
HAL Id: hal-01015860
https://hal.science/hal-01015860v1

Submitted on 27 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solution Space Modeling for Robotic Systems
Arun Kumar Ramaswamy, Bruno Monsuez, Adriana Tapus

To cite this version:
Arun Kumar Ramaswamy, Bruno Monsuez, Adriana Tapus. Solution Space Modeling for Robotic
Systems. Journal for Software Engineering Robotics (JOSER), 2014, 5 (1), pp.89-96. �hal-01015860�

https://hal.science/hal-01015860v1
https://hal.archives-ouvertes.fr

Journal of Software Engineering for Robotics 5(1), May 2014, 89-96
ISSN: 2035-3928

Solution Space Modeling for Robotic Systems
Arunkumar Ramaswamy1,2 Bruno Monsuez1 Adriana Tapus1

1 Department of Computer and System Engineering, ENSTA-ParisTech, 828 Blvd Marechaux, Palaiseau, France
2 VeDeCom Institute, 77 rue des Chantiers, 78000 Versailles, France

Abstract—Motivated from the experience of developing a lidar based vehicle tracking system, a model-based approach for specifying

the solution space of robotic system is proposed in this paper. Solution space modeling can expand the design space, help finding the

best possible solution, identify variation points, and also permit to perform context based run-time adaptation of the system. Models

based on the proposed Solution Space Modeling Language (SSML) can help in system level reasoning, making tradeoffs, documenting

decisions, and comparing them based on functional and non-functional properties, and can act as an artifact for formally proving and

validating the final implementation.

Index Terms—Modeling Techniques, Quality Concepts, Model-Driven Software Development, Vehicle Tracking

1 INTRODUCTION

Architecting a robotic system is a science of integrating

various independently operable heterogeneous systems such

as perception, navigation, planner, controller, etc. Tradition-

ally in robotics, the adaptation of the robotic system to the

dynamic environments is embedded in the functionality of the

constituent systems, for example, by designing a dynamic path

planning algorithm. This practice limits the adaptation within

the functional boundaries of the system components. Solution

space modeling can expand this design space, help finding the

best possible solution, and also permit to perform run-time

adaptation of the system.

The solution space for implementing a functionality in

robotics domain is large. Unlike in research laboratories,

where domain experts are involved in software development, in

industries there is a clear separation of roles. Domain experts

design the system (e.g., using UML class diagrams) and make

key decisions on algorithms that are then communicated to the

software developer who develops the software code. Robotic

experts can oversee various algorithmic solutions, specify

abstract software component interfaces, predict high level de-

pendencies, etc.; however, they may not be well versed in best

Short paper – Manuscript received November 15, 2013; revised April 30,

2014.

• This work was supported by Vedecom, a French automotive cluster

on mobility research. The research on vehicle tracking systems were

conducted with the guidance from Javier Ibanez-Guzman at Renault,

Research Division, France.

• Authors retain copyright to their papers and grant JOSER unlimited

rights to publish the paper electronically and in hard copy. Use of the

article is permitted as long as the author(s) and the journal are properly

acknowledged.

software engineering practices, cannot predict execution time

of algorithms, etc. A software developer, sometimes, antici-

pates and assumes several facets about the target environments

while implementing and testing software components that may

not be valid in the final system composition. For example, a

developer may implement a particular localization algorithm

that requires the sensor data to have a certain confidence

level and resolution, which may not be satisfied in the target

application. The underlying reason is that no formal model is

used to analyze and manage the solution space available to

various stakeholders. However, for various reasons described

below, the robotic system designs are fallible: a) Most of

the robotic system designs are purely functional, they do not

explicitly capture the non-functional aspects, such as, timing

properties, etc.; b) The decision on which algorithm to use is

decided by the domain expert during the design phase without

considering the operational profile of those functionalities and

its prerequisites, run-time environment, potential interactions

etc.; c) Only functional verification of individual systems is

conducted and the performance of these modules cannot be

guaranteed when it coexists with other systems, for example,

the obstacle detection system may take more time to compute

when it is executed along with other systems in the real world

scenario; d) Lack of common ontologies and reluctance of

roboticists to accept any standard development process.

This research paper has two main goals: first, to identify the

problems faced while developing software for robotic systems

in an industrial setup; secondly, to apply formal modeling

techniques to partially mitigate those issues. We also discuss

our vision for a model-driven ecosystem foreseen in robotics

domain.

www.joser.org - c© 2014 by A. Ramaswamy, B. Monsuez, A. Tapus

90 Journal of Software Engineering for Robotics 5(1), May 2014

Fig. 1. Test Vehicle used for vehicle tracking experiment.

