
Color texture classification method based on a statistical multi-model and geodesic
distance

Ahmed Drissi El Maliania,, Mohammed El Hassounib,d,, Yannick Berthoumieuc,, Driss Aboutajdined,

aL.I.M. Faculty of Sciences Dhar el Mahraz, USMBA, Fs, Morocco
bDESTEC, FLSHR, University of Mohammed V-Agdal, Rabat, Morocco.

cInstitut Polytechnique Bordeaux/ENSEIRB-MATMECA, Laboratoire IMS CNRS UMR 5218 - Groupe Signal et Image, France.
dLRIT URAC 29, University of Mohammed V-Agdal, Rabat, Morocco.

Abstract

In this paper, we propose a novel color texture classification method based on statistical characterization. The approach
consists in modeling complex wavelet coefficients of both luminance and chrominance components separately leading to a
multi-modeling approach. The copula theory allows to take into account the spatial dependencies which exist within the
intra-luminance sub-bands via the luminance model ML, and also between the inter-chrominance subband coefficients
via the chrominance model MCr . The multi-model, i.e ML and MCr , is used to develop a Bayesian classifier based on the
softmax principal. To derive the classifier, we propose a closed-form expression for the Rao geodesic distance between
two copulas. Experiments on two sub-families of luminance-chrominance color spaces namely Lab and HSV have been
carried out for a wide range of color texture databases. The combination of different statistical sub-models show that
the multi-modeling performs better than some existing methods in term of classification rates.

Keywords: Color texture, Wavelet representation, Multivariate copula model, Rao geodesic distance, Bayesian
classification

1. Introduction

For color texture analysis, the question of the color space
selection to characterize the visual content may be raised.
RGB space is the most natural since it represents the
acquisition-reference space. However, R, G and B chan-
nels are known to exhibit simultaneously high statistical
dependencies relatively to: 1) the intra-channel or spa-
tial one, 2) the inter-band for scale-space representation
one and 3) the inter-channel or multicomponent one. In
recent works, some authors have proposed various stochas-
tic models to characterize the inter-channel dependen-
cies alone. From scale-space representation such as 2-D
wavelet or others, previous approaches consist in fitting
the histograms of the wavelet subbands with a given para-
metric probability density function (pdf) of the trivari-
ate color vector samples for each level of the decomposi-
tion. Most important recent works for RGB color space are
based on statistical approach based on multivariate para-
metric tests (Seetharama et al. 2014), multivariate gener-
alized Gaussian distribution in (Verdoolaege et al. 2012)
and copulas based multivariate Weibull distribution
(Kwitt et al. 2011). The parameters of the pdf are the co-
variance matrix and different auxiliary parameters such as
the shape parameter characterizing the non-Gaussiannity.
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Extending these models to take into account jointly intra-
band, inter-band and inter-channel dependencies, leads
to a high-dimensional model in terms of number of pa-
rameters. This is a main drawback of these propos-
als since, in practice, for a fixed data size, dealing with
high-dimensional model may be a critical issue in terms
of parameter estimation performance. Considering color
space, another alternative to the RGB space is to con-
sider the family of luminance-chrominance (LC) color
spaces (DeYoe et al. 1996; Mojsilovic et al. 2000). This
family includes perceptual (HSV, HSI and HSB) and
perceptually uniform (Lab, Yuv, YCbCr) color spaces
(Sarifuddin et al. 2005). An extended comparison of those
spaces is given by (Qazi et al. 2011). These authors
note that the luminance channel is uncorrelated with the
chrominance channels. From this independence in LC
spaces, they proposed a model taking into account sepa-
rately intra and inter dependencies, i.e. multi-model, with
few parameters compared to the required number by using
the RGB space. Qazi et al. proposed to consider a multi-
model based on a 2-D complex quarter plan autoregressive
(2-D QP AR) model for luminance as well as for chromi-
nance information. This may lead to a lack of flexibility
because the luminance and chrominance are uncorrelated
and thus, have distributions of different natures.
In this paper, considering the LC color spaces, we propose
a multi-modeling approach based on multivariate stochas-
tic modeling. The contribution is twofold:
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• First, we propose a multi-model based on two non-
Gaussian sub-models, i.e. ML and MCr , devoted
to describe respectively 1) the intra-channel depen-
dency by considering the spatial structure and inter-
band dependence of the luminance channel, and 2) the
inter-channel dependency by considering a bivariate
pdf for the two chrominance channels. Both ML and
MCr are based on copula as a powerful tool to con-
struct non-Gaussian joint models that fit data with
even different natures of margins. Linear and/or cir-
cular models are derived depending on the component
natures (ex: the Hue in HSV color space is a circular
channel).

• Second, for the similarity measurement used to com-
pare two texture samples, we derive a closed form
expression for the Rao geodesic distance for copula
based multivariate models. Contrary to the con-
ventional Kullback-leibler (KL) divergence, the Rao
geodesic metric has the advantage to satisfy distance
properties such as symmetry and triangular inequality
(Atkinson et al. 1981).

The use of different models for characterizing the
wavelet coefficients has been recently investigated by
(Rakvongthai et al. 2013), for texture retrieval in a noisy
environment. Authors proposed different univariate statis-
tical models for the real/imaginary, magnitude and phase
parts of complex subband coefficients. The parameter vec-
tor of the studied texture is then formed by the concatena-
tion of the estimated parameters from each of these mod-
els. Also, the similarity measure has been expressed by a
formula combining both magnitude and phase KL diver-
gences using a mixing parameter. While the cited work
did not consider the color information at all, it should
be emphasized that the present work considers the color
and texture information jointly for image characterization.
Concerning the similarity measure, the originality of our
method is the use of Rao geodesic distance which rep-
resents a good alternative to the KL divergence since it
satisfies the distance properties. For this, a closed-form
expression of Rao geodesic distance between copula based
distributions is developed.
Note also that this work stands out from our previous work
(Maliani et al. 2012) which presents a preliminary study
of the multi-modeling concept that considered only the
special case of color representation, the HSV color space.
Moreover, the paper did not discuss the dimensionality
reduction issue when considering the three dependencies
(intra-band, inter-band and inter-channel). Also, in the
classification step, we proposed the K-Nearest Neighbor-
hood classifier taking the weighted sum of the two simi-
larity measures between the luminance and chrominance
sub-models. The weights have been tuned experimentally
which is the same as for (Rakvongthai et al. 2013), which
led us to test exhaustively on several scales of weights to
get the best classification rate. The multi-modeling pro-
posed in this paper, helps in dimensionality reduction of

