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Abstract

We describe a new uniform generation tree for permutations with the

specific property that, for most permutations, all of their descendants in

the generation tree have the same number of fixed points. Our tree is

optimal for the number of permutations having this property. We then

use this tree to describe a new random generation algorithm for derange-

ments, using an expected n + O(1) calls to a random number generator.

Another application is a combinatorial algorithm for exact sampling from

the Poisson distribution with parameter 1.

Résumé. Nous décrivons un nouvel arbre de génération uniforme pour

les permutations, ayant la propriété que, pour la majorité des permuta-

tions, tous leurs descendants ont le même nombre de points fixes; notre

arbre est optimal en ce sens. Grâce à cet arbre, nous obtenons un nouvel

algorithme de génération aléatoire uniforme de dérangements, algorithme

qui nécessite, en moyenne, n + O(1) appels à un générateur de nombres

aléatoires; ainsi qu’une méthode combinatoire de simulation exacte de la

loi de Poisson de paramètre 1.
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1 Introduction

1.1 Fixed points in random permutations

Throughout this paper, the phrase “random permutation” means a uniformly
distributed random permutation on the set [n] = {1, . . . , n} of integers less than
equal to n; the size n will either be mentioned explicitly, or should be obvious
from the context. For any permutation σ ∈ Sn, fp(σ) will denote the number of
its fixed points, i.e. fp(σ) = #{i ≤ n : i = σ(i)}. The permutations that have
no fixed points are named derangements. The set of all permutations of size n
is denoted by Sn and that of derangements by Dn.

It is a well known fact that, in a random permutation of size n, each ele-
ment has probability exactly 1/n of being a fixed point. Thus, by linearity of
expectation, the expected number of fixed points in a random permutation is
exactly 1, no matter the size. It is only slightly less well known that the number
of fixed points in a random permutation of size n follows a distribution that, as
n goes to infinity, converges to the Poisson distribution with parameter 1.

A probabilistic consequence is that this convergence in distribution can be
realized as almost sure convergence; that is, one can construct, in a single prob-
ability space, a sequence (Sn)n≥1 of permutation-valued random variables, with
Sn uniform on the set of permutations of size n, such that, with probability 1,
F = limn fp(Sn) exists and is Poisson distributed. In a sense, the construction
of our generation tree is a combinatorial instance of such a realization.

1.2 Uniform generation trees for permutations

A uniform generation tree for permutations can be seen as the description, for
each nonnegative integer n, of a bijection φn between Sn × [n + 1] and Sn+1.
The countable set of permutations of all sizes can then be seen as the nodes of
an infinite rooted tree, with the unique permutation of size 0 as the root, and
where each permutation σ ∈ Sn has exactly n+1 children, obtained by applying
φn to the pairs (σ, i) for i ∈ [n+1]. The n! nodes at distance n from the root are
then all permutations of size n. Such a generation tree can also be seen as the
description of an algorithm for the random generation of uniform permutations:
from a random permutation of size n and an independent uniform integer in the
range [n+ 1], φn obviously gives us a random permutation of size n+ 1. Thus,
starting from the root and repeating n times the simple algorithm of moving to
a uniformly chosen child of the current node yields a uniform permutation of
size n.

Consistently with the tree terminology, φn(σ, j) will be called the j-th child
of σ, and σ will be called the parent of each of its children. All permutations in
the subtree rooted at σ are collectively called the descendants of σ.

Many simple combinatorial descriptions of such uniform generation trees can
be given. We briefly describe two of them.

• Last value insertion: from a permutation σ ∈ Sn and an integer j ∈ [n+1],
we obtain a new permutation σ′ ∈ Sn+1 as follows: set σ′(n+1) = j, and

2



for 1 ≤ i ≤ n, σ′(i) = σ(i) if σ(i) < j, and σ′(i) = 1 + σ(i) if σ(i) ≥ j. In
other words, j gives the value of σ′(n+ 1), and all previous value at least
as large as j are shifted up by 1.

• Cycle insertion: this generation scheme is best described by its action on
the cycles of the permutation. From a permutation σ ∈ Sn and an integer
j ∈ [n+1], we obtain a new permutation σ′′ ∈ Sn+1 as follows: if j = n+1,
simply set σ′′(n+ 1) = n+ 1 and, for 1 ≤ i ≤ n, σ′′(i) = σ(i); otherwise,
set σ′′(j) = n+ 1, σ′′(n+ 1) = σ(j), and σ′′(i) = σ(i) for all other values
of i. In other words, n + 1 is inserted “right after j” in its pre-existing
cycle – or is added as a new fixed point, if j = n+ 1.

