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I. INTRODUCTION

Nonnegative tensor decomposition, i.e., a decomposition of a tensor with nonnegative entries (with respect to a fixed choice of bases) into a sum of tensor products of nonnegative vectors, arises in a wide range of applications. These include hyperspectral imaging, spectroscopy, statistics, phylogenetics, data mining, pattern recognition, among other areas; see [START_REF] Lim | Nonnegative approximations of nonnegative tensors[END_REF], [START_REF] Shashua | Non-negative tensor factorization with applications to statistics and computer vision[END_REF], [START_REF] Smilde | Multi-Way Analysis[END_REF], [START_REF] Zhang | Tensor methods for hyperspectral data analysis: A space object material identification study[END_REF] and the references therein. One important reason for its prevalence is that such a decomposition shows how a joint distribution of discrete random variables decomposes when they are independent conditional on a discrete latent random variable [START_REF] Lim | Nonnegative approximations of nonnegative tensors[END_REF], [START_REF] Zhou | Bayesian factorizations of big sparse tensors[END_REF] -a ubiquitous model that underlies many applications. This is in fact one of the simplest Bayesian network [START_REF] Garcia | Algebraic geometry of Bayesian networks[END_REF], [START_REF] Jordan | Graphical models[END_REF], [START_REF] Koller | Probabilistic Graphical Models[END_REF], a local expression of the joint distribution of a set of random variables x i as

p(x 1 , . . . , x d ) = d i=1 p(x i | θ) dµ θ ( 1 
)
where θ is some unknown latent random variable. The relation expressed in [START_REF] Abo | Induction for secant varieties of Segre varieties[END_REF] is often called the naive Bayes hypothesis.

In the case when the random variables x 1 , . . . , x d and the latent variable θ take only a finite number of values, the decomposition becomes one of the form Yang Qi and Pierre Comon are with CNRS, Gipsa-Lab, University of Grenoble Alpes, F-38000 Grenoble, France (e-mail: yang.qi@gipsa-lab.fr, p.comon@ieee.org).

t i1,...,i d = r p=1 λ r u i1,p • • • u i d ,p . (2) 
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One can show [START_REF] Lim | Nonnegative approximations of nonnegative tensors[END_REF] that any decomposition of a nonnegative tensor of the form in (2) may, upon normalization by a suitable constant, be regarded as [START_REF] Abo | Induction for secant varieties of Segre varieties[END_REF], i.e., a marginal decomposition of a joint probability mass function into conditional probabilities under the naive Bayes hypothesis. In the event when the latent variable θ is not discrete or finite, one may argue that (2) becomes an approximation with '≈' in place of '='.

In this article, we investigate several questions regarding nonnegative tensor decompositions and approximations, focusing in particular on uniqueness issues. In Section II, we define nonnegative tensors in a way that parallels the usual abstract definition of tensors in algebra. We will view them as elements in a tensor product of cones, i.e., tensors in C 1 ⊗• • •⊗C d where C 1 , . . . , C d are cones and the tensor product is that of R +semimodules (we write R + := [0, ∞) for the nonnegative reals). The special case C 1 = R n1 + , . . . , C d = R n d + then reduces to nonnegative tensors.

It has been established in [START_REF] Lim | Nonnegative approximations of nonnegative tensors[END_REF] that every nonnegative tensor has a best nonnegative rank-r approximation. In Section IV we will show that this best approximation is almost always unique. Furthermore, the set of nonnegative tensors of nonnegative rank > r that do not have a unique best rank-r approximation form a semialgebraic set contained in a hypersurface. For the special case when r = 1, we first show in Section V that for a nonnegative tensor, the best nonnegative rank-one and best rank-one approximations coincide. In Section VII, by exploring normalized singular pairs, we find an explicit polynomial expression describing the hypersurface of real (or nonnegative) tensors that admit non-unique best rank-one approximations, which allows one to check whether a given tensor has a unique best rank-one approximation. This polynomial expression also gives a defining equation of the Euclidean distance discriminant of the Segre variety [START_REF] Draisma | The Euclidean distance degree of an algebraic variety[END_REF]. In Section VI, we find results analogous to those in Section VII for real (or nonnegative) symmetric tensors. We prove an analogue of the Perron-Frobenius theorem for singular values/vectors of positive tensors in Section V and, among other things, deduce that one cannot obtain a best nonnegative rank-r approximation of a positive tensor by 'deflation', i.e., by finding r successive best nonnegative rank-one approximations.

These results would likely shed light on the large number of computational methods for nonnegative matrix factorizations and nonnegative tensor decompositions [START_REF] Arora | Computing a nonnegative matrix factorization -provably[END_REF], [START_REF] Bro | Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications[END_REF], [START_REF] Chu | Low-dimensional polytope approximation and its applications to nonnegative matrix factorization[END_REF], [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation[END_REF], [START_REF] Cohen | Fast decomposition of large nonnegative tensors[END_REF], [START_REF] Friedlander | Computing non-negative tensor factorizations[END_REF], [START_REF] Ho | Nonnegative Matrix Factorization Algorithms and Applications[END_REF], [START_REF] Kim | Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method[END_REF], [START_REF] Kim | Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework[END_REF], [START_REF] Kim | Fast nonnegative matrix factorization: An activeset-like method and comparisons[END_REF], [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF], [START_REF] Vavasis | On the complexity of nonnegative matrix factorization[END_REF], [START_REF] Zhou | Fast nonnegative matrix/tensor factorization based on low-rank approximation[END_REF].

II. NONNEGATIVE TENSORS

A tensor of order d (d-tensor for short) may be represented as a d-dimensional hypermatrix, i.e., a d-dimensional array of (usually) real or complex values. This is a higher-order generalization of the fact that a 2-tensor, i.e., a linear operator, a bilinear form, or a dyad, can always be represented as a matrix. Such a coordinate representation sometimes hides intrinsic properties -in particular, this array of coordinates is meaningful only if the bases of underlying vector spaces have been specified in the first place. With this in mind, we prefer to define tensors properly rather than simply regarding them as d-dimensional arrays of numbers.

The following is the standard definition of tensors. We will see later how we may obtain an analogous definition for nonnegative tensors. Definition 1. Let V i be a vector space of finite dimension n i over a field K, i = 1, . . . , d, and let

V 1 × • • • × V d be the set of d-tuples of vectors. Then the tensor product V = V 1 ⊗• • •⊗V d is the free linear space spanned by V 1 × • • • × V d quotient by the equivalence relation (v 1 , . . . , αv i + βv i , . . . , v d ) ∼ α(v 1 , . . . , v i , . . . , v d ) + β(v 1 , . . . , v i , . . . , v d ) (3) for every v i , v i ∈ V i , α i , β i ∈ K, i = 1, . . . , d. A tensor is an element of V 1 ⊗ • • • ⊗ V d .
In particular, (3) gives

(α 1 v 1 , α 2 v 2 , . . . , α d v d ) = d i=1 α i (v 1 , v 2 , . . . , v d ) (4)
More details on the definition of tensor spaces may be found in [START_REF] Comon | Tensors: a brief introduction[END_REF], [START_REF] Hackbusch | Tensor Spaces and Numerical Tensor Calculus[END_REF], [START_REF] Landsberg | Tensors: Geometry and Applications[END_REF], [START_REF] Lim | Tensors and hypermatrices[END_REF].

A decomposable tensor is one of the form

v 1 ⊗ • • • ⊗ v d , v i ∈ V i , i = 1, . . . , d.
It represents the equivalence class of tuples up to scaling as in (4), i.e.,

v 1 ⊗ • • • ⊗ v d = (α 1 v 1 , . . . , α d v d ) : d i=1 α i = 1 .
By (4), it is clear that a decomposable tensor cannot in general be uniquely represented by a d-tuple of vectors, what is often called a "scaling indeterminacy" in the engineering literature. When we use the term 'unique' in this article, it is implicit that the uniqueness is only up to scaling of this nature.

From the way a tensor is defined in Definition 1, it is immediate that a nonzero tensor can always be expressed as a finite sum of nonzero decomposable tensors. When the number of summands is minimal, this decomposition is called a rank decomposition (the term "canonical polyadic" or CP is often also used) and the number of summands in such a decomposition is called the rank of the tensor. In other words, we have the following:

For every

T ∈ V 1 ⊗ • • • ⊗ V d , there exist v i,p ∈ V i , i = 1, . . . , d, p = 1, . . . , rank(T ), such that T = rank(T ) p=1 v 1,p ⊗ • • • ⊗ v d,p . (5) 
We present the above material, which is largely standard knowledge, to motivate an analogous construction for real nonnegative tensors. We will first define nonnegative tensors in a coordinate-dependent manner (i.e., depending on a choice of bases on V 1 , . . . , V d ), and then in a coordinate-independent manner. Definition 2. For each i = 1, . . . , d, let V i be a real vector space with dim V i = n i . For any fixed choice of basis {v i,1 , . . . , v i,ni } for V i , we denote by V + i the subset of vectors with nonnegative coefficients in V i , i.e.,

V + i = ni p=1 α p v i,p ∈ V i : α 1 , . . . , α ni ∈ R + .
We will call an element in

V := V 1 ⊗ • • • ⊗ V d of the form u 1 ⊗• • •⊗u d where u i ∈ V + i for i = 1, .
. . , d, a nonnegatively decomposable tensor. The set of nonnegative tensors V + is then the subset of V defined by

V + = r p=1 u 1,p ⊗ • • • ⊗ u d,p ∈ V : u i,p ∈ V + i , i = 1, . . . , d, p = 1, . . . , r, r ∈ N .
By its definition, every element of V + has a representation as a finite sum of nonnegatively decomposable tensors. A decomposition of minimal length then yields the notions of nonnegative tensor rank and nonnegative tensor rank decomposition.