the extracted features to characterize the textural con-
tent. According to several dependence experiments pre-
sented in section 2, the spatial structure of the texture
and the inter-band dependence is only considered for the
luminance component and the inter color-channel depen-
dency consists of a bivariate model. The performance of
the multi-model is tested using a Bayesian classifier based
on the softmax principal (Bishop 2006) thanks to its suit-
ability to combine several similarity measures through a
posteriori probability fusion. The experimental protocol
adopted here, aims to find the optimal configuration of
our multi-model. This starts with the choice of statisti-
cal distribution related to color components in the field
of dual-tree complex wavelet CT-DWT (Kingsbury 1998).
We proposed to build joint models by testing different com-
binations of Gamma , Weibull and VonMises distributions
for both luminance and chrominance components. First
comparisons were considered to show the relevance of each
model for the color spaces. Then, we compared our best
selected models with the state of the art methods in terms
of classification rate, the dimensionality reduction and the
computation time.
This paper is organized as follows. Section 2 deals with the
proposed multi-modeling approach for textures in LC color
spaces. In Section 3, we present the classification frame-
work, and the proposed similarity measurement. Then,
we show experimental results in Section 4. Finally, we
give concluding remarks in Section 5.

2. Color texture modeling in LC color spaces

2.1. Dependence characterization

Let us consider a stationary color texture xT rep-
resented in a given LC color space, and let l be the
luminance component, cr1/cr2 respectively the first and
the second chrominance component of xT . Each color
component is first decomposed into a set of wavelet
subbands. In wavelet domain texture characterization, it
is common to model the statistical distribution of wavelet
coefficients in different subbands, which corresponds to
the detail subbands. The low-pass wavelet coefficients
are excluded ((Mallat 1999), (Boubchir et al. 2010)). For
2-D wavelet transforms, each scale usually has several
subbands corresponding to the different orientations.
Let us consider K subbands, where K = S × O with
S the number of scales and O the number of orienta-
tions. The subbands are respectively l(k), cr

(k)
1 , cr

(k)
2 ,

k = 1, · · · ,K. The statistical distribution of wavelet
detail coefficients of natural textures has been extensively
studied ((Simoncelli 1997), (Boubchir et al. 2010),
(Lasmar et al. 2010), (Verdoolaege et al. 2012),
(Kwitt et al. 2011)). It has been shown that the
empirical distribution is generally heavy-tailed with a
sharp peak at zero. This leptokurtic behavior leads to
consider non-Gaussian marginal or joint density. Contrary
to the marginal approach, the joint modeling needs to
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define the dependence which exists between subbands
coefficients. Intra-band, inter-band and inter-channel
dependencies have to be considered. Let us detail each of
these dependencies for the three color components.

2.1.1. Intra-band dependency

Intra-band dependence refers to the spatial neighbor-
hood dependence between coefficients of the same wavelet
subband. It corresponds to the spatial structure of the
studied subband. Let s be the location of a reference
coefficient from the kth subband of a given color chan-
nel. If we consider the luminance channel for example,
let m be the size of the chosen neighborhood. The collec-
tion of the reference coefficient neighbors is specified by

l
(k)
s =

(
l
(k)
1,s , · · · , l

(k)
m,s

)
.

Then, considering all the subbands coefficient neighbors,
the dataset to be observed is:

lintra =
[
l
(k)
1 , · · · , l(k)

s , · · · , l(k)
P

]T
(1)

lintra is a P by m matrix, where P is the size of the wavelet
subband. If we consider, the first chrominance channels,
intra-band dependency for a given subband k is studied by
observing the following dataset:

cr1intra
=
[
cr1

(k)
1 , · · · , cr1

(k)
s , · · · , cr1

(k)
P

]T
(2)

For the second chrominance channel, we have:

cr2intra
=
[
cr2

(k)
1 , · · · , cr2

(k)
s , · · · , cr2

(k)
P

]T
(3)

2.1.2. Inter-band dependency

To model the inter-band dependence, we consider sub-
bands in different orientations for the same color channel.
Thus for luminance inter-band we observe a dataset repre-
sented by a P by K matrix, where K is the total number
of subbands:

linterbd =
[
l(1) · · · l(K)

]
(4)

for chrominance inter-band:

cr1interbd
=
[
cr

(1)
1 · · · cr

(K)
1

]
(5)

cr2interbd
=
[
cr

(1)
2 · · · cr

(K)
2

]
(6)

we note that l(k), cr
(k)
1 and cr

(k)
2 are respectively the col-

umn vectors containing all coefficients of the kth subband
of luminance, first and second chrominance channels.

2.1.3. Inter-channel dependency

It refers to the dependence between coefficients of sub-
bands from different color channel, considering a fixed ori-
entation k. The observation matrix is as follows:

Dinterch =
[
l(k) cr

(k)
1 cr

(k)
2

]
(7)

2.1.4. Full dependence

Considering all the aforementioned dependencies leads
to a full dataset that considers intra-band, inter-band and
inter-channel dependencies jointly. It is represented by the
following matrix of size P by (3×K ×m):

D =
[
l
(1)
1 , · · · , l(1)

P , · · · , l(K)
1 , · · · , l(K)

P , cr1
(1)
1 , · · · , cr1

(1)
P ,

· · · , cr1
(K)
1 , · · · , cr1

(K)
P , cr2

(1)
1 , · · · , cr2

(1)
P , · · · , cr2

(K)
1 ,(8)

· · · , cr2
(K)
P

]T
Consideration of this matrix means, first, that all the three
components carry the spatial structure information (intra-
band). Second, that dependence exists between subbands
of all orientations for each channel (inter-band), and third,
that the representation exhibits dependence among the
three color channels (inter-channel).

