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UNIQUENESS OF THE SELF-SIMILAR PROFILE FOR A KINETIC
ANNIHILATION MODEL

VERONIQUE BAGLAND & BERTRAND LODS

ABSTRACT. We prove the uniqueness of the self-similar profile solution for a modified Boltz-
mann equation describing probabilistic ballistic annihilation. Such a model describes a system
of hard spheres such that, whenever two particles meet, they either annihilate with probabil-
ity @ € (0,1) or they undergo an elastic collision with probability 1 — «. The existence of a
self-similar profile for o smaller than an explicit threshold value a; has been obtained in our
previous contribution [6]. We complement here our analysis of such a model by showing that,
for some of explicit, the self-similar profile is unique for a € (0, aﬁ).

KEYWORDS: Boltzmann equation, ballistic annihilation, self-similar profile, uniqueness.
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2 VERONIQUE BAGLAND & BERTRAND LODS

1. INTRODUCTION

We investigate in the present paper a kinetic model, recently introduced in [8, 11, 12, 13, 14,
20], which describes the so-called probabilistic ballistic annihilation of hard-spheres. In such a
description, a system of (elastic) hard spheres interact according to the following mechanism:
they freely move between collisions while, whenever two particles meet, they either annihilate
with probability a € (0,1) or they undergo an elastic collision with probability 1 — .. In the
spatially homogeneous situation, the velocity distribution f(¢,v) of particles with velocity v € R?
(d > 2) at time t > 0 satisfies the following

O f(t,v) =1 = a)Qf, f)(t,v) = aQ (f, )(t,v) (L.1)

where Q is the quadratic Boltzmann collision operator defined by

dv,do

Qg W = [ o= wl(s) () - g7 0) T

Rix§d—1 S
where the post-collisional velocities v’ and v), are parametrized by

vt vl v — vt v v — _
"= 5 5 O v, = 5T 5 O oesit

The above collision operator Q(g, f) splits as Q(g, f) = Q" (g, f) — Q (g, f) where the gain part
QT is given by

Q* (g, f)(v) = Ca / 0 — v (6 )g(") dus do

RdxSd—1

with Cyq = 1/|S?"!| while the loss part Q is defined as

Q (0. 1)0) =gLNE).  with LW = [ o= vlf(w)du.
For the sequel of the paper, we shall define the annihilation operator

Bo(f, f) = (1—a)Q(f, f) —aQ (f.f) = 1 - )Q"(f. f) = Q(f, /).
We refer to [6] and the references therein for a more detailed description of the above annihi-

lation model. Throughout the paper we shall use the notation () = /1 + |- |?>. We denote, for
any 1 € R, the Banach space

L}?(Rd) = {f : R — R measurable ; 1flles == /Rd |f(0)| (v)Tdv < —|—oo} .

1.1. Self-similar solutions. From the mathematical viewpoint, the well-posedness of Equation
(1.1) has been studied in our previous contribution [6] where it is proved that if f € Li(R?) is
a nonnegative distribution function, then, there exists a unique nonnegative weak solution

f € C([0,00); L3(R)) N Lige (0, 00); L (RY))

to (1.1) such that f(0,-) = fo. Moreover, multiplying (1.1) by 1 or |v|?> and integrating with
respect to v, one obtains

d

T e flt,v)dv = —« /]Rd Q (f, f)t,v)dv <0

and
d

G L e oo = —a [ Pzt <o



ON BALLISTIC ANNIHILATION 3

It is clear therefore that (1.1) does not admit any non trivial steady solution and, still formally,
f(t,v) = 0 as t — oco. According to physicists, solutions to (1.1) should approach for large times
a self-similar solution F' = F,, (depending a priori on the parameter «) to (1.1) of the form

Fa(t,v) = At) a(B(t)0) (1.2)

for some suitable scaled functions A(t), 5(t) > 0 and some nonnegative function 1, = 14 (&) such
that

va 0 and [ e ) g < . (13

Notice that, as observed in [6], F,(t,v) is a solution to (1.1) if and only if 1,(§) is a solution to
the rescaled problem

A)BH (1) BB
T o/ Ya TN/ SO for = Ba ar Pa
S Vel) + E5E - Vetal) = Ba(vn va)©)
where the dot symbol stands for the time derivative. The profile 1, being independent of time
t, there should exist some constants A = A, and B = By, such that A = w, and

) A%(t)
B = W. Thereby, 1, is a solution to

AT/@(S) + Bf : nga(S) = Ba(%,%)(@-

The coefficients A and B can explicitly be expressed in terms of the profile 1,. Indeed, inte-
grating first the above stationary problem with respect to ¢ and then multiplying it by |¢|? and
integrating again with respect to & one sees that (1.3) implies that

_ @ d+2 B d|¢? > _
A= 2 /Rd (fRd Yo (&x) dEs f]Rd Vally) |62 dE, Q" (Ya,¥a)(§)dE

- ¢ 1 _ 45 _
B=3 /]Rd <f]Rd ba(€) e foa Valle) &2 d§*> Q™ (Ya, Ya)(§)dE.

It was the main purpose of our previous contribution [6], to prove the existence of an explicit
range of parameters for which such a profile exists. Namely, we have

and

Theorem 1.1. [6] There ezists some explicit threshold value oy € (0,1) such that, for any o €
(0,a,) the steady problem

Alﬂawa(g) + Bwa£ : Vﬂz)a(g) = Ba(waa ¢a)(£) (1.4)
admits a nontrivial nonnegative solution v, € L3(R?) N L2(RY) with
1 1
%(5) 3 d§ = 0 (1.5)
RN gl /
and where
e o\ A
A =5 [ (@+2=2167) @ (o, va) (O
(1.6)
By, =57 | (1-2¢P) Q (o va)(E)de.

2d Rd
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Moreover, for any oy, < o there exists K > 0 such that

sup (IIallzy + Itballz2) < K.

046(0704*)

Remark 1.2. We give in the Appendiz a sketchy proof of Theorem 1.1, referring to [6] for details.
Notice that the stationary solutions constructed in [6] are radially symmetric and therefore satisfy
the above zero momentum assumption. Note that we consider here o € (0, ) with a, < ay in
order to get uniform estimates with respect to «. In the physical dimension d = 3, one sees that
a; < 2/7.

Remark 1.3. Let us note that here as in [6], we only consider profiles satisfying (1.5). Indeed,
once we have shown some result of existence or uniqueness for such profiles, we readily get the
same result for profiles with arbitrary positive mass and energy and zero momentum by a simple
rescaling.

Our goal in the present paper is to prove the uniqueness of such a self-similar profile (for a
smaller range of the parameters «). More precisely, our main result can be formulated as

Theorem 1.4. There exists some explicit of € (0,a) such that, for any a € (0,a%), the solution
Yo to (1.4) satisfying (1.5) is unique.

1.2. Strategy of proof and organization of the paper. In all the sequel, for any o € (0,1),
we denote by &, the set of all nonnegative solution 1, to (1.4) with (1.5). Theorem 1.1 asserts
that provided the parameter a belongs to (0, a;), the set &, is non empty while our main result,
Theorem 1.4, states that &, reduces to a singleton as soon as « is small enough.

Our strategy of proof is inspired by a strategy adopted in |7, 16, 17, 5] for the study of driven
granular gases associated to different kinds of forcing terms. The approach is based upon the
knowledge of some specific limit problem corresponding to o« — 0.

To be more precise, since By = Q is the classical Boltzmann operator and because one expects
Ay, = By, = 0, one formally notices that for o = 0, the set & reduces to the set of distributions
1o satisfying (1.5) and such that

Q(o,v%0) = 0.

It is well-known that the steady solution 1 is therefore a unique Maxwellian distribution; in
other words, one expects &y to reduce to a singleton: &y = {M} where M is the normalized
Maxwellian distribution
_4d
M) =r2exp (-[¢f*),  €eRL (1.7)
The particular case o = 0 will be referred to as the “ Boltzmann limit’ in the sequel.

Asin [7, 16, 17, 5], our strategy is based upon the knowledge of such a “Boltzmann limit” and
on quantitative estimates of the difference between solutions 1, to our original problem (1.4)
and the equilibrium state in the Boltzmann limit. More precisely, our approach is based upon
the following three main steps:

(1) First, we prove that any solution 1, to (1.4) satisfies
lim ¢, = M
a—0

in some suitable sense. This step consists in finding a suitable Banach space X such that
Yo € X for any a > 0 and lim,0 [|[9o — M| x = 0. Notice that the above limit will be
deduced from a compactness argument.



ON BALLISTIC ANNIHILATION 5

(2) Using the linearized Boltzmann operator around the limiting Maxwellian M
Z(h) = QM. h) + Q(h, M)

we prove that, if ¥, and ¢, are two functions in &,, then, for any € > 0, there exists
some threshold value & such that

1€ (Y0 = pa)llx <ellta —@ally  Vae(0,q) (1.8)

for some suitable subspace  C X. The proof of such a step comes from precise a
posteriori estimates on the difference of solutions to (1.4) and the first step. Using then
the spectral properties of the linearized operator . in X', one can deduce that the above
inequality (1.8) implies the existence of some positive constant Cs > 0 such that

[ea = Yally < Coolloa = taly,  a€(0,d)

from which we deduce directly that ¢, = 1, provided « is small enough. This proves
Theorem 1.4. However, since the first step of this strategy is based upon a compact-
ness argument, the approach as described is non quantitative and no indication on the
parameter of is available at this stage.

(3) The final step in our strategy is to provide a quantitative version of the first step. This
will be achieved, as in [5], by providing a suitable nonlinear relation involving the norm

| — M|y for any .

To prove the first step of the above strategy, one has first to identify a Banach space X on
which uniform estimates are available for any solution ¥, to (1.4). We can already anticipate
that X is a weighted L!'-space with exponential weight:

X = LY(RY, exp(alv]) dv), a>0

and the determination of such a space will be deduced from uniform a posteriori estimates on
elements of &,. Such estimates are described in Section 2 and rely on a careful study of the
moments of solutions to (1.4). Concerning the convergence of any solution v, € &, towards the
Maxwellian M, we first prove that

lim [tha = M|lmp =0
a—0

where H" is a suitable (weighted) Sobolev space (see Notations hereafter). The proof of such a
convergence result is, as already mentioned, based upon a compactness argument and requires a
careful investigation of the regularity properties of the solution to (1.4). Our approach for the
study of regularity of solutions to (1.4) is similar to that introduced in [5] for granular gases
and differs from the related contributions on the matter [17, 16] where the regularity of steady
solutions is deduced from the properties of the time-dependent problem. In contrast with these
results, our methodology is direct and relies only on the steady equation (1.4) and the crucial
estimate is a regularity result for QT (f,g) (see Theorem 2.7). By using standard interpolation
inequalities, we complete the first step of our program. Concerning the second step (2), it uses
in a crucial way some control of the difference of two solutions 94, o, € &, in some Sobolev
norms (see Proposition 3.4). Again, such estimates rely on the regularity properties of the
collision operator Q7. Notice also that the spectral properties of the linearized operator .# have
been investigated recently in [18] where it is shown that the linearized operator shares the same
spectral features in the weighted L'-space X’ than in the more classical space L?(R%, M~!(v)dv)
(in which the self-adjointness of £ allows easier computations of its spectrum). The proof of this
second step is achieved in Section 3 and, more precisely, in Sections 3.1, which deals with the
Boltzmann limit, and 3.2 which addresses the non-quantitative proof of the uniqueness result.
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Finally, the proof of of the third above step, as already mentioned is simply based upon a
nonlinear estimate on ||, — M|y of the form

e = Mlly < e1lltba = M3 + 200

for some positive constants ¢; > 0, ¢ = 1,2 and for « small enough. Such a nonlinear estimate
is provided in Section 3.3. Notice that, as in [5] and in contrast with the reference [17] on
granular gases, our approach on the quantitative estimates comes a posteriori (in the sense that
quantitative estimates are deduced from the uniqueness result whereas, in [17], the uniqueness
result is already proved through quantitative estimates). The main difference between these two
approaches is that the present one does not rely on any entropy estimates.

The paper is ended by three appendices. In Appendix A we give a detailed proof of the
regularity properties of the gain part operator Q% (g, f) which, as already said, play a crucial
role in our analysis of the regularity of the solution 1, to (1.4). Then, in Appendix B, we briefly
recall some of the main steps of the proof of the existence of the self-similar profile 1,. This gives
us also the opportunity to sharpen slightly the constants appearing in Theorem 1.1 with respect
to [6]. In this appendix, we also investigate the regularity properties of the solution to the time-
dependent version of (1.4) introduced in [6]. These results have their own interest and illustrates
the robustness of the method developed in Section 2.3 to investigate the Sobolev regularity of
the steady solution v,. Finally, Appendix C recalls some useful interpolations inequalities that
are repeatedly used in the paper.

