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NON-NEGATIVE TENSOR APPROXIMATIONS

YANG QI, PIERRE COMON

Abstract. Necessary conditions are derived for a rank-r tensor to be a best
rank-r approximation of a given tensor. It is shown that a positive tensor
with rank > 1 has a unique rank one approximation, and that a non negative
tensor generally has a unique low-rank nonnegative approximate. We discuss
the notion of r-singular values and their corresponding r-singular vector tuples,
which is closely related to best rank-r approximations. We then show that a
generic tensor has a finite number of r-singular vector tuples for some r.

1. Introduction

Nonnegative tensors are widely used in several fields, including e.g., hyperspec-
tral imaging, spectrography, chemometrics, statistics, data mining and machine
learning among others; see [23, 20, 16, 17, 2, 13] and references therein. In par-
ticular, nonnegative tensors appear in the decomposition of a joint distribution
of discrete variables when they are independent conditionally to another discrete
latent variable [16, 24].

The decomposition of tensors into a sum of rank-one terms is addressed therein,
and a key issue is that such a decomposition be unique. Our motivation and our
contributions are described in this section after some preliminary definitions.

1.1. Definitions and notation. A tensor of order n is often assimilated to a n-
way array of numbers, which sometimes hides intrinsic properties. In particular,
this array of coordinates is meaningful only if bases of underlying vector spaces
have been defined in the first place. But beyond this obvious fact, this assimilation
had led to some confusion concerning the definition of the uniqueness concept. For
this reason, a slightly more formal definition is useful.

Definition 1. Denote Vi linear spaces of finite dimension di constructed on the
same field K, 1 ≤ i ≤ n, and ×n

i=1Vi the set of n-tuples of vectors. Then the tensor
product V = ⊗n

i=1Vi is the free linear space spanned by ×n
i=1Vi quotiented by an

equivalence class, which imposes the property below ∀αi ∈ K:

(1.1) (α1u1, α2u2, . . . , αnun) ≡
(

n∏

i=1

αi

)
(u1, u2, . . . , un)

More details on the definition of tensor spaces may be found in [15, 11], and some
simple examples in [7]. In this paper, K will be the complex or the real field. The
latter equivalence class yields what is often referred to as a “scaling indeterminacy”
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in the engineering literature. A direct consequence appears in the definition of
“decomposable” tensors, also sometimes called “pure” tensors:

Definition 2. A decomposable tensor is of the form ⊗n
i=1ui, ui ∈ Vi.

From this definition, it is indeed clear that a decomposable tensor is not rep-
resented uniquely by a n-tuple of vectors. For instance, a rank-1 matrix can be
represented by a pair (u1, u2) as well as by any other pair (α1u1, α2u2), provided
α1α2 = 1.

Now, it is always possible to write a tensor as a sum of a finite number of
decomposable tensors. When the number of terms is minimal, this decomposition
is often qualified “Canonical Polyadic” (CP), and the minimal number R of terms
defines the tensor rank :

Definition 3. ∀T ∈ ⊗n
i=1Vi, ∃u(r)

i ∈ Vi, 1 ≤ r ≤ R, such that

(1.2) T =

R∑

r=1

D(r) with D(r) = u
(r)
1 ⊗ · · · ⊗ u(r)

n

The minimal value of R is denoted rank{T}.

To summarise, in the CP decomposition, pure tensors D(r) can be written in
different ways in ×nVn, but have a unique representation in ⊗nVn. This is the basic
difference between tensor and cartesian products between linear spaces [15, 11, 7].

We shall be mainly concerned by real nonnegative tensors. More precisely, de-
note V +

i the subset of vectors with nonnegative entries in Vi, and V + the subset
of nonnegative tensors in V . The CP decomposition restricted to nonnegative de-
composable tensors yields another definition of tensor rank:

Definition 4. ∀T ∈ V +, ∃u(r)
i ∈ V +

i such that T =
∑R

r=1 u
(r)
1 ⊗ · · · ⊗ u

(r)
n . The

minimal value of R is called the nonnegative rank of T , and is denoted rank+{T}.

An obvious property is that the nonnegative rank of a nonnegative tensor is
always at least as large as its rank.