Because last value insertion often shifts many values by 1, it can dramatically
change the number of fixed points – that is, fp(σ) and fp(φn(σ, j)) can be very
different. On the other hand, cycle insertion can only change the number of
fixed points by ±1: it increases by 1 if n + 1 is inserted as a new fixed point,
and decreases by 1 if j was previously a fixed point. As one descends in the
tree according to the random choices of children, the probability of changing
the number of fixed points becomes arbitrarily small (it is exactly 2/n on the
n-th step). One can easily check, though, that on an infinite random descent
into the tree, this change in the number of fixed points will, with probability 1,
happen infinitely many times.

The specific generation tree we are interested in this paper has the following
properties:

1. For each n ≥ 2, all but exactly 2n−1 permutations in Sn have the same
number of fixed points as their parent.

2. If a permutation has the same number of fixed points as its parent, then all
its children (and, by immediate induction, all its descendants) also have
this property.

3. If a permutation σ does not have the same number of fixed points as its
parent, then the difference is ±1. Furthermore, exactly one of its children
has exactly one more fixed points than σ (and, possibly, one or more
children can have one fewer fixed points).

As a consequence, the situation with the evolution of the number of fixed
points in an infinite random descent through the tree is quite different from the
“cycle insertion” generation tree: with probability 1, the descent will, at some
(random) level N in the tree, reach a permutation whose number of fixed points
is the same as its parent’s; and, once this happens, this number of fixed points
will remain identical forever. We even know the probability distribution for N :
for any N , the probability that N is larger than n is exactly 2n−1/n!.

We will call special permutations the 2n−1 permutations of size n whose
parent has a different number of fixed points. Others are simply non-special.

3



1.3 Outline of the paper

The rest of the paper is organized as follows. In Section 2, we describe our gen-
eration tree and prove its properties. In Section 3, we use the tree to describe a
new random generation algorithm for derangements, which we analyze. A sec-
ond application of our generation tree is given in Section 4, with a combinatorial
algorithm for sampling from the Poisson distribution with unit parameter. We
finish the paper with a conclusion outlining further possible applications.

2 The generation tree

In this section, we describe our new generation tree and prove its properties.
The construction makes use of a combinatorial bijection on derangements due
to Rakotondrajao (2007).

First note that any permutation σ of size n can be seen as a pair (S, δ) where
S is its set of k fixed points and δ a derangement of [n−k]. Such a derangement
is easily constructed by normalizing the derangement δ̃ of the non-fixed points
of σ. In the rest of this section, a permutation is always represented by such a
pair and a derangement is noted using the usual decomposition into cycles.

Let us first define precisely the normalization process: for any integer n, set
of integers S of size k ≤ n, and i ∈ [n+1]\S, we define πS(i) = #{j ≤ i : j 6∈ S}.
It is straightforward to invert the normalization: π−1

S (i) is the i-th element not

in S. The normalized version δ of the original derangement δ̃, is obtained as
follows δ(i) = πS(δ̃(π

−1
S (i))).

For any finite set of positive integers S, we note γn(S) the largest nonnegative
integer less than or equal to n which is not in S, i.e., max

0≤i≤n
i|i 6∈ S.

If S is the set of fixed points of a permutation σ of size n, then γn(S) is the
largest non-fixed point of σ, or 0 if σ is the identity.

As an example, for n = 7 and σ = 5432167 (in word form), the set of fixed
points is S = {3, 6, 7}, πS is defined on {1, 2, 4, 5}, the unnormalized derange-
ment has cycle decomposition δ̃ = (1 5)(2 4), and the normalized derangement
is δ = (1 4)(2 3). In this case, the largest nonfixed point is γ7(S) = 5.

We define the critical derangement ∆n, for even n, to be (1 2)(3 4) . . . (n−
1 n), and in particular ∆0 is the empty derangement. A non-critical derange-
ment of size n, is any derangement of size n if n is odd, or any derangement of
size n different from ∆n if n is even.