1.3. Notations. Let us introduce the notations we shall use in the sequel. More generally we
define the weighted Lebesgue space L5 (R?) (p € [1,+00), n € R) by the norm

1/p
Il = | [ P @] 1<p <o

while || f[[Lee = ess — sup,egalf(v)[(v)7 for p = oc.
We shall also use weighted Sobolev spaces Hfz(Rd) (s € Ry, n € R). When s € N, they are

defined by the norm
1/2

Il = | D I9°F1Z:

[£]<s

where for £ € N, 9° = (9% . afj and |[¢| = {1 + ...+ ¢4. Then, the definition is extended to real
positive values of s by interpolation. For negative value of s, one defines H* n(Rd) as the dual
space of H;S(Rd), n € R.

2. A POSTERIORI ESTIMATES ON %,

In all the sequel, for any « € (0,,), o € &, denotes a solution to

Awa%(ﬁ) + Bwa£ : Vﬂz)a(g) = Ba(waa¢a)(£)

which satisfies (1.5) where Ay, and By, are given by (1.6). Let us note that Ay, and By, have
no sign. However,

0 < dBy, — Ay, — O‘/Rd Q (tas a) () dE = aray,,
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and
2
0< (d+2)By, - Ay, = /R PO (tha, i) (€) A€ = by,
Notice that

(6% «Q « «
Ay, =—5(d+2ay, +5dby,  and By, = —7ay, +5by,. (2.1)

“ 2

a

2.1. Uniform moments estimates. We establish several a posteriori estimates on v, € &,,
uniform with respect to the parameter . We first introduce several notations. For any k > 0,
let us introduce the moment of order 2k as

M) = [ va©IEPds, v € b (22

One has first the obvious uniform estimates

Lemma 2.1. For any o € (0,1) and any ¢ € &, one has

d2
4

2
VI ay, > 5 (Myp@a) ™, VAR > Mys(ba) > 5 (Myn(a))

while

Njw

1 1
2 d\? d\? d
hd 2) > > (= > (2
Finally, ay, < Vd < \/ib%.
Proof. From the definition of a,, and (1.5), one has first

v, < [ bal€0ba(6) (6] + 6 A = 213 ()
R4 xRd

while, from Jensen’s inequality,

[ vatedie—cle 216l and g, > Mija(ba).

Moreover, by Hélder’s inequality, M o(Ya) < /M1(Ya) = \/d/2 and
d
3= M (Ya) < \/M1/2(¢a)M3/2(1/1a)-
In the same way, one obtains
2
d

2

M3/2(1/}0!) < bwa g d

Ms)5(Ya) + M2 (Ya)

N

and we conclude by noticing that, by Jensen’s inequality, Ms/s(tba) > (%) .
Finally, by Cauchy-Schwarz’ inequality, one has

12 1/2
av. < ([ val@ale - P acas) = (2] va(@)lePag) =V
R2d Re

Since we already saw that by, > /d/2, this gives the last estimate. O

Then, one can reformulate [6, Proposition 3.4] to get
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Proposition 2.2. For any a, < oy, one has

sup  sup Mg(vg) = Mg < o0 Yk >0
a€(0,a4 ) Ya€ba

where My, depends only on oy and k > 0.

Proof. The proof follows from the computations made in |6, Proposition 3.4|; we sketch only the
main steps for the sake of completeness. Let a < a, and ¥, € &,. One has, for any k£ > 0,

alk = ag, Mylta) = akby, My(va) + [ Balbarva) (O P dg (2

R
and, in particular,

aay, M3/2(71Z)a) = 3a bwa M3/2(¢a) +2 /]Rd Ba(%,%)(é) |£|3d£

The last integral can be estimated thanks to Povzner’s estimates [6, Lemma 3.2] ! and

d

2
|, Bt (©) €106 < (1= Buya()) Malte) + 5 aa(0) (M‘”’/ ) M)+ 5) ) |

Thus, since ay,, > 0, we get

d\ 2
2(1 = Bsja()) Ma(a) < 3B3/2(c) <M3/2(1/fa) M 2(Ya) + (5) ) + 3aby, Mz/2(Ya)
Since Ma(1)y) = %M3/2(¢a)2, using Lemma 2.1 we obtain

2
(%(1 — Bga(a)) — 3%) M:%/Q(%) < gﬁ3/2(06)\/%M3/2(¢a) + ;53/2(04) (g)

3
30 [d)\?2
t <§> Ms5(ta)
so that

2

where O, C are positive constants independent of a (notice that we used the fact that 83/ (a) <
B3/2(0)). Since B3/5(a) = (1 — a)og/2 (see (B.6) for the definition of g3/5), setting

(1= o) = 5 ) M2ol) < Cx Myalw) + Co (24)

1 — 032
ag=g———
5 — 03/2
we have for o, < min{ag,a;} = a; (by [6])

sup  sup My (the) < o0
a€(0,04) Ya €S

thanks to (2.4). Then, reproducing the computations of |6, Proposition 3.4], one sees that, once
Ms3/5(tpa) is uniformly bounded, the same is true for all My (1) with k& > 3/2. O

INotice that here we used an improved version of [6, Lemma 3.2] where, thanks to Jensen’s inequality, we
bound Q7 (9a,¥a) from below in a more accurate way.
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Remark 2.3. Notice that, thanks to the above estimate, one sees that there exists some universal
constant C' > 0 such that

’Awa‘ + ’Bwa’ < Ca Vl/}a € (E"a, Va € (0704*)-

Remark 2.4. As in |17, Lemma 2.3|, one may deduce from Proposition 2.2 that there exists
Co > 0 such that, for any a € (0, o),

| el -clie > Cole)  weeRL wneé (25)

This inequality shall be useful in next section.

2.2. High-energy tails for the steady solution. We are interested here in estimating the
high-energy tails of the solution 1,. In all the sequel, o, < @, is fixed. Namely, we have the
following

Proposition 2.5. There exist some constants A > 0 and M > 0 such that, for any o € (0, 4]
and any Y, € &, one has

[ (€ exp (k) d < M.

Proof. We adapt here the strategy of |9, 7]. Formally, we have

ok
[ (€ exp rleh ae = - 75 M)
k=0 """

where My (1),) is defined by (2.2). In order to prove Proposition 2.5, it is sufficient to show
that the series in the right hand side has a positive and finite radius of convergence. By the
Cauchy-Hadamard theorem, it suffices to prove the existence of some uniform constant C' > 0
such that for any « € (0, o] and any ¥, € &,

My o(tha) < CFEl,  Vk €N,

Let us now introduce the renormalized moments

My(Ya)

zp(Ya) = Tep+y) P >0
where I' denotes the Gamma function and v > 0 is a constant (to be fixed later on). Thereby,
we are thus led to show the existence of some constants v > 0 and K > 0 such that for any
a € (0,ay] and any ¥, € &,,

2k jo(Va) < KF, Vk € N,. (2.6)
Now, we deduce from (2.3), Lemma 2.1, Proposition 2.2 and from Povzner’s estimates [6, Lemma
3.2] that

(1= Bp(a))Mp1/2(tha) < Sp+ (2%dp M3/ + @p\/g) My ()

Sp < Bp(a) < ? > (Mj41/2(Va) Mp—j(tha) + Mj(Ya) My—_ji1/2(%a))

(= )y )
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Consequently, by [9, Lemma 4]

T'(2p+v+1)
(1- ﬁp(a))m

I'(2 2 1
i) < CBle)m BT 7,00)

2ap d
(7 Mya + (1 = fyfa) + o)y 2 ) (i),
where C' = C(7) does not depend on p and

Zp(Ya) = <Hiaff+1 {ZJ+1/2(7:Z)04)ZP i(Ya), 2j (Ya)z p— J+1/2(71Z)a)}'

<<
We have f3,(a) = (1 — a)p, where g, is defined by (B.6). It is easily checked that g, = O <%)
for d > 3. Thus, f,(e) = O (%) uniformly with respect to o. Next, 1 — B,(a) > 1 — g, > 0 for
p > 1 since the mapping p > 1 — g, is strictly decreasing and ¢; = 1. Moreover, for any v > 0,
I'(2 2 1 I'(2 1
fim DPENHED oty gy TEPEYED oy

potoo I(2p+7) p=+oo T'(2p+7)
Let v € (0,1). There exist some constants ¢y, co, c3 > 0 such that for p > 3/2,
Cipz +1/2(¢o¢) ch’yZ (wa) +c3pzp(1/}a) (27)
Let ko € N and K € R satisfying kg >

ko\ """ 2
co <—0> < C—l, and K >maxq max sup sup z(¢¥a),1, 1,284
2 2 1<k<ko a€(0,0x) Ya € C1

It follows from Proposition 2.2 that such a K exists. We now proceed by induction to prove
that (2.6) holds. For k < ko, it readily follows from the definition of K. Let k. > ko. Assume
that (2.6) holds for any k& < k.. Then, taking p = k* in the above inequality (2.7) and noting
that Z e (¥a) only involves renormalized moments z; /2 (o) for j < ki, we may use the induction

hypothe31s and we get

ks
C1 Zk*+1 (wa) C2 ( 9

whence (2.6). 0

v—1
kst1 ko kst1
> KF=t +e3 K" < K + ,

2.3. Regularity of the steady state. We investigate here the regularity of any nonnegative
solution v, to (1.4). We begin with showing uniform Li—estimates of Yq:

Proposition 2.6. For any k > 0, one has

sup  sup [|¢ha |z < oo. (2.8)
a€(0,a4 ) Ya€ba

Proof. For given k > 0, we multiply (1.4) by 1,(&)(€)%* and integrate over R?. Then, one obtains

Aulally + By, [ (€ Teva(©) vl de =
(1-a) / Q* (Yo, Ya) (€)1 (€)(€)*FdE — / Q™ (Ya, Ya) (E)¥a(€)(€) P de.
R4 R4
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One notices that

[ (€ Teval@) vate)eas = ~Ghvalty —k [ w2016 €2 ae

d+ 2k
- WO‘HH kllwalliiﬂ

and we obtain
(284, — (d+2)By,) [[0al2; + 26By, [6ally =

2(1-a) /R , Q" (W, Ya) (€)¥a(€)(€) g - 2 /R ,Q (Y0, Ya) (©)¥a(€)(€) S (29)

Now, according to [1, Corollary 2.2], for any € € (0, 1), there exists Cc > 0 such that

/R O (e ) €0al€)(€) A8 < Cellally Wl el v

d—1

and, using Prop. 2.2, one sees that

QO (o, Ya)(O)a(€) (€)1 d6 < C My [ally ™+ My a3 (2.10)

where My, and M 4@—3) +h do not depend on «. We first consider the case k = 0 and then k > 0.
d—1

o [irst step: k = 0. We look now for conditions on « ensuring that

- (2Ay, By, [vallte =2 [ | © (Vs va)(©Va(O)6

can absorb the leading order term 2csMjy, ||1,Z)0[||%2 = 2¢ [|[¢)a[|35. One has
k

(2Ay, —dBy,) = =5 (d+4)ay, + %d by, (2.11)

Now, by Lemma 2.1, one has by, > % a,,, and it is enough to estimate
o= 5 (4= 25 ), alls =2 [ 0 (0. ) € €1
2 V2 R4
As in [6, Section 4], we compound || |3, and ay,, into a unique integral to get
g, [Walts <2 [ O (Warva) €ba(€e
and therefore, with (2.5),
Ka < ~7j2(c) /R , 9 (W a)(©va()dE < —ma(a) Collvallfz | < —na(a) Colldallza

where 79 () = <d +4— 7) Thus

n(a) >0 <= a < ay := 2v2 (2.12)

42 +dWV2-1)
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But, a; < @ = min(ag, ap) by Lemma B.2 and Proposition B.5. Thus, choosing a, < «; and
e < ma(aw)Co/4, we get for any a € (0, ),
n2(aw) Co 2-1/d 1+1/d
o It < 20 M) 1l
d—

where the constants are independent of «. This completes the proof of (2.8) for k = 0.

e Second step: k > 0. Using (2.5), (2.10), Remark 2.3 and bounding the L? | norm by the
L2 one, (2.9) leads to

2—1/d 1+1/d
2C0|Yalzz,,, < Chlltallzy +2C Mol Il 3" + 26 My [0l

for some constant Cj, > 0 independent of « € (0, .. ). Now, choosing € such that 2eMy, < Cy we
get the existence of some positive constants Cj , > 0 and Cy ), > 0 (independent of o € (0, v))
such that

1+1/d
Collvallz; , , < Cullvallis +Conlidal "
Now, one uses the fact that, for any R > 0,

2 2\k 2 —1 2
Hwa”L% < (1 +R ) ”wa”ﬂ + R HwaHLiH/Q

and, since SUP,e(o,a,) SUPy,cé, [Yallrz < oo, one can choose R > 0 large enough so that
C1 xR~ = Cp/2 to obtain

d
%Hwa|’%i+1/ < O3+ O k”waul—i—l/ Va € (0,04), Yk > 0.
The conclusion follows easily since 1+ 1/d < 2. O

We extend now these estimates to general HJ" estimates. The key argument is the regularity
of Q% obtained recently in [5] in dimension d = 3.