2.2. Multi-model approach

2.2.1. Experimental analysis of dependence

Contrary to the RGB representation, LC color spaces of-
fer separability between luminance and chrominance. At
first glance, this indicates that the inter-channel depen-
dence have not to be considered between luminance and
chrominance. A more precise study of dependence is done
according to the correlation coefficients. Table 1 shows
degrees of dependence when textures are represented in
Lab color space. This is obtained by averaging the Pear-
son, Kendall, Spearman and the mutual information coeffi-
cients on all subbands of 40 color textures from the Vistex
database (Vistex). We recall that mutual information is
a measure of the statistical dependence between two vari-
ables. If we suppose that X and Y are two random vari-
ables, f(x) and f(y) the marginal probability distribution
functions of X and Y respectively, and f(x, y) the joint
probability distribution function of X and Y . The mutual
information between X and Y is then:

I(X,Y ) =
∑
x,y

f(x, y)log
f(x, y)

f(x)f(y)
(9)

We deduce from these results that intra-band dependence
have to be considered only for luminance, and that inter-
channel dependence exists only between chrominance com-
ponents. They also show that we can restrict the study of
inter-band dependence to the luminance component.

2.2.2. Multi-model formulation

Our contribution here is to exploit the independence be-
tween luminance and chrominance. So we propose a multi-
model based characterization that considers the different
natures of these information ((Qazi et al. 2011)). Two
joint and independent models ML and MCr are used to
respectively characterize the luminance information with
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Table 1: Averaging measure of dependence on the Vistex database, using Pearson, Kendall, Spearman and mutual information for 40 color
textures from the Vistex database in the Lab color space.

Intra-band Inter-band Inter-channel
l cr1 cr2 l cr1 cr2 {l, cr1} {l, cr2} {cr1, cr2}

Pearson 0.47 0.041 0.0372 0.33 0.037 0.041 0.003 0.003 1
Kendall 0.45 0.038 0.037 0.28 0.037 0.038 0.002 0.002 1

Spearman 0.32 0.026 0.025 0.25 0.025 0.026 0.001 0.001 1
MI 4.46 1.56 1.56 4.20 1.03 1.04 0.74 0.75 5.88

spatial and inter-band dependence considering observa-
tions of a vector ls (see subsection 2.4.1) and the chromi-
nance one devoted to inter-channel dependence by observ-
ing realizations of a vector crs (see subsection 2.4.2):

p(xT , θ) = p(xT |{ML,MCr}) ∝ p(ls, θL)

K∏
k=1

p(cr(k)
s |θcr ) (10)

where θL and θcr are the vectors of parameters of lumi-
nance and chrominance models, respectively. The multi-
modeling permits to reduce the dimension of the observed
dependence dataset D (subsection 2.1).

2.3. Copula based multivariate models

Different multivariate models can be used for defining
ML and MCr , such as the multivariate generalized Gaus-
sian (MGGD) (Verdoolaege et al. 2012), the multivari-
ate Bessel K forms (Boubchir et al. 2010), the spherically
invariant random vector (SIRV) (Lasmar et al. 2010).
Those models have been proposed to characterize different
kinds of dependencies such as the intra-band in the case
of SIRV and the inter-channel in the case of MGGD. Each
of them is dedicated to a specific dependency rule, either
for intra-band or inter-channel but never taking account of
both together. Obviously, extending each model simulta-
neously to the both dependencies is possible but the equiv-
alent model exhibits the main drawback the common def-
inition of the leptokurtic and platykurtic for the whole set
components of the multivariate model. If we suppose to
have a set of dependent variables T = [t1, · · · , tn], with
the MGGD or SIRV multivariate modeling, each marginal
ti has finally a similar shape value. This behavior is con-
firmed in the study of (Rangaswamy et al. 2002), the char-
acterization of one marginal is sufficient to determine the
shape of the whole distribution of a SIRV. Table 2 show av-
erages of scale and shape parameters supposing that sub-
bands of the three components are described by the same
marginal, Weibull or Gamma for example. It is clear from
the table that the marginal modeling of luminance and
chrominance exhibits different shape and scale parameters
in the case of Lab color space, contrary to RGB. In the
HSV color space, we observe that parameters are different
even between the chrominance components H and S.

The copula theory allows the joint modeling by separat-
ing the dependence structure from the marginal modeling.
It is thus easy to merge different marginal laws into the

Table 2: Average of parameters (considering wavelet subbands for
40 color textures from Vistex database), supposing that subbands
of the three color components are described by the same marginale
(Weibull or Gamma) in the case of Lab, HSv and RGB color spaces

Weibull Gamma
scale shape scale shape

L 11.47 1.54 4.97 2.18
a 3.21 1.63 1.26 2.41
b 2.20 1.62 0.92 2.39

H 26.83 1.08 27.15 1.29
S 0.12 1.53 0.05 2.16
V 0.0081 1.52 0.03 2.21

R 31.51 1.53 13.83 2.16
G 29.91 1.52 13.33 2.13
B 31.25 1.52 13.85 2.14

same multivariate pdf. (Nelsen 2006) defined the copula as
a multivariate uniform distribution used to construct mul-
tivariate models. Given that F is a d-dimensional cumula-
tive distribution function (cdf) with continuous marginals
F1, ..., Fd, the Sklar’s theorem (Sklar et al. 1959) shows
that there exist a unique copula C such that:

F (x1, · · · , xd) = C (F1(x1), · · · , Fd(xd)) (11)

Further, if C is continuous and differentiable, the copula
density (c) is given by:

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1...∂ud
(12)

The joint pdf is uniquely deduced from the marginals and
the copula density as follows:

f(x1, ..., xd) = c (F1(x1), ..., Fd(xd))

d∏
i=1

fi(xi) (13)

where fi, i = 1, · · · , d, represent the marginal pdfs that
can follow different laws.
Estimation of the copula parameters is done us-
ing the canonical maximum likelihood (CML)
(Durrleman et al. 1959) method. This is a pseudo
parametric estimation method contrary to the fully
parametric method, termed the inference from marginals
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(IFM) (Joe. 1997). The CML method consists in trans-
forming the data (x1, ..., xd) into uniform data (û1, ..., ûd)
using the empirical distributions (empirical cdfs) and
then estimates the copula parameters considering all the
observations as:

