
HAL Id: hal-01015879
https://hal.science/hal-01015879v1

Submitted on 27 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User modelling in adjustable control system
Thi-Hai Ha Dang, Adriana Tapus

To cite this version:
Thi-Hai Ha Dang, Adriana Tapus. User modelling in adjustable control system. IEEE International
Conference on Collaboration Technologies and Systems (CTS), May 2013, San Diego, United States.
pp.236 - 240, �10.1109/CTS.2013.6567235�. �hal-01015879�

https://hal.science/hal-01015879v1
https://hal.archives-ouvertes.fr


User Modelling in Adjustable Control System

Thi-Hai-Ha Dang and Adriana Tapus

Robotics and Computer Vision Lab

ENSTA-ParisTech

828 Blvd des Marechaux, 91762, Palaiseau, France

Email:{tdang; adriana.tapus}@ensta-paristech.fr

Abstract—A good adjustable control system is a system that
can adapt its behaviors according to the user’s state over time.
While most researches in Human-Robot Cooperation focus on
making the robotic system more efficient and effective in task
accomplishment, we argue that very few works tried to model
the human operator. In this paper, we discuss several aspects
related to the human operator that we consider important for
an efficient Human-Robot Cooperation. Furthermore, we present
a tentative architecture of an adjustable control system, where
these aspects are emphasized.

I. INTRODUCTION

Adjustable autonomy refers to dynamically adjusting the
level of autonomy of an agent depending on the context. For a
human-robot team the desired or optimal level of control may
vary over time. For example, the human and the autonomous
agent can have completely different observations that can lead
to inconsistent decisions. In [9], Olsen and Goodrich discussed
six interrelated metrics that can be basic to the design of
human-robot interaction, especially to evaluate the autonomy
of a HRI system [2]. The six metrics are presented in Table I.

TABLE I: SIX METRICS TO EVALUATE THE AUTOMONY OF A HRI SYSTEM [9]

Metrics Definition

Task Effectiveness How well a human-robot team accomplishes some

task.

Neglect Tolerance How the robot’s current task effectiveness declines

over time when the robot is neglected by the user.

Robot Attention Demand How much attention that a robot is demanding.

Free Time The fraction of the task time that the user does

not need to pay attention to the robot.

Fan Out The number of robots that a user can effectively

operate at once.

Interaction Effort How hard the user interacts with the robots during

the task realization.

We believe that if the robotic system can adjust its behavior
during a cooperative task, task performance can be greatly
enhanced and undesired events can be avoided. Some adaptive
interaction strategies are mentioned in [13]. Hence, to make
a Human-Robot interaction efficient, the robotic system needs
to have enough information about the user.

II. USER MODELLING: DETERMINANT FACTORS

An efficient interaction is an interaction that adapts to
the user’s current preferences and promotes a good task
performance to achieve the goal. Interaction strategy should be
consistent with the user’s preference and user’s current internal
state. User’s preference may depend on the user’s expertise
about the robotic system, and also on his/her personality. In
the following sections, we discuss why it is so important to take
into account user’s current internal state, user’s expertise about

the robotic system, and user’s personality so as to provide an
adaptive interaction with the human peer.

A. Human’s Emotional State Setection For An Appropriate
Autonomy

Psychologists had long recognized the undeniable role of
emotional process in the adaptability of humans [11], [4]. It
is also well known that emotional intelligence greatly relates
to the human’s ability to cope adaptively with changing and
therefore stressful situations [8], [15]. However, while emotion
modelling was well studied in virtual agents and social robotics
to simulate human’s emotional process [1], [18], [19], emotion-
based interaction seems to have been marginally considered
in human-robot cooperative tasks. Most of researches study
individual phenomena of human’s emotional process (e.g.,
attention tunneling [13], anxiety [7]).