Definition 3. For every T ∈ V + , there exist v i,p ∈ V + i , i = 1, . . . , d, p = 1, . . . , r, such that T = rank+(T ) p=1 v 1,p ⊗ • • • ⊗ v d,p (6) 
where

rank + (T ) := r : T = r p=1 v 1,p ⊗ • • • ⊗ v d,p . (7) 
We will call [START_REF] Cartwright | The number of eigenvalues of a tensor[END_REF] nonnegative tensor rank or nonnegative rank for short and (6) a nonnegative rank decomposition of the nonnegative tensor T .

An obvious property is that rank + (T ) ≥ rank(T ) for any T ∈ V + .

We now examine an alternative coordinate-free approach to defining nonnegative tensors and nonnegative rank. This approach is also more general, yielding a notion of conic rank for a tensor product of any convex cones. We first recall the definition of a tensor product of semimodules. See [START_REF] Banagl | The tensor product of function semimodules[END_REF] for details on the existence and a construction of such a tensor product.

Definition 4. Let R be a commutative semiring and M, N be R-semimodules (cf. Appendix for the definitions of semirings and semimodules). A tensor product M ⊗ R N of M and N is an R-semimodule satisfying the universal property: There is an R-bilinear map ϕ : M ×N → M ⊗ R N such that given any other R-semimodule S together with an R-bilinear map h :

M ×N → S, there is a unique R-linear map h : M ⊗ R N → S satisfying h = h • ϕ.
Recall that a convex cone C is a subset of a vector space over an ordered field that is closed under linear combinations with nonnegative coefficients, i.e., αx + βy belongs to C for all x, y ∈ C and any nonnegative scalars α, β.

Since any convex cone C i ⊂ V i is a semimodule over the semiring R + , we have the unique tensor product of these convex cones

C 1 ⊗ • • • ⊗ C d as an R + -semimodule up to isomorphism. More precisely, the tensor product of cones C 1 ⊗ • • • ⊗ C d is the quotient monoid F (C 1 , . . . , C d )/ ∼, where F (C 1 , . . . , C d ) is the free monoid generated by all n- tuples (v 1 , . . . , v d ) ∈ C 1 × • • • × C d , and ∼ is the equivalence relation on F (C 1 , . . . , C d ) defined by (v 1 , . . . , αv i + βv i , . . . , v d ) ∼ α(v 1 , . . . , v i , . . . , v d ) + β(v 1 , . . . , v i , . . . , v d ) for every v i , v i ∈ C i , α, β ∈ R + , and i = 1, . . . , d. The commutative monoid C 1 ⊗ • • • ⊗ C d is an R + -semimodule. We write v 1 ⊗ • • • ⊗ v d for the equivalence class representing (v 1 , . . . , v d ) in F (C 1 , . . . , C d )/ ∼. A multiconic map from C 1 × • • • × C d to a convex cone C is a map ϕ : C 1 × • • • × C d → C with the property that ϕ(u 1 , . . . , αv i + βw i , . . . , u d ) = αϕ(u 1 , . . . , v i , . . . , u d ) + βϕ(u 1 , . . . , w i , . . . , u d ) for all α, β ∈ R + , i = 1, . . . , d.
The multiconic map ν :

C 1 × • • • × C m → C 1 ⊗ • • • ⊗ C d defined by ν(v 1 , . . . , v d ) = v 1 ⊗ • • • ⊗ v d ∈ F (C 1 , . . . , C d )/ ∼
and extended nonnegative linearly to all of C 1 × • • • × C d satisfies the universal factorization property often used to define tensor product spaces: If ϕ is a multiconic map from

C 1 × • • • ×C d into a convex cone C, then there exists a unique R + -linear map ψ from C 1 ⊗ • • • ⊗ C d into C, that makes the following diagram commutative: C 1 × • • • × C d ν / / ϕ ( ( 
C 1 ⊗ • • • ⊗ C d ψ C
i.e., ψν = ϕ. Strictly speaking we should have written

C 1 ⊗ R+ • • • ⊗ R+ C d to indicate
that the tensor product is one of R + -semimodules but this is obvious from context. Note that Definition 4 is consistent with our earlier definition of nonnegative tensors since

V + = V + 1 ⊗ • • • ⊗ V + d as tensor product of cones over R + .
In [START_REF] Velasco | Linearization functors on real convex sets[END_REF], the tensor product of C 1 , . . . , C d is defined to be the convex cone in

V 1 ⊗ • • • ⊗ V d formed by v 1 ⊗ • • • ⊗ v d ∈ V 1 ⊗ • • • ⊗ V d , where v i ∈ C i ,
and showed that this tensor product satisfies the above universal factorization property. By the uniqueness of the R + -semimodule satisfying the universal property, our construction and the one in [START_REF] Velasco | Linearization functors on real convex sets[END_REF] are equivalent.

If

C 1 = R n1 + , . . . , C d = R n d + , we may identify R n1 + ⊗ • • • ⊗ R n d + = R n1ו••×n d +
through the interpretation of the tensor product of vectors as a hypermatrix via the Segre outer product

[v 1 (1), . . . , v 1 (n 1 )] T ⊗ • • • ⊗ [v d (1), . . . , v d (n d )] T = [v 1 (i 1 ) • • • v d (i d )] n1,...,n d i1,...,i d =1 .
Here we write v(j) for the jth coordinate of v ∈ R n .

We note that one may easily extend the notion of nonnegative rank and nonnegative rank decomposition to tensor product of other cones.

Definition 5. A tensor T ∈ C 1 ⊗• • •⊗C d is said to be decom- posable if T is of the form u 1 ⊗ • • • ⊗ u d , where u i ∈ C i . For T ∈ C 1 ⊗• • •⊗C d , the conic rank of T , denoted by rank + (T ), is the minimal value of r such that T = r p=1 u 1,p ⊗• • •⊗u d,p , where u i,p ∈ C i , i.e., T is contained in the convex cone generated by u 1,1 ⊗ • • • ⊗ u d,1 , . . . , u 1,r ⊗ • • • ⊗ u d,r
. Such a decomposition will be called a conic rank decomposition.

In the remainder of this paper, we focus our attention on the case

V + = V + 1 ⊗ • • • ⊗ V + d
, the convex cone of nonnegative d-tensors although we will point out whenever a result holds more generally for arbitrary cones. For any given positive integer r, we let

D + r = {X ∈ V + 1 ⊗ • • • ⊗ V + d : rank + (X)
≤ r} denote the set of tensors of nonnegative rank not more than r.

III. UNIQUENESS OF RANK DECOMPOSITIONS

From the standpoints of both identifiability and wellposedness, an important issue is whether a rank decomposition of the form (5) is unique. It is clear that such decompositions can never be unique when d = 2, i.e., for matrices. But when d > 2, rank decompositions are often unique, which is probably the strongest reason for their utility in applications. There are well-known sufficient conditions ensuring uniqueness of rank decomposition [START_REF]Three-way arrays: Rank and uniqueness of trilinear decompositions[END_REF], [START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of N -way arrays[END_REF], [START_REF] Domanov | On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part I: Basic results and uniqueness of one factor matrix[END_REF], [START_REF] Domanov | On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part II: Uniqueness of the overall decomposition[END_REF] and many recent works on the uniqueness of generic tensors of certain ranks [START_REF] Strassen | Rank and optimal computation of generic tensors[END_REF], [START_REF] Chiantini | On generic identifiability of 3-tensors of small rank[END_REF], [START_REF] Bocci | Refined methods for the identifiability of tensors[END_REF], [START_REF] Chiantini | An algorithm for generic and low-rank specific identifiability of complex tensors[END_REF]. We highlight three notable results.

Theorem 6 (Kruskal). The rank decomposition of a d-tensor T is unique if

rank(T ) ≤ 1 + d i=1 (κ i -1)
2 where κ i denote the Kruskal rank of the factors u i,1 , . . . , u i,rank(T ) , which is generically equal to the dimension n i when n i ≤ rank(T ).

Theorem 7 (Bocci-Chiantini-Ottaviani). The rank decomposition of a generic d-tensor T of rank-r is unique when

r ≤ d i=1 n i -(n 1 + n 2 + n 3 -2) d i=3 n i 1 + d i=1 (n i -1)
. Theorem 8 (Chiantini-Ottaviani-Vannieuwenhoven). The rank decomposition of a generic d-tensor T of rank-r is unique when

r < d i=1 n i 1 + d i=1 (n i -1) if d i=1 n i ≤
15000, with some exceptional cases. The authors of [START_REF] Chiantini | An algorithm for generic and low-rank specific identifiability of complex tensors[END_REF] also strengthened the above result by a prior compression of tensor T . The consequence is that the dimensions n i in Theorem 8 may be replaced by the multilinear rank of T , which allows significant tightening of the upper bound for low multilinear rank tensors. The maximum R smax where a generic tensor with rank ≤ R smax has a unique rank decomposition has been called the maximum stable rank in [START_REF] Tichavský | Cramér-Rao-induced bounds for CANDECOMP/PARAFAC tensor decomposition[END_REF]. Theorem 8 implies that if d i=1 n i ≤ 15000, then aside from the exceptional cases, the maximum stable rank is

d i=1 n i /[1 + d i=1 (n i -1)] -1,
which is one less than the (expected) generic rank [START_REF] Strassen | Rank and optimal computation of generic tensors[END_REF], [START_REF] Lickteig | Typical tensorial rank[END_REF], [START_REF] Abo | Induction for secant varieties of Segre varieties[END_REF], [START_REF] Comon | Generic and typical ranks of multi-way arrays[END_REF].

Nevertheless these results do not apply directly to nonnegative decompositions over R + (as opposed to decompositions over C) nor to rank-r approximations (as opposed to rank-r decompositions). The purpose of this paper is to provide some of the first results in these directions. In particular, it will be necessary to distinguish between an exact nonnegative rank-r decomposition and a best nonnegative rank-r approximation. Note that when a best nonnegative rank-r approximation to a nonnegative tensor T is unique, it means that

min rank+(X)≤r T -X (8) 
has a unique minimizer X * . The nonnegative rank-r decomposition of X * may not however be unique.

