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Support Measure Data Description
Jorge Guevara, Stéphane Canu, and R. Hirata Jr.

Abstract—We address the problem of learning a data description model for a dataset whose elements or observations are itself a
set of points in RD . Modeling each observation as a probability measure, we describe such dataset by computing a minimum volume
set for the probability measures, as means of a minimum enclosing ball of the representer functions of the probability measures in a
Reproducing Kernel Hilbert Space (RKHS). The advantage is that we do not consider any particular form for the probability measures,
instead, we use the embedding of such measures into a RKHS given by a positive definite kernel on probability measures. As a result,
the data description model is a function that only depends on some probability measures: the support measures. We formulated three
support measure data description models for such datasets: the optimization problem for the first one is a chance constrained program;
the second is a direct extension of the support vector data description method to the case of probability measures; the third is the same
as the second one, but defined for stationary kernels and scaling on data. We validate our method in the challenging task of group
anomaly detection, with artificial and real datasets.

Index Terms—Kernel on distributions, One-class classification, support vector data description, embedding of probability measures,
mean map, group anomaly detection.

F

1 INTRODUCTION

DATA description (DD) or One-Class Classification is
the task of building models to depict the common

characteristics of objects in some data set, with the aim of
performing machine learning tasks such as anomaly and
novelty detection, clustering and classification [1]–[6] .
The main idea of DD methods is to assume an under-
lying distribution generating the points in the dataset.
Consequently, most of them extract from training data
some distribution information, for instance, an empiri-
cal probability density function, a density level set or
information about the density support set.

Usually, DD methods work on datasets given by sets
of the form: {xi}Ni=1, xi ∈ RD, where N is the number of
observations in the dataset. However, there is a growing
interest in machine learning methods for datasets whose
individual observations are clusters, groups or, sets of
points in RD [7]–[20]. Such datasets are sets of the form:

T = {si}Ni=1, (1)

where N is the number of observations and the obser-
vation si is the set {x(i)

1 ,x
(i)
2 , . . . ,x

(i)
Li
} with cardinality

Li, and each element of si is a point in RD. Practical
examples of observations taking the form of si are: a
set of image features in an image dataset [21], a set of
spatio-temporal features [22], a set of replicates values
for a measurement process [23], a set of points describing
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point wise uncertainty [12]–[14], a set describing subjec-
tive judgments [15], a set describing the invariance of
some particular object [16].

Data description of datasets given by (1) is of crucial
importance for possible practical applications as we
illustrate taking as example the group anomaly detection
task [7], [8]. The aim of group anomaly detection is to
detect anomalous sets of points from datasets taking the
form of (1), i.e., to detect unusual observations si from
(1). Each anomalous set of points, or group anomaly,
could be given by [7]: 1) point-based anomalies, that is, the
aggregation of anomalous points, i.e., all the elements in
si are anomalous, or 2) distribution-based anomalies, that
is, the anomalous aggregation of non-anomalous points,
i.e., all the elements in si are non-anomalous but the
aggregation itself is unusual or anomalous.

In classical anomaly detection1, a point is anomalous
if it differs from the majority of points in the dataset, for
example, a point far away from the empirical mean, or
from the support of the generating distribution of points
in the dataset. However in group anomaly detection, a
group or set of points is considered anomalous, if the
local distribution of those points is not similar to the local
distributions of the non-anomalous groups of points.
Consequently, the information provided by each local
distribution of points is crucial for a right description
of datasets given by (1). Figure 1 shows how taking
a statistic from si, and describing such representative
values with conventional DD methods, is not enough to
guarantee group anomaly detection, because reducing
the information provided by si to a single value will
turn conventional anomaly detection methods, highly
depended of such a procedure. Moreover, by doing so,
useful information could be discarded.

Minimum Volume Sets (MV-sets) for describing

1. Detecting anomalous xi ∈ RD from a set {xi}Ni=1
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Fig. 1: Left part: four observations: s1, s10, s23, s77, from
a dataset given by (1), containing one hundred ob-
servations. Observations s3, s10 are two non-anomalous
groups of points. Observations s23, s77 are two anoma-
lous groups of points. The plotting axes suggest an
overlapping between points from anomalous and non-
anomalous groups. Right: red and green points are the
group means of anomalous and non-anomalous groups
of all the observations in the dataset, respectively. The
overlapping between the group means of the anomalous
and non-anomalous groups will turn classical DD meth-
ods not suitable to perform group anomaly detection in
this dataset.

datasets. MV-sets are widely used to find a description of
datasets of the form {xi}Ni=1, xi ∈ RD [1]–[4]. A volume
set is a set of points belonging to some region in RD. A
MV-set is then computed following some optimization
criteria, over all the possible volume sets. Instead of
consider such a general case, DD methods consider only
the class of sets formed by sets of points belonging to
some specific geometric form, as for example, classes of
sets given by ellipsoids and convex sets [1], half-spaces
in a Reproducing Kernel Hilbert Spaces (RKHS) [4], [10]
or enclosing balls in a RKHS [5].

This work aims to find a description of datasets given
by (1). To do that, we assume that points in si are
generated from a unknown local generating distribution
Pi. Doing that, the description of (1) can be posed as es-
timating a MV-set for {Pi}Ni=1. Formally, we assume that
the points in each observation: x(i)

1 ,x
(i)
2 , . . . ,x

(i)
Li
∈ si, are

i.i.d 2 realizations of a random variable X distributed
according to some unknown local probability measure
Pi defined on the measurable space (RD,B(RD)), with
B(RD) denoting the Borel σ-algebra of RD. A general-
ization of the definition of MV-set [1]–[4] to the case of
probability measures is given by the next definition.

Definition 1.1 (MV-set for probability measures). Let
(P,A, E) be a probability space, where P is the space
of all probability measures P on (RD,B(RD)), A is some
suitable σ-algebra of P , and E is a probability measure

2. Independently and identically distributed.

on (P,A). The MV-set is the set3 4:

G∗α = inf
G
{ρ(G)|E(G) ≥ α,G ∈ A}, (2)

where ρ is a reference measure on A, and α ∈ [0, 1].
The MV-set G∗α, describes a fraction α of the mass
concentration of E 5.

That is, given α ∈ [0, 1] and a reference measure ρ,
a MV-set for a set of probability measures is found as
follows: 1) measuring each possible set of probability
measures G ∈ A, by E(G), 2) keeping all the sets of
probability measures G ∈ A satisfying E(G) ≥ α and,
3) selecting the set G∗α ∈ A, such that ρ(G∗α) is the
infimum ρ(G) over are all the sets G ∈ A satisfying
E(G) ≥ α. Finding a MV-set of a set of probability
measures with the above procedure is very general,
instead, we limit our attention to the class of sets A
formed by sets of probability measures satisfying that
the realizations of the random variables following such
probability measures are inside of a hypersphere or ball.

Enclosing balls in Reproducing Kernel Hilbert
Spaces. Considering {Pi}Ni=1 as an i.i.d sample dis-
tributed according to E , such that each Pi is unknown,
we use an implicit feature mapping given by a real-
valued positive definite kernel defined on P × P . We
consider then the class A in (2) implicitly defined by
such a kernel, as the set of enclosing balls of the implicit
representer functions of {Pi}Ni=1 in a RKHS. Consequently,
the MV-set given by (2) is given by the minimum en-
closing ball (MEB) of such functions in the RKHS.

The representer functions of {Pi}Ni=1 in a RKHS are
given by performing the embedding of {Pi}Ni=1 into a
RKHS [18], [26]–[28]. Such embedding provides a way
to compute inner products in P using a kernel defined
on P × P , without computing the density of such local
distributions as an intermediate step. Moreover, a good
approximation for the kernel is assured by an empirically
estimation of it using (1) [18]. Consequently, in the same
way of kernel methods, the description of {Pi}Ni=1 will
be a function depending only on some training exam-
ples, Pi, which in analogy to support vectors in kernel
methods are called as support measures. Consequently, we
call the DD method presented in this work as Support
Measure Data Description or SMDD.

We present three SMDD models through the paper. In
Section 2 is presented the first one as an optimization
problem with chance constraints [29], [30] in the space
of probability measures, which is further extended to a
RKHS in Section 3. The second and third models are
direct extensions of the SVDD model [5] to the case of

3. A is for instance the Borel σ-algebra with respect to the topology
of weak convergence [10], [24].

4. Assuming that all Borel probability measures P ∈ P have compact
domain.

5. As density level sets [25] are MV-sets (the converse is not true
[2], [3]), then alternatively (2) can be stated as estimating the p-level set
of E : Cp = {P ∈ P|E(P) ≥ p}, p ∈ [0, 1],, where the set Cp defines a
MV-set satisfying that G∗1 correspond to the p-zero level set of E , that
is, the density support estimation set of E .
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datasets given by {Pi}Ni=1. The third SMDD model is
almost the same as the second model with the only dif-
ference that it considers a scaling of data and translation
invariant kernels. Both SMMD models are presented in
Section 3. The relationship among all the SMDD models
is presented in Section 4. We show through a set of
experiments in Section 5, the behavior of such models
in the group anomaly detection task using artificial and
real world datasets. Finally, some conclusions are given
in Section 6.

Notation. We consider a random vector defined on the
probability space (Ω,F ,P) as a Borel measurable map:
X : Ω → RD, satisfying X(ω) = ω, ∀ω ∈ Ω, i.e, X is
a identity map. Also, we always consider Ω = RD and
F = B(RD), implying that for B ∈ B(RD) the probability
measure induced by X given by PX(B) = P{ω : X(ω) ∈
B} equals to the probability measure P(B), i.e., PX = P.
We always abbreviate P{ω : a < X(ω) ≤ b} by P(a <
X ≤ b).

2 SUPPORT MEASURE DATA DESCRIPTION IN
THE SPACE OF PROBABILITY MEASURES

In this section we estimate a empirical MV-set for
{Pi}Ni=1, as a MEB for the realizations of random vari-
ables distributed according {Pi}Ni=1. We name such ap-
proach as SMDD model in the space of probability measures,
which is presented as an optimization problem with
chance constraints [29], [30]. Further, using Markov’s
inequality [31], we transform such an optimization prob-
lem into another one with deterministic constraints. We
also present its dual formulation as well. All the results
in the present section are further kernelized and conse-
quently extended to a RKHS in Section 3.