Theorem 2.7. For any € > 0 and any s > 32 > 0, there exists C = C(e, s,n) such that
127 (.9l ot S Cllglg, Ml A+ ellFIepass gl oz
H., n+d+3 n+1
te > (gl 00 Uz, + 10, 19%2, ) (213)
|f|=s+95+

where k > 3/2.
The proof of this result, for general dimension d, is given in Appendix A. One then has
Theorem 2.8. Setting
20, (d -
ap = ay and dm:min<g1,T;<§+m+2> > form > 1,

where Cy > 0 is the constant from (2.5), one has, for any integer m > 0 and any 0 < @y, < Qo

sup  sup |[Ypallmp < oo Vk >0
a€(0,0m] YaESu
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Proof. In several steps of the proof, we shall resort to the following way of estimating weighted
L'-norms by L?-norms with higher order weights:

[Pl < Myllh]l 2 Vk >0, V>0 (2.14)

k+d/2+pu

where the universal constant M), is given by M, = H<->7%l7“HL2 < 00.

As in [5, Theorem 3.6], the proof uses induction over m. Namely, Proposition 2.6 shows that
the result is true if m = 0 since o, < @ is arbitrary. Let then m > 1 and 0 < @, < &, be fixed.
Assume that for any 0 <n <m —1, for any k£ > 0 and for any ¢ > 0, there exists C), 1, > 0 such
that

sup sup ”¢oc”H7; < Ch k- (2.15)
ozE(Opln —(5} waeéaa

Note that @,, < &y, for any 0 < n < m. We then deduce from Lemma C.1 and (2.15) that for

any real number 32d <o <m— 1, for any k > 0, there exists Cy > 0 such that

2
sup  sup ‘WQHHZ < Oy g (2.16)
a€(0,am] Ya€ba

Let now ¢ be a given multi-index with |/| = m and let k > 0. For simplicity, set
Fy(§) = 0%al(8).
Since 1, is a solution to (1.4), Fy(-) satisfies
(Ailla + M‘Bd)a) Fé(f) + Bwaé. : vﬁFZ(f) = (1 - O‘)aZQJr(womwa)(g) - 5ZQ7(%,1/1@)(§)

where we simply noticed that 9° (€ - Ve (€)) = € V00 (€) + [€]0%104 (€). Multiplying this last
identity by Fy(&) (€)%* and integrating over R? yields, as above,

(Ave+ (18- 5 - #) B ) IR, + KBy, IFuE; | =
(=) [ FQ (ot © O™ e ~ [ O (ot @ Fi©)% e (217
R4 Rd

Let us now estimate the integral involving Q~. Noticing that
_ L _ _
0'Q (artha) = > (V ) Q™ (0", 0" a).
ov/t

For any v with v # ¢, there exists ig € {1,...,d} such that ¢;, —v;, > 1 and integration by parts
yields

0 (0", 00O = 0] | [ 9 vlele - el
< 10" 6 (E)] 197

where o = (071, ...,04) is defined with o;, = ¢;, —v;,—1 and 0; = {;—v; if i # iy. Thus, estimating
the L! norm by some weighted L? norm thanks to (2.14) (with u = d/2 for simplicity) we get

Q™ (9" 0" 16)(©)| < C 10l 10 Wal 13
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for some universal constant C' > 0 independent of . From the induction hypothesis (2.15), this
last quantity is uniformly bounded and using Cauchy-Schwarz inequality we obtain

¢ — /v —v 2k
> (0 [ e @ vmo v ree*a

1%
o/
v#£L

¢ v
<oy ( ! ) 10°6allzz 1Fell 2 < Crmll Fellzz (218)
ov/t

v#£L

for some positive constant C},,, independent of a. Second, whenever v = £ one has

/ Q™ (0", ) (€) 0 (€)(€)*d = / F2(6)(€) de / bol€) € — EJde..
Rd Rd Rd

Therefore, according to (2.5), we get the lower bound

/Rd Q™ (", 1) (€) Oa(€)(€)*" A€ > Coll Felf2 (2.19)

2

Estimates (2.18) and (2.19) together with (2.17) yield then

d
culilsy,, ,+ (Aa+ (1=~ 1) Bo. ) 172,
+kBuy, [|Fel7z_ < CrmlFillrz + /R et wa @] IR (@)% (2:20)

where we simply bounded (1 — «) by 1. Let us assume now that k > 1/2. One has

|| et tava)©] 171 ©d¢ < 100" (o sz, I1Fil

k+1/2°

One can use Theorem 2.7 with s = m — %1, (2.16) and the uniform L} bounds to get, for any
e > 0, the existence of some positive constants Ci(e,k,m) > 0 and Cg(k) > 0 such that, for any
a € (0,an),

H3£Q+(1/1a,¢a)HLi_ < HQ+(¢a,1/Ja)HH:11 < Ci(e, k,m) +eCo(k Z 1y ”L2 e

v 3 inl=rm 3

Summing (2.20) over all £ € N¢ such that |¢| = m, we deduce that, for some Cy(k,m) > 0,

d 2 2
O X WAy, (At (m=5 =) Bo) X IAlE +kBu, 3 IR

|[€]=m |[€]=m |[€]=m

< (Ckym + Ci(e, kym) |zz 1Fell 241 + & Calk,m) MZ ||Fe\|L2 2
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Let us fix x € (0,1) such that @, < (1 —2x)d&m,. Choosing then & > 0 so that ¢ Cy(k, m) = xCo,

we get finally

d
2 2
=060 X IF; + (A + (m=5 - #) Bu) 3 IR,

|€[=m |€[=m

+kaa Z HFZH%i_l < 03(k7m) Z ”FZHLi-H/Q

[e|=m [l|=m

where C3(k, m) > 0 is a positive constant independent of «. Recall that

d a(d o (d
Ay, + ———k)By,=—=(=z+m—k+2 +—=-(z+m-—
Ya (m 5 k> Yo 5 (2 m—k ) Ay + 5 (2 m k:> by,

while kB, = —%Fa,, + %b,, .
At this stage, we first consider the case of small k. Namely, let us assume that
d
k< —.
m + 5

Then, neglecting all the terms involving by, , one has

d
(A + (=5~ k) Bo. ) IFlE; + 4B, IFi1Z;

d ak
> - (5 +2+ m> ay, HFZH%i + 5 3 (”quig -

a
2
> OV (S v 2 m) B
-2 2 L
Consequently, one sees that, for any « € (0,@,,], (2.21) yields

Va(d :
xan 5 (§r2em) Al | <t Y 1Al

|€[=m |¢[=m

In particular, for any k£ < m + %l, one has

sup  sup Y [Fl?. < oo
a€(0,0m) Yo €ba = kt1/2

(2.21)

2
1R, )

(2.22)

We now turn back to (2.21) for any k > 4 + m. Bounding as in Prop. 2.6 the absolute value
of |Ay,| and |By, | uniformly with respect to «, we see that there exist positive constants

Ci(k,m) > 0, independent of « such that

(1=x)Co Y HleliiH/2 <Ci(km) Y 1Ee]1 72 + Cs(k,m) > IE va € (0,m).

k+1/2
[¢|=m [¢|=m [¢|=m

Now, arguing as in the proof of Prop. 2.6, one has, for any R > 0,
2 -1 2 2\k—Fk 2
< 0
1Ry < ROIFR, |+ (4 R R,
where kg = % + m. Choosing R > 0 big enough and using (2.22) completes the proof.

One deduces directly from Sobolev inequalities the following uniform L* bound.
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Corollary 2.9. For any m = 0, there exists some explicit ~y,, > 0 such that

sup  sup ||[¢q|lwm.e < 00.
a€(0,7m) Ya€a

2.4. High-energy tails for difference of steady solutions. Now we established the regular-
ity of 1., we can extend Proposition 2.5 to the high-energy tails to the first order derivative of
1. Namely

Lemma 2.10. Let a; € (0,&4q) where &y is defined in Theorem 2.8. There exist some uniform
constant C > 0 and vy € (0,1) such that for any o € (0,a1] and any ¥y € &y,

[ IV6al9)] gae < PTG +9), v eN.

As a consequence, there exist some constants Ay > 0 and My > 0 such that, for any o € (0,@]
and any Yo € &, one has

/Rd Vo (€)| exp (A1]€]) dE < M.

Proof. The proof follows the strategy of Prop. 2.5 and exploits some of the results of [3]. First,
with the notations of Theorem 2.8, for any @; € (0,é&q), for any k£ > 0, there exists M > 1
such that, for any a € (0,a;] and any ¢, € &,, Hi/}aHHi < M. In particular, by a simple use of
Cauchy-Schwarz inequality, for any k£ > 0

sup  sup vaaHLl < 0. (2.23)
a€(0,a1] YaEEa

For any fixed a € (0,@1) and any solution v, € &, we denote (omitting for simplicity the
dependence with respect to «), for p > 1,

My = Mya) = [ (€l
m) = [ 1ol g as V=1

For any fixed j € {1,...,d}, set ¥; = 0;1),. Clearly, ¥; satisfies
[Aye + By, V5(€) + By, £ VI;(§) = 0jBa(Va, a) ()

and, for any p > 3/2, multiplying this identity by sign(¥;(¢))|£|? and integrating over R?, one
gets

Ay, +(1—d—2)By]m / 0, B (1, ) (€)sign (T, (€)) €27 de

where we used the fact that

€ VU(©sien(W(€) [ = ~(d+20) [ 195()] €7 e

R4

Now, since

Ba(womwa) = (1 - Oé)an(lbml/fa) - OCQ_(\IIjaT/}a) - QQ_(wom \Ij])
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and using (2.1), one checks easily that
avu, (p=3)m =a (b= 5 ) bumd + (1 -a) [ 0,00n va)(signlw;(©) I ag
— , 2p —
o [ @ ePrae [ val)le - €.l
~a [ @ () Osign (w0l de.

Now, using Jensen’s inequality

[ 1ws@ieae [ vatele - elae, > m?
R4 Rd

while it is easy to check that

O (o ) (€)siem (V5 (€)) €1 dg‘ < My yml? 4 2y m)
Therefore,
3 ; ; 1
aay, <p— 5) mﬁf) +O‘m;()2% Sa <p— 5) by, my; m) + (Mp+1m(()j) + M, m(])>

(1—a) / 07ty o) (€)sign (W5 (€)) €] e, (2.24)

According to [3, Lemma 6|, one can estimate this last integral as follows: there is some universal
constant 1 > 0 such that

/ 0;Q(ta o) (€) sign(¥;(€)) € d€ < —n(L—gp)m ), +2m P My +2m)) M, 1 + 0,5

(2.25)
where .
- B () ot g )
k=1
b for some

and g, is defined in (B.6). Neglecting the term involving a,, > 0 and since by, <
2.2

positive constant b = %Mg 2+ \/7 independent of « (see Lemma 2.1 and Prop.
from (2.24)

a1 =)= g)mt), <a(p= g )om)+ @ —a) (M, )+ My ) + )P

) we obtain

where, as in Proposition 2.5, f,(a) = (1 — a)g, = O (%) uniformly with respect to a. We
introduce the renormalized moments
()
G) " =M

zJ) = , Zp = p=0

P T@2p+1) P T(2p+1)
where I" denotes the Gamma function and v € (0,1) is a constant. We proved in (2.6) that there
exist some constants v € (0,1) and K > 0 such that for any « € (0, ay] and any 1, € &,,

20 < KF, Vk € N,. (2.26)
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Moreover, reproducing the arguments of both [9, Lemma 4] and [3, Lemma 7|, there exists some
positive constant A depending only on v such that

SY <AT(2p+1+27)20)  Vp>3/2

where

(J) — (4) ) 59 ()

z 1<km<f[i%] (Zk Fpkd TR A 1 B Bk T B L 2y ]
Arguing as in the proof of Proposition 2.5 and using (2.26), for any a € (0, ), there exist
positive constants ¢;, i = 1,...,4 such that

k.G ) BN 200 kL) kooki K
015 1 L <§> k/2+b—2k/2+03§K +ec K k > 3. (2.27)
Let us show then that there exists C' > K such that
<ok vkeN. (2.28)

2
One argues as in Proposition 2.5. Namely, choose kg € N large enough so that
/{?0 7=l C1
- <b d — < =,
k:o o “ ( 2 ) 2
and let C > K > 1 be such that

ko+1
C > max sup sup sz’ and 2bC~ !+ <E> <%-

1<k<ko Q’E(O o) Ya€8a 2

Thanks to (2.23), such a C exists and let us prove by induction that (2.28) holds. If k& < ko, it
readily holds by definition of C'. Let now k. > ky and assume that (2.28) holds for any k < k.

