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Abstract. A skeleton is a thin centered structure within an object,
which describes its topology and its geometry. The medial surface is one
of the most known and used skeleton formulation. As other formulations,
it contains noise, which complexifies its structure with useless parts. The
connectivity of a skeleton is then unpredictable due to these useless parts.
It can be a problem to segment the skeleton into logical components
for example. We present here a technique whose purpose is to identify
and structure such skeletal noise. It only requires a skeleton as input,
making this work independent from any skeletonization process used to
obtain the skeleton. We show in this paper that we significantly reduce
the skeletal noise and produce clean skeletons that still capture every
aspects of a shape. Those clean skeletons have the same local topology
as the input ones, but with a clearer connectivity.
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1 Introduction

A skeleton is a thin structure centered within an object, describing the topol-
ogy and the geometry of this object. Such a skeleton could be then used as a
shape representation model for every closed object. There exist several types of
skeletons and we could divide them into two main categories:

1. curve skeletons; they are composed of curves and used for shape registration
[5], mesh segmentation [4] and data reconstruction [18].

2. surface skeletons; they are composed of curves and surfaces, among them we
can find medial surfaces [6], Midpoint loci [8] and PISA axes [16].

The work presented here is part of a process to make skeletons useful shape
representation models. As stated in [11], surface skeletons better capture the
geometry of objects than curve ones, making them best candidates for this pur-
pose. Thus, we consider only surface skeletons, and in particular medial surfaces,
because they are well defined and many algorithms exist to efficiently approxi-
mate them. A medial surface is made of atoms. An atom is a maximal inscribed
ball lying inside the described object. Each atom a is connected to other atoms,
called its neighbors N (a). Those links confer a topology on the skeleton.
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Skeletons are obtained from objects through a process called skeletonization.
In such a process, a finite number of samples is used to capture an object O.
These samples cannot capture completely O, and uncertainty about the object
boundary arises: do a set of close samples capture a feature or a smooth part?
In each case, atoms will be inserted in the skeleton. Atoms that do not capture
any features produce the skeletal noise. Many methods have been proposed to
remove unwanted components associated with this skeletal noise like [13] or [1].
A key goal of such methods is to preserve the topology of the skeleton during
the process.

We noticed that the skeletal noise can be classified into two categories: Type 0
noise, also called clusters, and Type 1 noise, commonly referred to as hairy pat-
tern. These noise types make the use of skeletons uneasy as shape representation
models. For example, it is hard to estimate the tangent plane to an atom if one of
its neighbors a belongs to Type 1 noise, since atoms such as a do not lie near the
medial surface. Also connections are unnecessarily complex due to these noises.
Connections get even worse when we look closely inside a cluster, locus of Type 0
noise, where the union of all its balls could be perfectly described by only one
ball. The Figure 1 illustrates this classification.

In this paper, we propose new criteria to identify those skeletal noise. We
also present a skeleton structure that contains a hierarchy, used to reflect the
importance of atoms. Atoms are labeled by three number: 0 for Type 0 noise,
1 for Type 1 noise, and 2 otherwise. The hierarchy isolates skeletal noise from
the remaining skeleton atoms: atoms from skeletal noise cannot have connections
with relevant atoms. The neighbors are reorganized due to this isolation, in order
to preserve the skeleton structure (i.e. logical components of the skeleton) thanks
to structuring rules we created. There is no requirement about how the input
skeleton was obtained, as our method take place apart from any skeletonization
process. Thus, our work is general enough to be applied to every connected
skeleton. More importantly, we show that our cleaned skeleton is simpler with a
clearer connectivity, while not loosing any features or the original skeleton.

2 Previous Work

Since medial surfaces had always been noisy, removing this noise from it had
motivated a lot of work. This is generally done during the skeletonization pro-
cess: when the skeletonized object O is known. Thus, a noise removal technique
is strongly linked to a skeletonization method. The most popular approaches for
skeletonization are based on the Voronoi diagram or its dual Delaunay tetrahe-
dralization. We review here such noise removal techniques.