Given an i.i.d sample {Pi}Ni=1, a first definition for an
empirical version of the set G in (2) is given by

Ĝ(R, c) = {Pi ∈ P | ‖Xi − c‖2 ≤ R2}, (3)

where (R, c) ∈ R × RD are named as the enclosing balls
for {Pi}Ni=1, and Xi ∼ Pi6. The empirical MV-set Ĝ∗α is
then found by estimating the MEB (optimal R and c
values, following some optimization criteria) using the
sample {Pi}Ni=1. In this case, the optimal radius will be
proportional to the value α in (2). However, (3) is very
conservative definition, because Pi will be in (3), only
if all the possible realizations of Xi ∼ Pi are inside the
enclosing ball (R, c).

A more flexible formulation is given by allowing some
realizations of Xi ∼ Pi not be part of the set Ĝ, this
can be done by setting some arbitrary threshold values:
K = {κi}Ni=1, κi ∈ [0, 1] to control the probability for
which the realizations of Xi ∼ Pi are inside of the ball
(R, c). That is, given the set K = {κi}Ni=1, κi ∈ [0, 1], a
more flexible formulation for an empirical version of G
in (2) is given by:

Ĝ(K, R, c) = {Pi ∈ P | Pi(‖Xi−c‖2 ≤ R2) ≥ 1−κi}. (4)

6. Notation ∼ means distributed according to.

As each probability measure Pi is in Ĝ(K, R, c) de-
pending on its associated value κi, it is possible to see
that if all κi = 0, then (4) reduces to (3), and if for some i,
κi = 1, then Pi is always in Ĝ(K). Probability measures
not considered (or considered) to be part of Ĝ(K) are
those for which the corresponding distribution function
Pi(‖Xi − c‖2 ≤ R2) is less (or greater) than κi.

Finding the empirical MV-set given by (4) means to
define an optimization problem with chance constraints.
That is, given {Pi}Ni=1, and {κi}Ni=1, κi ∈ [0, 1], the
optimization problem is given by

min
c∈RD,R∈R

R2

subject to Pi(‖Xi − c‖2 ≤ R2) ≥ 1− κi,

for all i = 1, . . . , N , where R and c are the radius and
the center of the enclosing ball, respectively and, the
random vector Xi ∼ Pi is the uncertainty parameter for
the chance-constrained model.

In the same way of kernel methods, we introduce
the slack variables: ξ = (ξ1, ξ2, . . . , ξN ) ∈ RN to allow
some probability measures from {Pi}Ni=1 not be part of
the estimated MEB, then we have the following chance-
constrained program:

Problem 2.1.

min
c∈RD,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to Pi(‖Xi − c‖2 ≤ R2 + ξi) ≥ 1− κi,
ξi ≥ 0.

for all i = 1, . . . , N , where λ > 0 is a regularization
parameter.

As the κi-values are thresholds, an intuitive inter-
pretation for the chance constraints of Problem 2.1 is
that the probability that the random vector Xi ∼ Pi takes
its values outside the ball (

√
R2 + ξi, c) is bounded by κi.

Equivalently, the left side of each probabilistic constraint
of Problem 2.1 is the distribution function of the random
variable7 Zi = ‖Xi − c‖2 on the argument R2 + ξi, that
is, FZi(R

2 + ξi) = Pi(‖Xi− c‖2 ≤ R2 + ξi), then, Problem
2.1 can be posed as:

min
c∈RD,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to FZi
(R2 + ξi) ≥ 1− κi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N.

In this formulation, the 1 − κi values are lower bounds
for the distribution function FZi

. Then, all Pi, such that
ξi = 0 and FZi(R) = 1 − κi, are support measures (in
analogy with support vectors), all Pi, such that ξi > 0
and FZi

(R+ξi) = 1−κi, are errors allowed in the training
set and, all Pi, such that ξi = 0 and FZi

(R) > 1− κi, are
non critical points because they are in the MV-set.

7. A distribution function of a random variable X is a function FX

from R to [0, 1] given by FX(x) = P({ω : X(ω) ≤ x}) ≡ P(X ≤ x)
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It is worth to note that Problem 2.1 is is equivalent to
SVDD [5] when the probability measures are the proba-
bility Dirac measures, i.e., Pi = δxi , where δxi(Xi) = 1 iff
Xi = xi and zero otherwise [28]. Then there is certainty
with probability one that the only possible realization of
Xi ∼ δxi

is xi, this allow us to eliminate the probabilistic
constraints and to formulate the problem as the usual
SVDD, that is, in this case finding the solution in the
input space equals to finding the solution in the space
of all probability Dirac measures.

2.1 Formulation by Markov’s Inequality
Chance constraints of Problem 2.1 control the probability
of constraint violation, allowing flexibility in the model.
However, each constraint requires we deal with every
possible realization of X ∼ Pi. Then, it is necessary
to transform this problem into another one with de-
terministic constraints, this can be achieved, by using
the Markov’s inequality [31], which for a nonnegative
random variable X ∼ P and for some t > 0, bounds
P(X ≥ t) by EP[X]/t.

Each chance constraint of Problem 2.1 can be written
in equivalent form as Pi(‖Xi − c‖2 ≥ R2 + ξi) ≤ κi.
Assuming that each probability measure Pi has mean
µi ∈ RD and covariance Σi ∈ RD×D, and noting that
‖Xi − c‖2 ≥ 0 and (R2 + ξi) ≥ 0 are satisfied, Markov’s
inequality bounds each chance constraint as:

Pi(‖Xi− c‖2 ≥ R2 + ξi) ≤
EPi [‖Xi − c‖2]

R2 + ξi
, i = 1, 2 . . . , N,

where EPi
denotes the expectation for a random variable

distributed according Pi.

Lemma 2.1. 8 Let P be a probability measure with mean µ
and covariance matrix Σ, then for X ∼ P

EP[‖X − c‖2] = tr(Σ) + ‖µ− c‖2.

Applying Lemma 2.1 and Markov’s inequality to the
chance constraints of Problem 2.1 yields:

Pi(‖Xi − c‖2 ≥ R2 + ξi) ≤
tr(Σi) + ‖µi − c‖2

R2 + ξi
,

∀i = 1, 2 . . . , N . As κi is the upper bound for the chance
constraint i, it is necessary to ensure that

tr(Σi) + ‖µi − c‖2

R2 + ξi
≤ κi. (5)

Using (5) and given {µi,Σi}Ni=1 ⊂ RD × RD×D es-
timated from {Pi}Ni=1 and {κi}Ni=1, κi ∈ (0, 1], the
deterministic form of Problem 2.1 is the following:

Problem 2.2.

min
c∈RD,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µi − c‖2 ≤ (R2 + ξi)κi − tr(Σi),
ξi ≥ 0,

8. The proof is found in the supplemental material.

for all i = 1, . . . , N . Problem 2.2 is named as SMDD with
joint constraints if κi = κ for all i ∈ 1, 2, . . . , N .

Lemma 2.2. If there is no information about Σi, and κi =
1, ∀i then, SMDD (Problem 2.2) is equivalent to a SVDD
[5] with µi instead of xi.

Proof: By hypothesis, tr(Σi) = 0, replacing κi = 1,∀i
in Problem 2.2 we get the SVDD [5] with µi instead of
xi.

2.1.1 Dual Formulation
Denote by α and β the Lagrange multiplier vectors
with nonnegative components αi and βi, i = 1, 2, . . . , N ,
respectively. The Lagrangian for Problem 2.2 is:

L(R, c, ξ,α,β) =R2 + λ

N∑
i=1

ξi −
N∑
i=1

αi{(R2 + ξi)κi

−‖µi − c‖2} − tr(Σi)} −
N∑
i=1

βξi

(6)

The stationarity and complementarity Karush-Kuhn-
Tucker (KKT) conditions for this problem are respec-
tively:

∂RL = 0 :
∑N
i=1 αiκi

OcL = 0 : −2
∑N
i=1 αiµi + 2

∑N
i=1 αic

∂ξiL = 0 : λ− αiκi − βi

= 1
= 0
= 0

 (7)

αi{(R2 + ξi)κi − ‖µi − c‖2 − tr(Σi)}
βiξi

= 0
= 0

}
(8)

Replacing, the KKT’s condition in (6), we obtain the dual
problem, i.e., given {µi,Σi}Ni=1 ⊂ RD ×RD×D estimated
from {Pi}Ni=1 and {κi}Ni=1, κi ∈ [0, 1], the dual form of
Problem 2.2 is given by

Problem 2.3.

max
α∈RN

N∑
i=1

αi〈µi,µi〉 −
∑N
i,j=1 αiαj〈µi,µj〉∑N

i=1 αi

+

N∑
i=1

αitr(Σi)

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . , N
N∑
i=1

αiκi = 1.

2.1.2 Representer Theorem and Analysis of KKT’s
From stationary conditions (7), the Representer Theorem
[32] for c is:

c =

∑
i αiµi∑
i αi

, i ∈ {i ∈ I | 0 < αiκi ≤ λ}, (9)

where I = {1, 2, . . . , N}.
Analyzing the complementarity conditions (8) we

identify the following cases for all i ∈ I. See Table (1)
for a summary.
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• αi = 0, βi > 0 =⇒ ξi = 0, that yields ‖µi − c‖2 +
tr(Σi) ≤ R2κi. All the realizations x′ of Xi ∼ Pi.
satisfying ‖x′−c‖2 = (‖µi−c‖2 + tr(Σi))/κi, κi 6= 0
for i ∈ {i ∈ I | αi = 0} will be inside the ball (R, c)
no matters the value for κi. Consequently, all Pi, i ∈
{i ∈ I | αi = 0} are considered to be described by
the ball.

• αi > 0, βi = 0 =⇒ ξi > 0, that yields ‖µi − c‖2 +
tr(Σi) = (R2+ξi)κi. All the realizations x′ of Xi ∼ Pi
satisfying ‖x′−c‖2 = (‖µi−c‖2 + tr(Σi))/κi, κi 6= 0
for i ∈ {i ∈ I | αiκi = λ} will be outside the
ball (R, c) with probability κi. Consequently, all
Pi, i ∈ {i ∈ I | αiκi = λ} are considered to be
errors allowed in the training set {Pi}Ni=1.

• αi > 0, βi > 0 =⇒ ξi = 0 and 0 < αiκi < λ. From
this and (8) we can retrieve the radius

R2 =
‖µi − c‖2 + tr(Σi)

κi
, (10)

where i ∈ {i ∈ I | 0 < αiκi < λ}. Notice that all
the realizations x′ of Xi ∼ Pi satisfying ‖x′ − c‖2 =
(‖µi − c‖2 + tr(Σi))/κi, κi 6= 0 for i ∈ {i ∈ I | 0 <
αiκi < λ} will be on the surface of the ball (R, c).
Consequently, all Pi, i ∈ {i ∈ I | 0 < αiκi < λ}
are considered described by the ball (R, c) and are
called support measures.