2.1 A bijection for derangements

Our generation tree will need a bijection τn for derangements of size n. For that
purpose, we use directly the bijection over derangements defined in Rakotondrajao
(2007) that proves combinatorially the well known recurrence dn = ndn−1 +
(−1)n, where dn stands for |Dn|. We recall briefly the bijection and refer the
interested reader to the original paper for further results.
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A bijective map τn is defined from Dn−1 × [n] \ {(∆n−1, n)} to Dn for odd
n, and from Dn−1 × [n] to Dn \ {∆n} for even n. For (δ, i) ∈ Dn−1 × [n] (with
the condition that, if n is odd, (δ, i) 6= (∆n−1, n)), δ

′ = τn(δ, i) is constructed
as follows:

• If i < n, by inserting n into the cycle between i and δ(i), i.e., δ′(i) = n
and δ′(n) = δ(i). This is cycle insertion as described in the introduction.

• If i = n, let p be the largest integer such that δ|[p−1] = ∆p−1 (possibly
p = 1). Three cases must be distinguished:

– If δ(p) = p + 1 (implying δ(p + 1) 6= p), then δ′ is obtained by
removing p from its cycle, and adding the short cycle (p n) instead,
i.e., δ′(δ−1(p)) = p+ 1, δ′(p) = n and δ′(n) = p.

– If δ(p) 6= p+ 1 and p is in a cycle of size larger than 2, then1 remove
δ−1(p) from the cycle, and create the short cycle (δ−1(p) n), i.e.,
δ′(δ−2(p)) = p, δ′(δ−1(p)) = n and δ′(n) = δ−1(p).

– If δ(p) 6= p+ 1 and p is in a cycle of size 2, remove the cycle (p δ(p))
from δ, then insert p just before p+1 and finally add the short cycle
(δ(p) n), i.e., δ′(δ−1(p + 1)) = p, δ′(p) = p + 1, δ′(δ(p)) = n and
δ′(n) = δ(p).

It is proved in Rakotondrajao (2007) that τn is a bijection. Thus, for a non-
critical derangement δ of size n, τ−1

n (δ) is well-defined as a pair (δ′, i), where δ′

is a derangement of size n−1, i ∈ [n] and the pair (∆n−1, n) cannot be produced
whenever n is odd.

2.2 A new generation tree for permutations

A permutation σ = (S, δ) is said to be special if δ is a critical derangement. A
(n, k)-permutation is a permutation of size n having k fixed points.

We are now ready to define our generation tree for all permutations (the
beginning of the tree is depicted in Figure 1). The root of the tree is the empty
permutation (∅,∆0), each node at height n has n + 1 children, and the i-th
child σ′ = (S′, δ′) of a (n, k)-permutation σ = (S, δ) is obtained by the following
process:

1. If σ is special and i = n+ 1:

σ′ = (S ∪ {n+ 1},∆n−k).

2. If σ is special and γn(S) < i ≤ n:

σ′ = (S \ {i},∆n−k+2).

1There appears to be a typo in the original article regarding this case; the proof of the

bijection corresponds to what we describe here.
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Figure 1: Our complete generation tree up to level 4. Each node at level n has
n+ 1 children, depicted in order from bottom to top. Special permutations are
drawn in bold. Fixed points are underlined.

3. If i ∈ S; σ is special and i ≤ γn(S) or σ is not special:

σ′ = (S \ {i} ∪ {n+ 1}, τn+1−k(δ, πS\{i}(i))).

4. If i 6∈ S; σ is special and i 6= n+ 1 or σ is not special:

σ′ = (S, τn+1−k(δ, πS(i))).

We first check that σ′ is well defined:

• Whenever γn(S) < i ≤ n, we have i ∈ S.

• For i ∈ S, i < n+ 1 and πS\{i} is an integer in the range [n+ 1− k].
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• For i 6∈ S, if σ is not special then i may be n + 1, πS\{i}(i) is an integer
in the range [n+ 1− k] and δ is any non-critical derangements.

• When σ is special, or equivalently δ is critical, either rules 3 or 4 cannot
be applied with i = n+ 1− k (the only pair where τ is not defined), as:

– Rule 3: Since i ∈ S and i ≤ γn(S) implies γn(S) 6= 0 and πS(γn(S)) =
n− k, thus πS\{i}(i) ≤ n− k.

– Rule 4: Since i 6= n+ 1, πS(i) ∈ [n− k].