Because such techniques are related to skeletonization, they must ensure that
they provide a good skeleton. A good skeleton may be seen as a skeleton which
converges to the medial surface when the sampling density of O tends to infinity.
A very important result in 3D is that, unlike in 2D [9], the Voronoi vertices do
not converge to the medial surface, as the sampling density tends to infinity [2].
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a) b)

c) d)
Fig. 1. Illustration of skeletal noise. a) This torus has 94% of its atoms belonging to
Type 0 noise, such that the englarged view contains 68 atoms, while only 4 can be seen.
b) To represent skeletons in this paper, we use a color code to transcript the radius of
an atom: from blue for small values to hot colors for big values. c) The blender monkey
model’s skeleton contains hairy pattern, especially at the center of the skull. d) The
cleaned skeleton of the monkey model obtained with our method.

An approach that guarantees convergence uses a subset of the Voronoi ver-
tices, named the poles [1]. For a sample point p, the poles are the vertices of its
Voronoi polyhedron that are the furthest away from p on the two sides of the
surface. The balls centered in these poles (with radii equal to the distance to
their samples) are called polar balls. The method is very robust and the produced
skeleton, called the Power Shape, is visually reasonable. However, skeletal noise
remains and many flat tetrahedra populate the skeleton. Also, this method was
firstly intended to reconstruct a shape from a point cloud. Thus, it does not take
advantage of any information contained in O except some sample positions.

Dey and Zhao [13] presented a method where (a subsequent part of) the
output converge to the medial surface, by applying angle-based filter conditions
to the Voronoi diagram. The filter parameters are scale and density independent.
However the skeleton topology is ignored and some holes appear in many cases,
inducing loss of information or topology changes in the described object.



4 T. Delamé, C. Roudet, D. Faudot

In [10], the authors introduce the notion of weak feature size F(x) at a
point x. This is the radius of the minimal ball enclosing closest object boundary
points to x. If we remove the Voronoi vertices v with F(x) < λ, we obtain the
λ−Medial Axis. The main disadvantage with such technique is the definition of
λ for a shape: as λ increase, more skeletal noise is removed, as well as some
features.

Another method called the Scale Axis [17] produces very nice looking skele-
tons. This work is based on the Power Shape, with useful enhancements. The in-
put object is remeshed and sampled by the technique proposed in [7]. Polar balls
are efficiently obtained from an input mesh thanks to a more adapted process.
Those polar balls are scaled by a factor s. The skeleton, composed of the union
of those scaled balls, is computed and then cleaned by a topology-preserving
angle filtering. Finally, the balls in the skeleton are scaled back by a factor 1/s.
The scaling factor allows the skeletal noise removal by a spatially adaptive fea-
ture classification. With some constraints on the s parameter, the Scale Axis
transform has been proven to have topological stability guarantees [14].

We propose in this paper to perform the noise removal apart from the skele-
tonization, working directly on the skeleton with no further information. As
shown in the result section, our technique significantly remove the skeletal noise
and keeps every details. Moreover, it maintains the topology of the skeleton.

Outline

In this paper, we first describe the model we have conceived to structure the
skeleton (Section 3). We also present the atomic operations that can be realized
on this model (Section 3.3). Then, we detail the methodology we used to identify
skeletal noise of Type 0 (Section 4) and Type 1 (Section 5). We finally expose
our validation process, and conclude.

3 Structuring Model

In this section, we present the skeleton model used to identify and structure the
skeletal noise.