Lidar and GPS are mounted on top of the vehicle and

embedded computers are located in the trunk of the

vehicle (see picture inset).

2 MOTIVATIONAL EXPERIMENT

The problems faced and lessons learnt during the system

design, software development, and field experiments con-

ducted during a research at Renault were the driving forces

to propose a model-based approach. The objective of the

project was to design and implement a vehicle tracking system

using Velodyne HDL-64E lidar sensor. Velodyne lidar is a

high definition laser scanning system that generates about

a million points per second using its rotating sensor head

containing 64 semiconductor lasers as shown in Figure 1. The

tracking system should detect vehicles in the environment and

compute its state - 2D position and velocity. It was foreseen

to use the system for the following scenarios: a) Ground truth

generation, b) Path planning for autonomous vehicle, c) Traffic

surveillance, and d) Map building applications. The project

was successfully completed, however, in an ad-hoc manner

that made it impractical in several other anticipated application

scenarios. This section document some of those problems from

our experience and classifies them into four core categories.

In our work, we employed the classical approach of per-

forming data association on segmented scenes across frames

followed by the probabilistic state estimation. The process

flow is composed of the following four stages: a) Data

acquisition: Spatio-temporal point cloud data is acquired; b)

Segmentation: Points clouds are segmented to object level;

c) Data association: Point cloud features are computed for

segmented clusters and then associated with objects across

frames; d) State estimation: Probabilistic inference methods

such as Kalman Filters, PHD Filters are applied to estimate

the position and velocity of the detected vehicles.

Some of the relevant problems encountered during the

design and development of the tracking system are discussed

below.

Large number of segmentation algorithms are available in

the literature to segment point cloud data. Some of them were

dependent on the type of the sensor (e.g., Lidar, Time-of-

Flight Cameras), properties of data (e.g., density, resolution,

colour, intensity), environment features (e.g., indoor, outdoor,

cluttered, flat or sloppy terrain, vegetative land). In addition,

the intention to use the tracking system in a variety of

applications, such as ground truth generation, and autonomous

driving, whose requirements for timing properties, resolution

and confidence levels are entirely different, makes it difficult

to choose an appropriate algorithm.

The rotating head of lidar takes non-negligible amount of

time to capture a frame. If the lidar is mounted on a moving

vehicle, the generated 3D point cloud frames get distorted

due to this motion. Since this was not properly captured in

initial designs, considerable amount of time were spent on

implementing software that later failed in field experiments.

One such incorrect component composition was when Point

Cloud Histograms (PFH) were used as feature descriptors in

the data association step. PFH descriptors captures the spatial

distribution of points in the point cloud. When the tracking

system was used in moving vehicle without including an

undistortion process on the point cloud data, the feature corre-

spondences will not work. The undistortion process requires a

high performance inertial localization system to compute the

pose of the vehicle at the timestamp of each captured point

and applies coordinate transformation to compute the exact

3D point. Such induced requirements and constraints must

be captured to make the system more adaptable, for run-time

dynamic wiring of software components, and for deriving a

product from product line systems.

Context information was unavailable during design time as

well as during field experiments. Certain algorithms can be

integrated to the system only by using such information, for

example, an object classifier needs the road information to help

in classifying between vehicles or buildings on the road side,

between pedestrians and parking poles, etc. Several algorithms

(ground classification, for instance) require parameter selection

based on the context, such as terrain type - sloppy or flat, road

width, etc.

The previously discussed problems can be broadly classified

into three categories:

1) Uncertain problem space: Ambiguity in requirements

due to the desire to reuse the system across various

applications.

2) Large solution space: Availability of multiple algorithms

for implementing a functionality.

3) Lack of design time context information: The developer

cannot anticipate all the use cases and his/her assump-

tions are not properly documented.

4) Level of Abstraction: Code-centric designs cannot pro-

vide the right level of abstraction that promote portabil-

ity and reusablity.

This paper proposes a modeling language to formally model

the solution space and to specify the quality attributes during

design time. The approach is to capture multiple solutions in

the model that permits formal analysis, reasoning, and decision

making on selecting best possible solution depending on the

functional and non-functional properties. The solution model

A. Ramaswamy et al./ Solution Space Modeling for Robotic Systems 91

Fig. 2. Relationship between the proposed models

will also help in - system level reasoning, making tradeoffs,

documenting decisions and comparing them, and for formally

proving and validating the final implementation.

The rest of the paper is organized as follows: Section

3 discusses various aspects of modeling solution space and

provides a meta-metamodel. The concept of functional and

non-functional properties and their corresponding metamodels

are described in section 3.1 and section 3.2, respectively.