Σ̂ = argmax
Σ

n∑
i=1

log c (ûi1, ..., ûid; Σ) (14)

where n denotes the number of observations, and Σ repre-
sents the correlation matrix.
For marginal parameters, the estimation is done using the
conventional maximum likelihood method. Experiments
reveal that the CML estimator is the best since the method
does not rely on parametric assumption about marginals.
This means that less pertinent choice of marginals do not
affect estimation of the copula parameters.
For texture modeling, we repose on copulas to construct
the models ML and MCr . We select the Gaussian copula
for which the density is defined by:

cφ(u1, · · · , ud) =
1

|Σ|1/2
exp

[
−1

2
ϑT (Σ−1 − I)ϑ

]
(15)

with ϑT =
(
φ−1(u1), · · · , φ−1(ud)

)
, φ denotes the cdf of

the normalized Gaussian density, Σ the correlation matrix,
and I the d-dimensional identity matrix.
The choice of the Gaussian copula is justified by:

• the dependence representation, which is based on the
well known correlation coefficient.

• the existence of closed form of Rao distance for the
Gaussian copula which allow us to derive a closed form
of Rao distance for the joint model as a similarity
measure (subsection 3.1).

2.4. ML and MCr models

Considering the full dependence dataset D (see sub-
section 2.1.4) leads to high parametrization and thus to
very cumbersome estimation of parameters. To allevi-
ate this complexity, we use the proposition made by
(Qazi et al. 2011) about dependencies between coefficient
subbands when color textures are represented in LC color
spaces. The proposition consists in a multi-modeling
approach to reduce the dimensionality of the observed
dataset.

2.4.1. Multivariate spatial model for luminance (ML)

As a first step for reducing dimension of the full dataset
D, the spatial structure along intra- and inter-band de-
pendence are studied only for luminance via the model
ML. For a subband coefficient at the position s, in-
tra inter-band dependence is represented by the vector
ls = (l1,s, · · · , lm,s, · · · , ld,s), where d = m × K, m is the
neighborhood size and K is the number of wavelet sub-
bands. Considering all positions at the luminance sub-
bands, the dataset to be modeled is a P by d matrix of
realizations of the vector l:

L =



l1
l2
...

ls
...

lP


where P is the size of a wavelet subband. The observation
matrix is:

L =



l1,1 · · · lm,1 · · · ld,1
...

...
...

l1,s · · · lm,s · · · ld,s
...

...
...

l1,P · · · lm,P · · · ld,P


Based on the Gaussian copula, the pdf of the model ML

is defined by:

fML
(ls; θ) =

1

|ΣL|1/2
exp

[
−1

2
ϑTs (Σ−1

L − I)ϑs

] d∏
i=1

fs(li,s) (16)

where θ = (w1, w2, ..., wd; ΣL) is the vector of hyperpa-
rameters, ws = {wsj}j∈ℵ, s = 1, · · · , d is the vector of
parameters for the marginal fs and ΣL is the covariance
matrix of the Gaussian copula.
In the case of Gaussian copula, the CML estimator of co-
variance matrix is the sample correlation matrix of Gaus-
sian observations ϑ1, · · · , ϑP :

Σ̂L =
1

P

P∑
s=1

ϑsϑ
T
s (17)

with ϑs = (ϑ1,s, · · · , ϑd,s) is obtained by transforming the
observation ls = (l1,s, · · · , ld,s) from the observation ma-
trix L by ϑi,s = φ−1 (Fi(li,s)), i = 1, · · · , d and Fs is the
empirical marginal cdf.

2.4.2. Circular/Linear bivariate model for chrominance
(MCr)

We consider the inter-channel dependence only between
chrominance component subband represented by the vec-

tor cr =
(
cr

(k)
1 , cr

(k)
2

)
. Thus, considering all coefficients

of the chrominance subbands, the dataset to be modeled
by MCr is a P by 2 matrix:

cr =


cr1,1 cr2,1

...
...

...
...

cr1,P cr1,P


MCr is a bivariate model defined reposing on the Gaussian
copula:

fMCr
(cr(k)

s ; θ) =
1

|ΣCr |1/2
exp

[
−1

2
ϑTs (Σ−1

Cr
− I)ϑs

] 2∏
i=1

fi(cri) (18)
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where θ = (w1, w2; ΣCr ), wi = {wij}j∈ℵ. The index
i ∈ {1, 2} is the vector of parameters for the marginal fi,
and ΣCr the covariance matrix. The CML estimator of
the covariance matrix is as follows:

Σ̂Cr =
1

P

P∑
s=1

ϑsϑ
T
s (19)

with ϑs = (ϑ1,s, ϑ2,s) is obtained by transforming the ob-
servation crs = (cr1,s, cr2,s) from the observation matrix
cr by ϑi,s = φ−1(Fi(cri,s)), i = 1, 2 and Fs is the empirical
marginal cdf.
The model is called circular/linear because it offers the
possibility of using different marginals fi to come up with a
bivariate circular/linear, circular/circular or linear/linear
model for chrominance channels depending on the nature
of the used color space.