Then, taking k = k. in the above inequality (2.27) and since Z;’ (] ) only involves 2/ 5 for k < ki, we

may use the induction hypothesis to get first that ng ) C'k*+1 (recall that K < C') and then
2
to get

() BN 2c4 k fot1
Clzk*+1<62 - CrHT 4 k +b | C™ 4 c3 K™

*

ko\"" 2
< ¢y <EO> Crk*-i—l + (]:4 + b> Ck* +c3 Kk*+1 %Ck*+1 + 2hck* + CgKk*+1.
0

The choice of C implies then that 2b C* + cg KF=+1 < T C*+1 since ky > ko. This proves the
result. O

Thanks to the above technical Lemma, we are in position to extend Proposition 2.5 to the
difference of two solutions as in |17, Proposition 2.7, Step 1]

Proposition 2.11. Let @y € (0,&41) where &y is defined in Theorem 2.8. There exist some
positive constants v > 0 and M > 0 such that

| War() = (@)l explr [€)dE < M o = baaly Vo€ (0.]

for any Vi € &, i =1,2.
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Proof. Let a € (0,a1] and ¢, € &, for i = 1,2. Then, for ¢ € {1,2}, 1), satisfies
Afx ¢a,i(£) + Bg 5 : Vwa,i(g) = Ba(¢a,ia T;Z)a,i)(g) (2'29)
where A?, and BY, are defined by (1.6) with v, obviously replaced by Yai, © = 1,2. We set
9o = ¢a,1 - ¢a,2 and Sa = T;Z)a,l + T;Z)a,Q-
Clearly, g, satisfies

Azlx goz(g) + Biﬁ : vya(f) = (Ba(gom 304)(5) + Ba(saaga)(g)) + goz(g) (2'30)

DN | =

with

Ga(€) = (AL — AL) va2(€) + (BS —By) € Vibaa(9). (2.31)
Multiplying the previous equation by ¢(&) = |€|?" sign(g.(£)) and integrating over R?, we get,
after an integration by parts,

a(p—1) aéDp = ozpbtlle + /Rd Ga(§)p(£)dE + %/ (Ba(gas 5a) + Balsas ga)) pdE,  (2.32)

R4
where

Dy = / €17 |ga(§)1dE,  al, = ay,, and bl =by, , fori=12
Rd ’ ’

Thanks to the pre/post-collisionnal change of variables, we have
/ (Ba(gas Sa) +Ba(sa: ga)) pdé = (1—04)/ / Yo Soz*/ (' +¢.) TQd—1] € — ] dE d€s
R4 R4 JR4 Sd— |S |

where, for any function f, we use the shorthand notations f = f(£), f« = f(&), f/ = f(¢) and
fL=f(&). Thus,

1
3 [ Balgns50) + Balsm o)) wds < (1=0) [ [ lgul sanGl6.£01€ - € g .

2
_l 2p _ 1 % _
5 /Rd /Rd |9al Sax [§]77 1€ — & dE dEs + Q/Rd /Rd |Ga| S |E2|22 € — &,|dEdE,,

where . & 1
Gle.6) =5 [ (6P + 1) it < 5o (€ + 6P

by [6, Lemma 3.1| with g, defined by (B.6). Setting ,() = (1 — @) 0p, we then deduce from the
Jensen’s inequality, the estimate |€ — &, | < €| + |€4] and |9, Lemma 2| that

1

3 /Rd (Ba(gar 8a) + Bal5a,9a)) ¢ d§ < —(1 = Byp(a)) Dpyi/2

+56r(a Z( ) /R ) /R 19alsas (641627 + |26 ) (€] + I&.)déde.

1
45 0@ [ lgul s 6 PP(E]+ 6. dsl.
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Setting

5, = / 5o €7 de,
Rd

we obtain

% / (Ba(gom Soz) + Ba(saaga)) pd€ < _(1 B ’Bp(a))Dp+1/2
R4

1 [557]

+5 Bpla) ( Z > (Dis1/28p—k + DiSp—iy12 + Dy_ji1/25k + Dp—rSky1/2)
1

IS
w4+
-

b
Il

(1 + Bp(a))(D12Sp + DoSpy1y2)-  (2.33)

N | —

_|_
Next,

/ Ga(€)p(€) A€ < [Aq = A| My(Ya2) + [Bo — By ‘ /R (€ Viaa(€)) w(€) de].

But

6 02l 00 ¢| < My (90021
where we recall that, for any ¢ > 0, M,( f]Rd w(&) 1€ ]21’ d§ , p = 0. Moreover, by Proposition
2.2, there exists some constant C' > 0 dependlng only on d such that

|AL — A% + Bl — BZ| < (Do + Dy)).

Thus, there is C' > 0 (independent of p) such that

» Ga(8)¢(§) d§ < C(Do + D3ja) M, 1 (|Vtha,2| + Ya2)- (2.34)

Let v € (0,1). Introducing renormalized moments

o = D and o = L
(Do + D39)T'(2k + ) T(2k +7)’
setting
Zy = max_ {6ki1/20p—k: Op—kOki1/2> OkTptt1/2: Op—kt1/20%k | »

1<k<[PH)

and gathering (2.32), (2.33) and (2.34), we obtain, thanks to |9, Lemma 4], the existence of a
constant C, depending only on « such that

IF'2p+1+7) IF'2p+1+2y) 5

1
(1= Bp(a)) T2p+7) Opt1/2 +a(p—1) atlx(sp < Oépb(lesp + > Cy Bp(a) W P
1 T(2p+1+7) My, 1(IVia 2] + Ya2)
+ 5(1 + Bp(a)) (Up + Tp+r) p+1/z> T2 )

Then, for p > 1, a(p — 1) a} o0p = 0 and by Lemma 2.1, bl is bounded uniformly in a. Thus,
arguing as in the proof of Proposition 2.5, there exist some constants c¢1, ca, 3, cq,c5 > 0 such
that, for p > 3/2,

M, 1 (IVa2| + a2)
L(2p+7) '

c1pOpr1/2 < Capdp+c3p’ Zy+po,+ Capopr1/2+Cs (2.35)
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According to Proposition 2.5 and Lemma 2.10, if v € (0,1), there exists A > 0 such that
M% (|V7;Z)a,2| + ¢a,2)

< AFH f .
Thris9) or any k € N
Therefore, (2.35) reads
k k E\" - k k
Cc1 5 51@-2;1 < e 5 6k/2 +c3 <§> Zk/Z + 5 Ok/2 +cq 5 0'19-29-1 +c5 kJAIH_l.

One concludes then as in the proofs of Proposition 2.5 and Lemma 2.10 (details are left to the
reader). O

3. UNIQUENESS AND CONVERGENCE RESULTS

3.1. Boltzmann limit. On the basis of the results of the previous section, we can prove the
convergence of any solution 9, € &, towards the normalized Maxwellian M given by (1.7).
Namely, we have the following convergence result:

Theorem 3.1. For any k > 0 and m > 0, one has
lim [l — M[s = 0
a—0

where M is the Mazwellian .
M(&) ="z exp (—[¢).

Proof. The proof is inspired by [5, Theorem 4.1] and is based upon a compactness argument
through Theorem 2.8. Namely, let us fix m > d/2+ 1 and kg > 1. Let then ab, < Gy, be given
(where &, is the parameter in Theorem 2.8). According to Theorem 2.8,

sup  sup |[Yalmp < oo
ae(0,0d,) Ya€a 0

and there is a sequence (o), C (0, ajn) with oy, — 0 and 99 € H}! such that (tq,,),, converges
weakly, in H', to o (notice that, at this stage, the limit function ¥y may depend on the choice
of m and kg). Using the decay of ¢, guaranteed by the polynomially weighted Sobolev estimates,
we can prove easily as in [5, Theorem 4.1] that the convergence is strong in Hi, for any 0 < k < ko:

lim [, — vollay = 0. (3)

It remains therefore to identify the limit vy. Since, for any « € (0,041”), 1 satisfies (1.4), one
gets that

HBa(T/}mwa)HL? = HAwa% + Bwaf : V%Hm
< Ay [[[Yallpz + By, | 1€ - Vballre
< ([Aga [+ By ) 1vallm-

Now, according to Remark 2.3, one sees that there exists C' > 0 such that

Ba(Ya; Ya)ll 2 < Carl[tballm

and, using the uniform Sobolev estimates provided by Theorem 2.8, one sees there exists C; > 0
such that

”Ba(zpaawa)”LQ < Cl (67 Vo € (0,0éin)
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In particular,

1Q(%asta)llr2 < ||Ba(¢a,T;Z)a)‘|L2+aHQ+(¢aa¢a)||L2 < Cla+a‘|Q+(¢a,7pQ)HL2 Va € (0,0z;rn).
(3.2)
By Theorem A.4, there is some positive constants Co (independent of «) such that

HQ’L(%,%)IIH < C2||71Z)aHL§ ||71Z)a||L}
and, thanks to Propositions 2.2 and 2.6, there exists C5 > 0 so that (3.2) reads

1Q(Ya, a)llz2 < Csar Va € (0,af,).

In particular, lim, o |Q (Va,,, Yo, ) |12 = 0 and, since v, converges to 1, one easily deduces
that g satisfies
Q(tho, tho) =0

ie. g is a Maxwellian distribution. Now, according to (1.5), we clearly get that vy = M.
The above reasoning actually shows that any convergent subsequence (¢, ), with a, — 0 is
converging towards the same limit M. As in [5, Theorem 4.1], this means that the whole net
(wa)a c(0,05) is converging to M for the Hi, topology. Arguing in the very same way we can prove

m

that the convergence actually holds in any weighted Sobolev space H}?, k > 0 and m > 0. U

Remark 3.2. Because of the use of some compactness argument, the above convergence result
is clearly non quantitative, i.e. mo indication about the rate of convergence is provided.

As in [5, Corollary 4.2|, the above convergence in Sobolev spaces can be extended easily to
weighted L'-spaces with exponential weights. Namely, for any a > 0, let

ma(§) = exp(alg]), £ eRY

Then, one has the following result (we refer to [5, Corollary 4.2] for a proof which uses simple
interpolation together with Proposition 2.5):

Corollary 3.3. For any a € [0, A/2) (where A is given by Proposition 2.5) and any k > 0 it
holds

Tim ([~ M|y, = 0.

3.2. Uniqueness. We will now deduce from the above (non quantitative) convergence result
that the set &, actually reduces to a singleton whenever « is small enough. Before proving such
a result, we first establish some important estimate on the difference between two solutions to
(1.4):

Proposition 3.4. For any N > 0, there exist af\, >0, q(N) >0 and Cy > 0 such that
[Ya1 = Yozluy < ON [War = vazllny, Vo€ (0,a}) (33)
for any Yo € &, i =1,2.

Proof. The proof uses some of the arguments of Theorem 2.8 and follows the method of |17,
Proposition 2.7|. For a given a € (0, o), let 9,1 and 142 be two elements of &,. Set

Ja = %,1 - 1/’04,2-
Clearly, g, satisfies
Atlzv Jo Tt lexf Vo (§) = Ba(ga, Ya,1) + Ba(¥a,2: ga) + Gal§) (3.4)
with G, defined by (2.31).
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First step: N = 0. We actually prove here a stronger estimate than (3.3). Namely, we show
that there exists o% > 0 such that for any k& > 0, there exists C, > 0 such that:

a1 = Yasllz < Ckldas —vapllpy, VYo € (0,af) (3.5)

where k* = max(1 + k,3). Fix @; € (0,&;) and k > 0 (see Theorem 2.8 for the definition of &1).
Multiplying (3.4) by g (€)(£)?* and integrating over RY, we get

(As — (k+9)Bg) Hga”%i + /Rd 90(§)Q (gar a1 ) (€)(€)*d¢
Sh+l-Is+ k|Bé|H9aH%i_l- (3.6)

where

1= [ 0900007 To= [ 00(€) (@ (0arbar) ) + QF (az0a)) (€1,
and

T [ (€0 (o) (O

Let us estimate these three terms separately. One has

T1] < Gl lgllzz < (1A% — A2] + (B ~B2I) (Iazlliz + 1V¥a2llsz,, ) lalss.
Now one easily gets that there exists C' > 0 such that
AL — AZ| + B, — B < Callgall (3.7)
We deduce from (3.7) and Theorem 2.8 the existence of some constant Cy > 0 such that
71| < Cullgallzy lgallz Vo € (0,a0). (3-8)
On the other hand, by virtue of Theorem A .4

ol < (19 (9 Yan)liz + 1QF (a2 90)llz2 ) gl

< G (Wanllzz,, + Iaslzz,, ) l9alloy

2 1 Ngall:

where, for d > 3,

crro(d 9d/4 1 _ _
Ch = % /_1<1 — )=/ (1 4+ 2)[ D2 4y < oo,

Finally, by virtue of Proposition 2.6, the norms involving ¢, ; ¢ = 1,2 are uniformly bounded
with respect to a so that there exists Cy > 0 so that
Lol < Callgallzr, llgallz Vo€ (0,01). (3.9)

1+k

To deal with the last term, one has

7 < [ 10aONO™ Y@ [ | 1an(€)] 16 = €6 < Woslzz, sl loallsz

and, according to Proposition 2.6, there exists Cs > 0 such that
3| < Csllgallry lgallz Vo € (0,a0). (3.10)
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Now, according to (2.5), one has

/ 00(6)Q (g o) (E)(€) e = / G2 (E)(E) P o (€€ — £.]dede,
R4 R2d

>Co [ R©O©™ e = Collgally | (310
Rd k+1/2
Therefore, collecting (3.6), (3.8), (3.9), (3.10) and (3.11), one gets
(AL~ (k + DBY) llall; + Collaally
< (CrL+Cy +Ch) HgaHL}C* ||ga||L§ + k|Bé|H9aH%i_l (3.12)

As in the proof of Proposition 2.6, we first consider the case k = 0 and then k£ > 0. When k& = 0,
we deduce from (2.11) that

d o d
Al 4Bl — Y gipal 1% Ylgiga O al
@ 2w 4(+)aa+4 « 4 + \/Eaa

with
al — / Q (a1, bat) (€) dE < VA < V2D
]Rd

by virtue of Lemma 2.1. Therefore, one gets

av/d d
=0 am o] ol + Collnly | < (€3 Cot € gyl o
Now, setting ag = min (al, %(d +4 — %)*1» we have,
L Jguly < €1+ Co+-Cs) lallzgllaallis Vere 0,0f),

whence (3.5) for k = 0.
For k£ > 0, using Remark 2.3 and bounding the Li—l norm by the Li one, (3.12) leads to

COHgaHiiH/Q < Cillgall7z + (C1 + C2 + C3) llgalla, |96l 2

for some constant Cj, > 0 independent of o € (0,@1). Now, one uses the fact that, for any R > 0,

2 2\k 2 -1 2
lgallZy < (1 + B lgale + R galZy

and one can choose R > 0 large enough so that CyR™! = Cy/2 to obtain

Pllgaliz,, , < Crillgaliz + (Cr+ Cot Cs) lgallzy lgally Vo€ (0,05), vk >0.