Section 4 applies the proposed modeling language to model

the solution space for the previously discussed vehicle tracking

problem. Section 5 provides the related works and discuss

the model driven software development in robotics. Section 6

concludes the paper with future directions.

3 SOLUTION SPACE MODEL

By critical analysis of the problems described in section 2, the

desirable features for a solution space model are deduced: a) It

should be a graphical model that can be visually inspected, as

well as machine readable; b) It must be a hierarchical model

that provides views at different granularity levels; c) Non-

Functional Properties (NFP) and Quality of Service (QoS)

must be explicitly stated; d) It must capture the uncertainties

in problem space and must act as a reference model for

developing concrete software models in the operational space.

Equally important to the desirable features, the model should

not include any implementation specific details, such as com-

munication patterns and programming language dependencies.

In this paper, a Solution Space Modeling Language (SSML)

is proposed. SSML is specified at two abstract levels as shown

in Figure 2. Solution space meta-metamodel is at the highest

level and functional and non-functional metamodels at the

lower level in the MDE hierarchy. Figure 3 shows the Ecore

meta-metamodel diagram and the graphical representation of

the primitive elements. In natural language, the syntax can be

explained as follows: the solution space consists of Dispatch

Gates, Ports, Connectors as the primitive elements. A Dispatch

gate consists of number of ports and is associated with a

Dispatch Policy. The ports can be ‘in’ or ‘out’ indicated by

the port_type. A connector is associated with two ports of

which one should be an ‘in’ port and the other an ‘out’ port.

A connector can have NFP and QoS associated with it.

The semantics of the proposed model is as follows: the

dispatch gates represent basic operations for composing dif-

ferent functional computational processes, such as selecting

an appropriate data source for a computation, synchronization

Fig. 3. Metamodel (left) and its graphical representation

(right) of SSML. Dispatch Gate, Port, and Connector rep-

resents the functional aspect and NFP and QoS Profile

represents the non-functional aspect.

point, buffering, etc. The dispatch policy associated with it

defines the operation of the gate. The data enters or leaves

the gates through ports. Ports can be of type ‘in’ or ‘out’

depending on whether the data enters or leaves the gate. A

connector connects two semantically compatible ‘in’ and ‘out’

ports. A Connector represents a functional computation and its

quality aspects are represented by NFP and QoS.

3.1 Functional Model

A functional model satisfies the behavioral requirements of

the system. A behavioral or functional requirements are those

requirements that specify the inputs (stimuli) to the system,

the outputs (response) from the system, and the behavioral

relationships between them [1]. The functional model in the

solution space should not be interpreted as a data flow diagram,

but as a relationship diagram between functional concepts.

3.1.1 Functional Metamodel

A functional metamodel is depicted in Figure 4 that conforms

to the solution space meta-metamodel. This metamodel im-

poses soft constraints on the dispatch policies of the gates

and the number of ports [2]. Soft constraints means that

the dispatch policies are not concretely defined but only

conceptual restrictions are only imposed in the metamodel.

The intention is to facilitate the designer to apply application

specific policies, at the same time, the gates can be used for

automated reasoning of the solution space.

a) Splitter gate consists of 1 input port and n output ports.

It creates n splits/copies of the input data and transfers to its

output ports.

b) Merger gate consists of n input ports and 1 output port. It

merges the data from n input ports to the output port.

c) Selector gate consists of m input ports and n output ports.

It selects n out of m input data.

d) Synchronizer gate consists of an equal number of input and

output ports. It acts as a synchronization point between the

different data streams.

92 Journal of Software Engineering for Robotics 5(1), May 2014

Fig. 4. Metamodel for functional modeling (top) and

graphical representation of dispatch gates (bottom).

e) Delay gate consists of one input and output port. It passes

the data in the input port after a time delay and can also act

as a data buffer.

f) User-defined gate does not have any constraints on the

number of ports and dispatch policy.

3.2 Non-Functional Model

A non-functional model satisfies Non-Functional Require-

ments (NFR) and quality claims of the system. There is no

general agreement in the community about the concepts of

NFP and QoS. In [3], the authors define Non-Functional Prop-

erties (NFP) as one that specifies system properties, such as

environmental and implementation constraints, performance,

platform dependencies, maintainability, extensibility, and reli-

ability; in short, a requirement that specifies constraints on

a functional requirement. QoS is the aptitude of a service

for providing a quality level to the different demands of

the clients [4]. NFR are not implemented in the same way

as functional ones. NFPs are seen as by-products when a

functionality is implemented. In software engineering terms,

usability, integrity, efficiency, correctness, reliability, maintain-

ability, etc. constitute NFPs [5]. However, how these properties

are defined, are domain-specific. For example, throughput and

bandwidth determine QoS for a network; personality, empathy,

engagement, and adaptation for social robots [6]; resource

utilization, run-time adaptation for service robots [7].