Applying rules 1 and 2 is straightforward when the permutation is repre-
sented as a set of fixed points and a normalized derangement. Applying rules
3 and 4 in the case where σ is special is also straightforward: the normalized
derangement is modified by inserting n+1− k right after the appropriate value
(either πS\{i}(i) or πS(i)) in its cycle decomposition. If σ is non-special and
πS\{i}(i) 6= n+ 1 − k (resp. πS(i)), the application of rules 3 and 4 yields the
same construction.

The only remaining cases, where the construction uses the second case of
Rakotondrajao’s bijection, are non-special permutations with i > γn(S), i.e. i
is a fixed point greater that the greatest non-fixed point of σ (rule 3) or i = n+1
(rule 4). For instance if σ = 5432167 = ({3, 6, 7}, (1 4)(2 3)), then its 6-th child
is ({3, 7, 8}, (1 2 3)(4 5)) via rule 3, and its 8-th child is ({3, 6, 7}, (1 2 3)(4 5))
via rule 4.

Notice that the children of a special permutation σ are also special when they
are produced by rules 1 and 2, and that they are the last children of σ; they
are non-special when produced by rules 3 and 4. The children of a non-special
permutation are always non-special since the bijection τ cannot produce critical
derangements. The number of fixed points of the children of a permutation σ
is fp(σ), except if σ is special and rule 1 (then they have fp(σ) + 1) or rule 2
(fp(σ) − 1) has been applied.

Theorem 2.1 The above description defines a generation tree.

Proof We need to prove that for any permutation σ′ = (S′, δ′) of size n + 1,
there exists at least one pair (σ, i) such that σ′ is the i-th child of σ in the tree.
This is sufficient, since it implies that all (n + 1)! permutations of size n + 1
appear among the (n + 1)! nodes of level n+ 1 in the tree – each must appear
exactly once.

On the one hand, if σ′ is special, there are two cases:

• n + 1 ∈ S′: σ′ is the n + 1-th child of σ = (S′ \ {n + 1}, δ′). σ is indeed
special and rules 1 gives directly σ′.

• n+1 6∈ S′: σ′ is the i-th child of σ = (S′∪{i},∆n−1−|S′|) with i = γn(S
′).

Note γn(S
′) > γn(S

′ ∪ {i}), hence γn(S
′ ∪ {i}) < i ≤ n and since σ is

special rules 2 produces σ′.

On the other hand, if σ′ is not special, then δ′ is non-critical. Let (δ, i′) =
τ−1(δ′). There are again two cases depending whether n+ 1 is in S′ or not:
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• n + 1 ∈ S′: σ′ is the i-th child of σ = (S, δ) with i = π−1
S′ (i′) and S =

S′ \ {n+ 1} ∪ {i}. Obviously πS′(i) = πS\{i}(i), thus i′ = πS(i) and thus
rules 3 produces σ′.

• n+1 6∈ S′: σ′ is the i-th child of (S′, δ) with i = π−1
S′ (i′). By definition of

π−1
S′ we have i 6∈ S′, hence this case corresponds to rule 4.

2.3 Optimality

As stated in the introduction, the generation tree described above makes only
little changes on the number of fixed points of a permutation: all children of a
node have at most one more or one fewer fixed points than their parent. The
same property holds for the “cycle insertion” generation tree. However, in such
a tree, exactly 2(n−1)! of the n! permutations of size n have a different number
of fixed points than their parent.

In our tree, only special permutations have a different number of fixed points
than their parent. By their description, special permutations of size n are in
bijection with subsets of [n] whose size has the same parity as n (otherwise, the
corresponding derangement cannot be critical). Thus, there are exactly 2n−1

special permutations of size n (there is a simple involution on subsets of [n] that
changes the parity of the size: just remove n if present, or add it if absent).

Thus, in our tree, only 2n−1 nodes (out of n!) at level n have a different
number of fixed points than their parent. This number is optimal for every n.

Proposition 2.2 In any uniform generation tree for permutations, at least
2n−1 of the permutations of size n have a different number of fixed points than
their parent.

Proof Let dkn stand for the number of (n, k)-permutations; these are the rencon-
tre numbers, which are related to the derangement numbers by dkn =

(

n
k

)

dn−k.
From the recurrence for derangement numbers, we immediately get dkn = n ·
dkn−1 +

(

n
k

)

· (−1)n−k.
When n−k is odd, dkn < n ·dkn−1, so that (n−1, k)-permutations collectively

have enough children to accommodate all (n, k)-permutations. But when n− k
is even, dkn > ndkn−1, thus at least

(

n
k

)

(n, k)-permutations must have a parent
that is not an (n− 1, k)-permutation.

