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The coherent manipulation of the atomic matter waves is of great interest both in science and
technology. In order to study how an atom optic device alters the coherence of an atomic beam,
we consider the quantum lens proposed by Averbukh et al [1] to show the discrete nature of the
electromagnetic field. We extend the analysis of this quantum lens to the study of another essentially
quantum property present in the focusing process, i.e., the atom-field entanglement, and show how
the initial atomic coherence and purity are affected by the entanglement. The dynamics of this
process is obtained in closed form. We calculate the beam quality factor and the trace of the square
of the reduced density matrix as a function of the average photon number in order to analyze the
coherence and purity of the atomic beam during the focusing process.

PACS numbers: 03.75.-b, 03.65.Vf, 03.75.Be
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INTRODUCTION

Since the seminal proposal for laser cooling of atoms in dilute gases and atom trapping [2], the manipulation of all
atomic motional degrees of freedom based on the atom interaction with external light fields have reached enormous
success. Given the recent advances in the manipulation of atoms we now observe a fast evolution of the field both in
terms of scientific knowledge and technological applications, like in precision sensors, precise metrology and clocks,
lithography, single atom manipulation, trace gas analysis and ultracold chemistry [3]. In addition, the area of quantum
information processing has benefited from such advances due to the establishment of precise quantum protocols. From
the theoretical viewpoint the modeling of strongly correlated materials and nonequilibrium quantum dynamics are
stimulating areas of research.
The dynamics of atomic beams share an intimately close analogy with classical laser light in the paraxial approx-

imation. The Gouy phase discovered and measured in 1890 in the latter context is found in any beam subject to
confinement which adds a well defined phase shift and has implications and applications in many optical systems [4].
The existence of a particle wave analogy to this phenomenon has been first pointed out in Refs. [5] followed by an
experimental proposal in Cavity Quantum Electrodynamics (CQED) [6]. Very recently this proposal has stimulated
the search for the matter wave Gouy phase in different systems: Bose-Einstein condensates [7], electron vortex beams
[8], and astigmatic electron matter waves using in-line holography [9]. The Gouy phase carries intrinsic properties of
the initial state and dictates the time scale of the process.
In the present work we explore the quantum version of experimental set up proposed in Ref. [6] in order to show

how it may be of use to explore other quantum features as atom-field entanglement, analysis of atomic quantum lenses
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proposal in [1] to study the discrete nature of the field. The actual measurement of this phenomenon represents a major
experimental challenge, since a quantum tomography would be required. We show here however, that the measurement
of the covariance matrix of the center of mass atomic wavefunction indicates the presence of entanglement. Purity loss,
although far from being an easily measurable quantity is shown to reveal the entanglement dynamics which occurs
in the focusing process. We setup a model (within experimental reach) of a focusing and deflection of a nonresonant
atomic beam propagating through a spatially inhomogeneous quantized electromagnetic field. The interaction of a
nonresonant atom with an electromagnetic field in the so called dispersive approximation is proportional both to
the field intensity and the susceptibility of the atom. Therefore atoms under the influence of such fields may suffer
mechanical effects such as deviations in their center of mass motion and deflection. In the present case we will use this
property to focus atomic beams. We address the question as to the manifestation of quantum effects in the focusing
process. In Ref. [1] the discrete character of the photons was shown to be observable in such experiments. Our aim
within a similar scheme is to enlighten another quantum aspect, entanglement. Interaction is the key ingredient to
produce entanglement which is an important characteristic of quantum information protocols. We study its behavior
in the atomic focusing process.
In section II we present the model which is essentially the same as the one used in Refs. [1, 10] with the difference

that we calculate the probability amplitude instead of the intensities. Our procedure enable us to determine the
density matrix of the system. In section III, we present our results, in the covariance matrix and the atom-field
entanglement properties as a function of the average photon number n̄ showing that one aspect of the classical limit
of the field is the suppression of entanglement as n̄ increases. This is also apparent in the covariance matrix. The
independence of the field’s granular nature on the number of photons, shown in Refs. [1, 10], occurs because in that
model the authors relax the dispersive limit condition. In the present model, we preserve the dispersive limit and the
classical limit of the field is a consequence of the disentanglement between atom and field, apparent in the conservation
of the initial purity and coherence of the atomic beam.