αi = 0 βi > 0

ξi = 0

‖µi − c‖2 + tr(Σi) ≤ R2κi

i ∈ {i ∈ I|αi = 0}

αi > 0

βi = 0

ξi > 0

‖µi − c‖2 + tr(Σi) = (R2 + ξi)κi

i ∈ {i ∈ I|αiκi = λ}

βi > 0

ξi = 0

‖µi − c‖2 + tr(Σi) = R2κi

i ∈ {i ∈ I|0 < αiκi < λ}

TABLE 1: Summarizing table for the analysis of KKT’s
condition

The radius value given by (10) can also be obtained
alternatively using information from a Lagrange multi-
pliers of the Lagrangian of Problem 2.3, as we point out
in the following result.

Teorema 2.3. 9 Let η be the Lagrange multiplier of the
constraint

∑N
i=1 αiκi = 1 of the Lagrangian of Problem 2.3,

then R =
√
η.

Optimization models with chance constraints in kernel
methods were previously studied for the case of input
uncertainty. Zhang et al [14], model input uncertainties
with a bounded uncertainty model for data with additive
noise. In [12], [13] is assumed some a priori distribution
for model uncertainties resulting in an optimization

9. The proof is found in the supplemental material.

model formulated as a Second Order Cone Program [33].
In [17] is considered a Taylor approximation in the RKHS
to deal with input uncertainties. The main disadvantage
of all those models is the kernelization step and the a
priori assumptions for Pi.

3 SUPPORT MEASURE DATA DESCRIPTION IN
REPRODUCING KERNEL HILBERT SPACES

In this section we present three formulations of SMDD
in a RKHS. Those formulations are MEB’s in the RKHS,
which correspond to nonlinear descriptions of the train-
ing set {Pi}Ni=1. The first SMDD model in a RKHS,
described in Section 3.2, is the kernelization of the SMDD
model presented in the last section. The second and third
SMDD models in a RKHS, described in Sections 3.3 and
3.4, respectively, are direct extensions of the SVDD [5] to
the case of training sets of probability measures. with the
only difference that the third model uses only invariant
translation kernels and a scaling of data. We start our
discussion showing the main facts of the Hilbert space
embeddings of probability measures.

Notation. Letter H denotes a RKHS of functions f :
RD → R, with positive definite kernel k : RD ×RD → R,
and norm ‖.‖H. Also, notation k(Xi, .), means the map-
ping t → k(Xi, t), with fixed value Xi ∼ Pi. Inner
products in H are denoted by 〈., .〉H and ‖.‖H denotes
the norm in the RKHS.

3.1 Hilbert Space Embedding of Probability Mea-
sures

Hilbert space embedding of probability measures [18],
[26]–[28], gives a way to represent probability measures
Pi as functions in a RKHS. Such functions are commonly
named as representer functions, mean functions or mean
maps. We present them in the following definition.

Definition 3.1 (Mean map). Let P be a probability mea-
sure and X ∼ P. The mean map in H is the function:

µP : RD → R
t 7→ µP(t) = EP[k(X, t)], (11)

where EP[k(X, t)] =
∫
x∈RD k(x, t)dP(x).

Thus, µP is the representer function in H for P. A
sufficient condition guaranteeing the existence of µP in
H is given by assuring that µP(X) = EP[k(X,X)] < ∞,
and k(., .) being a measurable function [18], [34], [35].
As a consequence, the reproducing property 〈f, µP〉 =
〈f,EP[k(X, .)]〉 = EP[f(X)] holds for all f ∈ H.

The embedding of probability measures P ∈ P to mean
maps µP ∈ H, is given in the following definition.

Definition 3.2. The embedding of probability measures
P ∈ P in H is given by the mapping

µ : P → H
P 7→ µP = EP[k(X, .)] (12)
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where EP[k(X, .)] =
∫
x∈RD k(x, .)dP(x).

Choosing characteristic kernels [35]–[37] for k(., .), the
embedding µ is injective, that is, 〈µP, f〉 = 〈µQ, f〉 for
all f ∈ H implies P = Q, or equivalently, a positive
definite kernel is characteristic if d(P,Q) = ‖µP−µQ‖H =
0 ⇔ P = Q, where d is a metric on P . Some exam-
ples of characteristic kernels are the Gaussian, Lapla-
cian, inverse multiquadratics, B2n+1-splines kernels, etc
[35]. Furthermore, an empirical estimator of µP from
the sample {xi}Mi=1 drawn i.i.d. from P assure a good
approximation for µP, i.e., the term ‖µP − µemp‖, where
µemp is a empirical estimator of µP, is bounded [18].

3.1.1 Kernel on probability measures

The mapping

P × P → R
(P,Q) 7→ 〈P,Q〉P = 〈µP, µQ〉H, (13)

defines an inner product on P , where from
Fubini’s theorem [38] follows that 〈µP, µQ〉H =∫
x∈RD

∫
x′∈RD k(x,x′)dP(x)dQ(x′), consequently, the

real-valued kernel on P × P , defined by

k̃(P,Q) =〈P,Q〉P = 〈µP, µQ〉H

=

∫
x∈RD

∫
x′∈RD

k(x,x′)dP(x)dQ(x′)
(14)

is positive definite [28]. Note that, k̃(P,Q) =
EP[EQ[k(X,X ′)]], X ∼ P and X ′ ∼ Q, by virtue of
the reproducing property.

Hilbert space embedding of signed measures was
introduced in [26] and later by [27], [28], and by [18]
when the measures are probability measures. Some ap-
plications in machine learning include, dimensionality
reduction [39], measuring independence of random vari-
ables [40], two-sample test [34], embeddings of Hidden
Markov Models into RKHS [41], Bayes rule [42], support
vector machines [10], [20] among others [35], [37], [43].
The kernel on probability measures can be estimated
using (1) without requiring fitting some probabilistic
models to the observations. Another related kernels on
distributions which assume probabilistic models for ob-
servations are the Fisher kernel [44], the kernel based
on the symmetrized Kullback-Leibler (KL) divergence on
distributions [45], the Bhattacharyya kernel [19], and the
probability product kernel [46].

3.2 SMDD model in a RKHS as Chance Constrained
Problem

Applying the theory of Hilbert space embeddings of
probability measures, in this section we generalize the
SMDD presented in Section 2 to the case of RKHS. For
example, Markov’s inequality and lemmas of Section 2
are extended to the case of mean functions and covari-
ance operators in RKHS.

Using a positive definite real-valued kernel k, defined
on RD × RD, the set Ĝ from (4) is given by:

Ĝ(K) = {Pi ∈ P | Pi(‖k(Xi, .)− c(.)‖2H ≤ R2) ≥ 1− κi},

where k(X, .) ∈ H, X ∼ P, and the center and radius
of the ball are c ∈ H, and R ∈ R, respectively. Enclos-
ing balls (R, c(.)), are defined in the RKHS, which in
the input space correspond to nonlinear descriptions of
{P}Ni=1. The MEB is then formulated as follows: given
{Pi}Ni=1 and {κi}Ni=1, κi ∈ [0, 1], SMDD in the RKHS as
chance-constrained program is the following:

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to Pi(‖k(Xi, .)− c(.)‖2H ≤ R2 + ξi) ≥ 1− κi,
ξi ≥ 0,

for all i = 1, . . . , N .
Solving the above chance constrained program re-

quires that constrains must satisfy all possible realiza-
tions of Xi ∼ Pi, which is hard to compute. Instead, it
is possible to transform it into a deterministic one by
embedding the probability measures into a RKHS and
using Markov’s inequality. Using the same argument of
Section 2.1, Markov’s inequality also holds in the RKHS:

Pi(‖k(Xi, .)− c(.)‖2H ≥ R2 + ξi) ≤
EP[‖k(Xi, .)− c(.)‖2H]

R2 + ξi
,

for all i = 1, 2, . . . , N .

3.2.1 Trace of the Covariance Operator
The term EP[‖k(Xi, .)−c(.)‖2H can be computed using the
trace of the covariance operator in H and mean maps
µP. The covariance operator in H with kernel k is the
mapping ΣH : H → H, such that for all f, g ∈ H it
satisfies:

〈f,ΣHg〉H = EP[f(X)g(X)]− EP[f(X)]EP[g(X)],

because reproducing property 10. The covariance opera-
tor is then the possible infinite dimensional matrix:

ΣH = EP[k(X, .)k(X, .)>]− EP[k(X, .)]EP[k(X, .)]>. (15)

From this, the trace of ΣH can be obtained as: 11

tr(ΣH) =

∫
t∈RD

EP[k(X, t)k(X, t)>]

−EP[k(X, t)]EP[k(X, t)]>dt

= EP[〈k(X, .)k(X, .)〉H]

−〈EP[k(X, .)],EP[k(X, .)]〉H
= EP[k(X,X)]− 〈µP, µP〉H,

where the last line is due to the reproducing property
and Definition 3.1. Then, using (14), yields

tr(ΣH) = EP[k(X,X)]− k̃(P,P), (16)

10. ΣH is a bounded operator on a separable infinite dimensional
Hilbert space and can be represented by an infinite matrix [47].

11. Note that as µP(X) <∞, follows that tr(ΣH) <∞.
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that is, the trace of a possible infinite dimensional matrix
can be computed in terms of kernels evaluations. In the
same way of Section 2.1, Lemma 2.1 becomes:

Lemma 3.1. 12

EP[‖k(X, .)− c(.)‖2H] = tr(ΣH) + ‖µP − c(.)‖2H.

3.2.2 Deterministic Form in the RKHS
From Lemma (3.1), Markov’s inequality and a similar
analysis of Section 2.1, given the mean functions {µPi}Ni=1

of {Pi}Ni=1 and {κi}Ni=1, κi ∈ (0, 1], the deterministic form
of SMDD in the RKHS is the following:

Problem 3.1.

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi − c(.)‖2H ≤ (R2 + ξi)κi − tr(ΣHi ),

ξi ≥ 0,

for all i = 1, . . . , N , where tr(ΣHi ) is given by (16).

3.2.3 Dual Formulation of Problem 3.1
Denoting by α and β the Lagrange multipliers vectors
with nonnegative components αi and βi, i = 1, 2, . . . , N ,
respectively, the Lagrangian of Problem 3.1 is

L(R, c(.), ξ,α,β) = R2 + λ

N∑
i=1

ξi −
N∑
i=1

αi{(R2 + ξi)κi

−‖µPi − c(.)‖2H} − tr(ΣHi )} −
N∑
i=1

βξi

(17)

The stationarity and complementarity KKT conditions
for this problem are:

∂RL = 0 :
∑N
i=1 αiκi

Oc(.)L = 0 : −2
∑N
i=1 αiµPi

+ 2
∑N
i=1 αic(.)

