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Abstract –We probe the secondary rheology of granular media, by imposing a main flow and
immersing a vane-shaped probe into the slowly flowing granulate. The secondary rheology is then
the relation between the exerted torque T and rotation rate ω of our probe. In the absence of any
main flow, the probe experiences a clear yield-stress, whereas for any finite flow rate, the yield
stress disappears and the secondary rheology takes on the form of a double exponential relation
between ω and T . This secondary rheology does not only depend on the magnitude of T , but is
anisotropic — which we show by varying the relative orientation of the probe and main flow. By
studying the depth dependence of the three characteristic torques that characterize the secondary
rheology, we show that for counter flow, the dominant contribution is frictional like — i.e., T and
pressure are proportional for given ω — whereas for co flow, the situation is more complex. Our
experiments thus reveal the crucial role of anisotropy for the rheology of granular media.

We still lack a full description of slow, dense flows of
granular media — given boundary conditions, what de-
termines the flow rate? Granular flows differ in two im-
portant ways from Newtonian flows. First, friction plays
a central role — when grains have persistent contacts, as
is the case in slow granular flows, inter-particle friction
provides the main channel by which energy can be dissi-
pated. Experiments in which the resistance to granular
flow is probed by controlling the stress on a single moving
boundary, such as in Couette, split-bottom or vane geome-
tries [1–3], find that the shear stresses are proportional to
the confining pressure, and that the ratio of shear to com-
pressive stress, which can be seen as an effective friction
coefficient, does not vary strongly with rate [1–5]. The
crucial consequence from this rate independence is that
the stress plateaus for strain rates going to zero. In other
words, the stresses in slow granular flows are rate indepen-
dent, and therefore the stress is not sufficient to set the
strain rate.

The second ingredient is non-locality. Several recent
experiments [6–8] and theoretical works [9–12] indicate
that for matter with granularity, the ”fluidity” in loca-
tion A, i.e., the local relation between stress and strain
rate, can be strongly influenced by the flow in location B.
Such non-local behavior was first observed in the flow of

emulsions [8], has also been observed in foams [13], and
has been modeled by a diffusive model for the fluidity,
leading to the introduction of a length scale which char-
acterizes the nonlocality [8,10,12]. Kamrin and coworkers
have adapted these ideas for frictional rheologies, captur-
ing granular Couette flows [9], and more recently, the full
flow profiles and height dependence of split bottom gran-
ular flows [11,14–18].

In all these studies, there is a single source driving the
flow, and the nonlocality manifests itself via the spatial
flow profiles. However, as flow in location B influences
the fluidity in A, it is natural to study situations where
the driving of the main flow and the probing of the rheol-
ogy are independent. Two examples of such granular ex-
periments which probe the “secondary rheology” concern
the sinking of a passive probe into a granular bed that is
stirred far away from the probe (in a split-bottom cell)
[7], and the rheology probed by rods submersed in and
dragged through a granular medium that is itself stirred
in a Couette geometry [6]. Recently, numerical studies
in which a plate is dragged through a 2D granular simple
shear flow have been performed [10]. In all cases, the yield
stress experienced by the probes was found to vanish as
soon as there is any external flow imposed, and the rate
of the probe was proportional to the stirring rate, sup-
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Fig. 1: (Color online) (a) Experimental setup. A disk of radius
Rs rotating at a rate Ω in a split-bottom flow cell filled to
height H with 1 mm glass beads causes the main flow. A vane
of radius r ≪ Rs and height h, connected to a rheometer,
probes the secondary rheology at a depth zm. (b) Most of
our experiments are carried out with a vane with its central
axis identical to the central axis of the rotating disk. (c) We
also performed experiments with a vane with its central axis
parallel to the bottom disk, so that the secondary flow induced
by the probe is perpendicular to the main flow.

porting the qualitative picture, that flow in one location
leads to mechanical agitations that govern the rheology
in locations further away. Open questions concern: (1)
the nature of the local rheology under stirring — in [7]
the relation between stress and strain rate appears linear,
whereas in [6, 10] it appears exponential; (2) the effect of
pressure — are shear stresses still proportional to pres-
sure? and (3) the role of anisotropy — granular flows lead
to anisotropy of the granular fabric [19, 20] which should
influence the fluidity of the material.

Here we probe these questions by characterizing the sec-
ondary rheology in a split bottom cell where the main flow
is driven independently (Fig. 1). Our experiments allow us
to determine full secondary rheological curves for a range
of driving conditions and pressures. Moreover, we can
probe the rheology when the probe moves with the main
flow (coflow), against the main flow (counterflow) and also
for probe rotation perpendicular to the main flow (Fig. 1b-
c).