2.4.3. Texture joint modeling

Taking into account the previous sub-models, respec-
tively ML and MCr termed probabilistic because they de-
scribe probability distributions over sub-band coefficients
of the texture, let us consider a stationary observed tex-
ture, we have:

p(xT |{ML,MCr}) ∝ p(ls|ws,ΣL)

K∏
k=1

p(cr(k)
s |w(k)

cr1 , w
(k)
cr2 ,Σ

(k)
cr ) (20)

which can be written in a more compact parametric form
as:

p (xT |{ML,MCr}) ∝ p(xT |θs) (21)

with θs =
(
ws,ΣL, {w(k)

cr1 , w
(k)
cr2Σ

(k)
cr }k=1,···,K

)

3. Classification

In the framework of stochastic parametric classifier, we
consider supervised Bayes classifier to assign the most
probable class to a textured image. If we consider the
equiprobability of each class, the Bayes classifier consists
in finding the maximum of the likelihood such as:

b̂ = argmax
b∈{1,2,...,B}

[p(xT , θb)] (22)

where θb is the vector of parameters associated to the class
b. The vector θb is estimated during the learning step from
the set of texture samples representing the class b. Con-
sidering equation 22, the decision of the classifier is pro-
vided by the numerical evaluation of the likelihood which is
time consuming because of evaluating equation 21 from the
three color channel data. In order to avoid this expensive
step, a direct comparison between parametric vectors, i.e.
one representing the class and the other the texture query
xT , is expected. Thus, the class assignment is obtained

from a similarity measure. To do this, the Softmax ap-
proach or normalized exponential function (Bishop 2006)
is selected.

argmax
b∈{1,2,...,B}

exp(ab)
B∑
j=1

exp(aj)

(23)

with ab = ln
[

1
1+Li(xT ,xb)

]
.

The advantage of using the softmax principal is the
smoothed version of the maximum, since if ab � aj for all
j 6= b, then p(Cb|xT ) ' 1 and p(Cj |xT ) ' 0. The proposed
approach is thus based on the selection of a similarity mea-
sure, i.e Li(xT , xb) exhibiting a closed form in terms of
model parameters. Various probabilistic measures of simi-
larity propose this kind of properties such as the Kullback-
Leibler or Hellinger measures. All these possibilities have
been unified in the seminal theory of the information ge-
ometry. This consists in considering that the parametric
model of finite dimension forms a sub-manifold charac-
terized by a smooth Riemannian space. Some of these
measures are divergences such as Kullback-Leibler. A di-
vergence is a non-symmetric measure and can be not re-
specting the triangle inequality. Some others such as Bhat-
tacharya, Hellinger or others are really some distances.
Considering the properties of the Riemmanian manifold,
the well-founded distance associated to this type of mani-
fold is the geodesic or Rao distance (Atkinson et al. 1981).
The main drawback of the geodesic distance is that a
closed form for probabilistic model is rarely available. This
is the reason for which the Kullback-Leibler divergence is
usualy used in place to the geodesic distance. However,
the true distance according to the Riemannian space is
the geodesic distance.
In the next subsection, we derive for our context a closed
form for the geodesic distance for the Copula modeling.

3.1. Proposed Rao distance as similarity measure

For a probability density f(x; θ) with θ = (θ1, · · · , θN )
a vector of parameters, the Rao distance is a Riemannian
metric defined by the fisher information matrix as:

ds2 =

N∑
p,q=1

gpq(θ)dθ
idθj (24)

where gpq represent the Fisher matrix elements:

gpq(θ) = −E
[ ∂2

∂θpθq
log f(x; θ)

]
(25)

Let f be a Gaussian copula based joint pdf (ML or
MCr ), θ = {wi,Σ} is the vector of hyper-parameters of f ,
wi = {wij}j∈ℵ is the vector of parameters for the marginal
fi, i = 1, · · · , d (for example if the marginal is a Weibull
we have wi = {αi, βi} representing shape and scale pa-
rameters), d is the length of the vector of one observation
and Σ represents the covariance matrix of the Gaussian
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copula. By applying equations 13 and 15 in equation 25
we have:

gpq(θ) = −E

[
∂2

∂θpθq

(
log cΦ(u; Σ) + log

d∏
i=1

fi(xi;wi)

)]
(26)

where u = (u1, ..., ud) represents the vector of uniform co-
efficients that are obtained by transforming the wavelet co-
efficients (x1, ..., xd) using their cdfs (ui = F−1(xi, wi)) or
using their empirical cdfs (see MATLAB’s routine ”ecdf”
) (ui = eF−1(xi)). In this latter case, no assumptions
are made on the parametric form of the marginal distribu-
tions. The copula parameters are then independent from
any marginal parameter wij :

∂

∂wij
cΦ(u; Σ) = 0 (27)

so then, gwijΣ(θ) = gΣwij (θ) = 0, i = 1 · · · d, j ∈ ℵ
Thus,

gΣΣ(θ) = −E
[ ∂2

∂Σ∂Σ
log cΦ(u; Σ)

]
(28)

and

gµν(θ) = −E
[ ∂2

∂µ∂ν
log

d∏
i=1

fi(xi;wi)
]

(29)

with µ, ν ∈ {wij}, i = 1 · · · d, j ∈ ℵ

gµν(θ) = −E
[ ∂2

∂µ∂ν

d∑
i=1

log fi(xi;wi)
]

(30)

= −E
[ d∑
i=1

∂2

∂µ∂ν
log fi(xi;wi)

]
(31)

=

d∑
i=1

−E
[ ∂2

∂µ∂ν
log fi(xi;wi)

]
(32)

Thus, from (12):

ds2 = gΣΣdΣdΣ +

d∑
i=1

∑
µ,ν

gµν µ̇ν̇dt (33)

= ds2
Gauss +

d∑
i=1

ds2
Margins (34)

Hence, given two copula based probability distributions

f (1)(x; θ1) and f (2)(x; θ2) with θ1 = (w
(1)
1 , · · · , w(1)

d ,Σ1)

and θ2 = (w
(2)
1 , · · · , w(2)

d ,Σ2), we can compute the Rao
geodesic distance as the sum of the Rao distances of
the Gaussian distribution and the Rao distances between
marginals (El Maliani et al. 2011):

L2 =

∫ θ2

θ1

ds2 =

∫ θ2

θ1

ds2
Gauss +

d∑
i=1

∫ θ2

θ1

ds2
Margins (35)

L2 = L2
Gauss(f

(1)(x; Σ1)||f (2)(x; Σ2))+

d∑
i=1

L2
Margins(f

(1)
i (x;w

(1)
i )||f (2)

i (x;w
(2)
i )) (36)

that is:

L2 =
1

2

d∑
i=1

(lnλi)2+

d∑
i=1

L2
Margins(f

(1)
i (x;w

(1)
i )||f (2)

i (x;w
(2)
i )) (37)

where λi, i = 1, ..., d represents the eigenvalues of Σ−1
1 Σ2.