THE MODEL

In this section we present a model that permit us focusing an atomic beam and find an expression for the Gouy
phase of matter waves that is a connection of this phase with the inverse square of the beam width. We consider an
atomic beam propagating through a spatially inhomogeneous quantized electromagnetic field. The atomic beam will
suffer deflection and focusing. Different Fock states deflect the atoms in different angles and focus them at different
points. We suppose that the atomic beam is initially in a coherent Gaussian state and obtain the equations of motion
for the parameters that characterize the structure of the wavepacket. We see that the equations of motion is not
consistent if the atomic beam was represented at time by the one Gaussian state without the Gouy phase term.
The model is presented in Fig. 1 in which we use the following [1, 10]: consider two-level atoms moving along the

Oz direction and that they enter in a region where a stationary electromagnetic field is maintained. The region is the
interval z = −L until z = 0. The atomic linear momentum in this direction is such that the de Broglie wavelength
associated is much smaller than the wavelength of the electromagnetic field. We assume that the atomic center of
mass moves classically along direction Oz and the atomic transition of interest is detuned from the mode of the
electromagnetic field (dispersive interaction). The Hamiltonian for this model is given by

ĤAF =
p̂2x
2m

+ g(x̂)â†â, (1)

where m is the atom mass, p̂x and x̂ are the linear momentum and position along the direction Ox, â† and â are
the creation and destruction operators of a photon of the electromagnetic mode, respectively. The coupling between

atom and field is given by the function g(x) = αE2(x) where α is the atomic linear susceptibility, α = ℘2

~∆
, where ℘2

is the square of the dipole moment and ∆ is the detuning from nearest atomic resonance. E(x) corresponds to the
electric field amplitude in vacuum. The effective interaction time is tL = L

vz
, where vz is the longitudinal velocity of

the atoms. For simplicity the field distribution in z-direction of length L is assumed to have a rectangular profile as
expressed by the Heaviside step functions θ(z). The initial width of the atomic beam is b0 and b′0 represents its width
at the focus.
The dynamics of the closed system is governed by the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = ĤAF |Ψ(t)〉. (2)
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FIG. 1: Quantum lens. A beam of nonresonant atoms propagating initially along the z-axis interacts with the light field in
the region −L ≤ z ≤ 0. Different Fock states deflect the atoms in different directions and focus them at different points. The
initial width of the atomic beam is b0 and b′0 represents its width at the focus.

At t = 0 the state of the system is given by a direct product of the state corresponding to the transverse component of
the atom and a field state, |ΨCM 〉 ⊗ |ΨF 〉. The field state can be expanded in the eigenstates of the number operator
â†â

|ΨF 〉 =
∑

n

wn|n〉,
∑

n

|ωn|2 = 1. (3)

When atom and field interact the atomic and field states get entangled. We can then write

|Ψ(t)〉 =
∑

n

wn

∫ +∞

−∞

dx ψn(x, t)|x〉 ⊗ |n〉 , (4)

where

i~
∂

∂t
ψn(x, t) =

{

− ~
2

2m
∇2 + g(x)n

}

ψn(x, t) , (5)

or, if one defines

|Ψn(t)〉 =
∫ +∞

−∞

dx ψn(x, t)|x〉 , (6)

the equation (5) takes the form

i~
d

dt
|Ψn(t)〉 =

[

p̂2x
2m

+ g(x̂)n

]

|Ψn(t)〉. (7)

Next, we will use the harmonic approximation for g(x) where we consider that the electric field has a node in the
atomic beam axis. In addition, we considered that the width of the transverse atomic beam b0 is much smaller than
the wavelength λ of the field. In this case, as a good approximation, the field creates one square well potential for
the atom in the transverse coordinate [1, 10]. Therefore we take only the main terms of the Taylor expansion of the
function g(x),

g (x) ≈ g0 −
g21
2g2

+
1

2
g2 (x− xf )

2
, (8)

where g0 ≡ g(x = 0), g1 ≡ dg/dx|x=0, g2 ≡ d2g/dx2|x=0, xf ≡ −g1/g2 and Ω2
n = ng2/m. The combination of linear

and the quadratic contributions of the potential in a binomial reduces the problem to the motion in the harmonic
potential Un(x) = Un(xf )+

