu-

larization makes the algorithm more robust to large dis-

placement fields and/or fine grids.

Application to a real experiment: trabecular

bone compression

In this section, a real example of a trabecular bovine

bone under compression, monitored by micro-MRI, is

studied. This case was firstly analyzed in [4], using a

FE-based DVC algorithm (with eight-noded hexahedron

elements) to determine the displacement and strain fields.

The data can be useful for FE models validation and also

to determine the material properties.

The experiment consists in compressing a bovine bone

specimen. Its natural trabecular network is used as a

texture for DVC. The field of view of the MRI images is

256×512×256 voxels, corresponding to 40mm x 20mm

x 20mm . For a detailed description of the specimen

preparation, compression device and image acquisition,

readers may refer to [4].

© 2014 The Authors – Journal: Strain 11
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(a) (b)

Figure 9: Analysis of the PGD multigrid and regularization, applied to a pair of synthetic volumetric images with a

large imposed displacement field. (a) Convergence criteria during the correlation iterations m . The use of different

grids (without regularization) allowed the convergence of the correlation problem (elements size = 20 voxels); and (b)

Dimensionless residual as a function of the elements size. The use of the multigrid strategy combined with regularization

allows to achieve lower residuals.

A priori analysis

Here, a comparison is made between PGD-DVC and

FE-DVC performances (considered as reference). The

chosen ROI is composed of 95× 180× 100 voxels , in

order to enclose the maximum of the specimen (which

has the dimension of 16mm x 10mm x 10mm) . The ref-

erence image (corresponding to the chosen ROI) is shown

in Figure 10a (standard deviation ≈ 24 gray levels, size

of patterns ≈ 2, 2 voxels) . One can observe its natural

texture, necessary for the DVC correlation problem. The

standard displacement uncertainty 〈σu〉s and the mean

displacement error 〈δu〉s (without noise) , as a function

of the elements size are shown in Figure 10b. The re-

sults show that measured displacements have a subvoxel

resolution, which is in good agreement with [4].

Displacement Measurements

The measured displacement field and the associated

discrepancy map (with respect to the dynamic range)

obtained by each technique (using the same ROI as

shown in Figure 10a) are presented in Figure 11, us-

ing element size of 20 voxels in each direction. The

mean displacement 〈Uy〉 is equal to ≈ −4, 5 voxels,

which is is accordance with [4]. The mean value

and the standard deviation of the difference (residual)

between the measured displacement field in the y-

direction UFE
y − UPGD

y (Figure 11c) are, respectively,

≈ 3.6 · 10−4 and ≈ 0.013 voxels. The measured dis-

placement fields and discrepancy maps of both methods

are very similar. The PGD-DVC algorithm converged

after 39 iterations m (with ǫc = 10−3).

Figure 12a shows that, when using elements size of

15 voxels without regularization, the convergence of the

correlation problem is only reached when using the multi-

grid strategy (three grids in this case). In Figure 12b, the

use of smaller elements size allows to reach lower corre-

lation residuals, which is possible when combining reg-

ularization with multigrid. However, smaller elements

size increases the number of DOF, which may lead to

prohibitive computational costs. In this way, a CPU time

analysis is performed, in order to compare the computa-

tional cost of the proposed method with that of FE-based

DVC.

12 Journal: Strain – © 2014 The Authors
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(a) (b)

Figure 10: Practical case primary analysis. (a) reference image (gray levels) of the trabecular bone, obtained by micro-

MRI. The ROI is composed of 95 × 180 × 100 voxels , standard deviation ≈ 24 gray levels ; and (b) Uncertainty

analysis: 〈σu〉s and 〈δu〉s , associated with imposed sub-voxel displacements.

CPU time analysis

As demonstrated in [27], the computational cost ob-

tained with the proposed method may become signif-

icantly lower than the one associated to a FE-based

DIC/DVC, especially when small elements are used to

improve the resolution. Figure 13a shows the CPU time

as a function of the elements size . The same initializa-

tion (one grid only, rigid body translation), regularization

and ROI size (95 × 180 × 100 voxels) were used for

both methods. When perfoming measures with fine spa-

tial resolution, the computational cost of PGD-DVC is

much lower than FE-DVC.