A nonnegative rank decomposition

X = r p=1 u 1,p ⊗ • • • ⊗ u d,p ∈ V + 1 ⊗ • • • ⊗ V + d is said to be unique if for any other nonnegative rank decomposition X = r p=1 v 1,p ⊗ • • • ⊗ v d,p , there is a permutation σ of {1, . . . , d} such that u 1,p ⊗ • • • ⊗ u d,p = v 1,σ(p) ⊗ • • • ⊗ v d,σ(p) for all p = 1, . . . , r.

IV. EXISTENCE AND GENERIC UNIQUENESS OF RANK-r APPROXIMATIONS

Let V 1 , . . . , V d be real vector spaces. Given a nonnegative tensor T ∈ V + , we consider the best nonnegative rank-r approximations of T , where r is less than the nonnegative rank of T . We let

δ(T ) = inf X∈D + r T -X = inf rank+(X)≤r T -X ,
where • is the Hilbert-Schmidt norm, i.e., the l 2 -norm given by the inner product.

Henceforth any unlabelled norm

• on V 1 ⊗ • • • ⊗ V d will always denote the Hilbert-Schmidt norm. When d = 2,
the Hilbert-Schmidt norm reduces to the Frobenius norm of matrices and when d = 1, it reduces to the Euclidean norm of vectors. Also, throughout this article, the notation X, Y will always denote tensor contraction in all possible indices for X, Y tensors of any order [START_REF] Lim | Tensors and hypermatrices[END_REF]. When X and Y are of the same order and real, X, Y reduces to a real inner product and our notation is consistent with the inner product notation; in particular X, X = X 2 . When X is a d-tensor and Y is a (d -1)-tensor, X, Y is a vector -this is the only other case that will arise in our discussions below. Note however that over C, •, • is only a symmetric bilinear form and not a complex inner product (which is a sesquilinear form).

Proposition 9. Let C i ⊆ V + i be a closed semialgebraic cone for i = 1, . . . , d. Then D + r = {X ∈ C 1 ⊗ • • • ⊗ C d : rank + (X) ≤ r} is a closed semialgebraic set.
Proof. It follows from [START_REF] Lim | Nonnegative approximations of nonnegative tensors[END_REF] that the set is closed and from the Tarski-Seidenberg Theorem [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF] that it is semialgebraic.

Since D + r is a closed set, for any T / ∈ D + r , there is some

T * ∈ D + r such that T -T * = δ(T ).
The following result is an analogue of [START_REF] Friedland | The number of singular vector tuples and uniqueness of best rank-one approximation of tensors[END_REF]Theorem 27] for nonnegative tensors based on [START_REF] Friedland | The number of singular vector tuples and uniqueness of best rank-one approximation of tensors[END_REF]Corollary 18].

Proposition 10. Almost every T ∈ V + with nonnegative rank > r has a unique best nonnegative rank-r approximation.

Proof. For any

T, T ∈ V 1 ⊗ • • • ⊗ V d , |δ(T ) -δ(T )| ≤ T -T , i.e., δ is Lipschitz and thus differentiable almost everywhere in V = V 1 ⊗ • • • ⊗ V d by Rademacher Theorem.
Consider a general T ∈ V + . Then in particular T lies in the interior of V + and there is an open neighborhood of T contained in V + . So δ is differentiable almost everywhere in V + as well. Suppose δ is differentiable at T ∈ V + . For any

U ∈ V , let ∂δ 2 T (U ) be the differential of δ 2 at T along the direction U . Since T -T * = δ(T ) we obtain δ 2 (T + tU ) = δ 2 (T ) + t∂δ 2 T (U ) + O(t 2 ) ≤ T + tU -T * 2 = δ 2 (T ) + 2t U, T -T * + t 2 U 2 .
Therefore, for any t, we have t∂δ 2

T (U ) ≤ 2t U, T -T * , which implies that ∂δ 2 T (U ) = 2 U, T -T * . If T is another best nonnegative rank-r approximation of T , then 2 U, T -T * = ∂δ 2 T (U ) = 2 U, T -T , from which it follows that T -T * , U = 0 for any U , i.e., T = T * .
We note that Proposition 10 holds more generally for arbitrary closed cones C 1 , . . . , C d in place of V + 1 , . . . , V + d . Our next proposition holds true for arbitrary closed semialgebraic cones C 1 , . . . , C d in place of V + 1 , . . . , V + d . Proposition 11. The nonnegative tensors satisfying (i) nonnegative rank > r, and (ii) do not have a unique best rank-r approximation, form a semialgebraic set that is contained in some hypersurface.

Proof. Observe that D + r is the image of the polynomial map ϕ r : (V + 1 × • • • × V + d ) r → V + , (u 1,1 , . . . , u d,1 , . . . , u 1,r , . . . , u d,r ) → r j=1 u 1,j ⊗ • • • ⊗ u d,j .
Hence D + r is semialgebraic by the Tarski-Seidenberg Theorem [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF] and the required result follows from [START_REF] Friedland | Some approximation problems in semialgebraic geometry[END_REF]Theorem 3.4].

Now we examine a useful necessary condition for

r p=1 T p to be a best rank-r approximation of T ∈ V 1 ⊗ • • • ⊗ V d .
For a vector u ∈ V i , we denote by u(j) the jth coordinate of u, i.e., u = (u(1), . . . , u(n i )), and we will borrow a standard notation from algebraic topology where a hat over a quantity means that quantity is omitted. So for example,

u 1 ⊗ u 2 ⊗ u 3 = u 2 ⊗ u 3 , u 1 ⊗ u 2 ⊗ u 3 = u 1 ⊗ u 3 , u 1 ⊗ u 2 ⊗ u 3 = u 1 ⊗ u 2 , u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d = u 1 ⊗ • • • ⊗ u i-1 ⊗ u i+1 ⊗ • • • ⊗ u d .
Let us recall the following well-known fact, which has been used to develop algorithms for nonnegative matrix factorization and nonnegative tensor decomposition. Lemma 12. Let V 1 , . . . , V d be real vector spaces and let T ∈

V 1 ⊗• • •⊗V d .
Let rank(T ) > r and λ r j=1 T j be a best rank-r approximation, where T j = u 1,j ⊗• • •⊗u d,j and r j=1 T j = 1. Then for all i = 1, . . . , d, and p = 1, . . . , r,

T, u 1,p ⊗ • • • ⊗ u i,p ⊗ • • • ⊗ u d,p = λ r j=1 T j , u 1,p ⊗ • • • ⊗ u i,p ⊗ • • • ⊗ u d,p , (9) 
where λ = T,

r j=1 T j . Proof. Let L denote the line in V 1 ⊗ • • • ⊗ V d spanned by r j=1 v 1,j ⊗ • • • ⊗ v d,j
, and L ⊥ denote the orthogonal complement of L. Denote the orthogonal projection of T onto L by Proj L (T ). Then

T 2 = Proj L (T ) 2 + Proj L ⊥ (T ) 2 ,
and thus

min α≥0 T -α r p=1 v 1,p ⊗ • • • ⊗ v d,p 2 = T -Proj L (T ) 2 = Proj L ⊥ (T ) 2 = T 2 -Proj L (T ) 2 .
So computing

min v1,1,...,v d,r min α≥0 T -α r j=1 v 1,j ⊗ • • • ⊗ v d,j is equivalent to computing max v1,1,...,v d,r Proj L (T ) = max v1,1,...,v d,r T, r j=1 v 1,j ⊗ • • • ⊗ v d,j . Since r j=1 T j = 1, we must have r j=1 T j , u 1,p ⊗ • • • ⊗ u i,p ⊗ • • • ⊗ u d,p = 0
for some p. The Jacobian matrix of the hypersurface defined by

r j=1 v 1,j ⊗ • • • ⊗ v d,j = 1 has constant rank 1 around (u 1,1 , . . . , u d,1 , . . . , u 1,r , . . . , u d,r
), i.e., this real hypersurface is smooth at the point (u 1,1 , . . . , u d,1 , . . . , u 1,r , . . . , u d,r ). Hence we may consider the Lagrangian

L = T, r p=1 v 1,p ⊗ • • • ⊗ v d,p -λ r p=1 v 1,p ⊗ • • • ⊗ v d,p -1 . (10)
Setting ∂L/∂v i,p = 0 at (u 1,1 , . . . , u d,1 , . . . , u 1,r , . . . , u d,r ) gives

T, u 1,p ⊗ • • • ⊗ u i,p ⊗ • • • ⊗ u d,p = λ r j=1 T j , u 1,p ⊗ • • • ⊗ u i,p ⊗ • • • ⊗ u d,p (11) 
with λ = T, r j=1 T j for all i = 1, . . . , d, p = 1, . . . , r. Lemma 12 has a nice geometric interpretation as follows.

Let σ r (PV 1 × • • • × PV d ) be the cone of the rth secant variety of the Segre variety PV 1 × • • • × PV d . Suppose λ r j=1 T j is a smooth point. Then T -λ r j=1 T j is perpendicular to the tangent space of σ r (PV 1 × • • • × PV d ) at λ r j=1 T j .
We presented Lemma 12 in a concrete affine (as opposed to projective) manner so that there will be no ambiguity when discussing λ and u i,j . We will see later in Definition 17 that when r = 1, these are normalized singular values and normalized singular vector tuples of T .