∂ξiL = 0 : λ− αiκi − βi

= 1
= 0
= 0

(18)

αi{(R2 + ξi)κi − ‖µPi
− c(.)‖2H − tr(ΣHi )}

βiξi

= 0
= 0

}
(19)

Replacing (18) into (17), the dual problem is obtained
as follows: given the mean functions {µPi

}Ni=1 of {Pi}Ni=1

and {κi}Ni=1, κi ∈ [0, 1], the dual form of Problem 3.1 is
given by

Problem 3.2.

max
α∈RN

N∑
i=1

αi〈µPi
, µPi
〉H −

∑N
i,j=1 αiαj〈µPi

, µPj
〉H∑N

i=1 αi

+

N∑
i=1

αitr(Σ
H
i )

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . , N
N∑
i=1

αiκi = 1.

12. The proof is found in the supplemental material.

By virtue of (14), k̃(Pi,Pi) = 〈µPi
, µPi
〉H, then the dual

objective function of Problem 3.2 becomes:

N∑
i=1

αik̃(Pi,Pi)−
∑N
i,j=1 αiαj k̃(Pi,Pj)∑N

i=1 αi
+

N∑
i=1

αitr(Σ
H
i )

3.2.4 Representer Theorem and Analysis of KKT’s

From KKT’s conditions, the Representer Theorem in the
RKHS is:

c(.) =

∑
i αiµPi∑
i αi

=

∑
i αiEPi

[k(X, .)]∑
i αi

, (20)

for all i ∈ {i ∈ I | 0 < αiκi ≤ λ}, where I = {1, 2, . . . , N}
Analyzing stationary (18) and complementary (19)

conditions we have the same information provided by
Table 1 but with µPi

∈ H instead of µi ∈ RD, c ∈ H
instead c ∈ RD and ΣHi instead of Σi. From this we
have
• all Pi, i ∈ {i ∈ I | αi = 0} are described by (R, c),

because µPi
are inside (R, c)

• all Pi, i ∈ {i ∈ I | αiκi = λ} are considered to be
the errors allowed in the training set.

• all Pi, i ∈ {i ∈ I | 0 < αiκi < λ} are the support
measures, from this the radius is computed as

R2 =
‖µPi − c(.)‖2 + tr(ΣHi )

κi
, (21)

for all i ∈ {i ∈ I | 0 < αiκi < λ}.
Alternatively, R can be computed by Theorem (2.3)

as R =
√
η, where η is the Lagrange multiplier of the

constraint
∑N
i αiκi of the Lagrangian of Problem 3.2. It

is worth to note that using the linear kernel: k(x,x′) =
〈x,x′〉 in (14), Problem 3.2 is equivalent to Problem 2.3,
because, k̃(Pi,Pj) = EPi

[EPj
[〈X,X ′〉]] = 〈µi,µj〉.

3.2.5 Role of κ-values

As it was point out in Section 2, particular values for
κ in the constraint i will increment or decrement the
radius covering the realizations of X ∼ Pi. We illustrate
this behavior in Figure 2, which shows a dataset of ten
Gaussian distributions, and six MEB’s for them, given by
solving Problem 3.2, with six different settings for the κ
values. We used the RBF kernel k(x,x′) = exp(−γ‖x −
x′‖2) and γ = 1 to implement (14).

Left to right of top part of Figure 2 shows three MV-
sets in the input space which are three MEB’s in RKHS,
given by solving three SMDD (Problem 3.2) with κi =
0.8, κi = 0.9 and κi = 1.0 for all the constraints i of the
three models, respectively.

Left to right of bottom part of Figure 2 shows another
three MV-set. All the three SMDD models have κi = 1
in their constraints, excepting κ1 = κ2 = 0.8 for the first,
κ1 = κ2 = 0.9 for the second, and κ1 = κ2 = 1.0 for
the third SMDD. Depending on particular κ values, the
corresponding probability measures P1 and P2, belongs
to the MV-set in some degree.
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Fig. 2: Six MEB’s describing a dataset of Gaussian dis-
tributions, showing the effect of choosing particular κ
values for their constraints. Top part: all the three models
share the same κ-value, which is incremented from left
to right. Bottom part: all the three models have κ = 1 for
all their constraints, except its constraints i = 1 and i = 2,
which are incremented from left to right. Decreasing a
κ-value for some specific constraint, tend to cover the
respectively Pi

3.3 SMDD in a RKHS as a direct extension of SVDD

Differently of the SMDD model of the last section that
uses mean maps and covariance operators, the SMDD
model presented in this section only uses mean maps.
This model is a direct extension of the SVDD to deal
with probability measures. Using the mean maps µPi

,
an empirical version of G from (4) is given by:

Ĝ(R, c) = {Pi ∈ P | ‖µPi − c(.)‖2H ≤ R2}, (22)

then, the empirical MV-set Ĝ∗α is computed by a MEB
for the mean maps {µPi

}Ni=1. This can be formulated as
follows: given the mean functions {µPi

}Ni=1 of {Pi}Ni=1,
the SMDD model is the following:

min
c(.)∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi
− c(.)‖2H ≤ R2 + ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N.

The Lagrangian for the above problem is:

L(R, c(.), ξ,α,β) =R2 + λ

N∑
i=1

ξi −
N∑
i=1

αi{(R2 + ξi)

−‖µPi
− c(.)‖2} −

N∑
i=1

βξi

(23)

The optimality (KKT) conditions for this problem are:

∂RL = 0 :
∑N
i=1 αi

Oc(.)L = 0 : −2
∑N
i=1 αiµPi

+ 2
∑N
i=1 αic(.)

∂ξiL = 0 : λ− αi − βi

= 1
= 0
= 0

(24)

αi{(R2 + ξi)− ‖µPi
− c(.)‖2}

βiξi

= 0
= 0

}
(25)

3.3.1 Dual Formulation

Given the mean functions {µPi
}Ni=1 of {Pi}Ni=1, the dual

form of the previously Problem is given by replacing,
(24) into (23) as follows:

Problem 3.3.

max
α∈RN

N∑
i=1

αik̃(Pi,Pi)−
N∑

i,j=1

αiαj k̃(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1

where it was used (14) to replace 〈µPi
, µPj
〉 by the

kernel k̃(Pi,Pj). From (24) follows that the Representer
Theorem is:

c(.) =
∑
i

αiµPi
, i ∈ {i ∈ I | 0 < αi ≤ λ}.

Analyzing (25) follows that all Pi, i ∈ {i ∈ I | αi = 0}
are probability measures described by (R, c), because µPi

are inside the ball (R, c). All Pi, i ∈ {i ∈ I | αi = λ} are
errors. All Pi, i ∈ {i ∈ I | 0 < αi < λ} are support
measures.

If the linear kernel: k(x,x′) = 〈x,x′〉 is used in (14),
Problem 3.3 is equivalent to the dual problem of SVDD
[5], because, k̃(Pi,Pj) = EPi

[EPj
[〈X,X ′〉]] will be 〈µi,µj〉.

3.4 SMDD Model in a RKHS using Mean Maps with
Norm One and Invariant Translation Kernels

Translation invariant kernels or stationary kernels [48],
are kernels of the form kI(x, x) = k′(x − x′), that is,
such kernels only depend on the difference x − x′,
and not of the observations x, x′ themselves. The ker-
nel k′ is positive definite only if it can be written as∫
RD cos(ω

>(x−x′))dF (ω), where F is a positive measure.
Implicit feature maps of translation invariant kernels,

are functions kI(x, .) in a RKHS lying on a surface of
a hypersphere, that is, have constant norm. To see that,
note that translation invariant kernels satisfy:

kI(x, x) = 〈kI(x, .), kI(x, .)〉H = ε, ∀x ∈ RD

where ε is a constant value, then immediately follows
that ‖kI(x, .)‖H =

√
|ε|, that is, functions kI(x, .) lie on a

surface of a sphere of radius
√
|ε|.

However, mean maps given as µP = EP[kI(X, .)], does
not have constant norm, because

‖µP‖H = ‖EP[kI(X., )]‖H ≤ EP[‖kI(X., )‖H] =
√
|ε|,

by convexity of ‖.‖H and Jensen’s inequality.
A possible solution to prevent small values for the

radius, is to scale mean maps µP to have norm one, to
lie on the surface of some hypersphere. The following
theorem is due to Muandet et al [10].
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Teorema 3.2 (Spherical Normalization [10]). If kernel
k(., .) is characteristic and the examples are linearly indepen-
dent in the RKHS H, then the spherical normalization:

〈µP, µQ〉H =
〈µP, µQ〉H√

〈µP, µP〉H〈µQ, µQ〉H
, (26)

preserves the injectivity of the mapping µ : P → H.

Or in another words, Theorem 3.2 says that all the
information is preserved after performing spherical nor-
malization on the data.

Consequently, an empirical version for the set Ĝ from
(4) is given by:

Ĝ(R, c) = {Pi ∈ P | ‖µPi
− c(.)‖2H ≤ R2, ‖µP‖2H = 1}

then, the empirical MV-set Ĝ∗α is the MEB of the mean
maps {µPi

}Ni=1 satisfying ‖µP‖2H = 1, such the kernel
used in EPi

[kI(X, .)] = µPi
is translation invariant.

The optimization problem for this model is almost the
same as given in Problem 3.3:

max
α∈RN

N∑
i=1

αi
˜̃
k(Pi,Pi)−

N∑
i,j=1

αiαj
˜̃
k(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1,

but with kernel:

˜̃
k(Pi,Pj) =

k̃(Pi,Pj)√
k̃(Pi,Pi)k̃(Pj ,Pj)

, (27)

which is due to Theorem 3.2. Note that k̃ is given by (14)
but with kernel kI .

As
∑N
i=1 αi

˜̃
k(Pi,Pi) is constant, formerly problem can

be written as

Problem 3.4.

max
α∈RN

−
N∑

i,j=1

αiαj
˜̃
k(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1,

This formulation looks like the dual formulation of
One-class Support Vector Machine [4], but is not directly
equivalent. We discuss this point in the next section.

4 RELATIONSHIP AMONG SMDD MODELS

In this section we point out the relationship among
SMDD models, also we discuss the equivalence between
SMDD models and One-Class Support Measure machine
(OCSMM) [4], [10]. Thorough this Section, we denote the
SMDD presented in Section 3.2 as M1 (Problems 3.1 and
3.2), the SMDD of Section 3.3 as M2 (Problem 3.3), and
the SMDD of Section 3.4 as M3 (Problem 3.4).