In order to set a general consensus, based on empirical

observations, the following assumptions are made: A NFP

Fig. 5. UML Metamodel diagram for specifying Non-

Functional properties.

are determined by a set of non-functional attributes (e.g.,

performance of a object classifier can be estimated by the

time required for classification; and its efficiency by the rate

of misclassification, etc.). QoS is a high level property for

comparing a functionality in different contexts (e.g., QoS of a

specific object classification algorithm is better in indoors as

compared to outdoor environments). Policies associated with

NFP and QoS determine how these properties are estimated

from its constituent attributes. Policies are functions that

act on a set of attributes, and define how these properties

are estimated. Policies can be defined using logic systems,

such as a first order logic, predicate logic, etc [8]. In a

nutshell, NFP_Policy(NFP attributes) defines NFP,

QoS_Policy(NFPs, Context) defines QoS of a func-

tionality. Although, there is no strict rule to identify whether

a property is NFP or QoS. In this paper, we use a rule

of thumb that a functionality (or system) can have multiple

NFPs (e.g., performance, efficiency), but can have only a

single QoS property (e.g., QoS_Policy(performance,

efficiency, context) defines QoS).

3.2.1 Non-Functional Metamodel

Based on the assumptions made in section 3.2, we propose a

metamodel for specifying the NFP as shown in Figure 5. NFP

and QoS are the root entities in this metamodel. NFP has at

least one NFP Policy and a set of NFP Attributes. Similarly,

QoS has at least one QoS Policy and a set of NFPs as its

attributes. NFP attributes can be Quantitative or Qualitative.

Quantitative attributes can be directly measured or can be

estimated. Quantitative attributes have metric units associated

with it, for example: seconds for responsiveness, bits per

second for throughput, etc. The quantitative attributes can be

static, dynamic, or derived. Static attributes will not change

during the course of system operation, for example, pixel

density of a camera. Dynamic attributes can change during

system operation, for example, frames per second of a camera.

Derived attributes can be static or dynamic depends on the

constituent attributes when they are hierarchically composed.

Qualitative attributes refer to discrete characteristics that may

A. Ramaswamy et al./ Solution Space Modeling for Robotic Systems 93

Fig. 6. Solution space model for tracking system. High

level model is shown (top), zero delay gates (G1-5) are

inserted to separate the computations. Connector C1

representing data preprocessing is modeled (bottom)

not be measured directly but provide a high level abstraction

that are meaningful in a domain, for example, reliability of a

network channel. Sometimes a qualitative attribute needs some

quantitative measures also, for instance, round robin scheduler

with a refresh rate of 100ms.

4 SOLUTION SPACE MODEL FOR LIDAR

BASED VEHICLE TRACKING SYSTEM

This section models the solution space of a lidar based vehicle

tracking problem using the proposed SSML. Figure 6 shows

the high level model of a classical approach in tracking

described in section 2. Four connectors, C1, C2, C3, C4,

represent data preprocessing, segmentation, data association,

and state estimation process and the zero delay gates are

inserted to differentiate between these processes. This model

consists of single sequence of processes that do not have

multiple solution paths at this hierarchical level. In this paper,

a solution is referred as an execution path or simply a path in

the solution space model. In textual form, it is represented as a

sequence of labels indicating gates and nodes in that solution.

The path represented by adjacent parenthesis, for example

(path 1)(path 2), indicates a mandatory parallel execution path.

The lidar data preprocessing solution model captures two solu-

tions: G11-C11-G12-C13-G15-C18 and G11-(C11-G12-C14-

G13-C16)(C12-G13-C15)-G14-C17-G15-C18. The two solu-

tions do the same functionality: converting raw sensor data

into point cloud frame. The difference between the two paths

is the quality aspect that changes with context. In this case,

context represents the motion of the vehicle and the difference

in quality is due to time latency of lidar, as explained in

section 2. The NFPs that are considered for this process

are performance and resource cost. The NFP attributes that

model performance are response time, resolution, and average

distortion. An example snippet from the NFP model for data

preprocessing represented by C11 is shown in Listing 1.