3.1 Atoms

Basically, atoms can be seen as balls whose union approximates an object. We
consider them as nodes of a graph: they have a position, a radius, and links
with other atoms. We add to this graph a hierarchy structure, reflecting the
importance of the atoms. Each atom has then a rank that is equal to its level
in the hierarchy: 0 for a useless atom, 1 for a unimportant atom, 2 for a more
important and so on. The rank is the label of the atom node. Since we deal with
a hierarchy, atoms may have also a father and sons. If an atom does not have
a father, we call it root. Otherwise, we call it sub-atom. The Figure 2 shows a
schematization of these concepts.
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n atom of rank n

neighbors

hierarchical link

father son

∅ root

Fig. 2. Schematization of atoms
3.2 Skeleton

The skeleton has thus two structures: one composed of neighbor links (represent-
ing the topology), and another one composed of hierarchical links (reflecting the
importance of atoms). In order to combine those two structures, we introduce
the notion of n-hierarchy. A skeleton is said to be a n-hierarchy if:

i) an atom is a root ⇐⇒ an atom has rank n,
ii) two atoms have different ranks =⇒ they cannot be neighbors,
iii) every sub-atom has a rank lower than the one of its father.

The structuring process starts with a 0-hierarchy skeleton S: a graph where
each node is 0 labeled. Then S is structured rank by rank, using criteria to
detect when an atom a is less important than another atom b. The rank of such
atom b is changed to reflect its importance relatively to a. Such an operation
make impossible to keep the n-hierarchy property because there will be be roots
at ranks n and n + 1 (See Figure 3). We hence release some of the constraints
contained in the definition, to introduce the notion of n-consistent skeleton. This
intermediary state specify how the skeleton should be before reaching a hierarchy
of higher level. Such a skeleton meet the following requirements:

i) roots can only be at the levels n and n + 1, and every atom of rank n + 1
is a root,

ii) only two roots or two atoms with the same rank can be linked,
iii) every sub-atom has a lower rank than its father.

The roots of level n+1 are called the processed roots, because they will remain
roots of level n+ 1 until the skeleton becomes a n+ 1-hierarchy. Because of ii),
atoms corresponding to noise are not linked to important atoms. It is a way to
isolate them. Items i) and iii) make the roots of a skeleton the most important
atoms. If we consider only these roots we have a connected skeleton called in
this paper clean skeleton, since the low ranks contain skeletal noise.

3.3 Structuring Operations

When an atom a is detected as less important than another atom b, we perform
a structuring operation on the skeleton, called absorption and written b ≻ a,
to reflect this information. For each kind of addressed importance, a specific
absorption is defined. In this paper, we deal only with importance relatively to
noise. Thus we define one absorption for clusters and one for hairy pattern.
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a) b)

Fig. 3. Schematizations of skeletons. a) This skeleton is a 2-hierarchy. The atom in
red is promoted to a higher rank because we detected it as important. We obtain the
situation b), where this skeleton is 3-consistent.

An absorption always sets the less important atom a as the son of a root
atom c.primitive c ⇀ a. After such action, c must update its rank rc to have
the same rank as the processed roots, i.e. n + 1. The rank rc is then greater
than the rank of a, in order to meet the constraint described in iii). Then, every
link between a sub-atom and c must be removed, to fulfill item ii). The last two
operations are called promotion and written promote(c).

In order to maintain the skeleton topology, during the absorption, the links
of a are transmitted to c. Moreover, we also need to remove the links between a
and the other roots in the hierarchy (item ii)).

4 Identifying and Structuring Atom Clusters

This section deals with atom clusters and proposes a solution to identify them
and structure them.

4.1 Observations About Atom Clusters

We know exactly the theoretical skeletons of simple objects, e.g. torus, sphere.
When we observe the practical skeletons obtained for such objects, we can notice
a huge difference between the number of perceived atoms and the real number
of atoms. This difference is due to the presence of clusters: a high number of
atom loci is contained in a very small spatial area. In such places, we perceive
only one atom (at a reasonable scale), while in practice, there are so many, as
shown in Figure 1 a).

Atoms are maximal inscribed balls. Thus no atom can be fully contained
into other ones. If we suppose there is a difference of radii within a cluster, the
biggest atom would contain at least one atom, as they are very close. This is a
contradiction, and then every atom in a cluster has a similar radius. So, every
atom in the cluster adds a very tiny piece of information (about the size of the
machine precision). Consequently, a cluster should then be replaced by one of
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its atoms since it is useless to store a large number of atoms that add almost
nothing.