4. EXPERIMENTAL RESULTS

The experimental section is concerned with five major
issues:

1. Choice of the multi-model for color texture: for this,
we investigate a variety of models for different color
spaces.

2. Choice of the LC color space: we compare perfor-
mances between two sub-families of LC color spaces,
namely the perceptually uniform color spaces (repre-
sented by Lab), and the perceptual color spaces (rep-
resented by HSV).

3. Comparison with existing approaches: we evaluate
performances of our approach in comparison with ex-
isting uni-modeling approaches in LC color spaces
(Qazi et al. 2010; Qazi et al. 2011) and in RGB color
space (Verdoolaege et al. 2012; Kwitt et al. 2011).

4. Runtime: we address the runtime issue by compar-
ing the proposed Rao distance based similarity mea-
sure with the Monte-carlo based Kullback-leibler di-
vergence between copula based pdfs.

5. Curse of dimensionality: we compare our approach
with the full feature vector based approach (subsec-
tion 2.1).

4.1. Experiments versus data diversity

In order to conduct representative experiments, we use
different databases and various configurations of the ex-
perimental protocol leading to a large view of the pro-
posed multi-model performance. The conventional Vis-
tex database (Verdoolaege et al. 2012; Kwitt et al. 2011;
Do et al. 2002) is used considering two sizes of samples
respectively 32× 32 and 128× 128. Experiments are also
conducted on the Outex, ALOT and Stex databases which
are more challenging color texture database, since the color
and texture information are not easily distinguishable. We
consider the following scenarios:
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• First scenario, i.e. DB1, addressing a set of 24
textured images of size 512 × 512 from the Vistex
database (Vistex). The protocol follows the work of
(Permuter et al. 2006) and (Qazi et al. 2010). Each
image was divided into subimages of size 32× 32 pix-
els resulting of a large database of 6144 small tex-
tures. We consider 96 image from the resulting 256
subimages as the training set, while the remaining 160
subimages are considered as the test set. This dataset
is used in order to evaluate robustness of our model
even if very local spatial structures are considered.

• Second scenario, i.e. DB2, addressing a set of 54
textured images of size 512 × 512 from the Vis-
tex database. The protocol follows the work of
(Do et al. 2002). Each image was divided into subim-
ages of size 128× 128 pixels. This dataset is available
on the Outex web site (Ojala et al.; Outex) as test
suit Contrib TC 00006. For each texture, subimages
are considered to form a checkerboard. The white half
of subimages is then considered as the training set and
the black half is used as the testing set. Hence, the
training procedure will account for non uniformity of
the original images.

• Third scenario, i.e. DB3, addressing a set of 68
textured images of size 746 × 538 from the Outex
database. This dataset is also available on the Outex
web site as Outex TC 00013. Each image was divided
into 20 subimages of size 128 × 128 pixels. Training
and test sets are obtained as in DB2.

• Fourth scenario, i.e. DB4, addressing large set of
classes from ALOT (ALOT) database. 250 images
of size 384 × 256 from ALOT databse are consid-
ered, then each image is split into 16 non-overlapping
subimages resulting on two large databases of 4000
images of size 96 × 64. These images have been cap-
tured uder different viewing angles and illumination.
Here again training and test sets are obtained as in
DB2.

• Fifth scenario, i.e. DB5, addressing large set of classes
from Stex (STex) database. 476 textures from STex
of size 512× 512 are considered. Then, each image is
split into 16 non-overlapping subimages resulting on
two large databases of 7616 images of size 128× 128.
Here again training and test sets are obtained as in
DB2.

Every color component of each subimage was normal-
ized by subtracting its mean and dividing by its standard
deviation, and then decomposed using a 2-scale dual-tree
complex wavelet transform (DTCWT) (Kingsbury 1998)
with a Q-shift(14,14) tap filter. In addition to its rich
directional analysis, shift invariance and low redundancy
properties, the DTCWT was chosen for its reduced com-
putational time.

4.2. Quantitative evaluation of performance

Evaluation of the classification performance of each ap-
proach consists on two criteria, namely the percentage of
classification and the precision. We recall that for each
class of textures:

• True positives (TP): refers to the number of subim-
ages that have been successfully returned by the clas-
sifier as belonging to a given class.

• False positives (FP): is the number of subimages that
have been wrongly classified as belonging to a given
class.

• False negatives (FN): is the number of subimages that
are classified as not belonging to a given class while,
in fact, they belong to this class of textures.

• True negatives (TN): is the number of subimages that
are correctly classified as not belonging to a given
class.

The percentage of classification (or Sensitivity) is the pro-
portion of textures which were well labeled by the clas-
sifier. It represents the ability of the classifier in correct
positive assignment of a texture to its real class. A 100%
percentage means that the classifier makes no false neg-
ative labeling (FN = 0). The Percentage classification is
given as follows:

Sn =
TP

TP + FN
× 100% (38)

However, theoretically, a system that always returns posi-
tive assignment (even wrongly) will achieve 100% percent-
age classification. The problem with percentage classifi-
cation is that it tells nothing about textures that were
wrongly labeled as belonging to a given class (FP assign-
ments). For this, we take into account also the precision
to evaluate the classifier performance.
The precision criterion indicates the ability of the classifier
to detect true class membership. The precision is given by:

Sp =
TP

TP + FP
(39)

A classifier with very high precision makes no mistakes in
assigning a texture to its class (FP = 0).