1.2. Motivation. An important issue is whether the CP decomposition defined in
(1.2) is unique or not, in the sense that the set of decomposable tensors {D(r), 1 ≤
r ≤ R} is unique for a given T or for all T is some given class. Clearly, the above
mentioned scaling indeterminacy is hence not part of the uniqueness problem. There
already exist in the literature known sufficient conditions ensuring uniqueness of
the CP decomposition. We have for instance [14, 18, 6]:

Theorem 5 (Kruskal). The CP decomposition of a tensor T is unique if

rank{T} ≤ 1 +
∑

i(κi − 1)

2

where κi denote the so-called Kruskal’s rank of loading matrices, which correspond
generically to dimensions di if rank{T} ≥ di.

An another condition, easier to satisfy because the upper bound is larger, is
sometimes preferred. However, contrary to Kruskal’s condition, it only guarantees
CP uniqueness in an almost sure sense (i.e. for almost all tensors satisfying the
constraint):
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Theorem 6 (Chiantini et al.). The CP decomposition of a generic tensor T is
unique if

rank{T} <

⌈ ∏
i di

1 +
∑

i(di − 1)

⌉

The authors of [6] also strengthen the above result by a prior compression of
tensor T . The consequence is that dimensions di can be replaced in Prop. 6 by the
multilinear ranks of T .

Yet, these results do not apply neither to nonnegative decompositions nor to
low-rank approximations. The purpose of this paper is to provide some first results
in theses directions. Therefore, it will be necessary to distinguish between exact
and approximate CP decompositions. Note that when a low-rank approximation
is unique, its CP decomposition does not a priori need to be. This fact may raise
problems in some applications.

1.3. Contributions. The next section addresses general low-rank approximations,
whereas Section 3 is devoted to the case of rank-one approximations. In particular,
Proposition 8 states the almost sure uniqueness of the best low-rank approximation
of any nonnegative tensor in V +, and Prop. 15 states the uniqueness of the best
rank-one approximation of any positive tensor. The last section eventually points
out the links existing between r-singular tuples and best rank-r approximations.
These results complement those obtained in [8, 9].

2. Existence and Uniqueness of Approximations

Given a nonnegative tensor T ∈ V +, we consider the best rank-r approximations
of T , where r is less than the non-negative rank of T .

Definition 7. For a fixed positive integer r, let Dr = {X ∈ V +|rank(X) ≤ r},
where rank(X) means the non-negative rank of X, and let d(T ) = inf

X∈Dr

‖T −X‖,
where ‖·‖ is the l2-norm.

According to [16], Dr is a closed set, thus for any T /∈ Dr, there is some T ∗ ∈ Dr

such that ‖T − T ∗‖ = d(T ). The following result is based on [9, Corollary 18], and
we give it a proof for completeness.

Proposition 8. Almost every T ∈ V + with nonnegative rank > r has a unique
best rank-r approximation.

Proof. For any T, T ′ ∈ V1 ⊗ · · · ⊗ Vn, |d(T )− d(T ′)| ≤ ‖T − T ′‖, i.e. d is Lipschitz,
thus differentiable a.e. in V1 ⊗ · · · ⊗ Vn by Rademacher’s theorem.

For a general T ∈ V +, there is an open neighbourhood B(T, δ) of T contained in
V +, so d is differentiable a.e. in V +. Assume that d is differentiable at T ∈ V +, for
any U ∈ V1 ⊗ · · · ⊗ Vn, let ∂d

2
T (U) be the differential of d2 at T along the direction

U , let ‖T − T ∗‖ = d(T ). Then,

d2(T + tU) = d2(T ) + t∂d2T (U) +O(t2)

d2(T + tU) ≤ ‖T + tU − T ∗‖2 = d2(T ) + 2t〈U, T − T ∗〉+ t2 ‖U‖2 .
Therefore, for any t, t∂d2T (U) ≤ 2t〈U, T − T ∗〉, then

∂d2T (U) = 2〈U, T − T ∗〉.



4 YANG QI, PIERRE COMON

Assume T ′ is another best rank-r approximation of T , then

2〈U, T − T ∗〉 = ∂d2T (U) = 2〈U, T − T ′〉,
which implies 〈T ′ − T ∗, U〉 = 0 for any U , i.e. T ′ = T ∗. �

Proposition 9. The nonnegative tensors which have nonnegative rank > r and do
not have a unique best rank-r approximation form a semi-algebraic set which does
not contain an open set and is contained in some hypersurface.

