On the minimization of total mean curvature - Archive ouverte HAL
Article Dans Une Revue Journal of Geometric Analysis Année : 2016

On the minimization of total mean curvature

Résumé

In this paper we are interested in possible extensions of an inequality due to Minkowski: $\int_{\partial\Omega} H\,dA \geq \sqrt{4\pi A(\partial\Omega)}$ valid for any regular open set $\Omega\subset\mathbb{R}^3$, where $H$ denotes the scalar mean curvature and $A$ the area. We prove that this inequality holds true for axisymmetric domains which are convex in the direction orthogonal to the axis of symmetry. We also show that this inequality cannot be true in more general situations. However we prove that $\int_{\partial\Omega} |H|\,dA \geq \sqrt{4\pi A(\partial\Omega)}$ remains true for any axisymmetric domain.
Fichier principal
Vignette du fichier
article-intH-HAL.pdf (237.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01015600 , version 1 (26-06-2014)

Licence

Identifiants

Citer

Jeremy Dalphin, Antoine Henrot, Simon Masnou, Takeo Takahashi. On the minimization of total mean curvature. Journal of Geometric Analysis, 2016, 26 (4), pp.2729-2750. ⟨10.1007/s12220-015-9646-y⟩. ⟨hal-01015600⟩
1639 Consultations
929 Téléchargements

Altmetric

Partager

More