4.3. Results and discussions

One of the advantages of the proposed multi-modeling
approach is the flexibility in term of modeling textures
from different LC color spaces. The joint models ML and
MCr enable us to consider different parametric modeling
for marginals between luminance and chrominance chan-
nels. As already mentioned, when chrominance compo-
nents are defined in a cylindrical space, the hue represents
a circular component and the saturation is the axe of the
cylinder. We can then benefit from the advantage of copu-
las in merging different marginals in the same joint model
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Table 3: Notations, descriptions and pdf expressions for the used models

Model Description pdf

CopMGam Gaussian copula based multivariate Gamma (all
marginals are Gamma)

f(x, θ) = 1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1 − I)ϑ] ×

( β
−α

Γ(α)
)d

∏d
i=1 x

α−1
i exp−

∑d
i=1(xi

β
), θ =

(α, β,Σ)

CopMWbl Gaussian copula based multivariate Weibull (all
marginals are Weibull)

f(x, θ) = 1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1 − I)ϑ] ×

( τ
λ

)d
∏d
i=1 x

τ−1
i exp−

∑d
i=1(xi

λ
)τ , θ =

(τ, λ,Σ)

{Gamma,Weibull} Gaussian copula based bivariate model with
Gamma as the fisrt marginal and Weibull as the
second marginal

f(x, θ) = 1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1 − I)ϑ] ×

τβ−αxα−1
2

λΓ(α)
(x1
λ

)τ−1 × exp
[
−(x1

λ
)τ − x2

β

]
, θ =

(α, β, τ, λ,Σ)

{vonMises,Weibull} Gaussian copula based circular/linear bivariate
model with vonMises as the fisrt marginal and
Weibull as the second marginal

f(x, θ) = 1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1 − I)ϑ] ×

τ
2πλI0(ν)

(x2
λ

)τ−1 exp[νcos(x1−µ)−(x2
λ

)τ ], θ =

(µ, ν, τ, λ,Σ)

{vonMises,Gamma} Gaussian copula based circular/linear bivariate
model with vonMises as the fisrt marginal and
Gamma as the second marginal

f(x, θ) = 1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1 − I)ϑ] ×

β−α

2πΓ(α)I0(ν)
(x2
β

)α−1 exp[νcos(x1 − µ) −
(x2
β

)α], θ = (µ, ν, α, β,Σ)

Table 4: Performances of different versions of the multi-model in Lab and HSV color spaces.

DB1 DB2 DB3 DB4 DB5
Sn Sp Sn Sp Sn Sp Sn Sp Sn Sn

Lab1 97.5 0.96 98.3 0.98 89.7 0.88 58.2 0.55 77.6 0.75
Lab2 94.5 0.92 95 0.93 84.6 0.84 54.3 0.52 74.7 0.73
Lab3 93.3 0.92 93.8 0.90 82 0.82 53.6 0.52 73.4 0.71
HSV1 95.6 0.94 96.7 0.94 86 0.86 55.5 0.54 76.9 0.75
HSV2 93.1 0.93 93.4 0.93 83.1 0.83 53.6 0.53 73.9 0.73
HSV3 90.4 0.88 90.8 0.88 80.5 0.82 51.3 0.49 70.4 0.68

Table 5: Average percentage classification (Sn) using the best multi-models in Lab and HSV in comparison with existing approaches.

DB1 DB2 DB3 DB4 DB5

Lab1 (proposed method) 97.5 98.3 89.7 58.2 77.6
(Qazi et al. 2011), in Lab 97.2 96.5 88 52.1 78.5
HSV1 (proposed method) 95.6 97.8 86 55.5 76.9

(Qazi et al. 2010), in IHLS 95.4 97.4 84.1 49.3 77.1
(Verdoolaege et al. 2012), in RGB 92.2 94.7 78.5 59.6 75.1

(Kwitt et al. 2011), in RGB 91.5 94.1 79.8 55.4 74.9

Table 6: Average percentage classification Sn and runtime (in minutes) on DB2, using Rao distance, ML based divergence and Monte-carlo
based KL divergence as similarity measure for Lab1 and HSV1 multi-models.

Rao KLML KLMC

Sn Runtime Sn Runtime Sn Runtime
Lab1 98.3 4.9 min 98 40.5 min 97.2 60 min
HSV1 96.7 6.5 min 95.9 44.3 min 96.2 63 min

Table 7: Classifier performances for full feature vector (spatial structure for luminance and chrominance)

DB1 DB2 DB3
Sn Sp Sn Sp Sn Sp

Lab1 86.9 0.83 90 0.88 75.8 0.78
HSV1 84.5 0.82 89.6 0.88 72.2 0.70
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to construct a circular/linear bivariate model for chromi-
nance such as {vonMises,Weibull} or {vonMises,Gamma}
(see Table 3).
Regarding the first part of our experiments, Table 4
presents color texture classification performance in Lab
and HSV color spaces respectively, using different multi-
models on DB1, DB2, DB3, DB4 and DB5. We note that:

• Lab1: refers to a multi-model that considers Cop-
MGam (Table 3) for the luminance model ML and
CopMWbl for the chrominance model MCr in Lab
color space.

• Lab2: refers to CopMWbl for ML and CopMGam for
MCr in Lab color space.

• Lab3: refers to CopMGam model for ML and the
bivariate model {Gamma,Weibull} for MCr in Lab
color space.

• HSV1: refers to CopMGam for ML and the bivari-
ate model {vonMises,Weibull} for MCr in HSV color
space. (vonMises for the Hue marginal, and Weibull
for the Saturation marginal)

• HSV2: refers to CopMWbl for ML and the bivari-
ate model {vonMises,Gamma} for MCr in HSV color
space.

• HSV3: refers to CopMGam for ML and and the
bivariate model {Weibull,Gamma} for MCr in HSV
color space.

We remark that in Lab, and for all the five databases,
best performance is achieved using the multi-model Lab1.
This indicates that the spatial structure along with the
inter-band dependency are better characterized using the
Gaussian copula in conjunction with Gamma marginals
(CopMGam). This also indicates that the dependency
between ”a” and ”b” chrominance components is bet-
ter characterized using the Gaussian copula in conjunc-
tion with Weibull marginals (bivariate CopMWbl). For
HSV, the multi-model HSV1 leads to the best perfor-
mance in all databases. This is due to the ability of
CopMGam to model spatial structure and inter-band de-
pendence for luminance, and the circular/linear bivariate
{vonMises,Weibull} to characterize the chrominance de-
pendency.
We next would like to compare between the perceptually
uniform and perceptual subfamilies of LC color spaces, via
their respective representatives Lab and HSV spaces. Con-
sidering the best multi-models in each case (Lab1 for Lab
and HSV1 for HSV), we clearly observe from Table 4 that
Lab representation outperforms the HSV one. This is a
fair comparison even the models ML and MCr are not the
same in multi-models Lab1 and HSV1, since these latters
are the best relatively the nature of the color space. Then,
if Lab1 outperforms HSV1, we can conclude that in best
modeling case the Lab representation is better than the
HSV one.