Clusters are due to parts that are locally spherical. Basically, with a Voronoi
diagram based skeletonization technique, each 4 cospherical samples produce an
atom, located at the circumsphere. If there are more than 4 cospherical samples,
duplicated atoms are created. Due to machine precision, duplicated atoms will
not be at the same location, but very close and with very similar radii. Clusters
could be then addressed in the skeletonization process by identifying samples
that are cospherical, like in [19]. In the next section, we will show an identification
criterion that is independent from the skeletonization technique.

4.2 Identification Criterion

Since atoms inside the same cluster are very close and have almost the same
radius, the volume Va\b added by an atom a to another atom b of the same
cluster is nothing compared to the volume Vb. We define a test F0(a, b) which
indicates whether a and b belong to the same cluster and if a is less important
than b. Here is the expression of the test F0:

F0(a, b) = (a ∩ b 6= ∅)
∧

(Va < Vb)
∧

(Va\b < κ · Vb) . (1)

This test allows to detect clusters with only one parameter, κ, which is easy to
understand. Using a relative measure based on the volume of an atom makes this
criterion insensitive to scale while being local. Thus, it suits models of any size
while taking into account the local thickness of the shape, to avoid the labeling
of small details as Type 0 noise. In our implementation, we noticed that κ = 5‰
is enough for all the tested objects.

There is no requirement on links between a and b, and we explain here why.
First, there is no need to look at links to identify a cluster. Second, links inside a
cluster are chaotic, we cannot rely on them for efficiency purpose. Finally, there
exist isolated vertices inside a cluster for skeleton based on the Power Shape
algorithm (due to the use of a regular tetrahedralization to define the links).
Ignoring links when detecting clusters allows us to remove isolated vertices from
the cleaned version of a skeleton.

4.3 Structuring Process

We process every atom of rank 0 such that there is no cluster in the clean
skeleton, i.e. among the roots. For a cluster, only one of atom a will reach the
rank 1, while every other atom will be the sons of a. Atoms that do not belong
to a cluster are promoted to the next rank at the end of the process such that
we obtain a 1-hierarchy.

To process an atom a, we use the test function F0 with already processed
atoms P. For b ∈ P , if F0(a, b) = true, then a ≺ b, otherwise if F0(b, a) = true,
then b ≺ a.



8 T. Delamé, C. Roudet, D. Faudot

For clusters, the absorption is context dependent: the result is not the same
depending whether input atoms are roots or not. We give a summary of struc-
turing rules for this absorption in the Figure 4. For reasonable values of κ, this
process keeps the skeleton topology because only very close atoms are removed
(and links with removed atoms are transmitted to their fathers). Also, there is no
need to impose a processing order, as every atom in a cluster is interchangeable.

5 Identifying and Structuring Hairy Pattern

This section deals with hairy pattern and propose a solution to identify them
and structure them.

5.1 Observations About Hairy Pattern

The hairy pattern is one of the most known and recognizable skeletal noise.
It consists in atoms that do not capture any feature. They are produced by
circumspheres that have some of their 4 spherical sample points close from each
other. This is why the Lambda Axis [10] prune atoms when distances between
these samples are below a threshold.

When we explore the skeleton looking for Type 1 atoms, we notice some-
thing about their neighbors: they are located in a narrow cone, and most of
them belong to the stable skeleton. The stable skeleton is the visually free of
noise skeleton. This neighbor configuration gives to Type 1 atoms a spiky ap-
pearance, making them off-centered. Also, such atoms have a radius lower than
their neighbors on the stable skeleton. So when we move from a Type 1 atom
toward the stable skeleton, the radii of atoms get bigger.