Summing over all values of k with n − k even, we get the required lower
bound of 2n−1 special permutations.

3 Uniform random generation of derangements

In this section, we show how our generation tree can be used in random gener-
ation.

The fact that non-special permutations have the same number of fixed points
as each of their children, and by induction as any of their descendants, allows us
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to design algorithms that make use of this property while sampling a uniform
permutation.

An instance of such designed algorithm is the task of sampling uniformly a
derangement in an efficient manner, both in time/space complexity and in ran-
domness complexity. The randomness cost can be estimated by two different
parameters, and we analyze our sampling algorithm for the two measures: the
expected number of random bits used by the algorithm, and the expected num-
ber of calls to a unit-cost Random(k) primitive that returns a uniform number
in [k].

A basic rejection algorithm to sample uniformly a derangement of size n,
is to generate uniform permutations of size n, until one is obtained that has
no fixed points. Since dn/n! converges (quickly) to 1/e in the large n limit,
this simple rejection method needs to generate, in expectation, e + O(1/n!)
permutations of size n. Thus its expected time and random number com-
plexity is en + O(1/(n − 1)!) by using any standard method for generating
permutations, such as the Fisher-Yates shuffle, also known as Knuth shuffle
(see Fisher and Yates (1938); Durstenfeld (1964); Knuth (1997)). This method
can be improved by an anticipated rejection mechanism, i.e. the algorithm
restarts as soon as the current generated permutation is certain to contain some
fixed points. Approximate calculations indicate that the expected time and
random number complexity should be (e− 1)n+ o(n) in this case.

In the literature, Martínez et al. (2008) propose an equivalent of the Fisher-
Yates shuffle for derangements, resulting in a bounded time algorithm with an
expected random number complexity of 2n+o(n). In Ardnt (2009), experimen-
tal studies are performed comparing this method and the anticipated rejection
method, resulting in comparable results; an extension to permutations having
only cycles of length at least m ≥ 3 is also given.

In Martínez et al. (2008), the numbers dn are used by their algorithm in
order to maintain the uniform distribution while sampling a derangement. We
can reuse this idea with Rakotondrajao’s bijection to get another sampling al-
gorithm. From a uniform derangement δ of odd size n, we sample a uniform
derangement δ′ of size n+ 2 in the following way:

• With probability (n + 1)/dn+2, we sample a uniform integer i in [n] and
output δ′ = τn+2(∆n+1, i).

• With complementary probability 1 − (n + 1)/dn+2, we sample two uni-
form integers i and j respectively in [n + 1] and [n + 2] and output
δ′ = τn+2(τn+1(δ, i), j).

This algorithm (suitably extended to also cover even sizes) has worst time com-
plexity linear in n (with suitable implementation choices) and always uses at
most (3/2)n calls to Random() (increasing size by 2 requires at most 3 random
picks). We describe hereafter a rejection algorithm, based on our generation
tree, that needs only n+O(1) calls to Random(), in expectation. This is similar
to the algorithm sketched at the end of Désarménien (1984), which is based on
Lehmer encoding and a specific bijection.
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We propose the following natural algorithm UniformDerangement(n) in
order to sample uniformly a derangement of size n:

1. Perform a random descent in the tree until reaching a non-special permu-
tation σ or level n, whichever comes first.

2. If the reached permutation is a derangement, continue the descent until
reaching level n and return the derangement; otherwise, repeat Step 1.

Proposition 3.1 UniformDerangement(n) returns a uniform derangement
of size n.

Proof The algorithm works as an anticipated rejection method: it is equivalent
to performing a uniform sampling of a permutation of size n, and as soon as
the generated permutation is known to have fixed points, the algorithm aborts
and retries; otherwise it returns the sampled permutation. Thus the returned
permutations are uniform derangements of size n.

Proposition 3.2 UniformDerangement(n) uses in expectation n + O(1)
calls to Random().