Since we have already proved (3.5) for k = 0, we easily deduce that (3.5) holds for any & > 0.

Second step: N > 0. For larger IV, one proves the result by induction using now Theorem 2.7.
Namely, let N > 1 be fixed and assume that for any 0 < n < N — 1, there exist afl >0,q(n) >0
and C,, > 0 such that

”wa,l - wa,Q”H” g Cn ”wa,l - wa,Q”Lcll(n) Vo e (O, airtz)
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for any ¢ ; € &, i = 1,2. Let now £ be a given multi-index with |¢| = N and set Gy = 0gq.
From (3.4), G satisfies

(Aa + [¢] Ba) Gi+Ble.va, = 3£Ba(ga,¢a,1) + 8€Ba(¢a,27ga) +0'G,,.

Multiplying this identity by G, and integrating over R? yields, as above,
d
(Aa + (‘6’ - 5) Ba) ”G€”%2 = (1 — Oé)/d |:6£Q+(gomwa,1) +3£Q+(¢a,2,ga)} ng§
R

- / 0 Q™ (gurs 1) G dé — / 9 Q™ (a2, ga) Gle dE + / 0'Ga Gy de.
]Rd ]Rd ]Rd

Recall, as in the proof of Theorem 2.8, that

l
0 (gar o) = 3 ( ! ) O~ (o 0 "001).

1%
v=0

and, for v = /£, one has

/ Q (8" ga tha1) Gedé = / G7()1a,1(£)[€ — &]dEdEs = Col|Gell3
R4 R2d 1/2

thanks to (2.5). Thus,

d
(Ab+ (1= 5) BY) 16l + ol

<(1=0) [ (0€" (g i) +9'Q" (W 50)) G

¢
¢ _ '
v (6 %) v (6% d
+V§:;<V> [ @ (@000 "bu) G
vH£L
- [ Q0 Warnga)Gede+ [ 9Ga Guae.
Ré R
As in Theorem 2.8 (see Eq. (2.18)), one obtains
¢

0
¢ I N
2 ( v )/R Q™ (990 0" W) Gede < CHGeIILzZ< v ) 1 gall 2

v=0 v=0

v#£L v#£L

for some positive constant C' > 0 depending only on uniform weighted L?-norms of 0% (with
lo| < |€|). Therefore, thanks to the induction hypothesis, there is C; > 0 such that

¢
14 —(qv —v
S () [0 @no s Giac < arllGeln lanlay, |, Vo€ 00k
=0 Rd a(N-1)

v#L

Now, in the same way
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For any v with v # ¢, there exists ig € {1,...,d} such that ¢;, —v;, > 1 and integration by parts
yields

Q7 (8" Pa,2, 0" 90)| <10"%a2(E)] 107 gall 2

where o = (01,...,04) is defined with o, = ¢;, — v, — 1 and o; = €; — v; if i # . Therefore, if
v # £, one has

1Q7 (0" ta,2: " " 9a)ll2 < l[9ha,2llin 1 1107 gall -

For v = ¢, we have directly

197 (0Was2: 9a)llz2 < I¥a2lley llgallLt

so that, thanks to the uniform bounds on the derivatives of ¢, 2 provided by Theorem 2.8, there
exists C' > 0 so that

10°Q™ (a2, 9a) |l 2 < Cllgallyyy-11
and

e aggi(lba,%ga) Gﬁ d£ < C‘|C¥€HL2 Hganwi\’—l’l'

Now, thanks to Bouchut-Desvillettes estimates for Q% (see Theorem A.5), Theorem 2.8 and
Lemma C.1 it is easy to deduce that

/]Rd <8£Q+(gaa¢a,1) + 8£Q+(7pa,2,ga)) G,d€ < ||Q+(ga,7/)a,1) + Q+(7pa,2,ga)”HNHG€HL2

<€ (allzg + lsnll o1 ) Gl
2

for some positive constant C' > 0 depending on uniform weighted Ny -1 and L' norms of both
Va1 and P, 2. Finally,

/Rd 0'Go Gpdé < [|0°Gallrz |Gell e < O (|AL = ALl + B, — BL) a2y [Gell 2
so that, as in Theorem 2.8,
[ 960 Grde < clgaluy Gl
Rd

for some positive constant ¢ > 0. Gathering all theses estimates, we obtain the existence of a
positive constant C' > 0 such that

d
(Aiy + <N -~ 5) Bé) |Gellze + CollGellyz

N-1)

<0 (lanlsy_, +10all stgs + lgallyyrs ) Gl
2

Now, estimating the L' norms by weighted L? norms as above and using Lemma C.1, we get
that there exists ¢ > 0 so that

d
(Aé N (N_ 5) Bg) IGeli22 + ColGell3s | < € (lgaliy,

q(N-1)

+ llgallay-1) IGelzz.
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Since |A}L + (N — g) Bl | = O(a), choosing oz:]t\, small enough (but explicit), the above left-
hand side can be bounded from below by %HGgH%Q to get

Co
Gz < ¢ (lgally,

q(N-1)

+ llgallyx— ) IGellzz Vo€ (0,a}).

Now, using Lemma C.1 in Appendix (see also Remark C.3) with so = k3 =0 and s = N — 1,
s1 = N, we get that there exists C' > 0 such that

lgallzy-1 < C (Igalli + lgallz2, ) -
1 1

Moreover, according to Step 1, up to reduce aj, again (so that o < aé), one sees easily that
there exists q(IN) > 0 and ¢ = ¢(q, N) > 0 such that

Hga”LgN < cHga”L;(N) Va < chv.

Gathering all this, one obtains the existence of some constant C' > 0 so that

Co
SGelFe < € (lgallzy  +lgallin—s) IGellz Vo€ (0,ak)
and this concludes the proof thanks to the induction hypothesis. O

We have the following consequence of the above estimate (we refer to [5, Proposition 3.8] for
the proof which uses simple interpolation combined with Proposition 2.11):

Corollary 3.5. Let a € [0,7/12] (where r is given by Proposition 2.11). For any N > 0, there
exist af\, > 0 and C'y > 0 such that

ot = Yapllyy gy < ON [at = Yasllpimgy Yo € (0,0k) (3.13)
for any Vo; € &, i =1,2.
We introduce here the spaces
X = LY(my) and Y = Li(my,)

with my(§) = exp(al|), where a > 0 is small enough (the precise range of parameters will be
specified when needed). We recall here the continuity properties of Q% in this space: there exists
C1 > 0 such that

195(1,9)] » + 1259, Dl < CllFlI¥llglly- (3.14)
In this space, let us introduce the Boltzmann linearized operator . : 2(%) C X — X with

2(%) =) and

Z(9) = g, M)+ QM,g9), g€
where M is the Maxwellian distribution defined in (1.7). The spectral analysis of .Z in the space
X is by now well-documented [18, 7] and 0 is a simple eigenvalue of .Z associated to the null set

N (L) = Span(M, &M, ... &M, [E[PM);

while .Z admits a positive spectral gap v > 0. In particular, if

F={ocxi [ o= [ Goas= [ lePaas=0toran j=1.....a}.

and

o~

y=ynXx
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then A (£)NY = {0} and .Z is invertible from Y to X and there exists some explicit co :=

H.,Sf 1”2{ Asuchthat

12 (@)llx = collgly Vg€ (3.15)

With this in hands, one can prove the following (non quantitative) uniqueness result

Proposition 3.6. There exists some of such that the set &, reduces to a singleton for any
a € [0,af], i.e. for a € [0,af] there exists a unique solution 1, to (1.4) that satisfies (1.5).

Proof. The proof, as explained in the introduction, follows an approach initiated in [17] and
revisited (and somehow simplified) in [5, 7]. We shall work in the above spaces X = L'(m,)
and Y = Li(m,) with a € (0,min{A/2, A;,r/12}) where A, A; and 7 are given respectively by
Proposition 2.5, Lemma 2.10 and Corollary 3.5. For any a € (0, o), let as above 1,1 and 42
be two elements of &, i.e. 1, satisfies (2.29) for i = 1,2 and set

a = ¢o¢,1 - 7/’04,2-

According to Proposition 2.11, g, € Y and, since both 1,1 and 1, 2 satisfy (1.5), one actually
has

gaej}\-

Moreover, g, satisfies (3.4) from which we easily check that
Z(g0) = |@aor M) - Balgor M) + | QM) ~ Ba(M.50)]
+ [Ba(ga,M - T;Z)a,l) + ]BQ(M - T;Z)a,2aga):| + Al aa + Bl - Vga(g)

+ <A; - Ai) Va2 + (Bi, - Bi) £ Vo (6)-
We compute then the L'(m,) norm of £ (ga) to get

12 (9)llx < [|Q(gar M) = Ba(gas M) ||y + || 2QIM, ga) — Ba(M, ga)|| 5
+ HBa gaaM —1/1@1 HX + HB M - ¢a27goz)HX
+[AGgallx + B Vgally

(1A= A2+ B = B ) nalpa, o (310

According to the continuity estimate (3.14), one easily sees that there exists C' > 0 such that
1Q(ga, M) = Ba(gas M) ||y + || QIM, ga) = Ba(M, ga) ||y < Callgally  Va € (0,a4)

and

HBa(gomM - wa,l)HX + HBa(M - woz,Zygoz)HX <
Cllgally (IIM = Yaally + IM = Yaslly)  Va € (0,a4).

Moreover, according to Remark 2.3, one also has

AL lgallz + BallVaally < Callgallwiag,,, Vo€ (0,04).
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Finally, thanks to Proposition 2.5, Lemma 2.10 together with (3.7), there exist some explicit
0 € (0, ay) and some positive constant C' > 0 so that

(!Aa ~ AZ| +|B, - B2 ) a2l sy < Collgally < Callgally V€ (0,6).

Gathering all these estimates, we deduce from (3.16) that there is some p € (0,d) and some
positive constant C' > 0 independent of « so that

12 (ga)llx < Callgallyirn,) + Clgally (IM=tarlly + M = azly)
< Colgally + Cllgally (IM = tanlly + M = vaplly) Ve (0,p).

where we used (3.13) to bound the W%’l(ma) norm of g, by its Y norm. Now, according to
Corollary 3.3, for any € > 0, there exists a. > 0 so that

(IM = Pailly + M = aplly) < Va€(0,a:)
from which we get that
12 (ga)llx S Cla+e)llgally  Vae(0,ae).
Now, from (3.15), recalling that g, € j}\, one obtains
collgally < Cla+e)llgally  Va € (0,a0).