Proof. Dr is the image of the polynomial map

φr : (V
≥0
1 × · · · × V ≥0

n )r → V +

(u1,1, . . . , un,1, . . . , u1,r, . . . , un,r) 7→
r∑

j=1

u1,j ⊗ · · · ⊗ un,j

hence Dr is semi-algebraic by the Tarski-Seidenberg theorem [19], then the propo-
sition follows by [10, Theorem 3.4]. �

Now we study the necessary condition for
∑r

i=1 Ti to be a best rank-r approxi-
mation.

Lemma 10. If rank(T ) > r, and
∑k

i=1 Ti is a best rank-r approximation, where
Ti = u1,i⊗· · ·⊗un,i and ‖

∑r
i=1 Ti‖ = 1, and assume d(ui,j) = min ‖T − α

∑r
i=1 Ti‖

is smooth at each ui,j, then

(2.1) 〈T, ⊗
k 6=i

uk,j〉 = λ〈
r∑

l=1

Tl, ⊗
k 6=i

uk,j〉,

with λ = 〈T,∑r
l=1 Tl〉, where 〈, 〉 denotes the contraction.

Proof. Let L denote the line in V1 ⊗ · · · ⊗ Vn spanned by
∑r

i=1 Ti, and L⊥ denote
the orthogonal complement of L. Denote the projection of T to L by ProjL(T ),
then

‖T‖2 = ‖ProjL(T )‖2 + ‖ProjL⊥(T )‖2 ,
∥∥∥∥∥T − α

r∑

i=1

Ti

∥∥∥∥∥

2

= ‖T − ProjL(T )‖2 = ‖ProjL⊥(T )‖2 = ‖T‖2 − ‖ProjL(T )‖2 ,

so to compute min ‖T − α
∑r

i=1 Ti‖ is equivalent to compute maxProjL(T ) which
is max〈T,∑r

i=1 Ti〉.
Consider the Lagrangian:

(2.2) φ = 〈T,
r∑

i=1

Ti〉 − λ

(∥∥∥∥∥

r∑

i=1

Ti

∥∥∥∥∥− 1

)
,

then
∂φ

∂ui,j

= 0 gives

(2.3) 〈T, ⊗
k 6=i

uk,j〉 = λ〈
r∑

l=1

Tl, ⊗
k 6=i

uk,j〉

with λ = 〈T,∑r
l=1 Tl〉 for all 1 ≤ i ≤ n, 1 ≤ j ≤ r. �
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3. Rank One Approximation

Lemma 10 motivates us to propose the following definition:

Definition 11. For T ∈ V1 ⊗ · · · ⊗ Vn, (λ, u1 ⊗ · · · ⊗ un) is called a nonnegative
singular pair of T if λ ≥ 0, and for all i ∈ {1, . . . , n}, 0 6= ui ≥ 0, and

(3.1) 〈T,⊗j 6=iuj〉 = λui.

Lemma 12. A nonnegative tensor T has a nonnegative singular pair.

Proof. Let ui = (ui,1, . . . , ui,di
) be the coordinate of ui. LetD = {(u1, . . . , un)|ui,j ≥

0,
∑

i,j ui,j = 1}, then D is a compact convex set. Define

φ : D → D

(u1, . . . , un) 7→



〈T, u2 ⊗ · · · ⊗ un〉∑

i,l

〈T,⊗j 6=iuj〉l
, . . . ,

〈T, u1 ⊗ · · · ⊗ un−1〉∑

i,l

〈T,⊗j 6=iuj〉l




If
∑

i,l〈T,⊗j 6=iuj〉l = 0, then 〈T,⊗j 6=iuj〉 = 0 for all i, i.e. λ = 0.

If
∑

i,l〈T,⊗j 6=iuj〉l > 0, by Brouwer’s Fixed Point Theorem, there is some u1 ⊗
· · · ⊗ un such that 〈T,⊗j 6=iuj〉 = λui, where λ =

∑
i,l〈T,⊗j 6=iuj〉l. �

Lemma 13. If T is positive, T has a nonnegative pair (λ, u1⊗· · ·⊗un) with λ > 0.
If u1 ⊗ · · · ⊗ un has unit length, then u1 ⊗ · · · ⊗ un is unique and every ui > 0.