CONTEXT: vehicle

NFP: vehicle_motion

NFP_ATTRIBUTES: velx:base_velocity_x:msrd:dynamic:mps, vely:base_velocity_y:msrd:

dynamic:mps, velz:base_velocity_z:msrd:dynamic:mps, rr:roll_rate:msrd:dynamic

:degpsec, pr:pitch_rate:msrd:dynamic:degpsec, yr:yaw_rate:msrd:dynamic:

degpsec;

NFP_POLICY: vehicle_motion_policy();

NFP: C11.response_time;

NFP_ATTRIBUTES: fps:frame_per_second:msrd:static:int,tp:transmission_speed:msrd:

static:msec;wcet:worst_case_execution_time:est:static:msec;

NFP_POLICY: response_time_lidar_policy();

IMPORT CONTEXT vehicle;

NFP: C11.resolution;

NFP_ATTRIBUTES: ar:angular_resolution:est:static:deg,rps:rotations_per_second:msrd:

static:Hz,tlppr:total_laser_points_revolution:msrd:static:int,pplpr:

points_per_laser_per_revolution:msrd:static:int;

NFP_POLICY: resolution_lidar_policy();

IMPORT NFP C11.response_time,C11.resolution,C11.average_distortion

NFP: C11.performance;

NFP_ATTRIBUTES: rtl:response_time,rl:resolution_lidar;

NFP_POLICY: c11_performance_policy();

IMPORT CONTEXT vehicle,environment;

IMPORT NFP C11.performance, C11.resource_cost;

QOS: C11.QoS

NFP: C11.performance,C11.resource_cost;

QOS_POLICY: C11_QoS_Policy();

Listing 1. Relevant snippets of the Non-Functional Model

of vehicle, environment, and lidar data preprocessing

process.

Another significant advantage of modeling functional and

non-functional aspects separately is that certain invalid com-

positions of systems can be found. For example, referring

to the problem described in section 2 regarding PFH feature

correspondence failure, such anomalies in system composition

can be captured without explicitly indicating that PFH feature

‘requires’ undistortion process. Resolution property of lidar

data preprocessing process shown in Listing 1 using vehicle

context to determine the resolution of the point cloud data.

Hence, if PFH feature that requires a better resolution is

composed without undistortion process, the QoS of the system

will be lower since the resolution constraint does not satisfy

point cloud resolution level.

The solution space for segmentation process represented by

connector C2 in Figure 6 is modeled in Figure 7. The objective

is to cluster a point cloud frame into smaller clusters in such

a way that each cluster represents individual objects. There

are multiple data processing steps and algorithms to achieve

the goal. In general, a point cloud data can be segmented

into clusters using two methods: 1) By directly processing the

3D data and clustering using some criteria such as Euclidean

distance or 2) By mapping the point cloud to a 2D image and

performing segmentation in 2D space using image processing

techniques and then projecting back to the 3D space to

compute the final point cloud clusters. Each algorithmic step

indicated in Figure 7 is briefly explained as follows:

Ground Classifier: The algorithm can classify ground and

non-ground points from a point cloud frame. By rejecting

the ground points, this algorithm can significantly reduce the

number of points for further processing.

2D Projection Method: This method uses (x,y) coordinates of

the point cloud and converts it to a two-dimensional binary

94 Journal of Software Engineering for Robotics 5(1), May 2014

Fig. 7. Connector C2 representing segmentation shown

in Figure 6 is modeled in the figure

TABLE 1

Solution comparison for segmentation w.r.t application:

Ground truth generation and Autonomous Driving

No.Execution Path Variation Points

1 G21-(C21-G23-C26)(C23)-

G24-C27-G25 (C21),

2 G21-(C22-G22-C24-G23-C26)(C23)- (C22-G22-C24)

G24-C27-G25 (C24-G24-C27),

3 G21-C22-G22-C25-G25 (C25)

Subpath

No.
Variation

Performance Ground Truth

Generation

Autonomous

Driving

AET Res. Stage 1 Stage 2 Stage 1 Stage 2

1 (C21) 48ms Med Fail Pass Pass

2 (C22-G22-C24) 107ms High Pass Pass Fail

3 (C24-G24-C27) 31ms Med Pass Fail Pass Fail

4 (C25) 120ms Low Fail Fail

image. This is best suited for point clouds consisting of non-

ground points and hence, it receives data from a ground

classifier.

Euclidean Clustering: This algorithm uses Euclidean distance

to cluster the point clouds. It can be applied on non-ground

point cloud data to generate the final point cloud clusters.

2.5D Projection: This algorithm can convert a point cloud

to a 2D grayscale image. Ground points are automatically

rejected and there is no requirement for explicitly classifying

the ground and non-ground points.

Image Segmentation: Using image processing techniques, con-

nected regions are found in the image and a bounding box is

computed for each region.

2D to 3D Box Mapping This uses a list of 2D boxes and

the correspondence point clouds and generates 3D point cloud

clusters. Some intermediate results are shown in Figure 8.