Therefore, choosing € > 0 and « small enough so that C(a + ¢) < ¢p, one gets that ||gq||y =0
which proves the result. O

3.3. Quantitative version of the uniqueness result. Notice that, because of the method of
proof which uses Theorem 2.8, the above parameter of is not explicit and depends on the rate of
convergence of ¢, towards M. Asin [5], it is enough to estimate the rate of convergence towards
M to get some explicit estimate of af. This is the object of the following

Proposition 3.7. There exist an explicit 57 and some explicit k > 0 such that

sup [[the — M|[x <Ko Vo€ (0,0").
Yo €6n

Proof. Let a < min{A, A;} where A and A; are given respectively by Proposition 2.5 and Lemma
2.10. Asin [5], the idea of the proof is to find a nonlinear estimate for ||t)o — M||11(,). Namely,
let a € (0, ) and 9, € &, be given. One simply notices that, since Q(M, M) =0,

Lo — M) = QWb — M, M — 1) + B (s tha) + [Qwa,wa) —Bawa,waﬂ

— Q(¢a - MaM - ¢a) + Awawa + Bwa£ : Vﬂ)a + |:Q(¢a,7pa) - Ba(¢a,wa):| .
Therefore,

12 (Yo = M)llx < Qe = M, M = ta)|lx + ([Aye| + By ) [[Yallyrr ()

+ ||Q(¢a,7pa) - Ba(¢aa¢a>”é\f
< Ct [l = M3+ Ca Yol ., + Cror [all3
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where we used the continuity property of QF in (3.14) together with Remark 2.3. Now, thanks to
Proposition 2.5 and Lemma 2.10, one sees that, for some explicit § > 0, sup,¢(o,5) Hwo‘HWLI(m ) <
b 1 a

oo from which we see that there exist two positive constants c1, co > 0 such that

e = Mlly < ctlla = M3 + 2 Va € (0,9) (3.17)
where we also used (3.15) by noticing that ¢o — M € Y. Now, since limg_ ||tha — M|y = 0,
there exists some §7 < & (non explicit at this state) such that

1
cil[ta — M|y < Va € (0,6")

2
and estimate (3.17) becomes

e — My <2c200 Vo € (0,07).

Such an estimates provides actually an explicit estimate for 67 since the optimal parameter ' is

the one for which the two last estimates are identity yielding 67 = ﬁ. Since both ¢; and co

2
are explicitly computable, we get our result with k£ = 2¢,. O

With this in hands, one can complete the proof of Theorem 1.4

Proof of Theorem 1.4. As already explained, the only non quantitative estimate in the proof of
Proposition 3.6 was the convergence of v,; towards M. This is made explicit by the above
Proposition from which we conclude, as in [5, Theorem 4.9], that the parameter ot is explicitly
computable. Details are omitted. ]

APPENDIX A. REGULARITY PROPERTIES OF Q1 REVISITED

We prove in this section the regularity result Theorem 2.7. The proof follows the paths of
the similar result established in [5, Theorem 2.5] in dimension d = 3 for the collision operator
associated to inelastic collisions. The proof is simpler here since we are dealing with elastic
interactions, however, the result differs in some points since we are dealing with dimension d
arbitrary: the case d = 3 is very peculiar since exactly one derivative is gained. In general
dimension d, the regularizing properties concern % derivative. The proof given in [5] extends
the results and is inspired, in several aspects, by the results of [19] dealing with smooth kernels
that are mot compactly supported: in such a case, the price to pay for the control of large
velocities consists in additional moments estimates. The starting point is a suitable Carleman

representation of the gain part of Q.

A.l. Carleman representation. Let B(u, o) be a collision kernel of the form
B(u,0) = @(|ul)b(u - o)

where U = u/[ul, ®(-) > 0 and b(-) > 0 satisfies [|b]|;1ga-1) = 1. Let us introduce the associated
gain part of the collision operator:

O (f,9)(v) = / B(o — 0., 0).f" dv, do.

R xSd—1

Let us also introduce the following linear operator I'g given by

I'p(p)(x) = /L B(z + x, |z|)p(z + z)dm,, z € R? (A.1)
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where dr, is the Lebesgue measure in the hyperplane z' perpendicular to z and
2710 (|2)

2
0
B(z,0) = B b<1—2—> , 0>0, zeR% (A.2)

2]
Then, one has the following Carleman representation
Lemma A.1. For any velocity distribution functions f,q one has

Q (g9, )v) = | g(w)dw B(z—v+w,|v—w|)f(v—=z)dr,
/Rd /(“”“ (A.3)

= [ @) [t 0T 0 t,) £l (o)
where [tyh](z) = (v — x) for any v,z € R? and test-function 1).

Proof. The proof is rather standard and can be found in several places (see for instance [4, Lemma
4.1]); we recall it here for the sake of completeness. Notice simply that, for any test-function ¢,
setting u = v — vy,

[ @ en@ett = [ o) [ fo-wiu) [ B, (%) dodudy

where )
2
Fou(z) = ¢(v—2)b <1 - ||Z||2 ) Y(v,u,z) € R,
u

Using then the general identity

u— |ulo 2d-1 9
/Sdl F <T> do = =g (|z|* =z - u)F(x)dz

valid for any given function F' we obtain

/ O+ (g, f) (v)p(v)dv
Rd

_ /R o(v) /R oo — ) /R F (v —u) D (Jul) ’de_IQ S(al - u)b (1 - 75’;) dudz dv

= —x V—2z—1T 2+ m — 2=
= [ [otw—a) [ so-z—aegeran T2 (1 2

where we set u = z + x. Keeping z fixed, we remove the Dirac mass using the identity

W6 - 2)dz = — [ h(z)dm.,
/]Rd || /xl

) dzdz dv

and obtain

/Rd Q% (g, fl(w)p(v)dv = /Rd g(v) /Rd o(v—1x) /ﬂﬁL B(z+ x,|z|) f(v — 2z —2)dr, dzdv

- v Blv+z—y,|v- —z)dn,dvd
/Rdso(y)/]Rdg()/(Uy)l Ww+z—y,|v—y|) fly—=2) y

which is the desired result. U]
Remark A.2. Notice that, from the above representation, one sees that Ugf = QT (0o, f) (see

[1)-
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A.2. Regularity properties for cut-off collision kernels. For this section we assume that
the kernel B(u, o) satisfies:

0 for r<e

r for r > 2e, (A-4)

®(-) €C>®(0,00), b(-) €C°(~1,1) and @(r):{

for some € > 0.

Lemma A.3. Assume that the collision kernel B(u,o) satisfies assumption (A.4). Then, for
any s = 3%‘1, there exists C > 0 such that

197 (g, 1) ¥y >0 (A.5)

Hfﬁ% < HfHHf]_M HgHL%mLN’

with k > 3/2 and where the constant C' = C(s, B, €) depends only on s and on the collision kernel

B.

Proof. There is no loss of generality in assuming that s + % is an integer. Indeed the general
case shall follow thanks to interpolation. The proof of this estimate follows the approach given
in [19, Theorem 3.1] where a similar estimate has been obtained, for x = 0, under the additional
assumption that ®(-) has support in [e, M] with M < oo. Our proof will consist essentially in
proving that the weighted estimate (i.e. with k > 0) allows to take into account large velocities.
First, one notices that the representation formula (A.3) together with Minkowski’s inequality
leads to

190l azs < [ o0 w0 T 0t aps o

Now, since Htw¢||H]k\f < 2’“/2(w>k||1,b\|H11€v for any 1 € HY, for all N € N and any k > 0, the lemma
would follow from

Lol <C Iy, . >0, (A.6)

n
For (r,0) € R x S, we introduce

Lp(f)(r,0) :=Tp(f)(ro) = /Rd B(u, [r[)f(u)d (u- o —7r)du. (A7)

Since we assumed that s + % € N, we have

HPB(f)H;IH%: Y ars)I:,

K f]<s+451

where for £ € N4, 9 = 901 ... 9% and |[¢| = ¢; + ...+ ¢4. Changing coordinates, we get
x xT1 Tq
e A B o I R
0 Jsi1
1
— 5 | [ 0ra(p o)l ar

2 R JSd-1

d},

It follows from (A.7) that, for j € {1,...,
0, (T(1)) (r,0) = 104, (C(f) (o).
Thus, by induction, we deduce from (A.7) and the above equality that

1 P 1

T 5(1)(r7) = 77 ATa(Pr0) = = [ Bl 75 (-7 =) du
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where uf = ufl e uf;d. One easily checks that for any sufficiently smooth function v and for any

peN,

Y(u,)6P) (- o — r)du = Z ( P > (—1)* % P 4p(u, )0 (u - o — r)du.

R4 t

Thus, defining

1=

Dy(u,r) = u*B(u,|r|) for (u,r) € R x R, (A.8)
we get
4] 2
2 [ +1 4]
e S A (( ;
n d—1 —
M|<S+T

2
()21 |12 do dr,

/ /S o (T, (1)) (0)

Now, for any sufficiently smooth functions 1 and ¢ and for any i € N, we have

o : S0\ oF .
oL (r o )elr) - (4 ) e (vros).
Consequently, setting

gtr) = )P T forr € R, (A.9)
we obtain
Palpss € 3 i Zj;( #o (1 ))kzzo (1)

drdo.

/gd 1/ 3rk a‘“ (f)) (r,o) g P (r) 2

We introduce the radial Fourier transform RF[h] for a function h defined on R x S?1 and the
Fourier transform F in R? with the formulas

RF[h] (0,w) = (2m)~ /2 / exp(ior)h(r,w)dr, Vo eR, we S
R
and
FIN© = @n) " [ el of@)de,  vEeR
R4

The Plancherel theorem then implies that

2 k o

0
dr = /RR}' [ak@@“m

- [P RE e

2

k —~—
4 dr

I F i
R ork ( ol D,

() (r,0) g )

() o) o]

2
dr.

Then, as in [19], we have

RE [Cypmip, (050) 69| (1) = (2m) T F (Gl 0) ()" ()] (1)
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where k € R shall be fixed later on and
G’ZM(U,U) = (u>*“g(i*k) (u- a)@‘f'fiDg(u,u o), uweRy o est
Consequently, setting £ = ro, since drde = [£|~(@=Dd¢ we get

1£]

||I‘B(f)||]zls+% < 2(2m)41 Z WTJrlZ(z’Jd (( W >> Z(( >)

" st izt =

ez et (5 ) oo ©

Splitting the above integral according to || < 1 and [£| > 1, one gets, as in [19, p. 183-184],

2

dé.

2

[ et 2 et () 0rs0] @ as < cvsmo [ e (1) 0] ©
+@4N@%“%faﬂ(éowwﬁafﬁ,

for two positive constants C (depending only on d) and Cs (depending on d and k). By Cauchy-
Schwartz inequality, we have

e (- &) or0] ©
d—1

d
By [19, Lemma A.5|, we obtain for ry = sz - — |+ 5} +1,

2
[ e |7 e (45 o) ©

This finally leads to (A.6) with
4]

o= £ SNV B 207Gt

d—1
lo|<s +d 1 =0 wEeS

2

—d —
< @MU sup 1) TG (@) 17 ggay -
nte L esd—1

2

4 < Cogal ., sp NGl () By
_sup

(A.10)

To conclude, it remains only to check that the above quantity is indeed finite, i.e.

- 2
Sup ()G g (5) P ey < 04
weSd—1
for any multi-index ¢ and any integers i,k with 0 < k < ¢ < |{] < s+ %. This leads us to
investigate the regularity and integrability properties of the mapping
F, :ueRY— (u) 7 g0 (4 w) 1Dy (u, u - w),

where ¢ € N%, i,k € N with 0 <k <4 < |¢] < s+ 452, Dy and g are defined by (A.8) and (A.9)
respectively. Observe that

Fy(u) = b= (U w) R (u),
with

it WB(Ju)g P (u )

and Re(u) := (u) 1 gl =i=1
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Because of our cut-off assumptions (A.4), b(1—22%) = 0 for |z| < § for some 6 > 0 and ®(|u|) =0
for |u| < e. Thus, for any w € S, F,, is well-defined and belongs to C*°(R?). Hence, it suffices
to investigate the integrability properties of the mapping F;, and of its derivatives for large values
of u (uniformly with respect to w). It is easy to check that any derivative (with respect to x)
of b remains bounded on (—1,1) while any u-derivative of R,, has a faster decay (for |u| — o)
than R, (u). It is then easy to check that

IR, (u)] < ClufF1=5=243 vy e §970 ju| > 2,

for some C' > 0. Since k < |¢], taking x > 3/2 ensures that sup,,cga—1 [[Fio ()| 2 (ra) < o0. This
achieves the proof. O

A.3. Regularity properties for hard-spheres collision kernel. We now use the previous
result for smooth collision kernels to estimate the regularity properties of Q% (f, g) for true hard-
spheres interactions. We first recall the following convolution-like estimates for Q1 as established
in [2]:

Theorem A.4 (Alonso-Carneiro-Gamba [2]). Assume that the collision kernel B(u,o) =
(|u))o(u - o) with [|b]| 1 (ga-1y =1 and ®(-) € L™, for some k € R and let 1 < p,q,7 < 00 with
1/p+1/q=1+1/r. Then, for any n > 0, there exists Cy ., x(b) such that

19* (£l < Crps®) 1@, 112z, allzs,,

where the constant C,., ,, 1(b) is given by

’
r
7

Copmi(8) = Chonr () < / 11 (1 - x)_ b(z)(1 — xz)d23dx> '

Y (/11 (1 J2””>2d ba)(1 — x2)d23dx> T A

or some numerical constant cy, ,, (d) independent of b and where r',p',q" are the conjugate ex-
77]7
ponents of r,p,q respectively.