We start showing how M1 can be formulated if we
restrict it only to the case of joint constraints and same
covariance matrix. Thus, we use this formulation to
compare it with M1 and M2.

Teorema 4.1. 13 The Primal form of M1 (Problem 3.1) with
joint constraints sharing the same covariance matrix, i.e, κi =
κ and ΣHi = ΣH for all i = 1, 2 . . . , N and λ > 0, can be
written as

Problem 4.1.

min
c(.)∈H,ρ′∈R,ξ′∈RN

‖c(.)‖2H
2

− ρ′ + λ

N∑
i=1

ξ′i

subject to 〈µPi
, c(.)〉H ≥ ρ′ − ξ′i, i = 1, . . . , N

ξ′i ≥ −
‖µPi
‖2H

2
, i = 1, . . . , N.

where

ξ′i =
1

2
κξi −

‖µPi‖2H
2

(28)

Notice that Problem 4.1 is a less flexible formulation
of M1 (Problem 3.1), because it considers the same local
covariance and the same κ values for all points. It is
easy to verify that, for optimal c ∈ H and ρ′ values from
Problem 4.1. 14, we retrieve the radius as:

R =
√

(tr(Σ) + ‖c‖2 − 2ρ′))/κ, (29)

or equivalently, solving Problem 3.1 for κi = κ and Σi =
Σ for all i = 1, 2 . . . , N , we can retrieve ρ′ of Problem 4.1
as follows:

ρ′ = −1

2
(R2κ− tr(Σ)− ‖c‖2).

Teorema 4.2. 15 Using the kernel between probability mea-
sures given by (14), the dual of Problem 4.1 is given by:

Problem 4.2.

max
α∈RN

1

2

N∑
i=1

αik̃(Pi,Pi)−
1

2

N∑
i,j=1

αiαj k̃(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1.

Lemma 4.3. Let η be the Lagrange multiplier of constraint∑N
i=1 αi = 1 of Lagrangian of Problem 4.2, then ρ = η.

From this, we can solve Problem 4.2 and apply Lemma
4.3 to retrieve ρ, the center via the Representer Theorem
given by (24) as c =

∑
i αiµPi

, i ∈ {i|0 < αi ≤ λ}, and
the radius R from (29).

13. The proof is found in the supplemental material.
14. See proof of Theorem 4.1 in the supplemental material as an

example
15. The proof is found in the supplemental material.
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4.1 Equivalence among SMDD models

4.1.1 M1 vs M2
Problem 4.2 is the dual of M1 with joint constraints
sharing the same covariance matrix. Under this setting
M1 is almost the same as M2 but with a difference of a
scaling factor of 0.5 in the dual objective function.

4.1.2 M1 vs M3
After spherical normalization on data, the dual
objective function of Problem 4.2, becomes
−0.5

∑N
i,j=1 αiαj

˜̃
k(Pi,Pj), because the other term

in the objetive function is constant where ˜̃
k is the kernel

given by (27). Therefor, M1 with joint constraints sharing
the same covariance matrix and spherical normalization
on data is equivalent to model M3, with a difference of
a scaling factor of 0.5 in the dual objective function, as
well.

4.2 Connection with One-Class Support Vector Ma-
chines

It is widely known that SVDD [5] and One-Class Sup-
port Vector Machines (OCSVM) [4] are equivalent if
translation invariant kernels are used [4], [5]. Although,
Problem 4.1 is pretty similar to OCSVM with probability
measures [4], [10], SMDD is not directly equivalently
with one-class support vector machines, because even
if an invariant translation kernel is used, norms of
mean maps are not constant. However, if is performed
spherical normalization on data there is the following
equivalence:

Corollary 4.4. M2, M3 and OCSMM [10] are equivalents
if it is performed spherical normalization on the training set
{Pi}Ni=1 by (3.2).

Proof: After a spherical normalization ‖µPi
‖2 = 1

holds, then, if a translation invariant kernel is used, then∑N
i=1 αik̃(Pi,Pi) is constant, consequently such problems

are equivalent.
Consequently, it is possible to deduce that M1 under

the setting given by Problem 4.2 is equivalent to OC-
SMM, with a difference of a scaling factor of 0.5 in the
dual objective function.

5 EXPERIMENTS

In this section, following the works [7], [8], [10], we
tested the SMDD models in the challenging task of
group anomaly detection for the case of Point-based
anomaly detection in 5.1 and, for the case of Distribution-
based anomaly detection in Section5.2. Finally, in Section
5.3, we use real data from the Sloan Digital Sky Survey
(SDSS) project, to detect anomalous groups of galaxies.
We employed the same notation as the ones given in
Section 4 to denote the SMDD models, i.e., M1 is the
SMDD given by Problem 3.2, M2 by Problem 3.3, and
M3 by Problem 3.4. Also, for comparison purposes, M4

will be the OCSMM [10], and M5 will be the SVDD [5].
We used M5 as the baseline for our experiments. This is
shown in Table 2.

Kernel and covariance estimation. The kernel be-
tween probability measures given by (14) was estimated
via the empirical estimator:

k̃(Pi,Pj) ≈
1

LiLj

Li∑
l=1

Lj∑
l′=1

k(x
(i)
l ,x

(j)
l′ ), (30)

on the training set given by (1). Also, the trace of the
covariance operator in the RKHS given by (16) was
estimated by:

tr(ΣHi ) ≈ 1

Li − 1

Li∑
l=1

k(x
(i)
l ,x

(i)
l )

− 1

Li(Li − 1)

Li∑
l=1

Li∑
l=1

k(x
(i)
l ,x

(i)
l ).

(31)

where RD × RD is a positive definite kernel.

Model Problem Section/Ref.

M1 3.2 3.2

M2 3.3 3.3

M3 3.4 3.4

M4 OCSMM [10]

M5 SVDD [5]

TABLE 2: Models used in experiments

We used CVX, a package for specifying and solving
convex programs [49], [50] to solve M1. To solve M2,
M3, M4 and M5 we used the SVM and Kernel Methods
Matlab Toolbox (SVM-KM) [51]. 16

Thorough the experiments, for each observation si
from (1) we used the terms: group, cluster or set of points,
interchangeably, i.e., we say training sets given by (1)
have N groups, clusters or set of points. As M5 was not
originally designed to deal with probability measures it
was trained using only the empirical group means.

5.1 Point-Based Group Anomaly Detection over a
Gaussian Mixture Distribution data set
The goal of group anomaly detection is to find groups
of points with unexpected behavior from datasets given
by (1). Differently from usual anomaly detection, points
of anomalous groups can be highly mixed with points of
non-anomalous groups turning group anomaly detection
a challenge problem.

In Point-Based Group Anomaly detection [7], anomalous
groups are given by aggregating individually anoma-
lous points. For this experiment, we generated 50 non-
anomalous groups of points and 20 anomalous groups

16. The Matlab code and datasets for experiments can be found at
http://www.vision.ime.usp.br/∼jorjasso/SMDD.html

http://www.vision.ime.usp.br/~jorjasso/SMDD.html
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of points as we will detail in the next paragraph. The
number of points by group for all non-anomalous and
anomalous groups was randomly chosen from a Poisson
distribution: ni ∼ Poisson(100).

Points of non-anomalous groups were randomly
sampled from a Multimodal Gaussian Mixture Distri-
bution or GMD [8], [10], with two different group
type distributions: π = (0.48, 0.52). That is, the first
48% of non-anomalous groups of points were gen-
erated from a two dimensional GMD with three
components, mixture weights: (0.33, 0.64, 0.03), means:
(−1.7,−1), (1.7,−1), (0, 2), and 0.2 ∗ I2 as the sharing
covariance matrix, where I2 denote the 2 × 2 identity
matrix. The other 52% of non-anomalous groups were
generated from another GMD with the same parameters
but with mixture weights: (0.33, 0.03, 0.64). The green
box in Figure 3 shows three non-anomalous groups for
π = 0.48 and the yellow box shows two non-anomalous
groups for π = 0.52.

Three different types of anomalous groups have been
generated. the first type was given by 10 groups of
points randomly generated from the normal distribution:
N ((−0.4, 1), I2). The magenta box in Figure 3 shows
five anomalous groups of this type. The second type
was given by 5 group of points sampled from a GMD
with four components, weights: (0.1, 0.08, 0.07, 0.75),
means: (−1.7,−1), (1.7,−1), (0, 2), (0.6,−1), and 0.2 ∗
I2 as the sharing covariance matrix. The blue box
in Figure 3 shows five anomalous groups of this
type. The third type of group anomalies was given
by 5 group of points sampled from a GMD with
four components, weights: (0.14, 0.1, 0.28, 0.48), means:
(−1.7,−1), (1.7,−1), (0, 2), (−0.5, 1), and 0.2 ∗ I2 as the
sharing covariance matrix. The red box in Figure 3 shows
five anomalous groups of this type.

Fig. 3: Group anomaly detection dataset. Green and
yellow boxes contains non-anomalous groups of points.
Red, blue, and magenta boxes contains anomalous
groups of points.

To get reliable statistics, we performed 200 runs, over a
training set given by the 50 non-anomalous groups. The
test set was given by the 20 anomalous groups, plus an
extra of 10 non-anomalous groups generated with the
same procedure as the training set, totalizing a test set

of 30 groups. The performance metrics were: the area
under the ROC curve (AUC), and the accuracy (ACC).

As usually, in one-class classification, training data and
test data has no labels, turning impossible to have a
validation set for model selection. Also, as the problem
of describing a dataset is not trivial, because it may exists
many models describing well such dataset, we follows
the same methodology used in literature, that is, we
choose arbitrarily a value for the regularization param-
eter λ of the SMDD model and, the kernel parameters
are computed using some heuristic on the available data,
avoiding to use the training or the test set for perform
model selection.

It was considered a regularization parameter λ = 1,
and a kernel between probability measures (14) imple-
mented by a RBF kernel with bandwidth parameter
γ computed as the inverse of the 0.1 quantile of the
Euclidean distance between all possible pair of points
in the dataset. i.e.,

γ = 1/s(‖x(i)
k − x

(j)
l ‖

2), (32)

where s is the 0.1 quantile, i, j are the groups indices,
and k, l are the points indices.

Figures 4a, 4b, 4c show the results in boxplots for
this experiment. The boxplots shows the AUC, the ACC
for non-anomalous groups, and the ACC for anomalous
groups respectively. The red mark in each boxplot is
the median and the edges of each boxplot are the 25th
and 75th percentiles, the height of each boxplot is the
inter quartile range. This experiment shows that all the
SMDD models: M1, M2, and M3 detect such anomalies
very well. The AUC value close to one of those models
indicate that the SMDD models detect group anomalies
with few false positives and false negatives. On the other
hand, M5 (SVDD) can not detect such group anomalies
using only the group means as the training set.