The NFP of segmentation process are modeled in a similar

way as previously described in this section. In this example,

two contexts are considered; one for a ground truth generation

application and another for autonomous driving application.

The intention is to reason, analyze, and extract appropriate

solutions from the solution space that satisfy the context re-

quirements. If two or more solutions satisfy the requirements,

it will be considered as variation point that can be resolved in

the design or implementation phase, or dynamically selected

during run-time. For simplicity, only the performance property

is considered here. The performance is modeled with two NFP

Fig. 8. Vehicle Tracking Results: Segmented point clouds

(left), detected vehicles (middle), tracked vehicles (right)

attributes - Average Execution Time (AET) and Resolution.

AET is computed as the average time taken to execute the

computation and it is estimated in the test platform, since an

accurate timing information is not required at this stage. Also

it is reasonable to compare the AET of different computations

on the same platform for primary investigations. The resolution

is divided into three levels depending on the grid size of the

map: High, Medium, and Low, to facilitate the demonstration.

The appropriate solution in different contexts is extracted in a

staged process as described below:

1) Find the multiple solutions available in the solution

space model.

2) Find the variation sub-paths among the multiple solution

paths.

3) List the sub-paths from the variations found in step 2.

4) For a given context, find whether the homogeneous sub-

paths satisfy the quality policy (NFP or QoS Policy) of

that subpath. A homogeneous sub-paths is a set of sub-

paths that perform exactly the same functionality.

5) Consider all the sub-paths satisfied in step 4 and check

for any contradictory results, for example, if the solution

passed in one homogeneous check and failed in another.

6) If there were any contradictory results, repeat the quality

check for the solution at the higher level in the hierarchy.

The solution resolution steps of segmentation model are

captured in Table 1. There are three execution paths as listed in

the table. Two variation points are then found - one variation

sub-path between execution path 1 and 2 and the second

between 2 and 3. It is to be noted that individual paths

that end with a synchronizer gate cannot be considered as

separate execution path since all the paths are mandatory for

synchronization. The next step is to list out the sub-paths

in the variation points. The four sub-paths are indicated in

the second half of the table. The sub-path 1 and 2, and 3

and 4 are homogeneous pairs since they represent the same

functionality. The policy used were (Resolution==High)

for ground truth application and (Resolution==High)

AND (AET<50ms) for autonomous driving application. In

stage 1, two solutions satisfy the policy and in the next stage,

one solution is extracted by considering the policy in that level.

A. Ramaswamy et al./ Solution Space Modeling for Robotic Systems 95

Fig. 9. Overview of Models Ecosystem in Robotics

5 MODEL-DRIVEN SOFTWARE DEVELOP-
MENT IN ROBOTICS AND RELATED WORKS

By learning from the shortcomings of code-based approaches,

the software engineering community in robotics is gradu-

ally moving towards Model-Driven Software Development

(MDSD) approach [9]. This section positions our approach and

discusses related works. A typical MDSD approach starts by

designing abstract models that conforms to meta-level models

or Domain-Specific Languages (DSL). The models undergo a

series of Model to Model transformations (M2M) to reduce

the abstraction levels by gradually including platform-specific

details and finally, by applying Model to Text transformation

(M2T) to generate executable code.

The software development process in robotics can be con-

ceptually divided into three spaces: problem space, solution

space, and operational space. Each space can be further

classified into knowledge level and application level. The

complete ecosystem is illustrated in Figure 9 and the proposed

SSML model is highlighted as a red box. In problem space,

the problem, requirements, and contexts are modeled using

appropriate Modeling Languages (ML). The solution model

captures the large solution space that satisfies the problem

model. The SSML proposed in this paper provide abstract syn-

tax with limited semantic content for modeling the solution.

The syntactic and semantic enrichment is done by specific sub-

domain modeling languages such as perception, navigation,

control, kinematics, planner, etc. More strict validation rules

and domain-specific constraints can be added once the sub-

domain semantics are added. The DSLs proposed by authors

of [10], [11], and [12] for kinematics, rigid body geometric

relations, and perception are promising works in this direction.

Operational space comprises of more concrete models that

can be modeled using state machines, UML profiles such as

Marte, SysML, etc. which are popular in software engineering

community. In addition, there are encouraging works from the

robotics community, for example, the Smartsoft framework is

based on a model-driven toolchain that provides the model

transformations and code generation steps [13]. The European

project on Best Practices in Robotics (BRICS) provides guide-

lines and a framework to develop robotic components [14].

They are based on the separation of concerns between the

development aspects of Computation, Communication, Coor-

dination, Configuration, and Composition. The final executable

codes are then generated using a semi-automated process by

including external libraries and ‘hand-coded’ software code

and by a mapping process that transforms model properties to

code-based frameworks.