We can combine Theorem A.4 together with the estimates of the previous section to prove
Theorem 2.7

Proof of Theorem 2.7. Notice that, for hard-spheres interactions, one has B(u, o) = ®(|u|)b(u-o)
with ®(|u|) = |u| € L™ and b(z) = by is constant for any = € (—1,1). In particular, for any
n > 0, both the constant Ca 1, 1(b) and Cs2,,.1(b) appearing in (A.11) are finite. Let us now fix
n 2 0 and € > 0 and split the kernel into four pieces
B(u,0) = Bss(u,0) + Bsr(u,0) + Brs(u,0) + Brr(u, 0)
= Pg(|ul)bs(@ - o) + Ps(|u)br(t - o) + Pr(|ul)bs(@- o) + Pr(|u])br(d - o)

with the following properties:

(A.12)

(i) bs and ®g are smooth satisfying the assumptions of the previous Section.
(ii) br(s) := by — bs(s) is the angular remainder satisfying

02,1777,1(1)3) < g and 02,2777,1(1)}3) < g.
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(11i) Pr(|u|) = |u] — Pg(Jul) is the magnitude remainder satisfying
5
(Co,11(bs) + Ca21(bs))’

Notice that @5 € L while ®r € L. Notice that, in contrast to previous approaches, the last
point is made possible because ®g(|u|) = |ul for large |u| which makes ®r compactly supported.
Thus, on the basis of relation (A.12), one splits Q7 into the following four parts,

Q+ - Q;;_S + Q;R + QES + QER

We shall then deal separately with each of these parts. We prove the result for s such that

s+ % € N,. The general case will follow by interpolation. First, we know from Lemma A.3

that, for u > 3/2,

[RIAIES

/1l

2n+up

1Q5s(£: .y a51 < Csllglle

H,, 2 n+u
Second, we estimate Q;CR. Since
l
o' Qir(f.9) = Z < ﬁ ) QLL(0"f, 8t g)
v=0

for any multi-index ¢ with |¢] < s+ %, one gets

¢
E 174 bt 4
CXTRIIEELVED DD 9l () | - C el

|| <s+ 451 v=0

for some Cs 4 > 0. We treat differently the cases |¢| = s + % and [4] < s+ %. According to
Theorem A4 if |¢| < s+ 952 — 1 one has for any |v| < ||

— 0—
1Q4R(0" 1,07 9)lIr2 < Conna ORI ®sllLe, 107 fllr, 10 gl 2,
—
<elld”fllpr,, 107 gllr2,

where we used the assumption (ii) with the fact that ||®s|[z> < 1. Using the general estimate
(2.14) with g = 1/2 for simplicity and since [¢| < s + 4L — 1,

)4
E 14 —V
S () ) 19050 1.0 g < ATy Lol o
d

— — d+3 +1
\z|<s+—21 v=0 nt+ 443 n

for some constant As > 0 depending only on s. In the case |[{| = s+ %, argue in the same way
to obtain

f—
Q4R 1.0 *0)lzz < lfl_yasa gl az0
d+3 n+1

n+ 442

for any 0 < |v| < |¢]. If v = 0 one still has
+ 4 ¢
1QEA (£, 012 < Cormaom) I, 10l
additionally, for v = ¢ we use Theorem A.4 with (p,q) = (2,1) to get
195 (" f. 9Lz < Cazma(br)llgllz,, 10°F ] 12, -
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Therefore,

1QER(F O yar < AsellFIao gl ao

K n+# n+l1
4 4
+a5e > (lgle, 10Uz, + 1l 10%l e ) -
[¢|=s+452

We argue in the same way using the smallness assumption (ii) to prove that,

19k (F 0 tgs < Asellfl s gl o azs

2

n et 43 n+1
4 V4
+ae >0 (gl 10Uz, + 0l 10%l e ) -

[l =s+5+

Finally, the estimate for Q¢ follows from the fact that ||®g| e is small,

Qs (£ ozt < Auellfl s gl

n
nt 4L

S+d—5—3
n

¢ 4
s 4 Y (el 1971 + 11y 19%91lz3)
[¢|=s+452
Combining all these estimates and replacing Age to € we get (2.13). U

We finally recall some useful estimates, of slightly different nature, on the collision operator
first established in [10] and extended to the bilinear (covering also dissipative interactions) in
[15]:

Theorem A.5 (Bouchut-Desvillettes [10]). For any s € R and any n > 0, there exists
C = C(s) >0 such that

127 (f.9)ll_.,

gtz SCG) (17l sz, + 15D Dl )

Remark A.6. The original statement is for s > 0 but a direct inspection of the Fourier-based
proof shows that the above statement is valid for any s € R.

APPENDIX B. REMINDER ABOUT THE EXISTENCE OF THE SELF-SIMILAR SOLUTION

We recall here, for the sake of completeness, the main steps in the construction of a solution
q to (1.4) with unit mass and energy equal to d/2. We also revisit slightly our proof in order
to sharpen the range of parameters « for which such a steady solution is known to hold. We
recall that the solution v, constructed in [6] is obtained through a dynamical proof and the
application of a time-dependent version of Tykhonov’s fixed point Theorem. Therefore, the core
of the analysis of [6] is the study of the well-posedness and the properties of the flow associated
to the following time-dependent annihilation equation

3#/)(15, 5) + Aw(t) ¢(ta 5) + B¢ (t)f : Vglf)(t, 5) = Ba(¢a ¢)(t’ 5) (Bl)

supplemented with some nonnegative initial condition

$(0,€) = ¢o($), (B.2)
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where 1) satisfies

d
[@dc=1, [ wieePac=3, (8.3)
R4 R4

while

At ==5 [ (d+2-20¢P) @ ()t
and

By(t) = —3; [, (1= 2P) @ ()1, )de.

We assume that the initial datum g is nonnegative, isotropic and such that

Yo € Lhoparan®) N Dhya , (RY MLy (RY (B.4)

for some k > 0. Under such an assumption, there exists a unique nonnegative solution ¢ €
C([0,00); L3(R) N Liy((0,00); LE(RY) N Lix,((0,00); LY(R?)) to (B.1) such that 9(0,-) = 1o

and loc )
[oteod=1 [ weorPa=5 veo
R4 Rd

Notice that, in this Appendix, we shall always assume that g is an isotropic function of & so
that, for any ¢ > 0, the solution (¢, &) is still an isotropic function. In particular,

/dw(t,§)§d§:0 vt > 0. (B.5)
’ 1—o0s
According to [6, Proposition 3.4, we set ag = - 923 € (0,1] where
2
1400 : 1-U-0o ‘ do
Ok = /Sdl (T) + < 5 ) ST VEk > 0. (B.6)

Then, if 0 < a < ag, there exists a constant M () depending only on « and d such that the
unique solution v (t) to (B.1) satisfies

sup M3 (t) < max {M; (0),M(a)} (B.7)
tZO 2 2
with
M) = [ wieOlePas ko,
R
Moreover, one checks easily that, if @ < ag then, sup,e(o,ap) M(a) < .

2
Remark B.1. Notice that, in dimension d = 3, one has p3 = = and cg = =
2

With this in hands, one can show |6, Corollary 3.6|, that, if initially bounded, all moments of
¥ (t) will remain uniformly bounded. Moreover, by Holder’s inequality,

& = Mi(1) < /My () Mya0)
Thus, (B.7) leads to
2 _
inf M, (1) > dz (max { M3 (0). (@) }) (B.8)
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On the other hand, as in the proof of [6, Lemma 3.10], one has

/ w<t,§*>15—§*rd§*>c(\§r+ / w<t,£*>!£*\d§*>,
R4 Rd

for some constant C' > 0. Consequently, it follows from (B.8) that there exists some constant
Co > 0 such that

[ vl = €ae. > Cute) (B9

The next step for proving the existence of a steady state is to prove propagation and estimates
on LP-norms of the solution . This is the object of the following in which, with respect to [6,
Theorem 1.6] we sharpen the range of parameters for which uniform estimates would hold true:

Lemma B.2. There exists some explicit a € (0,a9) such that, if 1o € L2(R%) N LY(R?) then,
for any a € (0,a), the solution ¢ (t) to (B.1) satisfies

Stl;gW(t)HL? < max {||vol| 2, Ca}

for some explicit constant Co > 0 depending only on max {M% (0),M(a)} .
Proof. Multiplying (B.1) by 2i(t,£) and integrating over R?, we get

d

aW@)H; + (2A4(1) = dBy(1) [l¥(t)|72

(B.10)
=2(1-a) / QT (1, ¥)(t, &) (t, §)dE — 2/ Q™ (¥, ¥)(t, (¢, §)dE.
R4 Rd

Now performing the same manipulations as in the proof of Proposition 2.6 in the case k = 0,
choosing € < n2(a)Cp/4 where Cp is now given by (B.9) and setting a = min(ag, o) where as
is defined in (2.12), we get for any a € (0, ),

d n2(a) Co 1+1/d
&W(t)\\%z s O3> < K@l
for some positive constant K independent of a. O

Remark B.3. Whenever d = 3, one has as >~ .401. In particular, as > ag.

These uniform estimates on the moments and the L?-norm of the solution enable us to get
weak-compactness in L'(R?) thanks to the Dunford-Pettis theorem. It remains now to identify
a subset of L'(R?) that is left invariant by the evolution semi-group (S;)¢=0 governing (B.1).
We thus investigate the regularity properties of the solution to the time-dependent annihilation
equation (B.1)-(B.2). We show in particular how the approach used in Section 2.3 for the steady
solution 1), is robust enough to cover regularity properties of time-dependent solutions to (B.1).

We begin with the propagation of weighted L?-norms in the spirit of Proposition 2.6:

Proposition B.4. For any k > 0 one has

Yo € Li N Lu—s) ,, = sup (1) 1z = b < oo.
d—1 t=0
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Proof. We only consider here the case k > 0 since for k = 0, Proposition B.4 follows from Lemma
B.2. The proof is nothing but a dynamic version of the proof of Prop. 2.6. Namely, multiply
(B.1) by 2¢(t,£)(€)?* and integrate over RY. After an integration by parts, one gets

%Ilw(t)llii + (244 () — (d + 2k)By (1)) [l (D72 + 2kBy () [v ()72 | =

2(1-a) /R QW) vt €)(€)* g - 2 /R L QW 0)(E U €)(€)* s (B11)

Now, according to [1, Corollary 2.2|, for any ¢ € (0,1), there exists Cz > 0 such that

/R | QH WOV OO < Culwlol "

d—1

O] e Ol P T GI 7

According to |6, Corollary 3.6|, since vy € L}i(d,B) L one has
=
sup @y, , <o

3)
a—1 Tk

and, in turns, sup;> Hiﬁ(t)HL}C < 00. On the other hand, we have

sup A0 <€ swpBy()] <C and [ ()6l > Col) e R, (Ba2)
=0 =0 R

for some constant C' > 0 and Cy > 0. Thus, bounding the L? | norm by the L} one, (B.11)
leads to

d 2
a POz +2Collv @)l

14+1/d
<O, +2C- @I +2¢ M ()25,
2
for some constants C' > 0 and M > 0 (depending on k). Now, choosing e such that 2e M < Cj
we get the existence of some positive constants C7 > 0 and Cy > 0 (still depending on k) such

that
d d
FIYOIZ: +Col®Ilf: < Cillv@ITs + Callv@lz .
k+ k

2

Now, one uses the fact that, for any R > 0,
le@)I7: < (1+ B ()72 + J“TIIIT,Z)(f)IIii+1

and, since sup;~ [|[¥(t)|/z2 < oo by [6, Theorem 1.6], one can choose R > 0 large enough so that
C1 R~ = Cy/2 to obtain

/2

2

d 2, Co 2 1+1/d
&”Wt)”Li + 7||¢(t)||Li CSGt C2||7/)(75)||Li :

The conclusion follows easily since 1+ 1/d < 2. O

We now prove the "propagation" of Sobolev regularity together with the creation of higher-
order moments. We begin with first-order derivatives to illustrate the techniques:

Proposition B.5. Let 6 > 0. There exists some explicit ay € (0,1) such that the following

holds: for any % <g<K 1+ %l, if the initial datum g satisfies (1.5) with moreover

Yo € Lél (R?) N L3+1+6(Rd) n Hé
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where g1 = (0, 1), the solution ¥(t) = ¥(t,§)

to (B.1) satisfies
sup ()]s < o0 (B.13)
t=0

and

T
| W@l <o w0
0 at+d

Proof. Again the proof is only a dynamic version of the proof of Theorem 2.8. For the solution

P(t, &) to (B.1), we set Gj(t,&) = 0;4(t,€) for j € {1,...,d}. Then, G; satisfies
Gj(t,€) + (Ay(t) + By (1)) Gj(t,€) + By (1) £ - VeGj(t, €) = 0iBa(vh, ) (¢, €)

where one has

iBa (v, ¥)(t,§) = (1 = a)9; Q7 (¥, 9)(t. ) — Q™ (¢, Gy)(t,€) — Q (G, ¥)(t, ).