Proof. Let Ii = {j|ui,j 6= 0}, and α = min{ui,j |1 ≤ i ≤ n, j ∈ Ii}. For any i and k,

λui,k = 〈T,⊗j 6=iuj〉k ≥ αn−1
∑

lj∈Ij

Tl1...li−1kli+1...ln > 0.

Assume T had two positive singular vector tuples u1⊗ · · ·⊗un and v1⊗ · · ·⊗ vn
corresponding to λ,

〈T, u1 ⊗ · · · ⊗ ui−1 ⊗ ûi ⊗ ui+1 ⊗ · · · ⊗ un〉 = λui,

〈T, v1 ⊗ · · · ⊗ vi−1 ⊗ v̂i ⊗ vi+1 ⊗ · · · ⊗ vn〉 = λvi.

Let αi = max{α ∈ R≥0|ui − αvi ≥ 0} and βi = max{β ∈ R≥0|vi − αui ≥ 0}.
Since ‖ui‖ = ‖vi‖ = 1 and ui, vi > 0, then 0 < αi, βi ≤ 1. Therefore

λui = 〈T,⊗j 6=iuj〉 ≥ 〈T,⊗j 6=iαjvj〉 = λ
∏

j 6=i

αj · vi,

λvi = 〈T,⊗j 6=ivj〉 ≥ 〈T,⊗j 6=iβjuj〉 = λ
∏

j 6=i

βj · ui.

By the maximality of αi,

∏
j 6=i αj

αi

≤ 1 for each i, thus αi = 1, and similarly,

βi = 1. �

Remark 14. Lemma 11 and Lemma 13 are an analogue of the Perron-Frobenius
theorem [4, 8].

Theorem 15. A positive tensor T with rank > 1 has a unique best rank one non-
negative approximation.
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Proof. Since the smooth function

ϕ : Sd1−1 × · · · × S
dn−1 → R≥0

(u1, . . . , un) 7→ 〈T, u1 ⊗ · · · ⊗ un〉

reaches its maximal value at some (u1, . . . , un) ≥ 0, where S
di−1 is unit sphere in

Vi, then the critical points of the Lagrangian

〈T, u1 ⊗ · · · ⊗ un〉 −
n∑

i=1

λi(‖ui‖ − 1)

give us

(3.2) 〈T, u1 ⊗ · · · ⊗ ui−1 ⊗ ûi ⊗ ui+1 ⊗ · · · ⊗ un〉 = λiui

and 〈T, u1 ⊗ · · · ⊗ un〉 = λi gives us λ1 = · · · = λn, denoted by λ.
Since λ is maximal, λ > 0 and u1 ⊗ · · · ⊗ un is unique by 13. Hence this unique

critical point u1 ⊗ · · · ⊗ un yields the best rank one approximation. �

After knowing the existence and uniqueness of a best rank-r approximation, we
want to find out this approximation explicitly. A first idea is to compute these

approximations inductively: for k < r, let
∑k

i=1 Ti be the best rank-k approxima-
tion of T , then we hope to obtain the best rank-r approximation by computing

the rank-(r − k) approximation of T −
∑k

i=1 Ti. It has been already shown in [21]
that this “deflation procedure” does not work for real or complex tensors of order
strictly larger than 2. The following proposition shows that this doesn’t work either
for nonnegative tensors.

Proposition 16. A best rank-2 approximation of a general T ∈ V + can not be
obtained by a sequence of rank-1 approximations.

Proof. We prove by contradiction. Assume

‖T − α · u1 ⊗ · · · ⊗ un‖ = min
X∈D1

‖T −X‖ ,

‖T − β · (λu1 ⊗ · · · ⊗ λun + λv1 ⊗ · · · ⊗ λvn)‖ = min
X∈D2

‖T −X‖ .

where ‖ui‖ = ‖λu1 ⊗ · · · ⊗ λun + λv1 ⊗ · · · ⊗ λvn‖ = 1, ‖v1‖ = · · · = ‖vn‖ = ν,
and α = βλn, then by Lemma 10 we have

〈T, ⊗
k 6=i

uk〉 = αui,

〈T, ⊗
k 6=i

λuk〉 = β〈λu1 ⊗ · · · ⊗ λun + λv1 ⊗ · · · ⊗ λvn, ⊗
k 6=i

λuk〉,

〈T, ⊗
k 6=i

λvk〉 = β〈λu1 ⊗ · · · ⊗ λun + λv1 ⊗ · · · ⊗ λvn, ⊗
k 6=i

λvk〉,

which implies
∏

k 6=i〈uk, vk〉 = 0 and 〈T,⊗k 6=i vk〉 = αν2n−2vi.