The ends of thin skeleton parts, e.g. for fingers, are very similar to hairy
pattern. The distinction is made with the length of such pattern: if this length
is a small compared to surrounding parts, we have a hairy pattern. So, to deal
with hairy pattern, we should limit the length of absorbed skeleton components,
to avoid the classification of thin detail parts as noise.

5.2 Identification Criterion

Since Type 1 atoms are off-centered, we have built a simple criterion based
on this. We check the location of the neighbors of an atom a by computing a
sphere BS(a), which is the minimal sphere containing their positions. If a is not
inside BS(a), we consider that a is off-centered and thus is a Type 1 atom. This
parameter-free criterion is better suited than setting a threshold to control the
thickness of the cone containing the neighbors.

To define BS(a), the atom a must have at least 2 neighbors. Otherwise, a
has one neighbor b: it can either be noise or the termination of a thin curvilinear
component. In the latter case, a should not be absorbed. We distinguish those
cases by counting the neighbors of b. If it is more than 2: b is not a part of a
thin curvilinear component and a is not absorbed. This gives us the following
test F1 to identify a Type-1 atom:
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≺ =⇒

a ≺ b when a and b are roots.

≻ =⇒

b ≺ a when a and b are roots.

≺ / ≻ =⇒

a is a sub-atom and b is a root.

≺ / ≻ =⇒

a is root and b is a sub-atom.

≺ / ≻ =⇒

a and b are sub-atoms.

Fig. 4. Schematization of cluster absorptions. The atoms concerned by this operation
are depicted in red, a on the left that is the currently processed atom, and b on the
right which had already been processed. For simplicity purpose, we do not schematize
the operations to meet the constraints described by item ii) in the definition of a
n-consistent skeleton.



10 T. Delamé, C. Roudet, D. Faudot

F1(a) =







a ∈ BS(a) , if ♯N (a) > 2
♯N (b) < 3 , if N (a) = {b}

false , in other cases
(2)

5.3 Structuring Process

Initially, S is a 1-hierarchy. We have to test and structure the following set
of atoms: P = Roots(S). Every atom a ∈ P is re-tested when a change (an
absorption) is made in P. We assume that F1(a) = true, otherwise we simply
take the next atom in P.

If a has only one neighbor b we realize the operation a ≺ b. In the other case,
we must choose among the neighbors of a, the atom b to use in the absorption.
We propose to set b as the neighbor of rank 1 with the highest radius. This has
two consequences:

– the absorption is made toward the stable skeleton because bigger atoms in
a hairy pattern are closer to the stable skeleton than smaller atoms (see
Section 5.1).

– choosing a rank 1 atom will limit the length of an absorbed part, since in
combination with the identification criterion, there will be no further possible
absorption. Thus thin detail skeleton parts will be protected, as shown in
Figure 5.

Structuring rules for the hairy pattern absorption are detailed in the the
Figure 6. Due to the identification criterion, atoms at crossings of skeleton com-
ponents or inside a component are not detected as hairy pattern: their neighbors
are all around them, thus they are inside the minimal bounding sphere. Only
atoms in the boundary of components and hairy pattern are detected. As there
is an effect which limits the length of the absorption, no components can com-
pletely disappear. Moreover, the links of an absorbed atom are transmitted to its
father, without any loss of connectivity information. So, the topological structure
of the clean skeleton remains the same after this step.

We impose to process P from the lowest radius to the biggest one. The result
is then the same no matter the creation of the skeleton structure.

6 Validation

We validated our work with quantitative and qualitative comparisons. These
comparisons were made with two different skeletons for some input shapes. The
results express the “compression”realized by our technique on skeletons, while
quantifying the modification in the geometric data. Also, the qualitative study
shows the improvement in the skeleton connections and the conservation of the
skeleton structure.
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a) b) c)

Fig. 5. Effect of the hairy pattern structuring process. The input skeleton of Homer
hand is presented in a). With the method described here we obtain the result b). If we
allow any neighbor of rank 1 to absorb an atom detected as noise, fingers disappear as
shown by c).