To see why group anomaly detection is a hard prob-
lem, the plot of the means of all the non-anomalous and
anomalous groups is shown in Figure 4d. The green
points are the means of non-anomalous groups. Red,
blue, and magenta points are the means of anomalous
groups of points corresponding to the red, blue, and
magenta boxes in Figure 3. Because the non-anomalous
group means overlap the anomalous group means,
methods as One-class support vector machines and
SVDD will not perform well, because such methods
consider anomalies the points far away from the mean
of the description of the data.

5.2 Distribution-Based Group Anomaly Detection
over a Gaussian Mixture Distribution data set
Distribution-Based Group Anomalies [7] are anomalous
groups of points that individually are non-anomalous
but together form anomalous groups. For this exper-
iment, it was generated 50 non-anomalous groups of
points to form the training set and 15 anomalous groups
of points plus 15 non-anomalous points to form the test
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(a) AUC. (b) ACC Non A. (c) ACC Anom. (d)

(e) AUC. (f) ACC Non A. (g) ACC Anom. (h)

Fig. 5: Experimental results and plot of the group means for the two Distribution-based anomaly detection
experiments. Each row of figures represent one experiment. Boxplots show the ACC and AUC statistics. Marks
on the x-axis of each boxplot are the DD models and y-axis is the performace measure.

(a) AUC. (b) ACC Non A.

(c) ACC Anom. (d) Group Means

Fig. 4: Experimental results and a plot of the group
means for the Point-based group anomaly detection
experiment. Boxplots show the ACC and AUC statistics.
Marks on the x-axis of each boxplot are the DD models
and y-axis is the performace measure. Figure 4d plots
the means of non-anomalous groups vs. the means of
anomalous groups. Red, magenta and blue points are
the group means of anomalous groups. Green points are
the means of non-anomalous groups

set, as we will explain in the next paragraph. Also, the
number of points per group was given as the previous
experiment, that is: ni ∼ Poisson(100).

Points in each non-anomalous group, were sampled
from a two dimensional unimodal GMD with three com-
ponents, mixture weights: p = {0.33, 0.33, 0.33}, means:
(−1.7, 1), (1.7,−1), (0, 2), and sharing the same covari-

ance matrix: 0.2 ∗ I2.
Anomalous groups were generated from the same

GMD of non-anomalous groups, but with two of their
covariance matrices rotated 45 degrees, that is, individ-
ually the points are relatively normal but together as a
group are anomalous.

As the last experiment, it was used the AUC and
ACC metrics for performance measure, a regularization
parameter λ = 1, and a kernel between probability mea-
sures (14) implemented by a RBF kernel with bandwidth
parameter γ computed as the inverse of the median of
the Euclidean distance between all possible pair of points
in the dataset.

Figure 5d shows the group means. Green points are
the non-anomalous groups means and red points are the
anomalous groups means. As in the last experiment, to
find such group anomalies is hard because the overlap-
ping between the group means of the non-anomalous
and anomalous groups.

Figures 5a, 5b, 5c show in boxplots the AUC, the ACC
for non-anomalous groups, and the ACC for anomalous
groups respectively. Also, for this type of group anoma-
lies all the SMDD models performs very well. As it was
expected, performance of M5 is the worst because the
overlapping of group means.

Finally, for the same training set, we considered an-
other distribution-based group anomalies, ten group
anomalies were generated from a GMD with the same
parameters of the training set, but with weights: p =
{0.85, 0.08, 0.07} and another ten group anomalies with
weights: p = {0.04, 0.48, 0.48}. Figure 5h shows the
means of the anomalous (red) and non-anomalous
groups (green). For this particular setting, it is possible to
see that classical methods such as SVDD and one-class
support vector machine will perform well based only
on the means information. Figures 5e, 5f, 5g show the
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AUC, the ACC for non-anomalous groups, and the ACC
for anomalous groups respectively. Models M2 and M3
perform as M5 (SVDD). Performance of M1 is affected
because it uses first and second moment information for
a problem that is easily solved using only information of
the group means. However, because the dimensionality
of the data, it is very hard to to know beforehand such
information.

5.3 Group Anomaly Detection in Astronomical Data
In this section, we tested the SMDD models with real
data: The Sloan Digital Sky Survey17 (SDSS) project. This
dataset contains massive spectroscopy surveys of the
universe, the Milky Way galaxy, and extrasolar plane-
tary systems. The idea of the experiment is to use the
dataset to detect anomalous clusters of galaxies. Such
a problem, using the same dataset, had been previ-
ously studied in [8]–[10] as a group anomaly detection
problem. The dataset contains about 7 × 105 galaxies,
where each galaxy is represented by a 4000-dimensional
feature vector representing spectral information. Fea-
tures vectors were processed as follows [9]: each vector
was down-sampled to get a 500-dimensional feature
vector to represent a galaxy. Clusters of galaxies were
obtained analyzing the spatial neighborhood of galaxies,
see [9] for details. This procedure returns 505 clusters of
galaxies of a total of 7530 galaxies. Thus, each cluster
of galaxies is a group of about 10− 15 galaxies. Finally,
PCA was applied to the feature vectors of galaxies, to
get a four-dimensional dataset, preserving about 85% of
the variance of the data.

To perform group anomaly detection, a training set
was formed by randomly choosing 455 group of galaxies
among the original 505 groups. Also, it was generated
five test datasets, each of them containing the remaining
50 non-anomalous groups from the original 505 groups
plus 50 anomalous groups.

In the first test dataset, each anomalous group was
constructed by randomly selecting about ni ∼ Pois-
son(15) galaxies from the 7530 galaxies, i.e, galaxies
from the 505 non-anomalous groups. Note that, because
galaxies were randomly chosen, the aggregation itself of
such galaxies are anomalous.

Anomalous groups for the second, third, fourth and
fifth test sets were generated as follows: First, the covari-
ance of the 7530 observations (galaxies) was empirically
estimated. After that, were selected randomly three sets
of galaxies from the 7530 galaxies, each one contain-
ing about ni ∼ Poisson (15) galaxies. Were computed
the empirical means of the three sets. With the three
empirical mean values and the empirical covariance
matrix, a GMD with three components and weights:
p = {0.33, 0.33, 0.33} was constructed.

Anomalous groups of points for the second test data
set were generated from the above GMD, with about
ni ∼ Poisson (15) points per group. Anomalous groups

17. http://www.sdss3.org/

of points for the third, fourth and fifth test set were
generated as the second test set, but using the covariance
matrices 5 ∗ Σ, 10 ∗ Σ, and 100 ∗ Σ, respectively.

We plotted in Figures 6d, 6h, 6l, 6p,and 6t the group
means of the PCA features. Green points are the non-
anomalous group means and red points are the anoma-
lous group means. Each figure shows four plots: upper-
left: the plot of the first vs second dimension, upper-
right: the plot of the second vs third dimension, bottom-
left: the plot of the third vs four dimension, bottom-right:
the plot of the four vs first dimension. Note that, be-
cause the overlapping of group means of non-anomalous
groups and anomalous groups, group anomalies for this
experiment are hard to detect.

For all the SMDD models, the kernel between prob-
ability measures was implemented via the RBF kernel.
To get reliable statistics, it was performed 200 runs for
each test set to get the AUC, the ACC of non-anomalous
and the ACC of anomalous groups. Figures 6a, 6b,
and 6c show the AUC, the ACC for non-anomalous
groups, and the ACC for the anomalous groups in the
first test set. The kernel parameter was computed by
(32) but with s being the median. It was considered
a regularization parameter allowing about 30% of the
non-anomalous groups to be the errors allowed in the
training set. Models M2 and M3 performs a little worst
detecting group anomalies than M5 for this choice of
parameters. However, the AUC metric for M5 shows that
performance for this model is not better than chance.
On the another hand M1 and M4 perform better than
the baseline and both in similar way detecting group
anomalies. Note that the ACC for the non-anomalous
groups is about 70% because the choice of the regular-
ization parameter. Plot of the group means in Figure 6d
shows the hardness of the problem.

Figures 6e, 6f, and 6g show the AUC, the ACC for
non-anomalous groups, and the ACC for the anomalous
ones in the second test set. The RBF kernel parameter
was computed by (32). It was considered a regularization
parameter allowing about 20% of the non-anomalous
groups to be the errors allowed in the training set.
The AUC metric shows that M5 performs worst than
the other models, and spherical normalization on data
increases the performance as it can be seen by the AUC
value of M3. On the other hand, the accuracy of normal
groups is about 80% because the choice of λ. The plot of
the group means is shown in Figure 6h.

Figures 6i, 6j, and 6k show the AUC, the ACC for
non-anomalous groups, and the ACC for the anomalous
groups in the third test set. The RBF kernel parameter
was computed by (32) and the regularization parameter
was set to λ = 1. The ACC for anomalous groups
shows that M2 performs worst detecting the group
anomalies, however, such a metric is only based on a
threshold of 0 for the output of the models (models
outputs greater than zero are anomalies, otherwise are
considered non-anomalies). The AUC metric shows that
for several choices of thresholds all the models performs
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(a) AUC. (b) ACC Normal. (c) ACC Anomalous. (d) Means of groups.

(e) AUC. (f) ACC Normal. (g) ACC Anomalous. (h) Means of groups.

(i) AUC. (j) ACC Normal. (k) ACC Anomalous. (l) Means of groups.

(m) AUC. (n) ACC Normal. (o) ACC Anomalous. (p) Means of groups.

(q) AUC. (r) ACC Normal. (s) ACC Anomalous. (t) Means of groups.

Fig. 6: Experimental results and plots of the means of non-anomalous groups vs. the means of anomalous group
for the group anomaly detection task over a SDSS III dataset. Each row of figures represent one experiment.

pretty well as it is shown in Figure 6i. Again the models
with worst performance are M5 and M2, and spherical
normalization has a positive effect, increasing the AUC
value close to one of M3.

Performance metrics for the fourth test set has similar
characteristics than the third set as it can be seen in
Figures 6m, 6n, and 6o, where the AUC, the ACC for
non-anomalous groups, and the ACC for the anomalous
groups are shown. The RBF kernel parameter and the
regularization parameter were the same as the above ex-

periment. Again, spherical normalization has a positive
effect in the AUC metric.