Modeling solution space using SSML can be seen as a

complementary approach to many existing methods in the

robotics. Software product line approach is popular in software

engineering community to enhance product quality and reduce

developmental cost by promoting constructive reusability [15].

Recently, the authors of [16] have adapted this approach in

robotic domain by providing feature resolution and transfor-

mation steps. However, one should have already identified well

defined boundaries for variation points and a reference archi-

tecture for adapting this approach. In addition, many DSLs are

proposed in robotics domain for deployment, simulation [17],

component creation [18], etc. All these languages reside in

the operational space, our proposed SSML can complement

and facilitate a smooth transition from problem space to

operational space.

Our approach of providing common syntax with semantic

content, whose semantic enrichment is provided specialized

sub-domain specific language is related to that of ACME [19].

ACME is an interchange language for software architecture

that provides structural core that represents commonalities

between various Architectural Description Languages (ADL)

[20]. ACME uses annotations to add semantic information

by sub-languages. The Architecture Analysis and Design

Language (AADL) is a modeling language standardized by

Society of Automotive Engineers (SAE) to specify and ana-

lyze software architectures for complex real-time embedded

systems. AADL supports variability modeling in large-scale

product lines in automotive domain [21].

6 CONCLUSION

The research work focuses on the problems faced while de-

veloping a lidar based vehicle tracking system. The problems

were classified into four categories: uncertain problem space,

large solution space, lack of design-time context information,

and abstraction issue. In this paper, Solution Space Modeling

Language is proposed to address the multiple solution problem

and to formally specify NFP during system design. Solution

model helps in early analysis of quality attributes, to identity

variations and acts as a bridge between problem and imple-

mentation space. The relevancy of the model is demonstrated

by modeling the solution space of vehicle tracking problem.

96 Journal of Software Engineering for Robotics 5(1), May 2014

NFP and QoS Policies facilitated the quality flow across

functionalities at different granularity levels.

More research is required on formal methods for specifying

composable policies of Gates, NFP, and QoS in the proposed

SSML language. Once the solution space of a problem is

modeled, an appropriate solution or a set of solutions are

selected depending on the application context and quality re-

quirements. A transformation model will facilitate this process

of mapping to the operational space models, for example,

discrete timing properties of gates can be employed for process

allocation, selecting scheduling policies, etc. Future works

include providing tooling support based on Eclipse IDE for

graphical and textual editing of SSML models and using

Eclipse plug-in feature for semantic enrichment of the model.

REFERENCES

[1] A. M. Davis, Software requirements: objects, functions, and states.
Prentice-Hall, Inc., 1993. 3.1

[2] A. Ramaswamy, B. Monsuez, and A. Tapus, “Formal models for cogni-
tive systems,” in 16th International Conference on Advanced Robotics

(ICAR). IEEE, 2013, pp. 1–8. 3.1.1

[3] I. Jacobson, G. Booch, and J. E. Rumbaugh, The unified software

development process-the complete guide to the unified process from the

original designers. Addison-Wesley, 1999. 3.2

[4] MARTE, UML Profile for MARTE: Modeling and Analysis of Real-

Time Embedded Systems, version 1.1 ed., Object Management Group,
June 2011. 3.2

[5] L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual modeling: Foundations and

applications. Springer, 2009, pp. 363–379. 3.2

[6] A. Tapus, M. J. Mataric, and B. Scassellati, “Socially assistive robotics,”
IEEE Robotics and Automation Magazine, vol. 14, no. 1, p. 35, 2007.
3.2

[7] J. F. Inglés-Romero, A. Lotz, C. V. Chicote, and C. Schlegel, “Dealing
with run-time variability in service robotics: Towards a dsl for non-
functional properties,” arXiv preprint arXiv:1303.4296, 2013. 3.2

[8] N. S. Rosa, P. R. Cunha, and G. R. Justo, “Process(nfl): a language for
describing non-functional properties,” in System Sciences, 2002. HICSS.