6.1 Protocol

We took some input shapes, and we skeletonized them by two well-known al-
gorithms that give theoretical guarantees about the results while reducing the
skeletal noise: the Power Shape and the Scale Axis. Each of these skeletons was
structured by the technique we presented previously, giving us four skeletons by
input shape.

We first computed statistics about those skeletons, to quantify their com-
plexity. We also measured the distance between the input shape and the shape
described by a skeleton. To do so, we used the Skin Surface [15], a garbing al-
gorithm which only considers the spheres. This way, we measure the possible
loss of geometric data in the cleaned skeleton relatively to the input skeleton.
If we had used a garbing algorithm that consider other primitives to enhance
the garbing mesh, like [12] that removes surface noise in the garbing mesh, the
loss of geometric data would have been hidden. We chose the Root Mean Square
distance (RMS), and we computed the distance between the input shape and
the skin surface of each skeleton by the Mesh software [3].

Then, we compared visually the quality of the skeletons. We examined the
links between atoms, looked for remaining noise and checked that detail was not
removed.

6.2 Quantitative Comparison

First, Figure 7 expresses that the skeletons have been reduced with our struc-
turing process. In average, only 85% atoms of the Power Shape remain in the
clean skeleton, and 53% of the Scale Axis. For the Power Shape, the majority
of the skeletal noise is caused by hairy pattern. However, such a skeletonization
technique was firstly designed to remove such noise type. Thus, a noise removal
algorithm done apart from the skeletonization, like ours, is useful to produce
clearer skeletons, as noise still remains.
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0

≥ 1

0

1 2 1

0

≺ =⇒

a ≺ b when a and b have rank 1.

≥ 1

10

2 1 1

0

≥ 1

10

1 2 1

0

≺ =⇒

a ≺ b when a has rank 2 and b rank 1, a must be demoted.

Fig. 6. Schematization of hairy pattern absorption. The atoms concerned by such op-
eration are depicted in red, a is on the left and b on the right.

This statement is confirmed by the huge quantity of clusters contained in the
Scale Axis. Such a skeleton is made of far more atoms than previous ones. A
trend in skeletonization techniques is to sur-sample the input object, in order to
produce more atoms. By doing so, we expect the skeleton to be more accurate and
clear. As there are more atoms, they add fewer information to their neighbors,
and our cluster identification criterion is triggered.

Power Shape Scale-Axis
Normal Cleaned Normal Cleaned

armadillo 4.33 4.75 49.11 47.42
baby 7.15 7.23 41.17 40.35
bimba 7.36 7.41 82.24 80.94
boy 11.20 11.31 39.85 38.75
bunny 23.99 20.14 91.56 90.49
camel 16.12 15.67 64.73 63.78
dinopet 13.74 13.64 49.58 47.86
egea 4.87 5.79 134.65 133.23
fish 32.90 31.81 35.34 35.33
homer 10.16 10.43 65.71 63.47
horse 11.76 10.68 59.67 58.73

Table 1. RMS distances between original object and skin surfaces of both normal
and cleaned skeletons. Results are given in percent relatively to the diagonal of the
bounding box.

One could argue than such results are obtained because we remove details
from the skeletons. However, Table 1 prove that we only removed skeletal noise
from the skeletons. The geometric data loss with our clean skeleton obtained for
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bunny
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camel

bimba
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boy

homer

baby

dinopet
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Fig. 7. Percentage of Type 0, Type 1 and roots in the cleaned Power Shape and the
cleaned Scale Axis

the Power Shape is very small, about 1‰. For some cases this is even better, as
skeletal noise can add material outside the original shape. For the Scale Axis,
there is no loss of data reported: the RMS distance is always better. Thus our
technique removed 47% of atoms in the Scale Axis without losing any detail
compared to the input skeleton. This demonstrates that our technique efficiently
remove skeletal noise from these skeletons.

The results also raised the question about the legitimacy of the actual trends
in skeletonization: producing skeletons with more atoms does not improve the
geometry captured, it mostly adds skeletal noise.