We find that, consistent with earlier work, that when-
ever the main flow is present, the secondary rheology has
a vanishing yield threshold [6, 7, 10]. The local rheology
is anisotropic, and there are significant qualitative differ-
ences between co flow, counter flow, and perpendicular
flow. Finally, by probing the flow at different depths, we
find that the characteristic shear stresses are in some, but
not all cases, proportional to the compressive stresses. Our
results show that both local pressure and local anisotropy
are crucial to describe the fluidity of granular media, thus
stressing that these aspects need to be incorporated in
future theories of slow granular flows.

Setup and protocol — We create a smooth granular flow
in a split-bottom shear cell [7,14–18] as shown in Fig. 1a.
This cell consists of a cylindrical container of radius 80

mm, the bottom of which is split into a rotating disk of
radius Rs = 60 mm and a stationary outer ring. The cell
is made of aluminum and the bottom and side walls are
made rough by drilling dimples in them so as to obtain
granular no-slip boundary conditions. The disk is driven
by a micro-stepping motor at angular velocities Ω ranging
from 10−3 to 1 rps. The split-bottom cell is filled with a
controlled mass of 1 mm diameter glass beads up to the
filling heights H. We focus on large filling heights ( H=
60 mm), as the flow then predominantly takes place in a
dome-shaped shear band buried in the granular medium
[15–17,21] — this is the same flow geometry as used in [7].
To measure the rheological properties of this fluidized

medium, we immerse a vane-shaped intruder into the ma-
terial and couple it to an Anton Paar DSR301 rheometer.
As illustrated in Fig. 1b,c, the vane is made of crossed
rectangular metallic plates of thickness 1 mm and of ra-
dius r by height h 5x5, 10x10 or 20x20 mm. In most
experiments, this probe is directly attached to the rheome-
ter via a smooth and rigid shaft (Fig. 1b), and we have
checked that the residual torques picked up by the shaft
are negligible in comparison to the signal from the vane.
We have also carried out some experiments where we ro-
tate the orientation of the vane as shown in Fig. 1c, and
where we use a flexible tube with sufficiently large tor-
sional stiffness to couple the vertical rheometer shaft to
the horizontal vane shaft. The vertical distance between
the center of the probe and the free surface of the material,
zm can be adjusted.
The rheometers native operation is in torque controlled

mode, where torques ranging from -20 to 20 mNm with a
precision better than 1 µNm are applied to our vane and
the resulting deflection angle of the probe φ(t) is mea-
sured. The precision on φ is estimated to be significantly
better than 10−4rad, and in all experiments we deduce the
average rotation rate ω := ∂tφ(t) over deflection angles of
0.6 rad or more. We define negative (positive) values of
ω to correspond to counter-rotation (co-rotation) with the
bottom disk. Transients are short and all data presented
are steady state values.
Prior to each measurement, the beads are vigorously

stirred with a rod, after which the probe is immersed to its
position zm. The system is then pre-sheared with Ω = 0.5
s−1 for 10 minutes, while the humidity of the system is
lowered to values of 10 - 20 % relative humidity by closing
the system with a plastic cover and injecting a dry air flow.
This ensures a very good reproducibility of our rheological
measurements.
Precession and Yielding — Ultimately, our goal is to

probe and understand the relation between the probe ro-
tation ω, disk rate Ω and driving torque T , ω(Ω, T ), for
a range of depths zm and dimensions of the probe. Be-
fore delving into the full rheology, we first focus on the
two single-forcing regimes: first the passive rotation of
the probe due to residual flow in the system, ω(Ω, T = 0),
and second the rheology of the sand in absence of stirring,
ω(Ω = 0, T ).
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Fig. 2: (Color online) (a) The residual rotation rate ωp of the
probe in absence of any torque on the probe is plotted as a
function of depth H − Z — curves are stretched exponential
fits given by Eq. (1). (b) Rotation rate ω of a 20×20 mm vane
in absence of a base flow (Ω = 0) as function of driving torque
indicates a yield torque of 11.7± 0.3 mNm.