Proof Let A = An be the random variable describing the number of calls
to Random() used by the algorithm on input n. We separate the cost into
two contributions corresponding to the two phases of the algorithm, such that
A = C1+C2, where C1 counts the calls to Random() made (including rejections)
until a derangement is obtained that either is non-special, or has size n; and C2

counts only calls made by step 2 of the algorithm.
We have E(C1) = E(C)/p, where C is the number of calls during one trial

of the first phase, and p the probability of success for each trial. We know
pdn/n! ≥ 1/e− 1/n!, so that 1/p = e+O(1/n!).

We now compute an upper bound on E(C). For at least m calls (for m ≥ 1)
to be made before rejection in a single trial, the size m permutation reached
must be special, which happens with probability 2m−1/m!, so that we have
P(C ≥ m) = 2m−1/m!. Taking sums, we get

E(C) =
n−1
∑

m=1

P(C ≥ m) ≤
∞
∑

m=1

2m−1

m!
= −

1

2
+

1

2

∞
∑

m=0

2m

m!
=

e2 − 1

2
.

Now C2 is at most n − 3, since the smallest non-special permutations are
of size 3. This carries over to E(C2) ≤ n − 3. By linearity of expectation, we
get the expected total number of calls E(A) = E(C1) + E(C2) ≤ n− 3 + e(e2 −
1)/2 +O(1/n!).

To estimate the number of random bits used by the same algorithm, we as-
sume that the primitive Random(k) is optimal in the sense described in Knuth and Yao
(1976). This implies that, for any k > 2, the expected random bit cost of the
call Random(k) is at most 2 + log2(k). This is bounded above by 2 + log2(n),
since k is never larger than n. Multiplying by the estimation for the expected
number of calls, we get
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Algorithm Poisson

n← 1, g ← 0, k ← 1
loop

i← Random(n+ 1)
if i = n+ 1 then

k ← k + 1
else if i > g then

k ← k − 1, g ← n+ 1
else

return k
n← n+ 1

end loop

Proposition 3.3 UniformDerangement(n) uses in expectation n log2(n) +
o(n log(n)) random bits.

We make no effort at a tighter upper bound, since the same lower bound is
valid: the expected number of random bits cannot be less than log2(dn), which
is n log2(n) +O(n).

We might improve the sampling algorithm a little bit by rejecting the current
permutation if its size plus number of fixed points exceed n (since then it is
impossible for the number of fixed points to reach 0 before the permutation size
exceeds n). However, the above analysis shows that this is extremely unlikely
to happen for values of n larger than a few units, so such an optimization would
not significantly change the overall performance of the algorithm.

4 Sampling a Poisson random variate

A second consequence of our generation tree is a combinatorial algorithm to
sample from the Poisson distribution with parameter 1, i.e. obtaining a random
variate that takes each integer value k ≥ 0 with probability 1/(ek!).

Several sampling methods already exist for the Poisson distribution (see Devroye
(1986) for most of them). These algorithms are efficient but use rational and
irrational numbers. By contrast, our algorithm is combinatorial in nature and
only uses small integer numbers.

Our algorithm is pretty simple: perform a random descent in the generation
tree (by which we mean, start from the root, and at each level pick a uniform
random child of the current node), until a non-special permutation is reached;
then output its number of fixed points.

Since, in the description of Subsection 2.2, the permutations only remain
special when rules 1 and 2 are used, we only need to keep track of three pa-
rameters: the current size n, the number of fixed points k, and γn(S) (g in the
algorithm).

We start by proving that the algorithm is correct: its output is effectively
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Poisson distributed. Let ν denote the distribution of the output, and µ the
Poisson distribution with parameter 1. We will prove that dTV(µ, ν) = 0, where
dTV is the total variation distance

dTV(µ, ν) =
∑

k:µ(k)>ν(k)

µ(k)− ν(k),

for which we only need the property (apart from it effectively being a distance
on the set of probability measures on integers) that dTV(µ, ν) is the minimum
value (taken over all possible joint distributions) of P(X 6= Y ) where X and Y
are random variables of respective distributions µ and ν.

By using our generation tree, we can describe three different random pro-
cesses. Process 1 is our Poisson sampling algorithm. Process 2, parametrized by
some integer n, performs a random descent in the tree until level n, and outputs
the number of fixed points in the final permutation. Process 3 works similarly,
but instead of always outputting the number of fixed points, it outputs the spe-
cial value Failure if the final permutation is special. We can assume that the
three processes use the same random choices for their descents.