Yerkes and Dodson, in [14], discussed the effect of human’s
arousal level on task performance. Later on, Hebb’s theory [20]
was just an adaptation of the Yerkes-Dodson law, and stated
that “human beings seek out an optimal level of arousal”. In
Fig 1 the relationship between human’s arousal level and task
performance is represented as an inverted-U curve . This means
that until a certain threshold, increase in arousal level has a
positive influence on task performance. When the arousal level
exceeds this threshold, task performance starts to decrease.

Figure. 1: Hebbian version of the Yerkes Dodson curve [17].

Put it differently, the arousal level can be divided into three
emotional states as shown in Table II. When arousal level is
still under boredom threshold, human can be considered as
being bored by the task. When the arousal level surpasses
the boredom threshold and stays under the Stress/Anxiety
threshold, human can be considered as motivated in performing



the task. When task performance is optimal, the arousal level
is called baseline threshold, which is recommended for the
best task performance. When the arousal level exceeds the
Stress/Axiety threshold, human is stressed and his/her task
performance would decrease drastically.

TABLE II: EMOTIONAL STATES IN TERMS OF AROUSAL LEVEL

Emotional State Condition

Bored if ArousalLevel < BoredomThreshold
Motivated if BaselineThreshold ≤ ArousalLevel ≤

Stress/AxietyThreshold
Stressed/Anxious if ArousalLevel > Stress/AnxietyThreshold

Moreover, it was shown that task performance is strongly
dependent on user’s skill level, personality, trait anxiety, and
task complexity [22], [23], [24].

Therefore, it is important to take into account the emotional
states of the human partner during human-machine coopera-
tion, so that the machine (e.g. robotic systems) can interact in
such a way that allows the user to remain in his/her motivated
state. This means that the robotic system should be able to
monitor the user’s emotional state, and to motivate the user
whenever he/she is bored, and to ease his/her stress during the
cooperation.

Several researchers in adjustable autonomy already con-
sidered this element in their work and two examples are
presented below. In [13], when discussing some problems of
Human-Machine cooperation, specially attention tunneling and
perseveration behaviors of the human operator, the authors
suggested various solutions to solve these problems, mainly
involving adaptive interaction of the robotic system according
to the human operator’s internal states.

Moreover, the authors in [7] designed a robotic-based
basketball game that adapted the game difficulty level in terms
of the player’s anxiety level. Their experiment shows that by
adapting robot’s behavior to the anxiety level of participants,
task performance was enhanced for most participants.

In this context, we argue that human’s internal state is
a very important information required by the robotic system
during the interaction/cooperation with the human peer. We
posit that by applying some knowledge from psychology about
human’s emotional state, we can customize/adapt the robotic
system to fit the user’s internal state and thus contribute to
a more appropriate human-robot interaction in a cooperative
task.

B. User’s Proficiency About The Robotic System

In [26] a relation between social-demography and user
acceptance towards assistive technology is depicted, and it is
clearly shown that user acceptance towards assistive systems is
superior when the user has higher education and/or technolog-
ical experience. User acceptance also shows to be positively
correlated with the felt ease of use that user has towards the
machine.

Some research works in HRI can be cited as examples of
how important human’s knowledge about the robotic system’s
capabilities is for an efficient Human-Robot cooperation. In
[3], the authors discuss about Human-Robot Team performance

under stress, and they notice that when human operator doesn’t
know what, how, and why the robot is doing what it is doing,
he/she will not accept to cooperate with the robot and the
Human-Robot collaboration will just fail. Moreover, the main
challenges in human-robot cooperation are presented in [13].
One of the main chanllenge, in such systems, is to avoid
situations where the operator and the decision algorithm “do
not understand each other”.

To design a better system, we suggest that user’s under-
standing of the system should be added as a parameter so that
the control of the system can be adjusted to his/her level. We
also believe that an effective adjustable autonomy minimizes
the necessity for human interaction, but also maximizes the
capability for humans to interact at whatever level of control
is most appropriate for any situation at any time.