1

2
mΩ2

n(x−xf )2 of the displaced harmonic oscillator with minimum Un(xf ) ≡ (g0−g21/2g2)n
at xf and frequency Ωn.
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Omitting the constant term Un(xf ), since it only results in an irrelevant phase factor, we get for the Schrödinger
equation,

i~
d

dt
|Ψn(t)〉 =

[

p̂2x
2m

+
1

2
mΩ2

n(x̂− xf )
2

]

|Ψn(t)〉

≡ Ĥn|Ψn(t)〉 . (9)

Time evolution

The general form of a Gaussian state in the position representation is given by

ψ (x, t) =
(u

π

)
1

4

exp
(

−i x̄p̄
2~

+ iµ
)

exp

[

− (x− x̄)
2
(u+ iv)

2
+ i

p̄x

~

]

, (10)

where x̄ and p̄ are the coordinates of “center of mass” of the distribution in the phase space and u and v give the
form of this distribution. Here, u is the inverse square of the width of the Gaussian package and v is related to
the curvature of the wave fronts. Different from the general form of a Gaussian state in the position representation,
defined by Bialynicki-Birula [12], we define it in equation (10) with an additional term µ that is a real function of
time. This global phase, in general neglected (see, e.g., [12, 13]), has the important role of ensuring the consistency
of the equations of motion.
The dynamics governed by a Hamiltonian which is quadratic in both position and momentum keeps the Gaussian

shape of a Gaussian initial state. This is the case of the problem treated here. The atomic motion can be divided
into two stages: the first, the atom undergoes the action of an harmonic potential when it crosses the region of
electromagnetic field while, in the second part, the atom evolves freely. In the two stages, the Hamiltonian governing
the evolution is quadratic in atomic position and momentum [cf. equation (9)]. Since the initial atomic state is
Gaussian, we can consider that such state will preserve the form given by equation (10) throughout time evolution.
In this case, the parameters x̄, p̄, u, v and µ are functions of time and their respective equations of motion can be
derived from Schrödinger equation.
Consider a particle of mass m moving under the action of an harmonic potential. The natural frequency of this

movement is Ωn. The Hamiltonian governing this dynamic is given by

Ĥ =
p̂2x
2m

+
1

2
mΩ2

nx̂
2. (11)

In the position representation, the evolution of the state ψ of the particle is governed by the Schrödinger equation

i~
∂

∂t
ψ(x, t) =

[

− ~
2

2m

∂2

∂x2
+

1

2
mΩ2

nx
2

]

ψ(x, t). (12)

Suppose that the initial state of the particle is Gaussian. We obtain the equations of motion for the parameters
x̄, p̄, u, v and µ by substituting the general form (10) in the equation above, grouping the terms of same power in
(x− x̄), and then separating the real and imaginary parts. This procedure takes six equations for the five parameters
mentioned. The system is therefore, “super-complete”. Eliminating such redundancy, the equations of motion are the
following

˙̄x =
p̄

m
, (13a)

˙̄p = −mΩ2
nx̄ , (13b)

K̇ = i
mΩ2

n

~
− i

~

m
K2 , (13c)

µ̇ = − ~

2m
u, (13d)

where we define K = u + iv. Here, the dots indicate time derivative. Note that the equations of motion for the
coordinates of the centroid of the distribution are equivalent to the classical equations of movement for the position
and momentum of a particle moving in an harmonic potential. Equation (13d) relates the Gouy phase with the inverse
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square of the beam width. The same result was obtained for light waves confined in the transverse direction in Ref.
[14]. This equation does not carry any analogy with the equation of motion for classical particles and it is an effect
of the wave behavior. If the general state (10) does not have the parameter µ, we obtain u = 0. This makes no sense,
since u represents the inverse square of the width of the Gaussian package. Therefore, since the Gaussian shape of the
state has to be maintained because the dynamic is governed by a Hamiltonian quadratic in position and momentum,
the Gouy phase term has to appear in the evolution to guarantee the consistency of the equations of motion that
represent the Gaussian shape of the packet at a given time. The absence of the Gouy phase term implies that the
shape of the packet at a given time is a plane wave with infinity width and not Gaussian with a finite width.