The probability that processes 2 and 3 output different results is exactly the
probability of reaching a special permutation, that is, 2n−1/n!. The same is
true of the probability that processes 1 and 3 output different results. Thus,
the probability that processes 1 and 2 output different results is at most 2n/n!.
Thus, 2n/n! is an upper bound for the total variation distance between the
distribution of the results of our algorithm and that of process 2. Let µn denote
the distribution of the output of process 2, that is, the number of fixed points
in a random permutation of size n: we thus have

dTV(ν, µn) ≤
2n

n!
.

Now, the total variation distance between the number of fixed points in a
random permutation of size n, and the Poisson distribution with parameter 1,
is less than the total variation distance between the numbers of fixed points in
random permutations of sizes n and n + 1; this can be seen easily by noticing
that dkn/n! < 1/(k!e) < dkn+1/(n + 1)! for odd n − k, and dkn/n! > 1/(k!e) >
dkn+1/(n+1)! for even n−k. Thus, if µn denotes the distribution of the number
of fixed points of a random permutation of size n, we have

dTV(µ, µn) ≤ dTV(µn, µn+1) =
2n

(n+ 1)!
.

By combining the two previous inequalities, we have, for any n, dTV(µ, ν) ≤
(n+ 2)2n/(n+ 1)!, thus dTV(µ, ν) = 0, thus µ = ν.

We now turn to a short analysis of the random bit complexity of our algo-
rithm.

Proposition 4.1 Our Poisson algorithm uses, in expectation, between 6.89
and 6.9 random bits, assuming the Random primitive is optimal in terms of
random bits used.
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Proof Let C be the number of random bits used by the algorithm and Cn the
number of random bits (if any) consumed at level n, so that C =

∑∞
n=2 Cn.

We have E(Cn) =
2n−2

(n−1)!E(Un), where Un is the number of bits used by an

optimal uniform sampler Random(n) in the sense of Knuth and Yao (1976); the
2n−2/(n − 1)! factor is simply the probability of reaching level n of the tree.
The inequality log2(n) ≤ E(Un) ≤ log2(n) + 2 is valid for all n, but using it
blindly to bound the complexity of our algorithm gives an upper bound of 9.59,
significantly more bits than we want.

Instead, we compute exactly Dk =
∑k

n=2
2n−2

(n−1)!E(Un) for some constant k.

The lower and upper bounds for E(C) then become Dk +
∑

n≥k
2n−1 log

2
(n+1)

n!

and Dk+
∑

n≥k

2n−1(2+log
2
(n+1))

n! , respectively. For fixed n, E(Un) can be simply
obtained from the binary expansion of 1/n, as described in Knuth and Yao
(1976).

To obtain the estimates given in the proposition, we computed the above
bounds for k = 10. Values of E(Un) for n from 2 to 10 are 1, 8/3, 2, 18/5, 11/3,
24/7, 3, 14/3, 23/5, yielding D10 = 97771

14175 ≃ 6.897. This is a lower bound for the
expected random bit complexity.

For the upper bound, we need an upper bound for

M =
∑

n≥10

2n−1(2 + log2(n+ 1))

n!
.

We only use the inequality 2 + log2(n + 1) ≤ n (which is certainly valid for
n ≥ 10); we get

M ≤
∑

n≥9

2n

n!
= e2 −

8
∑

n=0

2n

n!
= e2 −

2327

315
≃ 0.00175.

Indeed, both the lower and upper bound are between 6.89 and 6.9.

Our Poisson algorithm, efficient though it may be, is not optimal; again
applying the results in Knuth and Yao (1976), an optimal algorithm would use,
in expectation, fewer than 2+E bits, where E = 1+e−1

∑

k≥0 log2(k!)/k! ≃ 1.89
is the binary entropy of the Poisson distribution; note, however, that such an
algorithm would need the binary expansions of all individual probabilities of the
Poisson distribution, pk = 1/(k!e).

5 Conclusion

We presented a new uniform generation tree for permutations, with the prop-
erty of preserving as much as possible the number of fixed points between a
permutation and its parent. This generation tree gives us a new and efficient
algorithm for the uniform random generation of derangements, as well as a new
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method for sampling from the Poisson distribution with parameter 1. Both
algorithms use only small integer numbers.

We believe other applications to random generation can be devised for the
generation tree, such as sampling permutations having some predefined condi-
tion on their number of fixed points: e.g. an even number, a fixed number. We
expect our tree to make many rejection-based algorithms for this kind of task
particularly efficient.
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