We show in Fig. 2a the behavior in the absense of a
driving torque. As is well known, the rotation of the driv-
ing disk sets up a residual torsional flow in the medium
[7, 16, 17], that we characterize here by immersing one of
our probes in the medium at depth zm, setting the torque
equal to zero, and measuring the ensuing precession of our
probe, ωp(z). For the three filling heights investigated, we
find that ωp(z) decreases with z as a stretched exponential:

ωp(z)/Ω = Ae−(H−z
ξ

)α +B , (1)

where A and B are determined by the precession rates at
z = 0 (ωp) and at H−z = 0 [7] — α ≈ 1.5 and ξ represents
a characteristic size of the main flow and is of the order
of ten grain diameters. Moreover, the precession velocity
is found to be independent of the probe size (not shown),
and proportional to Ω.
We now turn to the rheology of our immersed probes

for T 6= 0. We first establish that for Ω = 0, we recover
the typical yield stress behavior of granular media. As
indicated in Fig. 2b, experiments where we slowly ramp
up T then reveal a yield torque Ty = 11.7 ± 0.3 mNm,
above which there is rapid flow, and below which there is,
in essence, no flow 1

To extract the static friction coefficient µs from the ob-
served yield torque, we make the following three stan-
dard assumptions for frictional granular media: (i) The
pressure is hydrostatic: P = ρgz, where for our material
ρ = 1850 kg/m3; (ii) The shear stresses are maximal, and
the slip flow localizes at the cylindrical hull of the probe
(area 2πrehe), where re and he are the effective dimen-
sions of the probe — from earlier work, we know we can
estimate re and he by extending the bare probe dimen-
sions by halve a grain diameter, i.e., re = r+0.5 mm and
he = h+1 mm [7]; (iii) The yielding shear stress is propor-
tional to the product of friction coefficient and pressure:

1If we quench T from zero to a value close to Ty , we can detect a

very slow creep flow that has a rate that decreases in time and tends

to zero.

Fig. 3: (Color online) (a) Flow curves ω/Ω for H = 60 mm,
for a 20x20 mm probe at zm = 20 mm, for a range of driving
rates Ω as indicated. Inset: unscaled data ω(T ).

σrθ(z) = µsP (z) = µρgz. We find that

T = r

∫

A

dAσrθ = 2πr2eµρgzmhe ⇒ (2)

T/λ = µρgzm = µP, where λ := 2πr2ehe . (3)

Here λ collects all geometric factors needed to relate
torques to stresses (when the probe is not fully submerged,
we need to adapt he). Substituting the relevant quan-
tities for the experiments shown in Fig. 2, re = 20.5
mm, he = 21 mm, and zm = 20 mm, we estimate that
µ = 0.58 ± 0.1 — consistent with independent measure-
ments of µ for these beads which are in the range of 0.52-
0.58 [2, 3].
Secondary Rheology — Now we turn our attention to

the secondary rheology when both the imposed flow rate
∝ Ω and the driving torque of the vane, T , are non zero.
Experimentally, we typically control Ω and T and then
measure the rotation rate ω. We found that after a short
transient, the rotation rate of the probe ω quickly reaches a
steady state, and will show below that experiments where
we control ω and measure T yield identical results. We
have also checked that runs done by sweeping the torque
up or down are identical, and we have seen no history
dependence, ruling out thixotropic or other more complex
rheologies. Hence, ω(T ) is a well defined function fully
determining the steady-state secondary rheology once the
experimental parameters Ω, zm, H and probe size are set.
In Fig. 3 we show examples of such a rheological curve,

ω(T ), for a 20x20 mm probe buried at depth zm = 20
mm, filling height H = 60 mm and a range of rotation
rates Ω. As expected [6, 7, 15–17], the overall driving rate
Ω sets the only relevant timescale, so that ω ∝ Ω, and all
rheological curves collapse when plotted as ω/Ω vs T .

Our data shows that there is a clear difference between
co flow (ω/Ω > 0) and counter flow (ω/Ω < 0), and more-
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Fig. 4: (Color online) (a) Rheological curves obtained for H = 60 mm, for a 20 × 20 mm probe, zm = 20 mm and Ω=0.05
rps. Full symbols corresponds to torque imposed experiments, open symbols to ω imposed experiments. The line is a fit to the
data using Eq. (4) with TH = −5.1 mNm, T

−
= 0.85 mNm and T+ = 1.8 mNm. (b) Symbols: Rheological curves for the same

experimental parameters, but now for a probe in the perpendicular orientation such as shown in Fig. 1c. The full line is a fit
to Eq. (4) with TH = 0 mNm, T

−
= T+ = 0.65 mNm; the dashed line is the fit from panel (a) shown for comparison. (c) If

we replot the data shown in panel (a) but first subtract the local precession rate, the resulting curve does not exhibit a simple
form.