C. Why Personality Is Needed In Adjustable Control System?

In behavioral psychology, personality refers to the patterns
of thoughts, feelings, social adjustments, and behaviors consis-
tently exhibited by an individual over time that strongly influ-
ence their expectations, self-perceptions, values and attitudes,
and predicts their reactions to people, problems and stress. Lots
of researches in psychology have been carried out to study the
effect of personality in team performance. Works presented
in [28], [29] suggest that team performance in creative tasks
can be maximized if members’ personality (evaluated in terms
of Big Five Personality Traits [25]) meet the optimal pattern
consisting of moderate levels of Extraversion, high levels of
Openness to Experience, and high levels of Conscientiousness.
Moreover, the authors in [27] have studied the effect of group’s
personality pattern in cooperative task and found that each
dimension of Big Five personality has a different effect on
group’s performance in cooperative task, such as Extraversion
influences tasks that do not enforce very short time constraints,
Openness to Experience has impact on search tasks, while
Agreeableness was important for tasks where tight collabo-
ration was required.

Several reseraches in social robots, found that personality is
an important factor in HRI. AIBO robot with personality has
been perceived as more intelligent and attractive by human
with complementary personality to the personality of the
robot during an interaction-for-fun session [5]. Assistive robot
ActivePioneer with personality has been considered as more
effective by people with the same personality to the personality
of the robot during rehabilitation sessions [12]. Human beings
find the interaction more interesting and more engaging when
interacting with a robot system that is not only technically
robust, but also socially adapted in terms of interaction. When
people are to interact/control/use tools, with time they establish
some sort of connection with these and begin attributing
personality traits to them [10].

Therefore, we consider that the personality plays an im-
portant role and should be part of the system.

Based on all the discussed issues, we posit that a formal
model on the reasoning and the representations of the human’s
intentions, goals, emotional states, personality, and knowledge
is needed. In this context, the human operator needs to be
included in the control loop and this can be done by integrating
a model of the human at a lower level of the system.



In the following section, we present our attempt to design
a generic adjustable control system, which takes into account
the three aspects of the user in its adaptive action strategies.

III. JARVIS SYSTEM ARCHITECTURE

This section describes our system called Jarvis - an ad-
justable control system, that can also provide social interaction
with the user in order to make him/her engaged in the task
and more productive at the same time. Its main feature is to
enable the system to adapt its autonomy accordingly during
the mission and to engage human in the task in case of
disengagement. Jarvis remains a system serving human as a
tool to accomplish a task or a mission (e.g., a car driving
system, search and rescue system, etc.).

In order to cooperate with human in a mission, Jarvis
should be able to manage several kinds of information, for
example: information about the mission, the current situa-
tion, and its human partner. For example, a driver assistive
system should have information about the destination, its
current position, the states of the vehicle (e.g., fuel, motor’s
performance, speed), the environmental external factors (e.g.,
weather, pedestrians), and the state of the driver. A search and
rescue system, on the other hand, should also have information
about the object/subject to search, its current position and
states (e.g., power, components’ states), current environment,
and the state of its human operator. Figure 2 presents general
architecture of Jarvis taking into account this kind of informa-
tion.

Figure. 2: Jarvis’ architecture.

In a normal condition, human operation is supposed to
control the robotic system in order to execute the task at hand
and thus accomplish the mission. The adaptation of system’s
autonomy happens when human operator is not in the condition
to carry on the task or is overloaded. In order to detect when
adaptation is needed, Jarvis has to continuously check the
human’s emotional state and/or human’s Cognitive Load (i.e.,
workload). In the next sections, we will discuss on how Jarvis
obtains these informations and on its adaptive strategies.

A. Calculation Of Human’s Emotional State

Taking into account the human’s emotional state can be
considered as the most important aspect in Jarvis. By knowing

the state of its user, the system can adapt its behavior to
fit its user’s current state. As presented in Table II, sev-
eral physiological indicators need to be measured, such as
thresholds, current physiological state. Thresholds (including
Stress threshold, Anxiety threshold, baseline threshold, bore-
dom threshold) are to be collected and serve as parameters of
Jarvis before the effective Human-Jarvis cooperation. Human
operator’s physiological state is collected in realtime during
his/her performance. When undesired state is detected (e.g.,
the human is bored/stressed/anxious), Jarvis can execute a
more engaging Human-Robot Interaction strategy in order to
drive the human’s emotional state into a desired state (e.g.,
motivated).