Let ṽi =
vi
ν
, then 〈T,⊗k 6=i ṽk〉 = ανnṽi, i.e. (α, u1 ⊗ · · · ⊗ un) and (ανn, ṽ1 ⊗

· · · ⊗ ṽn) are orthogonal normalized singular pairs. By Lemma 13, for a general T ,
ui > 0 and vj > 0, which contradicts that

∏〈ui, vi〉 = 0. �
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4. r-Singular Vector Tuples

In [9], Friedland and Ottaviani introduce the definition of singular vector tuples,
and compute the number of them for a generic tensor. Due to the relationship with
rank-r approximations (Lemma 10), we would like to consider the vector tuples
(u1,1, . . . , un,1, . . . , u1,r, . . . , un,r) ∈ (V1 × · · · × Vn)

r satisfying

(4.1)





〈T,⊗k 6=iuk,j〉 = λ〈
r∑

j=1

u1,j ⊗ · · · ⊗ un,j ,⊗k 6=iuk,j〉

〈
r∑

j=1

u1,j ⊗ · · · ⊗ un,j ,
r∑

j=1

u1,j ⊗ · · · ⊗ un,j〉 = 1

for some λ, where 〈, 〉 denotes the contraction.

Definition 17. There is a unique polynomial φ(λ) such that (4.1) has a nontrivial
solution over C if and only if φ = 0. In fact φ(λ) is the resultant of (4.1), and is
called the r-characteristic polynomial of T . The zeros λ of φ are called normalized
r-singular values, and the vector tuples (u1,1, . . . , un,1, . . . , u1,r, . . . , un,r) satisfying
(4.1) are called the normalized r-singular vector tuples corresponding to λ.

Remark 18. When r = 1, an r-singular vector tuple is a singular vector tuple.
When n = 2, if we do not require r-singular vector tuples to be normalized, and
assume λ = 1, let T =

∑
i

√
σiui⊗

√
σivi be a singular value decomposition, then r

singular vectors give an r-singular vector tuples (
√
σ1u1,

√
σ1v1, . . . ,

√
σrur,

√
σrvr)

satisfying 〈T,√σiui〉 = σi(
√
σivi) = 〈∑j

√
σjuj ⊗√

σjvj ,
√
σiui〉 and 〈T,√σivi〉 =

σi(
√
σiui) = 〈∑j

√
σjuj ⊗√

σjvj ,
√
σivi〉.

It is shown in [3] the set of normalized eigenvalues of a tensor is either finite or
the complement of a finite set. Similarly, we have

Proposition 19. For any tensor T , the set of normalized r-singular values θ(T ) is
either a finite set or the complement of a finite set.

Proof. Consider the projection π : C × (V1 × · · · × Vn)
r → C, then θ(T ) is the

image of the variety defined by (4.1) under π. By Chevalley’s theorem [12], θ(T )
is a constructible subset of C, thus either a finite set or the complement of a finite
set in C. �

The number of normalized singular values and singular vector tuples of a tensor
T is related to the number of decompositions of T : assume the distance function
d(T, σr(PV1 × · · · × PVn)) reaches the minimal value at some point T0 ∈ σr(PV1 ×
· · · × PVn) and is smooth at T0, then any decomposition of T0 gives a r-singular
vector tuple of T . If T0 has an infinite number of decompositions, then T has an
infinite number of r-singular vector tuples. We need the following definition.

Definition 20 ([1, 5, 22]). Let X ⊂ P
N be a reduced, irreducible projective variety

of dimension n. X is called r-defective if dimσr(X) < min{N, rn+ r − 1}.

In our case, a general T ∈ V1 ⊗ · · · ⊗ Vn has a finite number of decompositions
if and only if PV1 × · · · × PVn is not r-defective. We will focus on such r’s. By the
result of [9], we see 0 is not a normalized r-singular value for a generic tensor. In
fact, we have
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Theorem 21. A generic tensor in V1 ⊗ · · · ⊗ Vn has a finite number of simple
normalized r-singular vector tuples corresponding to nonzero r-singular values for
any r such that PV1 × · · · × PVn is not r-defective.