over suggests that for any finite value of Ω, the yield stress
vanishes so that there is no extended range of torques
where the probes rotation rate ω = 0. To clarify these
points, we present in Fig. 4 a plot of |ω|/Ω for Ω = 0.05
rps on a log scale. Fig. 4a confirms that there indeed is
not finite yielding threshold, as there is no extended “dead
zone” where ω = 0. Note that the precession flow induced
by the rotation of the driving disk (Fig. 2a) means that
for T = 0, the vane rotation rate is equal to the preces-
sion rate, and indeed, for our data shown in Fig. 4a, we
find that ω/Ω is of order 10−3 for T = 0, consistent with
Fig. 2a. To hold the vane completely fixed in the lab frame,
we need to apply a negative ”holding” torque TH ≈ −5.1
mNm. In Fig. 4a we also show that data obtained by
torque control, i.e., setting T and measuring ω (full sym-
bols), and by rate-control, i.e., setting ω and measuring
T (open symbols), are identical within the experimental
reproducibility.
Fig. 4a reveals that in very good approximation, ω varies

as the sum of two exponential functions of T , and all our
data can be fitted extremely well by the following form:

ω/Ω = C

(

e
T−TH

T+ − e
−

T−TH
T
−

)

. (4)

Here TH is the holding torque, and T+ and T1 determine
the exponential growth of ω with torque for co- and coun-
terflow. We note that the prefactor C is directly related to
physical parameters ωp, TH , T+ and T

−
; by substituting

T = 0, we immediately find

C =
ωp/Ω

(e−TH/T+ − eTH/T
−)

. (5)

Symmetry breaking — Our rheological data clearly
shows that there is a significant difference between co and

counter rotation of the probe and disk. This difference
is easy to understand qualitatively, as the rotation of the
bottom disk breaks the chiral symmetry. The 3D nature of
our flow allows us to probe the rheology in cases when the
induced flow by the probe is neither opposite nor parallel
to the disk-induced anisotropy, by using a “perpendicu-
lar” orientation of the probe as indicated in Fig. 1c. As
shown in Fig. 4b, there is now no symmetry breaking be-
tween left and right handed rotation of the probe. In good
approximation, the rotation is still exponential in T , and
a fit to Eq. (4) yields that for this case TH ≈ 0 mNm,
whereas T+ ≈ T

−
≈ 0.65 mNm.

We now return to the broken symmetry case. How to
understand the difference between co and counter flow? A
subtlety in our experiment is that a priori it is not clear
whether co and counter rotation should be defined with
respect to the global disk rotation Ω (i.e., ω < 0 or ω > 0)
or the local precession ωp (i.e., ω < ωp or ω > ωp). Our
fitting form, Eq.(4), tacitly assumes that co and counter
rotation should be defined with respect to the disk rota-
tion, Ω. Alternatively, we could first correct for the lo-
cal precession ωp, but as Fig. 4c shows, deining co and
counter flow with respect to the precession rate ωp, by
plotting (ω − ωp)/Ω, hides the simple torque dependence
shown in Fig. 4a. A crucial aspect of Fig. 4a is thus that
it shows that when the torque is between TH and 0, so
that the vane rotates counter to the local precession but
with the disk, the secondary rheological ω(T ) curve has
the same log-slope as for T > 0 — the local precession
rate is thus irrelevant for the resistance to flow. Only
when the vane starts to move against the global disk ro-
tation for T < TH , this slope changes. Consistent with
earlier work [19], moving with the fabric (i.e. co rotation)
is tougher than moving against the fabric (counter rota-
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tion). We conclude that co and counter rotation should
be defined with respect to the disk rotation, and not to
the local precession rate.
To understand this, let us consider in more detail the

flow in the ’mixed’ regime where TH < T < 0, and the
vane rotates against the local precession but the with the
disk rotation. We know from experiments in 2D [22] and
3D [19, 20] that persistent shear leads to the buildup of
an anistotropic fabric. This anisotropy is encoded in both
the contact and force structure in the material, and leads
to a fragile structure that resists the current flow direction
strongly, as revealed by experiments where reversing the
flow direction leads to a transient in which the material
has little resistance against flow, before restructuring of
the material with the opposite anisotropy leads to a steady
state of high resistance.
In our experiments, we separate the generation of the

main flow and the rheological probing. Our data is con-
sistent with a picture in which the rotation of the bottom
disk creates an anisotropic fabric in the granular material,
which ultimately leads to a difference in resistance to co
flow and counter flow, and where the handedness of the
anisotropy is set by the main flow, and thus determined
by the sign of Ω, even if the vane moves against the local
precession rate. So as long as ω/Ω > 0, the vane rotates
against the anisotropy, even if ω < ωp. In other words,
the residual precession rate is irrelevant for the rheology
experienced by the probe, although it does, of course, set
the vane rotation for T = 0. By separating driving and
probing, we thus can set up a steady state rotation of the
probe with or against the anisotropic fabric, where the
fabric is determined by the disk rotation only.
Effect of depth — By changing the depth of the probe,

zm, we can probe the effect of pressure on the rheology,
and probe how the holding torque TH and the character-
istic torques T+ and T

−
scale with pressure. In partic-

ular, we can probe whether these characteristic torques
have a frictional nature — if so, the torques, which can
be translated into shear stresses (see Eq. (3)), should be
proportional to the pressure P ∝ zm.