To identify the current emotional state of the human
operator, Jarvis needs to calculate his/her current arousal level,
as suggested in Table II. Researches interested in processing
human’s physiological signals already showed that it is pos-
sible to calculate arousal level of human user from his/her
physiological signals (such as heart rate, skin conductivity,
blood volume pulsation), as presented in [30], [31]. So, during
the cooperation, the human operator will be wearing sensors
that allows to measure and send his/her physiological signals
in realtime to the Jarvis system. From these signals, Jarvis
calculates user’s arousal level and then determines his/her
emotional state by comparing the arousal state with the
appropriate arousal thresholds (including boredom threshold,
baseline threshold, stress/anxiety threshold).

B. Calculation Of Human’s Congitive Load

Jarvis has to manage different kinds of information, in-
cluding human internal state, on-going tasks execution, and
environmental state. From the three sources of information,
Jarvis calculates the current Cognitive Load of the user, so as
to know if he/she is overloaded in order to propose assistance.
Too much simultaneous tasks to process, high stress level, or
attention tunneling state are some of the example of overload
Cognitive Load.

To calculate Cognitive Load at time t, Ct, Jarvis needs
information about (1) Arousalt: human operator’s current
arousal level, and (2) the list of current tasks T being executed
at time t where each task tai is associated with a difficulty
level Di.

Ct = Arousalt ×

n∑

1

(tai ×Di)

where n is number of current tasks that the user has to execute
at the moment.

The difficulty level of each task is predefined based on the
user’s experience and is adjusted along the time according to
the environmental conditions. When environmental conditions
(for example: weather, fuel level, obstacles) become favorable
for a task execution, the task difficulty level will be lowered
down; if the environmental conditions change in a unfavorable
way to the task execution, the task difficulty level will be
inscreased.



C. Adaptable Action Strategies Upon Human Operator’s State

Jarvis is equipped with a Cooperation Mode Judge that
helps it to decide what to do upon either current Cognitive
Load level and/or human’s current emotional state. These
strategies include Human Control, Human-Robot Interaction,
and Robot Rescue.

• The Human Control is selected when there is no
problem emerged in the system, and its user can
control the whole system (for example, driving the car
correctly). In this mode, the user can also ask Jarvis
to take control of the system (doing the task) partially
or entirely, supposing that he/she can take the control
back whenever he/she wants to.

• The Human-Robot Interaction strategy will be exe-
cuted if Jarvis detects problems in the system, such
as a heating system failure, a sudden obstacle on the
road, or its user is getting tired (e.g., after driving
the car for a long period of time). This strategy is
favored when the problems are repairable, i.e. human
special attention can solve the problem. This is where
Jarvis acts in such a way that fits the social preferences
and personal preferences of the user (i.e., his/her
personality).

• The Robot Rescue strategy is executed when the situa-
tion is critical and endangers the user, for example the
human gets too tired and sleepy while driving. When
this situation is detected, Jarvis has to execute the
Rescue plan, for example, manage to find a solution
that puts the user in a safe state.

IV. CONCLUSION

In this paper, we discussed several elements needed to
design an adaptive autonomy for robotic systems. We believe
that the adaptive autonomy should consider several types of
information about the users, from short-term informations to
long-term ones. While the user’s current internal state can help
to adapt the system’s behavior to avoid human’s error, user’s
experience can suggest to the robotic system about how often
it should report to human operator about its plan. Additionally,
the user’s personality can help to alter the robotic system in
such a way that renders the interaction during the task more
enjoyable and more engaging to the user. Based on all the
previous elements discussed, in future research we plan on
tackling hard issues such as: monitoring and situation aware-
ness; mission criticality; modelling and predicting behavior;
reasoning about communication; and prioritized tasking.
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