5. Proof of Theorem 21

For simplicity we assume λ = 1, and do not require the corresponding r-singular
vector tuples to be normalized, i.e. we use the following equivalent definition:

Definition 22. A vector tuple (u1,1, . . . , un,1, . . . , u1,r, . . . , un,r) ∈ (V1×· · ·×Vn)
r

with ui,j 6= 0 for all i, j is called a r-singular vector tuple of T if

(5.1) 〈T,⊗k 6=iuk,j〉 = 〈
r∑

j=1

u1,j ⊗ · · · ⊗ un,j ,⊗k 6=iuk,j〉

for all i, j.

We use the vector bundle method introduced by Friedland and Ottaviani in [9]

to prove the theorem. Let M be a nonsingular complex variety, and E
π−→ M be a

holomorphic vector bundle on M with dimM = rankE. Let S ⊂ H0(M,E) be a

finite dimensional subspace, and M × S
ν−→ E be the evaluation map (p, s) 7→ s(p).

We say S generates E if {s(p)|s ∈ S} = π−1(p) for all p ∈ M .

Lemma 23. If there exits an open subset U ⊂ M such that SU generates H0(U,E),
Tν : TpM × TsS → Ts(p)E is surjective on U × SU , and for a generic σ ∈ S, the
zero locus of σ, Zσ, is noetherian and contained in U , then Zσ consists of a finite
number of simple points.

Proof. Let τ be the zero section of E, and ZU := {(p, sU ) ∈ U × SU |sU (p) = 0} ⊂
ν−1(τ). Since ν is dominant and Tν is surjective on U × SU , ZU has dimension
dimM +dimS − rankE. Let p : ν−1(τ) → S be the projection, and pU : ZU → SU

the restriction on U . Since for a generic σ ∈ S, Zσ is isomorphic to p−1
U (σ). By the

generic smoothness theorem [12], Zσ is a smooth 0-dimensional subvariety of M .
Since Zσ is noetherian, then Zσ is of a finite number of simple points. �

For convenience, we generalize Lemma 23 to a vector bundle over a singular
variety. Let E be a vector bundle over a variety M with fiber isomorphic to V , and
U an open subset of M . Assume S ⊂ H0(M,E) is a finite dimensional subvariety

and generates E|U , and let M × S
ν−→ V be the evaluation map (p, s) 7→ s(p).

Lemma 24. Assume for any v ∈ V , ν−1(v) ⊂ U × SU has the same dimension,
and for a generic σ ∈ S, the zero locus of σ, Zσ, is noetherian. In U ,

(1) if rankE = dimM , Zσ|U is of a finite number of simple points.
(2) if rankE > dimM , Zσ|U is empty.

Proof. Since ν is dominant and each fibre of ν has same dimension, then ZU has
the relative dimension dimM +dimS − rankE. Zσ|U is isomorphic to p−1

U (σ), and
is noetherian, so when rankE = dimM , by the generic smoothness theorem, Zσ|U
is a smooth 0-dimensional variety, thus consists of a finite number of simple points.
When rankE > dimM , Zσ|U is empty. �

Remark 25. This lemma is an analogue of the ”Bertini-type” theorem [9].

We follow the idea of [9, Theorem 6] to propose the following lemma as a refine-
ment of Lemma 24.
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Definition 26. Let π : E → M be a vector bundle over a variety M with rankE ≥
dimM , and S ⊂ H0(M,E) be a finite dimensional variety. We say S almost
generates E if there are a finite number of proper subvarieties Y1, . . . , Yk of M ,
over each Yi there is a subbundle of E, πi : Fi → Yi, and there are subvarieties
Si ⊂ H0(Yi, Fi) of S such that:

(1) On the open subset U = M \ (∪iYi), S generates E, and each fibre of the
evaluation map ν : S × U → E|U has the same dimension.

(2) If Yi ⊂ Yj , Fi is a subbundle of Fj .
(3) Let Pi be the set of all j such that Yj is a proper subvariety of Yi, on

Ui = Yi \ (∪k∈Pi
Yk), Si generates Fi|Ui

, and each fibre of the evaluation
map ν : Si × Ui → Fi|Ui

has the same dimension.
(4) rankFi ≥ dimYi.

Lemma 27. Let π : E → M be a vector bundle over a variety M with rankE =
dimM , S ⊂ H0(M,E) be a finite dimensional variety, and σ ∈ S be a general sec-
tion in S. Assume S almost generates E, and the zero locus of σ, Zσ, is noetherian,
then Zσ consists of a finite number of simple points.