Figure 13b shows the CPU time as a function of kmax,

the maximum number of fixed-point algorithm itera-

tions (see Figure 3), specified by the user. The same

ROI (95 × 180 × 100 voxels) , elements size (10 vox-

els) and convergence criterion of the correlation prob-

lem ηc (10−3) were used. Solving the fixed-point ac-

curately (choosing a large kmax) leads to inefficient it-

erations, which unnecessarily increase the computational

cost without improving the accuracy nor the convergence

rate of the correlation solver. Conversely, performing

only one fixed point iteration (kmax = 1) induces a high

increase of the number of iterations m of the correla-

tion problem, increasing the CPU time. One can observe

that, in this example, few iterations k are necessary (more

precisely, from two to five iterations) to obtain accurate

results with a minimum computational cost.

Summary and conclusions

In this article, an extension of the PGD-based digi-

tal image correlation (PGD-DIC) to volumetric displace-

ment measurements (PGD-DVC) is presented. The idea

consists in seeking the unknown 3D displacement field as

a product of separated 1D spatial functions. Each prob-

lem is solved independently thanks to a fixed-point algo-

rithm, which reduces the numerical complexity. Results

show that very few iterations of the fixed-point and one

single best rank one approximation at each linear predic-

tion of the correlation are necessary for the convergence

of the correlation problem.

Additionally, a multigrid PGD was developed which

allows to handle meshes defined at different scales in

the decomposition. Associated to image coarse grain-

ing [5, 33], this method improves the convergence of the

standard PGD-DIC [27] by avoiding local minima. This

is the case, for instance, when displacements are large

when compared to the gray level spatial variations of

the images . This multigrid PGD allows to reach a bet-

© 2014 The Authors – Journal: Strain 13



Multigrid PGD-based measurements of 3D displacement fields : L.A. Gomes Perini et al.

(d) FE-DVC discrepancy map 
wrt dynamic range (%)

(e) PGD-DVC discrepancy map 
wrt dynamic range (%)

Figure 11: Practical case results, for both methods. (a) and (b) y- component of the displacement field; (c) Difference

between measurements UFE
y and UPGD

y (mean value: ≈ 3.6 · 10−4 voxels, standard deviation: ≈ 0.013 voxels); (d)

and (e) Discrepancy map with respect to the dynamic range (mean value ≈ 5.10−13%, standard deviation = 2.5%
for both methods).

ter matching between the reference and deformed image

whether a regularization technique is used or not.

When compared with a standard FE-based DVC, using

artificial and practical cases, the proposed method has the

same performance regarding uncertainty analysis. Both

methods produce very similar results , since the interpo-

lation should theoretically span the same approximation

space. By decreasing the element size to obtain a finer

spatial resolution , the proposed method admits a reduced

computational cost compared to FE-based DVC.

The use of very large ROI sizes leads to additional

challenges associated with the computational cost. For

instance, a ROI composed of 2000×2000×2000 voxels

may result in more than 106 DOF, when using relatively

large element size of 20 voxels. Consequently, PGD-

DVC should represent an adequate and efficient method

to deal with measurements and identification of constitu-

tive laws at the voxel-scale [20, 10].
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(a) (b)

Figure 12: Analysis of the PGD multigrid and regularization, applied to micro-MRI images of a trabecular bone under

compression. (a) Convergence criteria during the correlation iterationsm . The use of multigrid (without regularization)

allowed the convergence of the correlation problem (elements size = 15 voxels); and (b) Dimensionless residual as a

function of the elements size. The use of the multigrid strategy combined with regularization allows to achieve lower

residuals.

(a) (b)

Figure 13: (a) CPU time as a function of the element size , for both methods, using the same regularization, initialization

and ROI size. In this case, PGD-DVC considerably reduced the computational cost when using a fine discretization .

(b) CPU time as a function of the maximum number of the fixed-point algorithm iterations, specified by the user. The

same elements size, ROI and convergence criterion of the correlation problem (ηc) were used. Very few iterations of

the fixed-point algorithm are needed for the convergence of the correlation problem.
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