The Focusing Process

Here we give details of the focusing process. We consider that a stationary electromagnetic field of wavelength λ is
produced in an optical cavity where the relation of the wavelength of the field and the initial width of the wavepacket
in transverse direction is such that the harmonic approximation is guaranteed. In Fig. 2 we consider that a initial
coherent Gaussian state compressed in momentum (region I) enters in a cavity where a stationary electromagnetic
field is maintained (region II). The atoms interact dispersively with one mode of the quantized electromagnetic field
inside the cavity. Dispersive coupling is actually one necessary condition to produce a quantum lens, since transitions
cause aberration at the focus [10, 15]. We note that a key ingredient for the focusing problem is to construct inside
the cavity a compressed (squeezed) state, since the harmonic interaction between atom and field do not produces
compression and only rotates the atomic state. When the atomic beam leaves the region of the electromagnetic field,
the atomic state evolves freely and the compression is transferred to the position (region III).
Let us assume, as an initial atomic state, the compressed vacuum state

〈x|ψn(t = 0)〉 = ψn(x, t = 0) =

(

1

b0
√
π

)1/2

exp

(

− x2

2b20

)

, (14)

where b0 is the initial collimation width of the packet, which has to be collimated in a such way to guarantee
the dispersive limit for the entire beam, i.e, 4π2nΩ2

0b
2
0/(∆λ

2) ≪ 1, so that we can avoid the aberration caused
by the transitions and obtain a focus with good resolution. The state above will be compressed in momentum if
b0 > bn =

√

~/ (mΩn), where bn is the width of the distribution in position of the ground state of the harmonic
oscillator.

I

II

III

FIG. 2: Initial atomic compressed state in momentum . The evolution inside the cavity rotates the state and transfer the
compression to the position.

For the parameters x̄, p̄, K and µ, we get

x̄(t < tL) = −xf cosΩnt , (15)

p̄(t < tL) = mΩnxf sinΩnt , (16)

and

K(t < tL) =

(

cosΩnt+ i
b2n
b20

sinΩnt

)−1 (

1

b20
cosΩnt+ i

1

b2n
sinΩnt

)

, (17)
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for the initial conditions x̄0 = −xf , p̄0 = 0, u = b−2
0 and v = 0. Also, from equation (17) we obtain

u(t < tL) =

[

b20

(

cos2 Ωnt+
b4n
b40

sin2 Ωnt

)]−1

. (18)

Now u−1 is the width of the Gaussian wavepacket squared. At this stage

µn(t < tL) = − 1

Ωnτn
arctan

[

b2n
b20

tan(Ωnt)

]

. (19)

When the atomic beam leaves the region of the electromagnetic field, the atomic state evolves freely. The equations
of motion can be obtained analogously and we get for t > tL

x̄(t > tL) = −xf cosφn +Ωn(t− tL)xf sinφn, (20)

p̄(t > tL) = mΩnxf sinφn, (21)

K(t > tL) =

b2
n

b2
0

cosφn + i sinφn

b2n

[

cosφn + i
b2
n

b2
0

sinφn + i t−tL
τn

(

b2
n

b2
0

cosφn + i sinφn

)] , (22)

and

b20u(t > tL) =

[

(

cosφn − t− tL
τn

sinφn

)2

+
b4n
b40

(

sinφn +
t− tL
τn

cosφn

)2
]−1

, (23)

where φn = ΩntL and τn = mb2n/~. The focus will be located in the atomic beam region where the width of the
wavepacket is minimal. In other words, when u(t > tL) be a maximum there will be the focus. This will happen when
the function

D(t) =

(

cosφn − t− tL
τn

sinφn

)2

+
b4n
b40

(

sinφn +
t− tL
τn

cosφn

)2

, (24)

attains its minimum value. The time for which its derivative vanishes is given by

tnf =
zf + L

vz
= tL + τn

(

1− b4
n

b4
0

)

sinφn cosφn

b4
n

b4
0

cos2 φn + sin2 φn
, (25)

therefore the focus is located at

znf = vzτn

(

1− b4
n

b4
0

)

tanφn

b4
n

b4
0

+ tan2 φn
. (26)

Note that different Fock state n of the EM field focuses the atom beam in different positions.
The width of the Gaussian beam that passed through the lens, Bn(t > tL) = 1/

√

u(t > tL), can be written as

Bn(t > tL) = b′0

[

1 +

(

t− tnf
τ ′0

)2
]