These results are explained by the better luminance-
chrominance representation of Lab. In other words, we
can say that Lab offers more decorrelation property be-
tween luminance and chrominance, which is the central
interest of our approach. We do not ignore that percent-
age classification and precision rates are lower for large
databases DB3, DB4 and DB5.
Regarding the effectiveness of our approach in comparison
with existing ones, i.e uni-modeling in LC and RGB color
spaces, Table 5 shows average percentage classification Sn
of textures of DB1, DB2, DB3, DB4 and DB5 using our
best multi-models (Lab1 and HSV1) against the four fol-
lowing approaches:

• (Qazi et al. 2010), in Lab: Linear prediction models
based characterization in the Lab color space,

• (Qazi et al. 2011), in IHLS: Linear prediction models
based characterization in the improved hue luminance
saturation (IHLS ) color space,

• (Verdoolaege et al. 2012), in RGB: Dependence be-
tween R, G and B color components using the MGGD
model,

• (Kwitt et al. 2011), in RGB: Dependence between R,
G and B using the t-copula based multivariate Weibull
model,

We observe from Table 5 that our Lab1 proposed
model leads to better performance when compared with
the linear prediction modeling (Qazi et al. 2010) and
(Qazi et al. 2011). Results presented in the latter studies
are the best of our knowledge, but it should be highlighted
that the characterization of both luminance and chromi-
nance channels by using the 2-D auto regressive (AR) mod-
els with the same order, seems a limitation because the
two channels are independent. However, it is noteworthy
to precise that the results shown in Table 5 for the two
studies consider only the case when authors use the spatial
structure and chrominance information without adding the
color information (3-D color histograms) in the character-
ization. We note that there is a slight performance for this
later for DB5 database and for (Verdoolaege et al. 2012)
for DB4 database. We also remark from the same table
the superiority of the characterization in LC color spaces
compared to the RGB one except for DB4. This is the-
oretically confirmed since considering the image as two
separable luminance and chrominance information is more
intuitive and correlated with the human perception than
the RGB space which considers the color as an addition of
the primary colors red, green and blue. Here, we also note
that (Verdoolaege et al. 2012) considered uniquely the de-
pendency between R, G and B components (inter-channel
only), and that (Kwitt et al. 2011) considered the R, G
and B dependency besides the inter-band one (for the three
components). As we stressed in the introduction, extend-
ing these models to take into account jointly intra-band,
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inter-band and inter-channel dependencies leads to high-
dimensionality, due to the huge dependence between R, G
and B components, and to the fact that RGB represen-
tation offers no separation between spatial structure and
chrominance.
Another contribution of our approach is the defini-
tion of a closed form expression for the Rao dis-
tance in the variety of copula based probability den-
sities (El Maliani et al. 2011). As it is known, deriv-
ing a similarity measure in the case of copula based
multivariate models is a challenging task. For this, in
(Kwitt et al. 2009) and (Sakji-Nsibi et al. 2010), authors
proposed a Monte-carlo approximation of the KL diver-
gence. But, this approach is computationally expensive
and is not deterministic, since the KL divergence differs
depending on the random number generation. An al-
ternative approach was proposed in (Kwitt et al. 2011),
using the maximum likelihood (ML) selection rule as a
similarity measure. This significantly reduces the exe-
cution time in comparison with the Monte-carlo based
similarity measurement. A more attractive expression of
the KL divergence is provided in (Lasmar et al. 2012),
where the separability between the copula space and the
marginal space is used to derive a closed-form and fast
KL based similarity measurement. However, KL diver-
gence does not satisfy properties of symmetry and trian-
gular inequality, and thus is not a distance in the right
sense of the parametric manifold. Table 6 shows av-
erage percentage classification along with the execution
time using both similarity measures (Rao and KL) for the
textures of DB2. We recall that according to equation
37, we need expression of the Rao distance for marginals
and the used copula. Expressions of the Rao distance
for Weibull, Gamma and vonMises can be found respec-
tively in (El Maliani et al. 2011), (Reverter et al. 2003)
and (Ceolini et al. 2010). We can see that the proposed
similarity measure slightly outperforms the ML based and
Monte-Carlo based approach in term of percentage classi-
fication. However, the improvement is more significant in
term of runtime which is 9 times and 12 times less than the
ML based and Monte-carlo based approaches respectively.
We note that the experiments were done using Matlab en-
vironment on an HP Compaq equipped with an Intel Core
2 Duo CPU at 3GHZ workstation
Finally, we want to validate experimentally the hypothesis
made in introduction about dimensionality reduction when
we consider multi-modeling in LC color spaces. We com-
pare our approach to the full dependence based approach
of subsection 2.1. Table 7 shows performance of the clas-
sifier for multi-models Lab1 and HSV1 with full feature
vectors length. It can be seen from these results that the
high parametrisation does not improve performances, but
on contrary it makes them decrease by about 10%. Sep-
arability between luminance and chrominance helps then
to avoid redundancy in characterization which is the case
in RGB where spatial structure resides in the three color
components.

5. Conclusion

We proposed in this paper a multi-model based ap-
proach for color textures characterization in the LC color
spaces. This approach takes into account the separabil-
ity between luminance and chrominance. We especially
took care of the circular/linear nature of chrominance
components. We also addressed the dimensionality reduc-
tion issue for the study of the full dependence in term
of intra-band, inter-band and inter-channel relation be-
tween coefficients color component subbands. Results on
five wide range of databases show the superiority of the
proposed approach in comparison with the existing uni-
modeling approaches. We know that our method as any
compared methods, presents some limitations when using
large databases and also against rotation and illumination
effects. Furthermore, considering the runtime issue, re-
sults show the effectiveness of the Rao geodesic distance
in comparison with the Kullback-leibler divergence.
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