For given ¢ > 1/2, we multiply this equation by 2Gj(t,£)(£)* and integrate over R?. Then,
after an integration by parts and using (B.9), one obtalns

G013, + (2Ay(0) + (2~ d— 20)By (1) |G (O3, + 2BuIG; ()]
21— [ 9,07 W)t G (.)€
2GR ~2 [ 076G 1M (B0

Clearly, one has

[ 10,07 @)t 0)] 16,01 €16 < 10,0* . )O)lz2 165 D)2

1

Tty
<IQ* @ ) Bl G5Ol
q9—3 qT 9
Now, using Theorem 2.7 with s = %d and Kk = % + 9, for any € > 0, there exists C. > 0 such
that
1 W, v)Ollm | <Cellw® sa W@l | +
T2 ai1ts 2q+5+8

5H¢(t)HL§+I+Q||71Z)(t)||L2 +2e[lv®)llz ZIIG ||L21

3-d
Since d > 3, one estimates the H qjl 4 norm by the Lg 4145 Dorm and, using Proposition B.4
together with |6, Corollary 3.6|, our assumptions on the initial datum implies that
sup [[¢(t)[| 2, <oo and sup [[¢(t)] < 0.
20 a+149 =0 2q+ 5 +9

T3

Therefore, for any £ > 0, there exists C}(g,q) > 0 and Cy(q) > 0 such that

‘|Q+(¢a¢)(t)”]lﬂ; , SCie,q) +eCalg ZIIG Mz o

2



42 VERONIQUE BAGLAND & BERTRAND LODS

One estimates the last integral in (B.14) as in the proof of Theorem 2.8; namely, an integration
by parts yields

’Q_(l/fan)(taS)’ = ¢(t7§) ‘/]Rd 3]#’(’25*)’5 - 5*’ dé.

Then, Cauchy-Schwarz inequality yields

[0 .61t 656, 9©Mag| < 1013 16503 < €4 1650y

< w(taf)uw(t)“Ll = w(taf)

for some positive Cy > 0 where we used the uniform bounds on the Lg—norm of ¥ (t) provided by
Proposition B.4. Recall that

2A (1) + (2 — d — 29) By(t) = —9 (d — 2q + 6) ay(t) + 9 (d+2 — 2q) by(t)

while 2¢By,(t) = —aqay(t) + agby(t). Since ¢ < 1 + 4 5, one may neglect all the terms involving
by (t) to obtain the bound from below:

(28(1) + (2~ d = 20) By (1) IG5 (0125 + 2By (1) G, (1)
>~ 5 (d+6)au(t) IG5 (0112 + @ aau(t) (IG5 013 — 16,012 )
> —§¢a<d+6> 1G5

using the fact that a,(t) < Vd for any t > 0 (following the arguments of Lemma 2.1). Thus,
(B.14) reads

d o
&”Gj(t)uig - 5\/3 (d+6)[G; (t)llig +2Co||G5(1)][7 )

a+d
2(1—04)01(€7q)|!Gj(t)HL3+1+€C2( 1G;(t HL2 ZHG HL2 +2CqHGj(t)HLg
3

where Cy, C1(e,q) and Cy(q) are positive constants independent of o and ¢. Define, for any
k > 0, the semi-norm

4 1/2
o ®)llor = | D 058(0)]72
H, = k
Setting a; := min {g, %} and summing over all j € {1,...,d}, we get
d Vd
FrALdY )Hol + 5 (d+6)(a; — )P

Hgqd

2

< 2C (e, q) ZHG HL2 +€C2 ZHG HL2 " +2C, ZHG )Lz
j=1 *2

< 2Ci(e,9) ZIIG 2 +d602(CJ)H¢(t)H% +2VdCy [ (t et

q+2 q
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Using Young’s inequality, for any § > 0 one gets

POl + 4+ 6)(as - WO,

a+3

5 d
< (B0 +ECa) O+ 21D

+2VC, (1) .

q
For any fixed o < @, one can choose first £ > 0 small enough and then § > 0 small enough so
that (20 Ci (e, q) + de Ca(q)) = @(d +6)(a; — @) to get

%W( )Hol + \/—E(d+6)(a1 — )P <2VdC|y(t)]. +C
H H

a+% a

which yields easily the conclusion. O

Combining all the previous computations, one can find some explicit positive constants M,
My, Ms, My and Ms such that, if a € (0, ), then the evolution semi-group (S¢)¢>0 governing
(B.1) leaves invariant the convex subset of Li(R%)

z:{0<weL§<Rd>, w(©) = B(le) Ve e Ry, /Rdw@)dszl, /Rdw@)m?dg:g,

[ wOIePds <0, [l <)o, [ollia, <M

d+9

[ e g < htyand ol Ms,}.
R4

and we obtain the first part of Theorem 1.1. Taking o, < «a;, then the constants M; and M3
may be chosen independent of o € (0, av.), which leads to the second part of Theorem 1.1.

Notice that, in dimension d = 3, a = % Thus, a; < %
Let us now extend the above result to higher-order derivatives

Proposition B.6. For any sy > 1, setting s = so — d;21 and s1 = sy — 1, there exists some

explicit a,, € (0,1) such that the following holds: for any % <qg<sg+ %l, if the initial datum
o satisfies (1.5) and is such that

sup |[¢(t)]| g1 < oo  with moreover )y € L2 Lt (RN HZ?
>0 g+1+¢ T+

then, for any o € (0,ay,), the solution ¥(t) = 1 (t,&) to (B.1) satisfies
T
sup [|¢() g2 <00 and / 160l dt <00 VT > 0. (B.15)
=0 4 0 a+3

Proof. The proof follows the arguments of Theorem 2.8. More precisely, we prove (B.15) for
s9 € N and the general result follows by interpolation. We proceed by induction on ss. First, for
s = 1, we deduce from Proposition B.5 that (B.15) holds. Let us assume that for some s > 1,
(B.15) holds. Let a € (0,ay) be fixed and let 3 < ¢ < s2 + 4. For any multi-index ¢ € N? with
|¢| = s2, we set

Ge(t,€) = By (1, ).
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One sees that Gy satisfies
0Gi(t,€) + Ayp()Ge(t, €) + By (t) 9 (& - VU (t,€)) = I¢Ba (v, ¥)(t,€).
Noticing that 9 (& - Vi (t,€)) = & - VGi(t, ) + [€| Ge(t, &) we get
0Go(t,€) + [Ay(t) + [ By (D) Ge(t,€) + By(t) € - VGo(t,€) = OcBa (1, 9) (1, ).
Given ¢ > 1/2, multiplying the above equation by (£)27 Gy(t, &) and integrating over R? we get

d+2q

55160 + A0+ (1= 52) Bo)] I +aBuO GO

= (1-0) [ Gt Q" (vt E)(6)d
- [ G930 wu)(t.6) ©ae. (Bo)

Since ¢ > 1/2, one has

T3

< IO @ W)Wl 1GOl1z ,

T2

[, Get.) 80" () (1. €)(€1d¢ < 10£Q (w02 IGa(Ds2

Let § € (0,4]. Using now Theorem 2.7 with s = sp and x = 3 + 4, for any & > 0, there exists
C = C(g, s2,q,0) such that

197 @, ) Ol , < Clo@lles, MOz |

q— 2 +3

Tl 1Ol |+ 2 WOl Z IGK@lle -
q+1+5

Ik\ i

Therefore, our assumption together with interpolation imply that there exist C (e, s2, q), C2(q) >
0 such that

19" W ) Dllgr2, < Calesz,0) +eCala) D I1Gk®)lz2

2 |k|=s2 2

and this shows that, for any ¢ > 0

[, Get.£) 9@ (5. 0)(1. (€16 < Cilev 50, Gelt)

1
+32
+e GGz Z IGE ez, (B1T7)
Ik\

Now, one estimates 8EQ_(1/), ) (t,€) as in the previous Proposition. Namely, one has
l

o () =X () ) @ @¢vdt ).

v=0
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For any v with v # ¢, there exists ig € {1,...,d} such that ¢;, —v;, > 1 and integration by parts
yields

o @ v o] =l ol | [ o e el - s
<0 (O] 07901

where 0 = (01,...,04) is defined with o;, = ¢;, — v, — 1 and o; = ¢; — v; if i # ip. Thus,
estimating the weighted L'-norm by an appropriate weighted L?-norm (see (2.14)) we obtain

Q7 (0", 0" ™) (1) < C 1B (&) 1071 .2

d+1

for some universal constant C' > 0 independent of ¢. Our induction hypothesis implies that this
last quantity is uniformly bounded. Hence, using Cauchy-Schwarz inequality we conclude that

l
2 ( : > /R Q™ (0", 0" ) (t,€) Gi(t, €)(€)*d¢

14
v=0
vH£L

¢ v
< ¥ () ) 10601 160l < Conll GOz 020 (B1s)

lvl<[¢|

for some positive constant Cj s, independent of t. Whenever v = £ one has

/ Q™ (0", ) (1, €) D (2, €)(€)1d¢ = / G2(t,£)(€)21d¢ / Bt E) € — E]dE.,
R4 Rd R4

thus, thanks to (B.12) one obtains the lower bound

/Rd Q™ (9", v) (t,€) Dgu(t, £)(€)*dE = Co | Ge(t)]I72 E (B.19)

a+3

Gathering (B.17), (B.18) and (B.19) with (B.16), we get

d+2q

33100 + [t + (1= T520) o] I + By GO,

S Ci(e, 82, 0)[Ge@) 2 | +eCalq)l|Ge(t HL2 O NGk HL2 ,
+_

2 b 2
+ Cga[|Ge(®)| 2 — Co \|Gz(7f)||i2+l- (B.20)
+3

Now, noticing that gBy(t) = —$qay(t) + $gby(t) and

d—+2q

> Bw(t):—% [&H—d%—%—q} aw(t)+% [&ﬁ-d—%—q} by(t)

Aylt) + (m -
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and since ¢ < sg +d — %, the terms involving by (t) can be neglected to get

v+ (19 5) Buo)] 1601 + aBo®) IGAOIE;

o 3 aq
> =5 [s0+d+ 3| a0 16001 + G av(o (16013 - 16012, )
> -5V s+ a+ 3| 160,

and (B.20) becomes

o
5 ICOIE = 237 [so+ 4+ 3| 1GA0IE + ol |

< Cile sz, OIGe®llz | +eCa)Ge®)lle Y NGk ez
2 |k\—82 2

T CpallGe®)] . (B.21)

Setting now

200 200 )
Qsy = = and 0,(t) = Go(t
ST Vs +d+ 3 Vs +5+2) o) = | 2 160

we can argue as in the proof of Proposition B.5 to get that there exists (s, > 0 such that

1d Vd 3 5
§E@q(t) + 7 |:80 + d+ _:| (QS2 — Oé) ®q+l(t)
<Cile52,0) D NIGe®lzz, , TeC(@)C, 02, 1(1) + Cs, Cy,5,04(t).
2
[£|=s2
Arguing again as in Prop. B.5, using Young’s inequality with a parameter § > 0 and choosing
€ > 0 and then § > 0 small enough, we obtain that

1d Vd 3 5

559 ()+T {so+d+2] (o, — @) @q+%(t)<cl@q(t)+02
for some positive constants C1,C2 > 0 which shows that, for any a < a,, the conclusion
holds. O

APPENDIX C. USEFUL INTERPOLATION INEQUALITIES

We collect here several useful interpolation inequalities that are needed in several places in
the text. First, one recalls the following consequence of Riesz-Thorin interpolation, we refer to
[19] for a proof:

Lemma C.1. For any ki,ko € RT and any s1,s2 € R, the following inequality holds for any
smooth f:

11z < CISNGor 1 lgges
Ky ko
forany 0 € [0,1] and k = 0 k1 + (1 —0)ka, s = 051+ (1 —0)s2 and some positive constant C' > 0.



ON BALLISTIC ANNIHILATION 47

Remark C.2. The constant C > 0 is actually missing in the statement [19] but appears clearly
from the method of proof.

1
Remark C.3. Clearly, using Young’s inequality ab < fao + (1 — 0)b7-9, the above inequality
shows that there is a constant C = Cy > 0 such that

I/lls; < Co (Il + 17z )
fork =0k + (1 —0)ky, s =051+ (1 —0)sy and 6 € [0,1].
We also recall the following result from [17]
Lemma C.4. For any k,q € N and any exponential weight function
m(v) :=exp(—alv|®) for a € (0,00),
with s € (0,1], there exists C > 0 such that for any h € HF N LY (m=12) with k* := 8k+7(1+d/2)

b < C RIS IS gy

Hhuw’;’l(m— ok L1 (m~—12) HhHLl(m_l)'

Remark C.5. The above Lemma is stated in [17| for m(v) = exp(—alv|®) with a > 0 and
s € (0,1) but the proof can be extended in a straightforward way to the case s = 1.
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