In Fig. 5a we show flow profiles for a range of values of
zm. The deeper the probe, the more to the left the curves
shift, and the holding torque, where ω goes through zero,
shows a systematic variation with probe depth zm. In
a frictional picture, one would expect that TH would be
proportional to the hydrostatic pressure ∼ zm, and taking
the same corrections for the finite size of the probe into
account as in our calculation of the static friction coeffi-
cient, we would thus expect that TH/λ = µHP , where λ is
defined as in Eq. (2), and µH is an effective friction coeffi-
cient that determines the relation between holding torque
and pressure.
As we shown in Fig. 5b, the holding torque is indeed

approximately linear in zm, and also varies systemati-
cally with the probe size. When plotted as function of P ,
the data for TH/λ for all our probes collapse on a single
straight curve, with slope µH ≈ 0.28. The interpretation

of this friction-like coefficient µH is not straightforward.
We first note that it is roughly a factor two smaller than
the static coefficient. It is also different from an ordi-
nary dynamical friction coefficient, which would measure
the resistance to flow of a granular medium, whereas here
we measure the resistance to secondary flow in an already
flowing granular medium. Notwithstanding the precise
value of µH , what is clear is that the holding torques are
proportional to the pressure — the rheology of secondary
granular flows has a frictional character.
Motivated by this success, we plot in Fig. 5c the val-

ues of T
−
/λ and T+/λ as a function of P . Surprising, we

find that T
−

is also proportional to P as T
−
/λ ≈ 0.03P ,

whereas T+ goes to a finite intercept for P → 0, and
T+/λ ≈ 0.02 + 0.03P . This implies that there is a signifi-
cant qualitative difference between co and counter flow.
Discussion and outlook — Our study shows that for sec-

ondary rheology, the anisotropy is a key parameter. Sur-
prisingly, the difference between co and counter flow is
not only quantitative, but qualitative: In counter flow, the
characteristic stresses TH and T

−
are both proportional to

the pressure, whereas for co flow, the characteristic torque
T+ is not simply proportional to P . This surprising find-
ing, and the difference between the scaling of TH , T

−
and

T+ beg for further detailed (numerical) studies of 3D sec-
ondary granular rheologies.
Notwithstanding the complex variation of our charac-

teristic torques with pressure, we note that our secondary
rheology can be written as ω(z)/ωp(z) = F (T/P, P )
— for counter flow, we get in good approximation that
ω(z)/ωp(z) = F̃ (T/P ), so that the local flow is encoded
in ωp(z), whereas the secondary rheology is frictional. Our
scaling for T

−
and T+ suggests that for deeper layers,

where the finite intercept of T+ becomes of less relative
importance, we approach T

−
≈ T+ ∼ P — so the effect of

symmetry breaking diminishes with distance to the source
of the main flow.
We note here that for the “perpendicular” probing, i.e.,

a measurement protocol not sensitive to the flow direction,
the hold torque is zero, and so in these cases it is more
difficult to observe the frictional aspects of the secondary
rheology.
Our secondary rheology has a rate which is clearly ex-

ponential in the shear stresses — consistent with [6] and
[10], but different from [7]. We have no good explanation
for this, but point out that the linear regime of [7] was
only observed for slow secondary flows, and it is conceiv-
able, that the observed linear regime simply corresponds
to the overlap of two exponential functions.
Open questions for the future are to disentangle the role

of pressure and distance to the source of the main flow, and
models for the role of anisotropy in slow granular flows.
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Fig. 5: (Color online) (a) ω/Ω as a function of T for depths zm = 5, 10, 15, 17, 20, 25, 30, 35, 40 and 45 mm (right to left), for a
20 × 20 mm probe, H = 60 mm, Ω = 0.05 rps. (b) Rescaled holding torques, TH/λ (Eq. (3)), for probe sizes 5 × 5 mm (+),
10× 10 mm (✷) and 20× 20 mm (△). The slope of the straight line is 0.28, suggesting that µH ≈ 0.28. Inset: Holding torque
as function of zm. (c) The rescaled characteristic torques T

−
/λ and T+/λ are linear in the pressure P (data shown for a 20× 20

probe - the signal for smaller probes is too noisy to reliably determine T
−

and T+).

FOM.
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