As the group means becomes more spread because
characteristics of the fifth test set, AUC metric shows that
all the models performs pretty well, nevertheless, M5 is
the model with worst performance. Figures 6q, 6r, and 6s
show the AUC, the ACC for non-anomalous groups, and
the ACC for the anomalous groups. The regularization
paramter was λ = 1 and the RBF kernel parameter was
chosen as (32) but with s being the 0.9 quantile.
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6 CONCLUSION

In this work, we presented a data description method
called SMDD for datasets, where each observation is a
set of points in RD. To do that, we considered each obser-
vation as a probability measure, thus, the SMDD method
finds the MEB of the representer functions of a set of
probability measures in a RKHS. The main advantages
of our approach is that it does not required an estimation
of probabilistic models for each observations, that is, it
does not assumed any particular form for the probability
density functions of each Pi. Instead, everything is done
by the embedding of probability measures into RKHS,
using a real-valued positive definite kernel on probabil-
ity measures.

Through the paper, we formulated three SMDD mod-
els. The first one uses information of the trace of the
covariance operator in a RKHS and mean maps. This
model is formulated as a chance constrained program
which is further transformed into a deterministic one by
means of Markov’s inequality. The second SMDD model
is a direct extension of the SVDD method to the case
of probability measures. This model also uses the mean
map embedding of probability measures technique. The
third SMDD model is almost the same as the second
one, but it considers an scaling of data and translation
invariant kernels. The reason behind this, is that mean
maps under translation invariant kernels do not have a
constant norm in the RKHS. We compared the relation-
ship of the three models, showing the cases when the
SMDD models are equivalents, as well.

The presented SMDD models were tested in the
challenging group anomaly detection task. We showed
empirically that they perform pretty well for such a
task, showing that the SMDD method is an alternative
methodology to deal with group anomaly detection.
SMDD gives a way to perform group anomalous de-
tection by describing a region in the RKHS, given by
a MEB of the mean maps of the probability measures
used for represent the non-anomalous groups of points.
Therefore, mean maps not belonging to the MEB are
considered anomalies. As possible practical task to be
addressed by SMDD models include novelty detection,
clustering and classification, for datasets of probability
measures.
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[38] R. B. Ash and C. A. Doléans-Dade, Probability and measure theory.
Access Online via Elsevier, 2000.

[39] K. Fukumizu, F. R. Bach, and M. I. Jordan, “Dimensionality
reduction for supervised learning with reproducing kernel hilbert
spaces,” The Journal of Machine Learning Research, vol. 5, pp. 73–99,
2004.

[40] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf,
“Kernel methods for measuring independence,” J. Mach. Learn.
Res., vol. 6, pp. 2075–2129, Dec. 2005.

[41] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola,
“Hilbert space embeddings of hidden markov models,” in Pro-
ceedings of the 27th International Conference on Machine Learning
(ICML-10), 2010, pp. 991–998.

[42] K. Fukumizu, L. Song, and A. Gretton, “Kernel bayes’ rule,” arXiv
preprint arXiv:1009.5736, 2010.

[43] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang, “Domain
adaptation under target and conditional shift.”

[44] T. Jaakkola, D. Haussler et al., “Exploiting generative models in
discriminative classifiers,” Advances in neural information processing
systems, pp. 487–493, 1999.

[45] P. J. Moreno, P. P. Ho, and N. Vasconcelos, “A kullback-leibler
divergence based kernel for svm classification in multimedia
applications,” in Advances in neural information processing systems,
2003, p. None.

[46] T. Jebara and R. Kondor, “Bhattacharyya and expected likelihood
kernels,” in Learning Theory and Kernel Machines. Springer, 2003,
pp. 57–71.
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Support Measure Data
Description:Supplemental Material

Jorge Guevara, Stéphane Canu, and R. Hirata Jr.

Abstract—This note contains supplementary materials of the paper Support Measure Data Description.

F

1 INTRODUCTION

In this notes, we provide further details of the paper
Support measure data description. We start in Section 2
using an example of a dataset whose observations are
Gaussian distribution to understand the formulation of
SMDD in the space of probability measures. This section
could be read along Section 2 of the paper. In Section
3, we give a list of al the SMDD models in the RKHS
presented in the Section 3 of the paper. Section 4 presents
a formulation when it is used joint constraints for a
SMDD model with chance constraints. In Section 5, we
use the linear kernel in two SMDD models and, compare
them with the SVDD method. Finally, all the proofs of
the paper are presented in Section 6.

Table 1 shows the notation used in this note.

2 INTERPRETATION OF SMDD IN THE SPACE
OF PROBABILITY MEASURES

The following chance-constrained program is the SMDD
in the space of probability measures:

Problem 2.1.

min
c∈RD,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to Pi(‖Xi − c‖2 ≤ R2 + ξi) ≥ 1− κi,
ξi ≥ 0.

for all i = 1, . . . , N , where R and c are the radius and
the center of the hypersphere respectively, λ > 0 is a
regularization parameter, and the random vector Xi ∼ Pi
is the uncertainty parameter for the chance-constrained
model.

Interpretation of Problem 2.1 thorough an example
Figure (1a) plots the probability density functions for a
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Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil.
E-mail: see http://www.vision.ime.usp.br/ jorjasso/
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• R. Hirata Jr is with the Department of Computer Science, Institute of
Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil.
E-mail: see hirata@ime.usp.br

Symbol Description

D ∈ N dimension
N ∈ N number of elements of a dataset
R ∈ R the radius of the ball
c ∈ RD the center of the ball
λ ∈ R+ regularization parameter
ξ ∈ RD vector of slack variables
P space of probability measures
P probability measure
X random variable taking values in RD

κ threshold values
tr(A) trace of a matrix A
µ ∈ RD mean of a set of points in RD

Σ covariance of a set of points in RD

α ∈ RN vector of Lagrange multipliers
H a Reproducing kernel Hilbert Space (RKHS)
k a real valued positive definite on RD × RD

k(x, .) ∈ H evaluation funtion at the point x in H
c ∈ H or c(.) ∈ H the center of the ball in a RKHS
µP mean function of P in H
〈., .〉H inner product on the RKHS H
ΣH covariance operator on the RKHS H
k̃ real valued positive definite kernel on P × P
‖.‖H norm in the RKHS

TABLE 1: Symbols used in the paper.

training set {Pi}5i=1, where Pi = N (µi,Σi), µi ∈ R2,
and Σi ∈ R2×2. The empirical minimum volume set of
E given by a enclosing ball is the red circle. As Pi is
normal, then Zi ∼ χ2 (Chi-square distribution) with one
degree of freedom. The particular cases are: probability
measures P1 and P4 are the support measures in P . P5

is the allowed error associated to the slack variable ξ5.
Probability measures P2 and P3 are not critical measures.
Figure 1b shows the cumulative Chi-square distribution
FZi

, we observe that decreasing κi has the effect to
increase the radius R to cover a particular Pi, then κi
values are directly related to the probability mass α in
Equation 2 of the paper. Figure 1c shows five different
kappa values for P4, the values are: {1, 00.8, 0.6, 0.4, 0.2},
we can see that as κi tends to zero, the radius tends to
cover P4. The lower bounds 1−κi for FZi

allow to have a
more (if κi goes to one) or a less conservative (if κi goes
to zero) model to describe a set of probability measures.

Problem 2.1 is futher simplified using Markov’s in-
equality:

tr(Σi) + ‖µi − c‖2

R2 + ξi
≤ κi, (1)
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(a) Red circle: empirical minimum vol-
ume set for {Pi}5i=1 given by a min-
imum enclosing ball in the space of
probability measures.
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(b) The cumulative Chi-square distri-
bution (blue curve) shows that de-
creasing κi has the effect to increase
the radius R to cover some Pi.
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(c) Decreasing κ4 increases the radius
R to cover the observation P4.

Fig. 1

to the following optimization Problem:

Problem 2.2.

min
c∈RD,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µi − c‖2 ≤ (R2 + ξi)κi − tr(Σi),
ξi ≥ 0,

whose dual is

Problem 2.3.

max
α∈RN

N∑
i=1

αi〈µi,µi〉 −
∑N
i,j=1 αiαj〈µi,µj〉∑N

i=1 αi

+

N∑
i=1

αitr(Σi)

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . , N
N∑
i=1

αiκi = 1

Geometric intepretation of Problem 2.2 Assuming
ξi = 0, 1, 2, . . . , N , for each constraint, we have from
(1):

R
√
κi ≥

√
‖µi − c‖2 + tr(Σi)

= ‖µi − c‖+
√
tr(Σi)− γi, γi ∈ R+

where the last equation comes from the fact that for all
a, b ∈ R+∪{0},

√
a2 + b2 =

√
(a+ b)2 − 2ab ≤ a+ b, then

follows: ∃γ ∈ R+ such
√
a2 + b2 = a+b−γ and replacing

a = ‖µ−c‖ and b =
√
tr(Σ) we have the equality. Figure

(2) shows this interpretation.

3 LIST OF SMDD MODELS IN A RKHS

We summarize the SMDD models in a RKHS presented
in the paper.

Fig. 2: Geometric interpretation of the deterministic con-
straints.

3.1 M1: SMDD model in a RKHS as Chance Con-
strained Problem
3.1.1 CCP Problem

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to Pi(‖k(Xi, .)− c(.)‖2H ≤ R2 + ξi) ≥ 1− κi,
ξi ≥ 0,

for all i = 1, . . . , N ,

3.1.2 Primal
Problem 3.1.

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi − c(.)‖2H ≤ (R2 + ξi)κi − tr(ΣHi ),

ξi ≥ 0,

3.1.3 Dual
Problem 3.2.

max
α∈RN

N∑
i=1

αi〈µPi
, µPi
〉H −

∑N
i,j=1 αiαj〈µPi , µPj 〉H∑N

i=1 αi

+

N∑
i=1

αitr(Σ
H
i )

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . , N
N∑
i=1

αiκi = 1
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3.2 M2: SMDD in a RKHS as a direct extension of
SVDD
3.2.1 Primal

min
c(.)∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi
− c(.)‖2H ≤ R2 + ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N.

3.2.2 Dual
Problem 3.3.

max
α∈RN

N∑
i=1

αik̃(Pi,Pi)−
N∑

i,j=1

αiαj k̃(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1

3.3 M3: SMDD Model in a RKHS using Mean Maps
with Norm One and Invariant Translation Kernels

Problem 3.4.

max
α∈RN

−
N∑

i,j=1

αiαj
˜̃
k(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1,

but with kernel:

˜̃
k(Pi,Pj) =

k̃(Pi,Pj)√
k̃(Pi,Pi)k̃(Pj ,Pj)

, (2)

4 M1 WITH JOINT CONSTRAINTS

4.1 Primal
Problem 4.1.

min
c(.)∈H,ρ′∈R,ξ′∈RN

‖c(.)‖2H
2

− ρ′ + λ

N∑
i=1

ξ′i

subject to 〈µPi , c(.)〉H ≥ ρ′ − ξ′i, i = 1, . . . , N

ξ′i ≥ −
‖µPi‖2H

2
, i = 1, . . . , N.

where
ξ′i =

1

2
κξi −

‖µPi
‖2H

2
(3)

4.2 Dual
Problem 4.2.

max
α∈RN

1

2

N∑
i=1

αik̃(Pi,Pi)−
1

2

N∑
i,j=1

αiαj k̃(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1.