For a nonnegative tensor T with rank + (T ) > r, we have an inequality in place of the equality in [START_REF] Chiantini | On generic identifiability of 3-tensors of small rank[END_REF]. First we define the support of a vector v ∈ V to be [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation[END_REF] where v i,p ∈ V + i , i = 1, . . . , d, and p = 1, . . . , r . For each pair (i, p), consider the subspace

supp(v) := {i ∈ {1, . . . , dim V } : v i = 0}. Lemma 13. Let T ∈ V + with rank + (T ) > r and X = r p=1 u 1,p ⊗ • • • ⊗ u d,p be a solution of the optimization problem (8). Then T, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p ≤ X, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p
V i,p := {v ∈ V i : supp(v) ⊆ supp(u i,p )}. Then T, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p = X, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p (13) 
for v i,p ∈ V i,p .
Proof. Fix a pair (i, p) and consider a curve

X(t) = u 1,p ⊗ • • • ⊗ (u i,p + tv i,p ) ⊗ • • • ⊗ u d,p + j =p u 1,j ⊗ • • • ⊗ u d,j
, where v i,p ∈ V + i . Since for t ≥ 0, T -X(t) achieves a local minimum at t = 0, i.e., nondecreasing in [0, ε) for some small ε > 0, the right derivative

lim t→0+ d dt T -X(t) ≥ 0.
In other words, we have

T, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p ≤ X, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p . In particular, if v i,p ∈ V i,p , X(t) is nonnegative for t ∈ (-ε, ε), then the local minimality of T -X(t) at 0 implies that d dt T -X(t) t=0 = 0, which gives us T, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p = X, u 1,p ⊗ • • • ⊗ v i,p ⊗ • • • ⊗ u d,p , as required.
Recall that a choice of bases is always implicit when we discuss V + (cf. Definition 2) and we may refer to coordinates (or entries) of a nonnegative tensor T without ambiguity. Lemma 14. Let T ∈ V + with rank + (T ) > r and X be a solution of the optimization problem [START_REF] Chang | Perron-Frobenius theorem for nonnegative tensors[END_REF]. Then there exist i 1 , . . . , i d such that the coordinate (T -X) i1,...,i d > 0.

Proof. Let X = r p=1 u 1,p ⊗ • • • ⊗ u d,p . Suppose (T - X) i1,...,i d ≤ 0 for all i 1 , . . . , i d . Then there is some p ∈ {1, . . . , r } such that u 1,p (i 1 ) • • • u d,p (i d ) > 0. So T -X, u 1,p ⊗ • • • ⊗ u d,p ≤ (T -X) i1,...,i d u 1,p (i 1 ) • • • u d,p (i d ) < 0,
which contradicts [START_REF] Cohen | Fast decomposition of large nonnegative tensors[END_REF].

Proposition 15. Let T ∈ V + with rank + (T ) > r and X be a solution to the optimization problem [START_REF] Chang | Perron-Frobenius theorem for nonnegative tensors[END_REF]. Then rank + (X) = r.

Proof. Suppose that rank + (X) ≤ r -1. By Lemma 14 there is some coordinate (T -X) i1,...,i d > 0. Let X be the rankone tensor whose only nonzero coordinate X i1,...,i d = (T -X) i1,...,i d . Then T -X -X < T -X and rank + (X + X ) ≤ r, which contradicts X being a solution of [START_REF] Chang | Perron-Frobenius theorem for nonnegative tensors[END_REF].

Proposition 15 shows that a solution X of (8) indeed has nonnegative rank exactly r; so it is in fact appropriate to call X a best nonnegative rank-r approximation of T .

V. RANK-ONE APPROXIMATIONS FOR NONNEGATIVE TENSORS AND THE PERRON-FROBENIUS THEOREM

We have established in Section IV that a best nonnegative rank-r approximation of a nonnegative tensor is generically unique. In this section we focus on the case r = 1 and find sufficient conditions that guarantee the uniqueness of best nonnegative rank-one approximations. We begin with the following simple but useful observation: For a nonnegative tensor, a best rank-one approximation can always be chosen to be a best nonnegative rank-one approximation.

Theorem 16. Given T ∈ V + , let u 1 ⊗• • •⊗u d ∈ V 1 ⊗• • •⊗V d
be a best rank-one approximation of T . Then u 1 , . . . , u d can be chosen to be nonnegative, i.e., u

1 ∈ V + 1 , . . . , u d ∈ V + d . Proof. Let T = (T i1,...,i d ) and u i = (u i (1), . . . , u i (n i )). Then T -u 1 ⊗ • • • ⊗ u d 2 = n1,...,n d i1,...,i d =1 T i1,...,i d -u 1 (i 1 ) • • • u d (i d ) 2 ≥ n1,...,n d i1,...,i d =1 T i1,...,i d -|u 1 (i 1 )| • • • |u d (i d )| 2 .
Since Theorem 16, there is no need to distinguish between a best rank-one and a best nonnegative rank-one approximation of a nonnegative tensor. This allows us to treat best rank-one approximations of a real tensor in a unified way, i.e., we will look for sufficient conditions to ensure a unique best rank-one approximation of a real tensor. Motivated in part by the notion of singular pairs of a tensor [START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF] and by the case r = 1 in Lemma 12, we propose the following definition.

u 1 ⊗ • • • ⊗ u d is a best rank-one approximation, we can choose u j (i j ) = |u j (i j )|, i.e., u 1 ∈ V + 1 , . . . , u d ∈ V + d . By
Definition 17. Let V 1 , . . . , V d be vector spaces over K of dimensions n 1 , . . . , n d . For T ∈ V 1 ⊗ • • • ⊗ V d , we call (λ, u 1 , . . . , u d ) ∈ K × V 1 × • • • × V d a normalized singular pair of T if T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d = λu i , u i , u i = 1, (14) 
for all i = 1, . . . , d. We call λ a normalized singular value and (u 1 , . . . , u d ) is called a normalized singular vector tuple corresponding to λ. If K = R, λ ≥ 0, and u i ∈ V + i , we call (λ, u 1 , . . . , u d ) a nonnegative normalized singular pair of T .

The reader is reminded that the contraction product •, • is only an inner product over R but not C. In particular, u, u = u 2 over C. In Definition 17 we require that u i , u i = 1 instead of u i = 1 because u i , u i = 1 is an algebraic condition, i.e., it is defined by a polynomial equation. However imposing the condition u i , u i = 1 would exclude isotropic complex singular vector tuples with u i , u i = 0 -note that over C this can happen for u i = 0. As such, the following projective variant introduced in [START_REF] Friedland | The number of singular vector tuples and uniqueness of best rank-one approximation of tensors[END_REF] is useful when we would like to include such isotropic cases. Definition 18. Let W 1 , . . . , W d be complex vector space. For

T ∈ W 1 ⊗ • • • ⊗ W d , ([u 1 ], . . . , [u d ]) ∈ PW 1 × • • • × PW d is called a projective singular vector tuple if T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d = λ i u i (15) 
for some

λ i ∈ C, i = 1, . . . , d.
The number of projective singular vector tuples of a generic tensor has been calculated in [START_REF] Friedland | The number of singular vector tuples and uniqueness of best rank-one approximation of tensors[END_REF]. In the sense of [START_REF] Draisma | The Euclidean distance degree of an algebraic variety[END_REF], this number is the Euclidean distance degree of the Segre variety.

Note that as Definition 18 is over projective spaces, the λ i 's are not well-defined complex numbers, and neither is d i=1 λ i , but this product corresponds in an appropriate sense to a singular value as we will see next.

Definitions 17 and 18 are related over C as follows. Suppose [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF] and has u i = 1. Note that we may assume d i=1 λ i to be a nonnegative real number:

([u 1 ], . . . , [u d ]) ∈ PW 1 × • • • × PW d is a projective singular vector tuple. We first choose a representative (u 1 , . . . , u d ) of ([u 1 ], . . . , [u d ]) that satisfies
If (v 1 , . . . , v d ) is such that v j = e iθj u j , then T, v 1 ⊗ • • • ⊗ v j ⊗ • • • ⊗ v d = µ j v j
and we may choose appropriate θ 1 , . . . , θ d so that

d i=1 µ i = e i(d-2)(θ1+•••+θ d ) d i=1 λ i ∈ R + . For a nonnegative d i=1 λ i , λ := d i=1 λ i 1/d
is 'almost' a normalized singular value of T with corresponding normalized singular vector tuple (u 1 , . . . , u d ) -'almost' because the condition u i , u i = 1 in Definition 17 has to be replaced by u i = 1.

It has been shown in [START_REF] Friedland | The number of singular vector tuples and uniqueness of best rank-one approximation of tensors[END_REF] that a generic T does not have a zero singular value nor a projective singular vector tuple ([u 1 ], . . . , [u d ]) such that u i , u i = 0 for some i. Thus, for a generic T , both definitions above are equivalent. We may use the two definitions interchangeably depending on the situation.

In this article, we will mainly consider the normalized singular pairs of a tensor as defined in Definition 17.

The next three results give an analogue of the tensorial Perron-Frobenius Theorem [START_REF] Chang | Perron-Frobenius theorem for nonnegative tensors[END_REF], [START_REF] Friedland | Perron-Frobenius theorem for nonnegative multilinear forms and extensions[END_REF], [START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF], [START_REF] Yang | Further results for perron-frobenius theorem for nonnegative tensors[END_REF] for nonnegative normalized singular pairs (as opposed to nonnegative eigenpairs [START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF]). The proof of Lemma 19 in particular will require the l 1 -norm. Again recall that a choice of bases is always implicit when we discuss V + (cf. Definition 2) and the l 1 -norm is with respect to this choice of bases.

Lemma 19 (Existence).

A nonnegative tensor T ∈ V + has at least one nonnegative normalized singular pair.