1

2

, (27)

where we define

b′0 =Mnb0, (28)

τ ′0 =M2
nτ0, (29)
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and

Mn =
1

√

cos2 φn +
b4
0

b4
n

sin2 φn

. (30)

The prime was used here to differentiate the beam parameters after the focusing and their parameters before the
focusing. We see that the waist of the beam is increased by factor Mn and the time scale τ0 (the analogous of the
Rayleigh range for optical beams [5]) is increased by the M2

n. In optics, the amount Mn is known as magnification
factor [11]. If the state is not initially compressed, i.e., if bn = b0, Mn = 1 and we do not have focusing. If the state
is initially compressed in momentum, i.e., if bn < b0, Mn < 1 and we have a convergent lens. If the state is initially
compressed in position, i.e., if bn > b0, Mn > 1 and we have a divergent lens.

FOCUSING BY A COHERENT STATE: THE GENERALIZED UNCERTAINTY PRINCIPLE AND

ENTANGLEMENT

In this section we will assume the field state to be in a coherent state. Due to the interaction with the atom the
atom-field wavefunction will be an entangled state. Tracing out the field degrees of freedom will yield a mixed density
matrix for the atom. In this case a convenient tool to describe entanglement is the purity of this density matrix
since in this case the purity loss is directly related with the information shared between the two degrees of freedom.
Consequently the purity of this density matrix characterize the quantum properties of the field and in practise permit
us to choose a field that focusing an atom beam and not affect its purity. Another important parameter to define
here for the atomic beam is the analogous of the quality factor that measure the spatial coherence of optical beam.
In optics this parameter can be defined through a covariance matrix [16] and for atomic beam we will define it in the
same way. The change in the initial coherence and purity of the atomic beam manifested respectively by the quality
factor and atomic density matrix is a consequence of the quantum nature of the field.
The density matrix corresponding to the state (4) is given by

ρ̂ ≡ |ψ(t)〉〈ψ(t)| =
∑

n1,n2

wn1
w∗

n2

∫

dx1

∫

dx2ψn1
(x1, t)ψ

∗
n2
(x2, t)|x1〉〈x2| ⊗ |n1〉〈n2|. (31)

The corresponding atomic density matrix is given by

ρ̂A ≡
∞
∑

n=0

〈n|ρ̂|n〉 =
∞
∑

n=0

|wn|2
∫

dx1

∫

dx2ψn(x1, t)ψ
∗
n(x2, t)|x1〉〈x2|. (32)

Next we discuss the covariance matrix of the atomic beam so that we can obtain the analogous of the beam quality
factor. The covariance matrix is defined as follows

MC =

(

σ2
xx σxp
σxp σ2

pp

)

, (33)

where σ2
xx = ∆x2 = 〈x̂2〉 − 〈x̂〉2, σ2

pp = ∆p2 = 〈p̂2〉 − 〈p̂〉2 are the squared variances in position and momentum,

respectively, and σxp = 1

2
〈x̂p̂+ p̂x̂〉− 〈x̂〉〈p̂〉 is the position-momentum covariance. Here we obtain for these quantities

the following results

σ2
xx =

∞
∑

n=0

|wn|2
B2

n

2
, (34)

σ2
pp =

~
2

2b20

∑

n

|wn|2
M2

n

, (35)

and

σxp = −~

2

∑

n

|wn|2
M2

n

(

t− tnf
τ0

)

. (36)
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The determinant of the matrix in equation (33) is the generalized Robertson-Schrödinger uncertainty relation and
is given by

σ2
xxσ

2
pp − σ2

xp = C ~
2

4
, (37)

where

C =
∑

n

∑

m

|wn|2|wm|2
M2

m

[

M2
n +

1

M2
nτ

2
0

(tn2f − tnf t
m
f )

]

. (38)

The constant C is a proportionality constant. In wave optics it is referred to as the squared of quality factor of the
beam M2 [17] and gives a measure of the spatial coherence of the laser beam. In the matter wave context the situation
is similar: when C = 1 we will have a completely coherent and separable atomic beam since the determinant of the
covariance matrix attains its minimum value. It may be taken as an indirect indication of entanglement loss. This
constant contains the ingredients of the beam focusing as e.g. the “focal time” and the field distribution. Now let us
interpret this constant and extract its physical content. It is well known that coherent Gaussian states saturate the
generalized uncertainty principle to ~