Proceedings of the 35th Annual Hawaii International Conference on

System Sciences. IEEE, 2002, pp. 3676–3685. 3.2

[9] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in International

Conference on Advanced Robotics (ICAR). IEEE, 2009, pp. 1–8. 5

[10] M. Frigerio, J. Buchli, and D. G. Caldwell, “A domain specific language
for kinematic models and fast implementations of robot dynamics
algorithms,” arXiv preprint arXiv:1301.7190, 2013. 5

[11] T. De Laet, W. Schaekers, J. de Greef, and H. Bruyninckx, “Domain
specific language for geometric relations between rigid bodies targeted
to robotic applications,” arXiv preprint arXiv:1304.1346, 2013. 5

[12] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. K. I., “Towards
a robot perception specification language,” in Proceedings of DSLRob-

2013, 2013. 5

[13] C. Schlegel and R. Worz, “The software framework smartsoft for imple-
menting sensorimotor systems,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), vol. 3. IEEE, 1999, pp.
1610–1616. 5

[14] H. Bruyninckx, N. Hochgeschwender, L. Gherardi, M. Klotzbücher,
G. Kraetzschmare, D. Brugali, A. Shakhimardanov, J. Paulus, M. Reck-
haus, H. Garcia, D. Faconti, and P. Soetens, “The BRICS Component
Model: A Model-Based Development Paradigm for Complex Robotics
Software Systems,” in 28th international Symposium On Applied Com-

puting (SAC 2012). Coimbra, Portugal: ACM, March 21 2013, pp.
1758–1764. 5

[15] P. HEYMANS, J.-C. TRIGAUX, and F. E. Objectif, “Software product
lines: State of the art,” 2003. 5

[16] L. Gherardi, “Variability modeling and resolution in component-based
robotics systems,” Ph.D. dissertation, University of Bergamo, Italy, 2013.
5

[17] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic ap-
plications,” in Simulation, Modeling, and Programming for Autonomous

Robots. Springer, 2012, pp. 149–160. 5
[18] L. Manso, P. Bachiller, P. Bustos, P. Núñez, R. Cintas, and L. Calderita,

“Robocomp: a tool-based robotics framework,” in Simulation, Modeling,

and Programming for Autonomous Robots. Springer, 2010, pp. 251–
262. 5

[19] D. Garlan, R. Monroe, and D. Wile, “ACME: An Architecture Descrip-
tion Interchange Language,” in CASCON First Decade High Impact

Papers. IBM Corp., 2010, pp. 159–173. 5
[20] P. C. Clements, “A survey of architecture description languages,” in

Proceedings of the 8th international workshop on software specification

and design. IEEE Computer Society, 1996, p. 16. 5
[21] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis &

design language (aadl): An introduction,” DTIC Document, Tech. Rep.,
2006. 5

Arunkumar Ramaswamy is a Ph. D. student
at ENSTA-ParisTech in France. His research
interests include mobile robots, robot architec-
tures, computer vision, human-robot interaction
and software engineering. Currently, he is inves-
tigating how model-driven approaches can be
applied in software development for robotic sys-
tems. Arunkumar received his dual Master de-
gree in Robotics from Ecole Centrale de Nantes
in France (2012) and Warsaw University of Tech-
nology in Poland (2011). He received his B. Tech

degree in Electronics and Communication Engineering from Amrita
University in India (2008).

Bruno Monsuez graduated in 1989 from Ecole
Polytechnique , received a Ph. D. in Computer
Science from the Ecole Polytechnique in 1994.
He is now Director of the Computer and System
Engineering Department at ENSTA ParisTech.
His current research interests are focused on
developing and enhancing hierarchical composi-
tional models that can be used to model complex
cyber-physical systems, mostly for safety critical
application as well as on designing system ar-
chitectures based on design patterns that can

be proved correct by composition. He also conduct researches on
novel formal verification techniques that allow a co-jointly verification
the functional and non-functional properties of all the components of a
system. He served on PCs and as PC chair for numerous international
workshops and conferences. He is the steering committee chair of Int.
Workshop on Verification and Evaluation of Computer and Communica-
tion Systems (VECoS).

Adriana Tapus is a Full Professor at ENSTA-
ParisTech since May 2009. She received her
Ph. D. in Computer Science from Swiss Fed-
eral Institute of Technology, Lausanne (EPFL)
in 2005 and her degree of Engineer in Com-
puter Science and Engineering from Politehnica”
University of Bucharest, Romania in 2001. She
worked as an Associate Researcher at the Uni-
versity of Southern California (USC), where she
pioneered the development of socially assistive
robotics, also participating to activity in machine

learning, human sensing, and human-robot interaction. Her main inter-
est is on long-term learning (i.e. in particular in interaction with humans),
on-line robot behavior adaptation to external environmental factors, and
modeling non-functional properties for human-machine systems. She
received the Romanian Academy Award for her contributions in assistive
robotics in 2010.

	Introduction
	Motivational Experiment
	Solution Space Model
	Functional Model
	Functional Metamodel

	Non-Functional Model
	Non-Functional Metamodel

	Solution Space Model for Lidar Based Vehicle Tracking System
	Model-Driven Software Development in Robotics and Related works
	Conclusion
	References
	Biographies
	Arunkumar Ramaswamy
	Bruno Monsuez
	Adriana Tapus