Proof. Consider the compact convex set

D = (u 1 , . . . , u d ) ∈ V + 1 × • • • × V + d : d i=1 u i 1 = 1 . If d i=1 T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d 1 = 0 for some (u 1 , . . . , u d ), then T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d =
0 for all i, which implies that λ = 0. On the other hand, if

d i=1 T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d 1 > 0, we define the map ψ : D → D by ψ(u 1 , . . . , u d ) = T, u 2 ⊗ • • • ⊗ u d d i=1 T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d 1 , . . . . . . , T, u 1 ⊗ • • • ⊗ u d-1 d i=1 T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d 1 .
Note that each term T, u

1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d in the
denominator is the contraction of a d-tensor with a (d -1)tensor and therefore the result is a vector. We then normalize by the sum of the l 1 -norms of these vectors so that ψ 1 = 1. By Brouwer's Fixed Point Theorem, there is some

u 1 ⊗ • • • ⊗ u d such that T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d = λu i where λ = d i=1 T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d 1 . Since T, u 1 ⊗ • • • ⊗ u d = λ u i 2 for i = 1, . . . , d, u 1 = • • • = u d . Let u i = u i / u i and λ = T, u 1 ⊗ • • • ⊗ u d . Then (λ , u 1 , . . . , u d ) is a nonnegative normalized singular pair.
One of our reviewers has pointed out to us that Lemma 19 may also be obtained from Lemma 12 and Theorem 16.

Definition 20. We say that a tensor T ∈ V + is positive if all its coordinates (with respect to the implicit choice of bases when we specify V + , cf. Definition 2) are positive.

Lemma 21 (Positivity). If T is positive, then T has a positive normalized singular pair (λ, u 1 , . . . , u d ) with λ > 0.

Proof. By Lemma 19, T has a nonnegative normalized singular pair (λ, u 1 , . . . , u d ). Suppose that a choice of bases has been fixed for V 1 , . . . , V d . We let v i (j) denote the jth coordinate of a vector v i ∈ V i , j = 1, . . . , n i . Let α = min{u i (j) : i = 1, . . . , d, j ∈ supp(u i )}.

For any i and j,

λu i (j) = T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d (j) ≥ α d-1 kj ∈supp(uj ) T k1...ki-1jki+1...k d > 0,
implying that λ and all coordinates of u i are positive.

We recall the definition of spectral norm for a tensor, which is known [START_REF] Hillar | Most tensor problems are NP-hard[END_REF] to be NP-hard to compute or even approximate.

Definition 22. For T ∈ V 1 ⊗ • • • ⊗ V d over R, let T σ := max{| T, u 1 ⊗ • • • ⊗ u d | : u 1 = • • • = u d = 1} be the spectral norm of T .
We may deduce the following from [25, Theorem 20] and Lemma 12.

Corollary 23 (Generic Uniqueness). A general real tensor

T has a unique normalized singular pair (λ, u 1 , . . . , u d ) with λ = T σ .

The relation between best rank-r and best rank-one approximations of a matrix over R or C is well-known: A best rank-r approximation can be obtained from r successive best rank-one approximations -a consequence of the Eckart-Young Theorem. It has been shown in [START_REF] Stegeman | Subtracting a best rank-1 approximation does not necessarily decrease tensor rank[END_REF] that this 'deflation procedure' does not work for real or complex d-tensors of order d > 2. In fact, more recently, it has been shown in [START_REF] Vannieuwenhoven | On generic nonexistence of the Schmidt-Eckart-Young decomposition for complex tensors[END_REF] that the property almost never holds when d > 2.

We will see here that the 'deflatability' property does not hold for nonnegative tensor rank either. Proposition 24. A best nonnegative rank-r approximation of a positive tensor with nonnegative rank > r cannot be obtained by a sequence of best nonnegative rank-one approximations.

Proof. It suffices to show that a best nonnegative rank-2 approximation cannot be obtained by two best nonnegative rank-one approximations. Let T ∈ V + be a positive tensor with rank + (T ) > 2. Suppose u 1 ⊗ • • • ⊗ u d is a best rank-one approximation of T , and

u 1 ⊗ • • • ⊗ u d + v 1 ⊗ • • • ⊗ v d is a
best nonnegative rank-2 approximation of T . By the proof of Lemma 21, u k > 0 for all k = 1, . . . , d, then by Lemma 13, we have

T -u 1 ⊗ • • • ⊗ u d , u 1 ⊗ • • • ⊗ u d = 0, T -u 1 ⊗ • • • ⊗ u d -v 1 ⊗ • • • ⊗ v d , u 1 ⊗ • • • ⊗ u d = 0.
We subtract the second equation from the first to get

v 1 ⊗ • • • ⊗ v d , u 1 ⊗ • • • ⊗ u d = 0,
which contradicts the non-negativity of each v k and the positivity of each u k .

Following [START_REF] Vannieuwenhoven | On generic nonexistence of the Schmidt-Eckart-Young decomposition for complex tensors[END_REF], we say that a tensor T ∈ V + with nonnegative rank s admits a Schmidt-Eckart-Young decomposition if it can be written as a linear combination of nonnegatively decomposable tensors T = s p=1 u 1,p ⊗ • • • ⊗ u d,p , and such that r p=1 u 1,p ⊗ • • • ⊗ u d,p is a best nonnegative rank-r approximation of T for all r = 1, . . . , s. Proposition 24 shows that a general nonnegative tensor does not admit a Schmidt-Eckart-Young decomposition.

We point out that methods in [START_REF] Silva | Rank-1 tensor approximation methods and application to deflation[END_REF], [START_REF] Phan | Tensor deflation for CANDECOMP/PARAFAC. Part 1: alternating subspace update algorithm[END_REF], [START_REF] Phan | Tensor deflation for CANDECOMP/PARAFAC. Part 2: initialization and error analysis[END_REF] (for real/complex) [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation[END_REF], [START_REF] Zhou | Fast nonnegative matrix/tensor factorization based on low-rank approximation[END_REF], [START_REF] Kim | Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework[END_REF] (nonnegative) rely on deflation.

VI. UNIQUENESS OF BEST RANK-ONE APPROXIMATIONS FOR REAL SYMMETRIC TENSORS

Not every tensor has a unique best rank-one approximation [55, Proposition 1]. For example, the symmetric 3-tensor x ⊗ x ⊗ x + y ⊗ y ⊗ y, where x and y are orthonormal, has two best rank-one approximations: x ⊗ x ⊗ x and y ⊗ y ⊗ y. It is known that a best rank-one approximation of a symmetric tensor can be chosen to be symmetric over R and C [3], [START_REF] Friedland | Best rank-one approximation of real symmetric tensors can be chosen symmetric[END_REF]. In this section we study various properties of the set of symmetric tensors that do not have unique best symmetric rank-one approximations. Before we get to these we will have to first introduce analogues/generalizations of eigenpairs and characteristic polynomials for higher-order symmetric tensors.

In the following, for a real or complex vector space V , S d (V ) denotes the symmetric d-tensors over V . For any u ∈ V , we write

u ⊗d = u ⊗ • • • ⊗ u ∈ S d (V ) for the d-fold tensor product of u with itself.
Let V * be the dual space of V . For any group G acting on V , G also acts naturally on S d (V ) and S d (V * ) such that S, T = g • S, g • T for all g ∈ G, T ∈ S d (V ), and S ∈ S d (V * ). If we fix an inner product (•, •) on V , then V becomes self dual and we may identify V * = V . In which case •, • may be regarded the inner product on S d (V ) defined by u ⊗d , v ⊗d := (u, v) d and extended linearly to any S, T ∈ S d (V ) (since any element of S d (V ) may be expressed as a linear combination of u ⊗d 's [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF]). The inner product •, • is clearly invariant under the group that preserves the inner product (•, •). In particular, if

V = R n , then •, • is invariant under the orthogonal group 1 O(n).
The following definition of symmetric tensor eigenpairs is based on [START_REF] Cartwright | The number of eigenvalues of a tensor[END_REF], [START_REF] Lim | Singular values and eigenvalues of tensors: a variational approach[END_REF], [START_REF] Qi | Eigenvalues of a real spersymmetric tensor[END_REF].

Definition 25. For T ∈ S d (V ) over C, (λ, u) ∈ C × V is called a normalized eigenpair of T if T, u ⊗(d-1) = λu, u, u = 1.
λ is the normalized eigenvalue and v the corresponding normalized eigenvector of T . Two normalized eigenpairs (λ, u)

and (µ, v) of T are equivalent if (λ, u) = (µ, v) or if (-1) d-2 λ = µ and u = -v.
A normalized eigenvalue λ is said to be simple if it has only one corresponding normalized eigenvector up to equivalence.

The number of eigenpairs of a tensor over C has been determined in [START_REF] Cartwright | The number of eigenvalues of a tensor[END_REF], [START_REF] Oeding | Eigenvectors of tensors and algorithms for Waring decomposition[END_REF]; one may view this as the ED degree of the Veronese variety [START_REF] Draisma | The Euclidean distance degree of an algebraic variety[END_REF]. Definition 25 also applies to a real vector space V . In this case, normalized eigenpairs of

T ∈ S d (V ) are invariant O(n).
It is easy to see that for a symmetric tensor T ∈ S d (V ), the spectral norm T σ is the largest eigenvalue of T in absolute value. Let S n-1 denote the unit sphere in R n . The subset 1 Henceforth we assume that our vector spaces are equipped with inner products and we write O(n) for the group that preserves the inner product.

{u ∈ S n-1 : T, u ⊗d = T σ } is non-empty and closed in S n-1 and invariant under O(n).

To introduce the characteristic polynomial of a symmetric tensor, we first recall the definition and some basic properties of the multipolynomial resultant [START_REF] Gelfand | Discriminants, Resultants, and Multidimensional Determinants[END_REF], [START_REF] Cox | Using Algebraic Geometry[END_REF]. For any given n + 1 homogeneous polynomials F 0 , . . . , F n ∈ C[x 0 , . . . , x n ] with positive total degrees d 0 , . . . , d n , let

F i = |α|=di c i,α x α0 0 • • • x αn n
, where α = (α 0 , . . . , α n ) and |α| = α 0 + • • • + α n . We will associate each pair (i, α) with a variable u i,α . Now given a polynomial P in the variables u i,α where i = 0, . . . , n, and |α| ∈ {d 0 , . . . , d n }, we denote by P (F 0 , . . . , F n ) the result obtained by substituting each u i,α in P with c i,α . The following is a classical result in invariant theory [START_REF] Gelfand | Discriminants, Resultants, and Multidimensional Determinants[END_REF], [START_REF] Cox | Using Algebraic Geometry[END_REF].