5 SMDD MODELS WITH LINEAR KERNEL

We examined here the behaviour of M1, M2 and M5
when the linear kernel is used. As we point out in the
end of Section 2 of the paper, if the linear kernel is used,
M2 is equivalent to a SVDD (M5) trained on the group
means, because under that setting, the RKHS will be the
same as the input space, consequently mean functions
µP ∈ H will be µ ∈ RD.

The training set was given by 10 groups of points,
artificially generated from ten two-dimensional Gaussian
distributions. To do that, we set arbitrarily the mean and
covariance matrix for each two-dimensional distribution.
Elements of the training set are plotted in 3a, 3b and
3c, as several ellipsoids, which are the contours of the
probability density function of the local Gaussian distri-
bution, such inner and outer ellipses cover about the 35%
and 85% of the probability mass of each local Gaussian
distribution, respectively.

Setting the regularization parameter to λ = 1 for M1
and M5, Figure 3a shows a minimum enclosing ball
found by M1. The radius does not cross the means of the
support measures (small red circles). because M1 beside
to use mean maps, also uses the trace of the covariance
operator. Figure 3b shows a minimum enclosing ball
found by M2. This model uses only information given
by mean maps, consequently, the radius cross the means
of the support measures. Therefore, the radius found by
M1 is greater than the radius found by M2. The only
case, where both radius are equal is where the space
of probability Dirac measures are considered, that is, no
information about the covariance of Pi, as we pointed
out in Section 2 of the paper.

Figure 3c shows how by varying the regularization
parameter in a SVDD solution is not equal to the solution
provided by M1. Dashdot black circles denote several
minimum enclosing balls found by M5 (SVDD), each of
them obtained by varying the regularization parameter λ
to allow {0%, 10%, 20%, 30%, 40 . . . , 90%} of the training
data to be errors. This was done by set λ proportionally
to 1/(N ∗ q), where N is the number of examples in the
training set and q is the percentage of training examples
to be considered errors. Red circle in Figure 3c denote
the minimum enclosing ball found by M1 with λ = 1
and all κ-values set to one. The minimum enclosing
ball obtained from M1 is bigger than the one obtained
from M5 in the case of 0% errors allowed, because M1
considers the information given by the trace of local
covariances in the training set. We pointed out in the
paper that M1 is equivalent to M5 only if all the κ values
are ones, and there is no information of local covariance
matrices.
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(a) A MV-set given by a minimum en-
closing ball from M1 with linear kernel
for a kernel on probability measures, joint
constraints and λ = 1, for a dataset of
Gaussian distributions. Small red circles
are the support measures. The means are
not on the surface of the ball, because M1
considers the trace of the covariance.

(b) A minimum enclosing ball from M2
with linear kernel for a kernel on proba-
bility measures and λ = 1, for a dataset
of Gaussian distributions. Small red cir-
cles are the support measures. Model
M2 with this setting is equivalent to a
SVDD (M5), trained using only the group
means. M2 differs from M1 inthe length
of the radius.

(c) Dash-dot black circles: Minimum en-
closing balls for the group means of a
dataset of Gaussian distributions, for sev-
eral choices of λ in M5 with linear ker-
nel. Red circle: a minimum enclosing ball
from M1 with λ = 1 with linear kernel
for a kernel on probability measures and
λ = 1, for a dataset of Gaussian distribu-
tions.

Fig. 3

6 PROOFS

6.1 Proof of Lemma 2.1

Let X = (X1, . . . , Xj , . . . , XD)> and c =
(c1, . . . , cj . . . , cD)>, follows

E[‖X − c‖2] = E[X>X]− 2E[X>c] + ‖c‖2

By covariance formula

=

D∑
j

(cov(Xj , Xj)− E[Xj ]E[Xj ])

−2

D∑
j=1

E[Xj ]cj + ‖c‖2

=

D∑
j

(Σ)jj + µ>µ− 2µ>c + ‖c‖2

= tr(Σ) + ‖µ− c‖2

Alternatively, using the expectation of a quadratic form
E[X>AX] = µ>Aµ+tr(Σ), for the N×N matrix A, and
replacing A by the identify matrix I we have:

E[‖X − c‖2] = E[X>X]− 2E[X>c] + ‖c‖2

= E[X>IX]− 2µ>c + ‖c‖2

= µ>µ+ tr(Σ)− 2µ>c + ‖c‖2

= tr(Σ) + ‖µ− c‖2

6.2 Proof of Theorem 2.3

The Lagrangian of Problem 2.3 is

L(α, η, ν) =−
N∑
i=1

αi〈µi,µi〉+

∑N
i,j=1 αiαj〈µi,µj〉∑N

i=1 αi

−
N∑
i=1

αitr(Σi)− η(

N∑
i=1

αiκi − 1)

−
N∑
i=1

νi(αiκi − λ)

where

∂αi
L =

(
∑N
j=1 αj)2〈µi,

∑N
j=1 αjµj〉

(
∑N
j=1 αj)

2

−
∑N
i=1

∑N
j=1 αiαj〈µi,µj〉

(
∑N
j=1 αj)

2

− ‖µi‖2 − tr(Σi)− ηκi
− ν(κi − c) = 0

(4)

but for complementarity condition of (2.3) follows that
νi = 0 implies αi > 0, then

∂αi
L = 2〈µi, c〉 − ‖c‖2 − ‖µi‖2 − tr(Σi)− ηκi = 0.

Analyzing the KKT’s condition of Problem 2.3, we
have that αi > 0, βi > 0 =⇒ ξi = 0 and 0 < αiκi < λ.
From this and KKT’s complementarity conditions we can
retrieve the radius

R2 =
‖µi − c‖2 + tr(Σi)

κi
, (5)

where i ∈ {i ∈ I | 0 < αiκi < λ}. Thus, follows that
η = R2, then R =

√
η.
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6.3 Proof of Lema 3.1

EP[‖k(X, .)− c(.)‖2] = EP[〈k(X, .), k(X, .)〉H]

−2〈µP, c(.)〉H + ‖c(.)‖2H
= tr(ΣH) + ‖µP‖2H
−2〈µP, .c(.)〉H + ‖c(.)‖2H

= tr(ΣH) + ‖µP − c(.)‖2H

6.4 Proof of Theorem 4.1

Changing variables in Problem 3.1 by −ρ = 1
2 (R2κ −

tr(ΣH) − ‖c(.)‖2H), implies R2 = (tr(ΣH) + ‖c(.)‖2H −
2ρ))/k, Problem 3.1 becomes:

min
c(.)∈H,R∈R,ξ∈RN

tr(ΣH) + ‖c(.)‖2H − 2ρ

k
+ λ

N∑
i=1

ξi

subject to 〈µPi
, c(.)〉H ≥ ρ−

1

2
(κξi − ‖µPi

‖2H),

ξi ≥ 0,

for all i = 1, . . . , N . Setting ξ′i = 1
2 (κξi − ‖µPi

‖2H) implies

ξi =
2ξ′i+‖µPi‖

2
H

k and multiplying by k
2 the objective

function gives:

min
c(.)∈H,R∈R,ξ∈RN

1

2
(tr(ΣH) + ‖c(.)‖2H − 2ρ)

+
k

2
λ

N∑
i=1

2ξ′i + ‖µPi
‖2H

k

subject to 〈µPi
, c(.)〉H ≥ ρ− ξ′i, i = 1, . . . , N

2ξ′i + ‖µPi
‖2H

k
≥ 0, i = 1, . . . , N.

this is simplified to

min
c(.)∈H,R∈R,ξ∈RN

1

2
(tr(ΣH) + ‖c(.)‖2H − 2ρ)+

λ

N∑
i=1

ξ′i +
1

2
λ

N∑
i=1

‖µPi
‖2H

subject to 〈µPi
, c(.)〉H ≥ ρ− ξ′i, i = 1, . . . , N

ξ′i ≥ −
‖µPi
‖2H

2
, i = 1, . . . , N.

dropping the constant terms, we arrive at

min
c(.)∈H,R∈R,ξ∈RN

‖c(.)‖2H
2

− ρ+ λ

N∑
i=1

ξ′i

subject to 〈µPi , c(.)〉H ≥ ρ− ξ′i, i = 1, . . . , N

ξ′i ≥ −
‖µPi‖2H

2
, i = 1, . . . , N.

6.5 Proof ot Theorem 4.2

From (3), if:

ξ′′ =
1

2
κξ =⇒ ξ′′ = ξ′ +

‖µPi
‖2H

2
,

then, Problem 4.1 could be written as:

min
c(.)∈H,ρ′∈R,ξ′∈RN

‖c(.)‖2H
2

− ρ′ + λ

N∑
i=1

(ξ′′i −
‖µPi
‖2H

2
)

subject to 〈µPi
, c(.)〉H ≥ ρ′ − ξ′′i +

‖µPi
‖2H

2
,

ξ′′i ≥ 0,

for all i = 1, . . . , N .
The Lagrangian for the previously Problem is:

L(c(.), ρ, ξ,α,−β) =
‖c(.)‖2H

2
− ρ′ + λ

N∑
i=1

(ξ′′i −
‖µPi
‖2H

2
)

−
N∑
i=1

αi{〈µPi
, c(.)〉H − ρ′ + ξ′′i −

‖µPi‖2H
2
}

−
N∑
i=1

βiξ
′′

(6)

The optimality (KKT) conditions for this problem are:

∂ρL = 0 :
∑N
i=1 αi

Oc(.)L = 0 : c(.)−
∑N
i=1 αiµPi

∂ξ′′i L = 0 : λ− αi − βi
=

1
0
0

 (7)

αi{〈µPi
, c(.)〉H − ρ′ + ξ′′i −

‖µPi‖
2
H

2 }
βiξ
′′
i

=
0
0

}
(8)

Replacing, (7) into (6) yields 1
2

∑N
i=1(αi − λ)k̃(Pi,Pi) −

1
2

∑N
i,j=1 αiαj k̃(Pi,Pj), but −λ2

∑N
i=1 k̃(Pi,Pi) is constant,

then, the dual form of the above Problem is given by:

max
α∈RN

1

2

N∑
i=1

αik̃(Pi,Pi)−
1

2

N∑
i,j=1

αiαj k̃(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1,