2/4. In fact this is true for any state subject to a quadratic dynamical evolution.
We notice that the constant C carriers ingredients originated from the atom-field interaction. Therefore we expect
that for a coherent field with a sufficiently large average photon number n̄, entanglement with atom will become
negligible and therefore this constant should tend to one as a function of n̄. This is shown in Fig. 3a for the thin lens
regime. The numerical calculation was performed using parameters corresponding to Cesium atoms in the transition
62S1/2 − 72P1/2 [1]: wave length inside cavity λ = 459 nm, atomic mass mCs = 2.2 × 10−25 kg, Rabi frequency
Ω0/2π = 0.67 MHz, cavity length L = 100 µm, longitudinal velocity vz = 300 m/s, interaction time tL = 0.3 µs and
collimation width b0/λ ∼ 1/3. For detuning we choose the value ∆ = 4.2× 108 Hz. With these values we obtain the
following conditions

φn ≪ 1, bn/b0 ≪ 1, (39)

for the average photon number 3 < n̄ < 30. Now, neglecting in the cavity the kinetic energy p̂2x/2m of the transverse
motion of the atom compared to the interaction energy g(x)â†â and considering the conditions above, we obtain the
regime of a thin lens [1] in which the “focal time” is given by

tnf ≈ tL +
m∆

~Ω2
0k

2tLn
, (40)

and the magnification factor by

Mn ≈ 1
√

1 +
b4
0

b4
n

φ2n

, (41)

where k = 2π/λ. We see that for small values of n̄ (∼ 3) where the atom field interaction is viewed as a quantum
process the values of the constant C is larger than one and around n̄ (∼ 10) such quantum effects are washed out.
Now a direct measure of atom-field entanglement is given by

Tr(ρ̂2A) = 2
∑

n,m

√

τ ′m0 τ ′n0
√

(τ ′m0 + τ ′n0 )2 + (tnf − tmf )2
. (42)

This quantity, as well as C, is time independent and reflects the entanglement during the atom-field interaction time
tL. For the same parameters as in Fig. 3a we obtain the curve in Fig. 3b for the thin lens regime. Notice that the
atomic subsystem becomes a pure state, i.e., uncorrelated with the electromagnetic field for sufficiently large values
of n̄ (≥ 10).
The constant C in equation (38) may be experimentally obtained from the quadratures of the atomic beam at the

focus so that the theoretical prediction can be tested. However the same is not true for the purity since it depends on
knowledge of the atomic state, which may in principle, be obtained by quantum tomography. Although this represents
an enormous challenge, the impressive progress achieved in the area in the last decade may get us there hopefully.
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FIG. 3: a) Quality factor of the atomic beam M2 as a function of the average photon number n̄ for focusing of a Cesium
atom in the thin lens regime. b) Trace of squared reduced density matrix of atom Tr(ρ̂2A) as a function of the average photon
number n̄ for focusing of a Cesium atom in the thin lens regime. We see that its purity increases when the average photon
number increases and this is a manifestation of the atom-field disentanglement and represents the classical limit of the field.
In a similar way, the increasing of the coherence with an increasing average photon number in (a) can also be considered as a
manifestation of the atom-field disentanglement and consequently represents the classical limit of the field.

CONCLUSIONS

Encouraged by the recent success of the experimental measurement of the Gouy phase for matter waves [7–9]
proposed in [6] for first time, we revisit the focusing of the atomic beam, i.e., consider a quantum lens in order to
explore other essentially quantum features of the process. One of then has to do with multiple foci which reflect the
granular nature of the cavity field, studied several years ago by Averbukh et al and Orzag et al [1]. We therefore focus
our attention in the atom-field entanglement and discuss how this effect alters a measurable quantity, i.e., the atomic
beam covariance matrix and show that a direct consequence of this entanglement is given by the purity loss of one of
the degrees of freedom. We also show that the entanglement properties disappear by the enhancement of the average
photon number, as to be expected. In the present example, for Cesium atoms the “classical limit” is reached around
n̄ ≥ 10 depending on details of the atom-field dynamics during the interaction time which preserve the dispersive
limit such as the detuning and the number of photon in the field state.
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