Proof. Let Fi → Yi be subbundles of E over subvarieties of M satisfying Definition
26. By Lemma 24, Zσ|Ui

is empty or of a finite number of simple points, and Zσ|U
consists of a finite number of simple points. Hence Zσ is of a finite number of simple
points. �

Remark 28. Since we only use the dimension counting and the generic smoothness
theorem in Lemma 24, we can generalize the lemma to the following setting with
the same proof:

Let π : E → M be a morphism between varieties, such that each fibre π−1(p) is
isomorphic to an affine space A

n, n is called the rank of E. Let H0(M,E) be the
set of morphisms s : M → E such that π ◦ s = id. We say S ⊂ H0(M,E) generates
E if {s(p)|s ∈ S} = π−1(p) for all p ∈ M .

Similarly, Definition 26 and Lemma 27 can be generalized to this setting, which
means we do not need to consider the transition morphisms.

For each 1 ≤ i ≤ n, let Vi be a complex vector space with dimension di, and for
each 1 ≤ j ≤ r, Vi,j be a complex vector space isomorphic to Vi. Let Xj denote
Seg(PV1,j × · · · × PVn,j), and αi,j : Xj → PVi,j be the natural projection. Let
X = X1×· · ·×Xr, and βi : X → Xi be the projection. Let Ti,j be the tautological

line bundle over PVi,j , and M =
r⊕

j=1

β∗
j

(
n⊗

i=1

α∗
i,j(Ti,j)

)
be a rank-r vector bundle

M
γ−→ X. Let Fi,j be the trivial bundle over M with fibre Vi,j , and Qi,j denote the

quotient bundle

0 → γ∗ · β∗
j · α∗

i,j(Ti,j) → Fi,j → Qi,j → 0.

LetHi,j = Hom(γ∗·β∗
j (
⊗

k 6=i

α∗
k,j(Tk,j)), Fi,j), H̃i,j = Hom(γ∗·β∗

j (
⊗

k 6=i

α∗
k,j(Tk,j)), Qi,j)

and E =

r⊕

j=1

(H1,j ⊕ H̃2,j ⊕ · · · ⊕ H̃n,j). So rankE = dimM = r

n∑

i=1

di − r(n− 1).

Now we fix r such that Seg(PV1 × · · · × PVn) is not r-defective. Let Ci,j be the
quadric hypersurface in Vi,j defined by {v ∈ Vi,j |v⊤v = 0}. Let U be the open
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subset of M consisting of p = (⊗n
i=1ui,1, . . . ,⊗n

i=1ui,r) such that each ui,j /∈ Ci,j ,
and

(5.2) dim


∑

i,j

( ⊗
k 6=i

uk,j)⊗ Vi,j


 = r

n∑

i=1

di − r(n− 1).

Lemma 29. For p ∈ U , let Ã =

r∑

j=1

n
⊗
i=1

ui,j, then for any xi,j ∈ Vi,j and [yi,j ] ∈

Vi,j/〈ui,j〉,
(1) There is some A ∈ V1 ⊗ · · · ⊗ Vn such that 〈A − Ã, ⊗

k 6=i
uk,j〉 = xi,j if and

only if u⊤
1,jx1,j = · · · = u⊤

n,jxn,j for all j.

(2) There is some A ∈ V1 ⊗ · · · ⊗ Vn such that 〈A − Ã,
n
⊗
k=2

uk,j〉 = x1,j and

[〈A− Ã, ⊗
k 6=i

uk,j〉] = [yi,j ] for all i ≥ 2.

Proof. 1. If 〈A− Ã,⊗k 6=iuk,j〉 = xi,j , then 〈A− Ã,⊗n
k=1uk,j〉 = u⊤

i,jxi,j .
For the linear system of A:

(5.3) 〈A, ⊗
k 6=i

uk,j〉 = 〈Ã, ⊗
k 6=i

uk,j〉+ xi,j ,

let U denote the coefficient matrix of A formed by ⊗k 6=i uk,j , and z be the vector

corresponding to 〈Ã,⊗k 6=i uk,j〉+ xi,j .
Conversely, the linear system (5.3) is solvable if and only if the matrices U and

[U, z] have the same rank. By (5.2), rank(U) = r
∑n

i=1 di − r(n − 1), and ui,j ⊗
(⊗k 6=iuk,j) = ul,j ⊗ (⊗k 6=luk,j) are generators of the linear relations in [⊗k 6=iuk,j ].
So if u⊤

1,jx1,j = · · · = u⊤
n,jxn,j , then rank([U, z]) ≤ r

∑n
i=1 di − r(n− 1) = rank(U).