Theorem 26. There is a unique polynomial Res with integer coefficients in the variables u i,α where i = 0, . . . , n, and |α| ∈ {d 0 , . . . , d n }, that has the following properties:

(i) F 0 = • • • = F n = 0 have a nonzero solution over C if and only if Res (F 0 , . . . , F n ) = 0. (ii) Res (x d0 0 , . . . , x dn n ) = 1. (iii) Res is irreducible over C.
Definition 27. Res (F 0 , . . . , F n ) ∈ C is called the resultant of the polynomials F 0 , . . . , F n . Often we will also say that it is the resultant of the system of polynomial equations F 0 = 0, . . . , F n = 0.

The following definition was first proposed in [START_REF] Qi | Eigenvalues and invariants of tensors[END_REF] and called an E-characteristic polynomial.

Definition 28. The characteristic polynomial of a symmetric tensor T is the resultant ψ T (λ) of the following systems of polynomial equations in n + 1 variables u and x (note that u has n entries).

(i) For T ∈ S 2d-1 (V ),

T, u ⊗(d-1) -λx d-2 u = 0 and x 2 -u, u = 0.

(ii) For T ∈ S 2d (V ),

T, u ⊗(2d-1) -λ u, u d-1 u = 0.
Note that we regard λ as a parameter and not one of the variables. One may show that the resultant ψ T (λ) is a (univariate) polynomial in λ.

In the following, for u, v, w ∈ V , we write

u v w := 1 6 (u ⊗ v ⊗ w + u ⊗ w ⊗ v + v ⊗ u ⊗ w + v ⊗ w ⊗ u + w ⊗ v ⊗ u + w ⊗ u ⊗ v)
for the symmetric tensor product [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF]. Note that u v w = v u w = • • • = w v u, i.e., symmetric tensor product is independent of order and in particular u v w ∈ S 3 (V ).

It is easy to extend this to arbitrary order

u 1 • • • u d = 1 d! τ ∈S d u τ (1) ⊗ • • • ⊗ u τ (d) ∈ S d (V ).
For u ∈ V , we may write u d = u • • • u for the dfold symmetric tensor product of u with itself but we clearly always have

u ⊗d = u d .
Proposition 29. Let V be a real vector space of dimension n. Let ρ = T σ and define

H ρ := {T ∈ S d (V ) : ρ is not simple}.
Then H ρ is an algebraic hypersurface in S d (V ).

Proof. For notation convenience, we prove the result for d = 3; extending to d > 3 is straightforward. Let T ∈ S 3 (V ). Suppose T ∈ H ρ , i.e., there exist

u = v ∈ V with u = v = 1 such that T, u ⊗2 = ρu, T, v ⊗2 = ρv.
Let u 1 := u and extend it to {u 1 , . . . , u n }, an orthonormal basis of V . By an action of the orthogonal group O(n) on V , we may assume that v = u 1 cos θ + u 2 sin θ for some θ ∈ (0, π). Let T ijk := T, u i u j u k . Then

             T 111 = ρ, T i11 = 0, (16) 
T 111 cos 2 θ + T 122 sin 2 θ = T 111 cos θ, (17) 
2T 122 sin θ cos θ + T 222 sin 2 θ = T 111 sin θ, 2T j12 cos θ + T j22 sin θ = 0, for i = 1 and j > 2.
By eliminating θ, we may obtain equations in T ijk 's. For example, [START_REF] Cox | Using Algebraic Geometry[END_REF] implies cos θ = 1 or (T 111 -T 122 ) cos θ = T 122 , and (18) implies sin θ = 0 or 2T 122 cos θ + T 222 sin θ = T 111 . Since sin 2 θ + cos 2 θ = 1 and θ = 0 or π, we have

[T 111 (T 111 -T 122 ) -2T 2 122 ] 2 + T 2 222 T 2 122 = T 2 222 (T 111 -T 122 ) 2 , (T 111 T 122 + 2T 2 122 -T 2 111 )T j22 = 2T j12 T 222 (T 111 -T 122 ). (18) 
Let J := {(T, [u 1 , . . . , u n ]) ∈ S 3 (V ) × O(n) : T ijk satisfies (18)}. Consider the projections

J π1 | | π2 ! ! S 3 (V ) O(n) (19) 
where

π 1 (T, [u 1 , . . . , u n ]) = T and π 2 (T, [u 1 , . . . , u n ]) = [u 1 , . . . , u n ]
. By [START_REF] Qi | Eigenvalues and invariants of tensors[END_REF], ρ is a root of the E-characteristic polynomial ψ T (λ) of T . So ρ and any of its corresponding normalized eigenvectors must depend algebraically on T , implying that J is a variety in S 3 (V ) × O(n). Hence T has more than one inequivalent normalized eigenvectors corresponding to ρ if and only if T is in the image of π 1 , i.e., H ρ = π 1 (J). Now define T ∈ S 3 (V ) by

T 111 = 1, T 122 = 2 √ 3 -3, T 222 = 6 √ 3 -10,
and set all other terms T ijk = 0. Then T has two normalized eigenvectors corresponding to its normalized eigenvalue ρ = T σ = 1. Hence T ∈ π 1 (J). Since T has a finite number of eigenvectors, a generic T ∈ π 1 (J) must also have a finite number of eigenvectors by semicontinuity. Hence

dim π -1 1 (T ) = dim O(n -2) for a generic T ∈ π 1 (J). So dim H ρ = dim π 1 (J) = dim J -dim O(n -2) = dim J -(n -2)(n -3)/2.
Since π 2 is a dominant morphism, and the dimension of a generic fiber π

-1 2 ([u 1 , . . . , u n ]) is dim S 3 (V ) -2(n -1), we deduce that dim J = dim S 3 (V ) -2(n -1) + dim O(n). Therefore dim H ρ = dim S 3 (V )-1, i.e., H ρ is a hypersurface.
Let V be a real vector space. We specify a choice of basis on V and define the set of nonnegative symmetric tensors to be

S d (V + ) := S d (V ) ∩ (V ⊗d ) + .
Recall also Definition 20.

Corollary 30. Let T ∈ S 3 (V + ) be positive. Let u ∈ V be such that T, u ⊗3 = ρ = T σ and

σ 2 := min{| T, u v v | : u, v = 0, v = 1}.
If σ 2 ≥ ρ/2, then T has a unique best nonnegative symmetric rank-one approximation.

Proof. By Lemma 12, suppose there exist v = u such that v = 1, u, v = 0, and T, (u cos θ + v sin θ) ⊗3 = ρ for some 0 < θ ≤ π. Then by Lemma 21, we must in fact have

0 < θ < π/2. By (17), T, u v v = cos θ 1+cos θ ρ. Since 0 < cos θ 1+cos θ < 1 2 when 0 < θ < π/2, we get 0 < T, u v v < ρ/2, which contradicts σ 2 ≥ ρ/2.
Let V be a real vector space of dimension n and W = V ⊗ R C be its complexification. A generic T ∈ S d (W ) has distinct eigenvalues [START_REF] Cartwright | The number of eigenvalues of a tensor[END_REF], so the resultant of the polynomial ψ T and its derivative ψ T , denoted by D eig (T ), is a nonzero polynomial on S d (W ) called the eigen discriminant. The equation D eig (T ) = 0 defines the complex hypersurface H disc consisting of tensors T ∈ S d (W ) that do not have simple normalized eigenpairs. For T ∈ S d (V ), the hypersurface H ρ in Proposition 29 is a union of some components of the real points of H disc . In fact, if we replace ρ = T σ by any real normalized eigenvalue µ of T in the proof of Proposition 29, we may show that the subset of symmetric tensors whose normalized eigenvalues are not all simple is a finite union of real algebraic hypersurfaces, and these hypersurfaces are the real points of H disc . We summarize this discussion as follows.

Theorem 31. D eig (T ) = 0 is a defining equation of the hypersurface

H disc := {T ∈ S d (W ) : T has a non-simple eigenvalue}.
For T ∈ S d (V ), if D eig (T ) = 0, then by definition, either (i) there is a unique eigenvector v λ corresponding to each eigenvalue λ of T when d is odd, or (ii) there are two eigenvectors ±v λ corresponding to each eigenvalue λ of T when d is even. Hence we have the following.

Corollary 32. Let T ∈ S d (V ). If D eig (T ) = 0, then T has a unique best symmetric rank-one approximation.

We deduce the following analogue for nonnegative tensors from Banach's Theorem that the best rank-one approximation of a symmetric tensor can be chosen to be symmetric [START_REF] Banach | Über homogene polynome in(L 2 )[END_REF], [START_REF] Friedland | Best rank-one approximation of real symmetric tensors can be chosen symmetric[END_REF], Theorem 16, and Corollary 32.

Corollary 33. Let T ∈ S d (V + ). If D eig (T ) = 0, then T has a unique best symmetric nonnegative rank-one approximation.
Let X ⊂ C n be a complex variety. For x ∈ X and u / ∈ X, let d u (x) = n i=1 (u(i) -x(i)) 2 . The Euclidean distance degree (ED degree) of X is the number of nonsingular critical points of d u for a generic u, and the ED discriminant is the set of u such that at least two critical points of d u coincide [START_REF] Draisma | The Euclidean distance degree of an algebraic variety[END_REF]. Hence Theorem 31 shows that the ED discriminant of the cone over the Veronese variety (in both the real and complex case) is a hypersurface, and D eig (T ) = 0 gives its defining equation.