6.3 Qualitative Comparison

As clusters are by definition composed of atoms that cannot be distinguished
visually, their absorptions make no visual difference. Also, we absorb the skeletal
noise without any loss of detail, thus there is no missing parts in the skeleton. For
these two reasons, there is not important visual differences between a skeleton
and its cleaned version. We can only notice the removal of hairy pattern, erasing
some small spiky component, and the disappearance of some atoms in skeleton
boundaries.

For Scale Axis skeletons, the noise of Type 1 – the only visible noise – is
closer to the stable skeleton. Thus, the visual enhancement on the clean skeleton
is less than for the Power Shape. We checked the visual enhancement on a Power
Shape obtained with much more samples to raise the number of atoms. As shown
in Figure 8 g) and h), the skeleton is visually enhanced and the atom reduction
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is 53%, with a relative proportion of Type 0 and Type 1 noise nearly the same as
for the Scale Axis. So even if raising the number of atom in a skeleton increase
the Type 0 noise, the Scale Axis reduces the visual importance of Type 1 noise,
while our method reduces both noises in terms of quantity.

6.4 Limitations

There are two limitations to our technique. The first one is due to the constraint
we have on detail. Indeed, to use skeletons as shape representation models in
computer graphics applications, they should be able to capture small features.
Thus, the cleaning process let untouched some hairy patterns to not absorb
small features because small features can also be detected as hairy pattern. This
effect can be handled by two or more ranks of hairy pattern when needed, but
it requires the user intervention to determine when to stop.

The second limitation comes from the definition of the κ value. If it remains
small, the skeleton is perfectly clean and clear, no detail is loss. But with bigger
values of κ, parts of the skeleton disappear, being iteratively absorbed. This
is especially the case on models which have a lot of small features, like the
Armadillo model, or on skeletons with highly dense atoms: an atom is very
likely to add not enough material to its neighbors, and thus is absorbed. As the
κ value is meant to handle only clusters, i.e. machine precision issues, we highly
discourage the use of high values of κ: the skeleton will lose its structure and
features will be missing.

7 Conclusion & Future Work

In this paper, we addressed the removal of skeletal noise, i.e. atom clusters and
hairy pattern. Such noise produces unnecessarily complex skeleton, by raising its
data size and disturbing its structure. Unlike the numerous methods that take
place in a skeletonization algorithm, our technique can be directly used on any
connected skeleton, requiring no additional data like the original shape or angle
values stored with atoms. Another originality of our work, is the use of a hierar-
chy structure to process the skeletal noise. Depending on its contribution to the
geometric data of a skeleton, an atom receive a rank, reflecting its importance.
Less important atoms are isolated from more important ones by this structure.

We showed in this paper how to take advantage of this hierarchy to clean a
skeleton, in order to use it as a true shape representation model and not only
an intermediary processing model. Indeed, atom clusters are removed, and the
majority of hairy pattern is erased, while the skeleton do not suffer from any loss
of detail. Even on input skeletons produced by skeletonization algorithms that
are known to remove skeletal noise, we significantly reduce the number of atoms.
The components of the skeletons remain the same, and no “hole”appears.

We define a level of detail, by considering only atoms with a rank greater
than a minimal one. Once we get rid of the skeletal noise, we can identify and
structure the features of the skeleton the same way we dealt with noise. This
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a) b) c) d)

e) f)

g) h)

Fig. 8. Qualitative comparisons between the skeletons. The first two rows show the
visual effects of our noise removal method with the dinopet model. a), b), c) and d)
propose a close view of one foot of this model for the Power Shape and its cleaned
version, and for the Scale Axis and its cleaned version. e) is a full view on the Scale
Axis skeleton and f) of its cleaned version. A sur-sampled version of Power Shape in
g) and its cleaned version in h).
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will build a multi-resolution shape representation model, allowing processing at
different level of detail like rendering, segmenting, or interaction.
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