Example 34. Let T = [T ijk ] ∈ S 3 (R 2 ). Then ψ T (λ) is the resultant of the polynomials      F 0 = T 111 x 2 + 2T 112 xy + T 122 y 2 -λxz, F 1 = T 112 x 2 + 2T 122 xy + T 222 y 2 -λyz, F 2 = x 2 + y 2 -z 2 .
Consider the Jacobian determinant J of F 0 , F 1 , F 2 . Then By Salmon's formula [START_REF] Cox | Using Algebraic Geometry[END_REF], ψ T (λ) = 1 512 det(G), where G is defined by [START_REF] Domanov | On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part I: Basic results and uniqueness of one factor matrix[END_REF]. Thus ψ T (λ) = p 2 λ 6 + p 4 λ 4 + p 6 λ 2 + p 8 for some homogeneous polynomials p m of degree m in T ijk , m = 2, 4, 6, 8. See also [START_REF] Cartwright | The number of eigenvalues of a tensor[END_REF], [START_REF] Li | E-characteristic polynomials of tensors[END_REF]. Therefore D eig (T ) is the determinant of some 11 × 11 matrix in T ijk .

J = det   ∂F 0 /∂x
For a generic

T ∈ S 3 (R 2 ), ψ T (λ) = c(λ 2 -γ 1 )(λ 2 - γ 2 )(λ 2 -γ 3 )
for some c ∈ C and distinct γ i ∈ C, and so D eig (T ) = 0.

For T ∈ H disc , ψ T (λ) has multiple roots. For a specific example, let S ∈ S 3 (R 2 ) be defined by S 111 = S 222 = 1 and set other S ijk = 0. Then D eig (S) = 0, implying that S has at least one nonsimple eigenpairs. In fact, ψ S (λ) = (λ+1) 2 (λ-1) 2 (2λ 2 -1) and so S has two eigenvectors (1, 0), (0, 1) corresponding to the eigenvalue 1, and two eigenvectors (-1, 0), (0, -1) corresponding to the eigenvalue -1. Note that S is, up to a change of coordinates, the same example mentioned at the beginning of this section, i.e., S = x ⊗3 +y ⊗3 has two best rank-one approximations x ⊗3 and y ⊗3 .

VII. UNIQUENESS OF BEST RANK-ONE APPROXIMATIONS FOR REAL TENSORS

In this section, V and W , with or without subscripts, would generally denote real and complex vector spaces respectively.

Let W 1 , . . . , W d be complex vector spaces. For

T ∈ W 1 ⊗ • • • ⊗ W d , u i ∈ W i ,
and α i ∈ C, we denote by ϕ T (λ) the resultant of the following homogeneous polynomial equations

α i T, u 1 ⊗ • • • ⊗ u i ⊗ • • • ⊗ u d = λ( j =i α j )u i , u i , u i = α 2 i , (21) 
for i = 1, . . . , d. Again by standard theory of resultants [START_REF] Cox | Using Algebraic Geometry[END_REF], [START_REF] Gelfand | Discriminants, Resultants, and Multidimensional Determinants[END_REF], ϕ T (λ) vanishes if and only if [START_REF] Domanov | On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part II: Uniqueness of the overall decomposition[END_REF] has a nontrivial solution, and we obtain the following analogue of Definition 28.

Definition 35. ϕ T (λ) is called the singular characteristic polynomial of T ∈ W 1 ⊗ • • • ⊗ W d .
Clearly the roots of ϕ T (λ) are the normalized singular values of T . We also have an analogue of Definition 25. For real vector spaces V 1 , . . . , V d , and

Definition 36. Let T ∈ W 1 ⊗ • • • ⊗ W d .
T ∈ V 1 ⊗ • • • ⊗ V d , normalized singular pairs are invariant under the product of orthogonal groups O(n 1 ) × • • • × O(n d ).
It follows from [START_REF] Friedland | Some approximation problems in semialgebraic geometry[END_REF] that the subset X ⊆ V 1 ⊗ • • • ⊗ V d consisting of tensors without unique best rank-one approximations is contained in a hypersurface. We will show that this can be strengthened to an algebraic hypersurface.

Proposition 37. The following subset is an algebraic hypersurface in

V 1 ⊗ • • • ⊗ V d , X := {T ∈ V 1 ⊗ • • • ⊗ V d : T has non-unique best rank-one approximations}.
Proof. By Lemma 12, X comprises tensors T for which T σ is not a simple normalized singular value. Let d = 3 for notational simplicity. Let T ∈ X. Then there exist some

G =     T111 T122 0 2T112 -λ 0 T112 T222 0 2T122 0 -λ 1 1 -1 0 0 0 12T122 4T111λ-8T122λ 4T111λ+4T122λ 8T222λ-16T112λ 16T 2 112 -4λ 2 -16T111T122 8T112T122-8T111T222 4T222λ-8T112λ 12T112λ 4T112λ+4T222λ 8T111λ-16T122λ 8T112T122-8T111T222 16T 2 122 -4λ 2 -16T112T222 8T 2 112 -8T111T122-2λ 2 8T 2 122 -8T222T112-2λ 2 -6λ 2 8T112T122-8T111T222 8T122λ+8T111λ 8T112λ+8T222λ     (20) v 1 , v 2 , v 3 with v i = 1 and {u 1,1 , u 2,1 , u 3,1 } = {v 1 , v 2 , v 3 } with u i,1 = 1 such that T, u 1,1 ⊗ u 2,1 ⊗ u 3,1 = T σ = T, v 1 ⊗ v 2 ⊗ v 3 .
For each i = 1, 2, 3, extend u i,1 to an orthonormal basis {u i,1 , . . . , u i,ni } of V i . By an action of O(n 1 )×O(n 2 )×O(n 3 ) on

V 1 ⊗ V 2 ⊗ V 3 , we may assume that v i = cos θ i u i,1 + sin θ i u i,2 . Let T ijk = T, u 1,i ⊗ u 2,j ⊗ u 3,k . Then we have                                        T111 = T σ , Ti11 = T1i1 = T11i = 0,
T111 cos θ2 cos θ3 + T122 sin θ2 sin θ3 = T111 cos θ1, T212 cos θ2 sin θ3 + T221 sin θ2 cos θ3 + T222 sin θ2 sin θ3 = T111 sin θ1, Tj12 cos θ2 sin θ3 + Tj21 sin θ2 cos θ3 + Tj22 sin θ2 sin θ3 = 0, T111 cos θ1 cos θ3 + T212 sin θ1 sin θ3 = T111 cos θ2, T122 cos θ1 sin θ3 + T221 sin θ1 cos θ3 + T222 sin θ1 sin θ3 = T111 sin θ2, T1j2 cos θ1 sin θ3 + T2j1 sin θ1 cos θ3 + T2j2 sin θ1 sin θ3 = 0, T111 cos θ1 cos θ2 + T221 sin θ1 sin θ2 = T111 cos θ3, T122 cos θ1 sin θ2 + T212 sin θ1 cos θ2 + T222 sin θ1 sin θ2 = T111 sin θ3, T12j cos θ1 sin θ2 + T21j sin θ1 cos θ2 + T22j sin θ1 sin θ2 = 0,

for i = 1 and j > 2. By eliminating the parameter θ, we obtain a system of polynomial equations that the T ijk 's satisfy.

Let J be the incidence variety in

V 1 ⊗ V 2 ⊗ V 3 × O(n 1 ) × O(n 2 ) × O(n 3 ), i.e., for each (T, g 1 , g 2 , g 3 ) ∈ J where g i = [u i,1 , . . . , u i,ni ] ∈ O(n i ),
there is some (θ 1 , θ 2 , θ 3 ) such that the T ijk 's satisfy [START_REF] Draisma | The Euclidean distance degree of an algebraic variety[END_REF]. Define the projections

J π1 y y π2 ( ( V 1 ⊗ V 2 ⊗ V 3 O(n 1 ) × O(n 2 ) × O(n 3 ) (23 
) by π 1 (T, g 1 , g 2 , g 3 ) = T and π 2 (T, g 1 , g 2 , g 3 ) = (g 1 , g 2 , g 3 ).

Since T σ is a root of ϕ T (λ), T σ and its normalized singular vector tuples depend algebraically on T , implying that J is an algebraic variety. T σ is simple if and only if T is in the image of π 1 , i.e., X = π 1 (J).

Define T ∈ V 1 ⊗ V 2 ⊗ V 3 by T 111 = T 222 = 1 and set all other terms T ijk = 0. Then T has two normalized singular vector tuples corresponding to its normalized singular value T σ . So T ∈ π 1 (J). Since T has a finite number of singular pairs, a generic T ∈ π 1 (J) must also have a finite number of singular pairs by semicontinuity. So

dim π -1 1 (T ) = dim O(n 1 -2)+dim O(n 2 -2)+dim O(n 3 -2) for a generic T ∈ π 1 (J), and dim X = dim π 1 (J) = dim J -dim O(n 1 -2) -dim O(n 2 -2) -dim O(n 3 -2).
Since π 2 is a dominant morphism, and the dimension of a generic fiber π

-1 2 (g 1 , g 2 , g 3 ) is dim V 1 ⊗ V 2 ⊗ V 3 -2(n 1 + n 2 + n 3 ) + 8, it follows that dim J = dim V 1 ⊗ V 2 ⊗ V 3 - 2(n 1 + n 2 + n 3 ) + 8 + dim O(n 1 ) + dim O(n 2 ) + dim O(n 3 ).
Therefore the codimension of X is 1.

We will show that normalized singular vector tuples of a generic tensor are distinct, a result that we will need later but is also of independent interest. 

Lemma 41. Let u i , v i , w i ∈ W i with u i , u i = v i , v i = 1, i = 1, 2, 3. For x ∈ W i , we write [x] i for the corresponding element in the quotient space W i / span(u i ). Suppose u i = v i for at most one i. Then (i) the system of linear equations      T, u 2 ⊗ u 3 = T, v 1 ⊗ v 2 ⊗ v 3 u 1 + w 1 , T, u 1 ⊗ u 3 = w 2 , T, u 1 ⊗ u 2 = w 3 , (24) 
has a solution

T ∈ W 1 ⊗ W 2 ⊗ W 3 if and only if u 2 , w 2 = u 3 , w 3 ; (ii) the system of linear equations      T, u 2 ⊗ u 3 = T, v 1 ⊗ v 2 ⊗ v 3 u 1 + w 1 , [ T, u 1 ⊗ u 3 ] 2 = [w 2 ] 2 , [ T, u 1 ⊗ u 2 ] 3 = [w 3 ] 3 , (25) 
always has a solution T ∈ W 1 ⊗ W 2 ⊗ W 3 .
Proof. Note that the variables in these linear equations are T ijk 's, the coordinates of T .

(i) Let A be the coefficient matrix in [START_REF] Friedland | Perron-Frobenius theorem for nonnegative multilinear forms and extensions[END_REF] and b be the righthand side. The system has a solution if and only if A and the augmented matrix [A | b] have the same rank, i.e., if there is some

x i ∈ W i , i = 1, 2, 3, such that x 1 ⊗ u 2 ⊗ u 3 +u 1 ⊗x 2 ⊗u 3 +u 1 ⊗u 2 ⊗x 3 -x 1 , u 1 •v 1 ⊗v 2 ⊗v 3 = 0, then x 1 , w 1 + x 2 , w 2 + x 3 , w 3 = 0. Since x 1 ⊗ u 2 ⊗ u 3 +u 1 ⊗x 2 ⊗u 3 +u 1 ⊗u 2 ⊗x 3 -x 1 , u 1 •v 1 ⊗v 2 ⊗v 3 = 0 if and only if x 1 = 0, x 2 = αu 2 , x 3 = -αu 3 or x 1 = 0, x 2 
= -αu 2 , x 3 = αu 3 for some α, the system (24) has a solution if and only if u 2 , w 2 = u 3 , w 3 . (ii) The system (25) has a solution if and only if u 2 , w 2 + t 2 u 2 = u 3 , w 3 + t 3 u 3 for some t 2 , t 3 ∈ C. Choose any t 2 , t 3 such that t 3 -t 2 = u 2 , w 2 -u 3 , w 3 .

Proof of Proposition 38. Let d = 3 for notational convenience. For i = 1, 2, 3, let C i = {u i ∈ W i : u i , u i = 1}, F i be the trivial vector bundle on C i with fiber isomorphic to W i , L i be the tautological line bundle on C i , and Q i be the quotient bundle F i /L i on C i . Consider the exact sequence of vector bundles

0 → L i → F i → Q i → 0 over C i . Let M = C 1 ×C 2 ×C 3 .
We will need to discuss vector bundles over M × M and for clarity, we distinguish the two copies of M . So we write M 1 × M 2 where M 1 = M 2 = M . Let π i,j : M i → C j be the natural projection for i = 1, 2 and j = 1, 2, 3. Let p i : M 1 × M 2 → M i be the natural projection for i = 1, 2. Then we have the following diagram:

M 1 × M 2 M 1 M 2 C 1 C 2 C 3 C 1 C 2 C 3 p 1 p 2 .
Consider the vector bundle on M 1 × M 2 ,

E = 3 j=1 p * 1 π * 1,j (Q j ) ⊕ p * 2 π * 2,1 (F 1 ) ⊕ 3 j=2 p * 2 π * 2,j (Q j ) ,
where f * denotes the pullback induced by f . Let

X i = {(v 1 , v 2 , v 3 , u 1 , u 2 , u 3 ) ∈ M 1 × M 2 :
u j = v j for all j = i}.

By Lemma 40, to study the behavior of normalized singular pairs of a generic tensor, we need only consider the following open subset of the affine variety 

M 1 × M 2 , B = M 1 × M 2 \ (X 1 ∪ X 2 ∪ X 3 ),
(v 1 , v 2 , v 3 , u 1 , u 2 , u 3 ) = ([ T, v 2 ⊗ v 3 ] 1 , [ T, v 1 ⊗ v 3 ] 2 , [ T, v 1 ⊗ v 2 ] 3 , T, u 2 ⊗ u 3 -T, v 1 ⊗ v 2 ⊗ v 3 u 1 , [ T, u 1 ⊗ u 3 ] 2 , [ T, u 1 ⊗ u 2 ] 3 )}.
By Lemma 41 and [25,Lemma 8], S generates E. By Theorem 39, a generic section of E does not vanish on B, implying tha each normalized singular value of a generic tensor is distinct and simple.

Let D sing (T ) be the singular discriminant, the resultant of the singular characteristic polynomial ϕ T and its derivative ϕ T . Since a generic T has distinct equivalence classes of normalized singular pairs, ϕ T has simple roots, and so D sing (T ) does not vanish identically. As D sing (T ) vanishes on X, the hypersurface defined in Theorem 37, D sing (T ) = 0 indeed defines a hypersurface in W 1 ⊗ • • • ⊗ W d . Note that X is a union of some components of the real points of X disc . Finally, we arrive at our main result of this section, singular value analogues of Theorem 31 and Corollaries 32 and 33. In the following, let V i be a real vector space and W i = V i ⊗ R C be its complexification, i = 1, . . . , d. 

APPENDIX

We use semirings and semimodules instead of rings and modules to construct tensor products of cones in order to give nonnegative tensors an algebraic description and state our results in a more general setting. A semimodule over a semiring is essentially the same notion as a vector space over a field, except that the field of scalars is now replaced by a semiring of scalars like the nonnegative reals. The nonnegative reals do not form a field or even a ring since they do not have additive inverses, but aside from this, R + has all the properties of scalars that makes the notion of a vector space so useful in engineering. In our context, the set of nonnegative real numbers R + is a commutative semiring and the set of nonnegative tensors is a semimodule over R + .

  Two normalized singular pairs (λ, u 1 , . . . , u d ) and (µ, v 1 , . . . , v d ) of T are called equivalent if (λ, u 1 , . . . , u d ) = (µ, v 1 , . . . , v d ), or (-1) d-2 λ = µ and u i = -v i for i = 1, . . . , d. A normalized singular value λ of T is said to be simple if it has only one corresponding normalized singular pair up to equivalence.

Proposition 38 .

 38 Let W 1 , . . . , W d be vector spaces over C. A generic T ∈ W 1 ⊗ • • • ⊗ W d has distinct equivalence classes of normalized singular pairs. Our proof of Proposition 38 will rely on the next three intermediate results. The first required result is a 'Bertini-type' theorem introduced in [25]. Theorem 39 (Friedland-Ottaviani). Let E be a vector bundle on a smooth variety B. Let S ⊆ H 0 (B, E) generate E. If rank(E) > dim B, then the zero locus of a generic ζ ∈ S is empty. Lemma 40. Let T ∈ W 1 ⊗ • • • ⊗ W d be generic and let (u 1 , . . . , u d ) be a normalized singular vector tuple of T . If v d is not a scalar multiple of u d , then (u 1 , . . . , u d-1 , v d ) is not a normalized singular vector tuple of T . Proof. Suppose λu d = T, u 1 ⊗ • • • ⊗ u d-1 = µv d for some v d not a scalar multiple of u d . Then λ or µ must be 0, contradicting the fact that 0 cannot be a singular value of a generic T [25, Theorem 1].

3 i=1dim W i - 5 > dim B = 2 3 i=1dim W i - 6 .

 3536 and its corresponding vector bundle E = E| B over the base space B. Then rank(E) = 2 So the inequality in Theorem 39 holds for our choice of E and B. Now let S = {s ∈ H 0 (B, E) : s

Theorem 42 .

 42 D sing (T ) = 0 is a defining equation of the hypersurfaceX disc := {T ∈ W 1 ⊗ • • • ⊗ W d : T has anon-simple normalized singular value}.

Corollary 43 .

 43 Let T ∈ V 1 ⊗• • •⊗V d be real. If D sing (T ) = 0,then T has a unique best rank-one approximation.We deduce the following analogue for nonnegative tensors from Theorem 16 and Corollary 43.

Corollary 44 .

 44 Let T ∈ V 1 ⊗ • • • ⊗ V d be nonnegative. If D sing (T ) = 0,then T has a unique best nonnegative rank-one approximation. Theorem 42 shows that the ED discriminant X disc of the cone over the Segre variety PW 1 ו • •×PW d is a hypersurface when d ≥ 3, and D sing (T ) = 0 gives its defining equation. The discussion before Theorem 42 shows that the set of real points of X disc is a real hypersurface. It is interesting to note that when d = 2, i.e., the matrix case, the set of real points of the ED discriminant of the Segre variety PW 1 × PW 2 has codimension 2 [22, Example 7.6].

Definition 45 .

 45 A semiring R is a set equipped with binary operations + and • such that• (R, +) is a commutative monoid with identity element 0; • (R, •) is a monoid with identity element 1;• Multiplication left and right distributes over addition:a • (b + c) = (a • b) + (a • c), (a + b) • c = (a • c) + (b • c);• Multiplication by 0 annihilates R:0 • a = a • 0 = 0.Definition 46. A commutative semiring is a semiring whose multiplication is commutative. Definition 47. A semimodule M over a commutative semiring R is a commutative monoid (M, +) and an operation • : R × M → M such that for all r, s in R and x, y ∈ M , we have:r • (x + y) = r • x + r • y, (r + s) • x = r • x + s • x, (rs) • x = r • (s • x), 1 R • x = x.
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		+ (4T 112 λ + 4T 222 λ)z 2 + (8T 111 λ -16T 122 λ)xy
		+ (8T 112 T 122 -8T 111 T 222 )xz
		+ (16T 2 122 -4λ 2 -16T 112 T 222 )yz,
	∂J ∂z	= (8T 2 112 -8T 111 T 122 -2λ 2 )x 2 + (8T 122 λ + 8T 111 λ)xz
		+ (8T 2 122 -
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