2. By 1. the system

(5.4)





〈A, ⊗
k≥2

uk,j〉 = 〈Ã, ⊗
k≥2

uk,j〉+ x1,j

〈A, ⊗
k 6=i

uk,j〉 = 〈Ã, ⊗
k 6=i

uk,j〉+ yi,j + ti,jui,j

for i ≥ 2 is solvable for some A and ti,j if and only if

(5.5) u⊤
1,jx1,j = u⊤

2,j(y2,j + t2,ju2,j) = · · · = u⊤
n,j(yn,j + tn,jun,j).

Since ui,j /∈ Ci,j , when ti,j =
u⊤
1,jx1,j − u⊤

i,jyi,j

u⊤
i,jui,j

, (5.4) is solvable. �

Let S = {s ∈ H0(M,E)|s =
(

r
⊕
j=1

〈A− Ã, ⊗
k≥2

uk,j〉,
r
⊕
j=1

n
⊕
i=2

[〈A− Ã, ⊗
k 6=i

uk,j〉]
)
}.

Lemma 30. For α = {(i1, j1), . . . , (il, jl)|1 ≤ i1, . . . , il ≤ n, 1 ≤ j1, . . . , jl ≤ r},
let Fα = X1,1 × · · · × Xn,r, where Xi,j = P(Ci,j) if (i, j) ∈ α and Xi,j = PVi,j

otherwise. For p ∈ M |Fα
, 〈A − Ã, ⊗

k≥2
uk,j〉 = x1,j and [〈A − Ã, ⊗

k 6=i
uk,j〉] = [yi,j ]

for i ≥ 2 if and only if

(5.6) u⊤
i,jyi,j = u⊤

1,jx1,j

for (i, j) ∈ α and i ≥ 2.
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Proof. By Lemma 29, the system (5.4) for i ≥ 2 is solvable for some A and ti,j if
and only if

(5.7) u⊤
1,jx1,j = u⊤

2,j(y2,j + t2,ju2,j) = · · · = u⊤
n,j(yn,j + tn,jun,j).

When (i, j) /∈ α, let ti,j =
u⊤
1,jx1,j − u⊤

i,jyi,j

u⊤
i,jui,j

, when (i, j) ∈ α. u⊤
i,jyi,j = u⊤

1,jx1,j .

�

Let R = r

n∑

i=1

di − r(n − 1) and Dq = {p ∈ M | dim


∑

i,j

( ⊗
k 6=i

uk,j)⊗ Vi,j


 ≤

R−q}, choose a basis ali,j for Vi,j , consider the matrix N formed by ⊗k 6=i uk,j⊗ali,j ,
then Dq is defined by (R − q) × (R − q) minors of N . If Dq \Dq+1 6= ∅, for each
p ∈ Dq \Dq+1, some (R− q − 1)× (R− q − 1) minor does not vanish, which gives
an open covering of Dq \Dq+1. If Dq = · · · = Dq+l, then for each p ∈ Dq \Dq+l+1,
some (R− q − l− 1)× (R− q− l− 1) minor does not vanish, which forms an open
covering of Dq \Dq+l+1. Without loss of generality we assume Dq \Dq+1 6= ∅, then
for each p ∈ Dq \Dq+1, there are R− q independent vectors

∑r
i=1(⊗k 6=iuk,j)⊗wi,j

which span
∑

i,j(⊗k 6=i uk,j) ⊗ Vi,j , and the linear space of linear equations that p

satisfies are spanned by r(n−1)+ q linear equations
∑

(⊗k 6=iuk,j)⊗vi,j = 0, where
vi,j ∈ Vi,j is algebraic in uk,l. Among these linear equations we can choose r(n− 1)
generators to be ⊗k 6=i uk,j ⊗ ui,j = ⊗h 6=l uh,j ⊗ ul,j for i 6= l, and we choose and
denote the other q linear equations by

∑
(⊗k 6=iuk,j)⊗ vli,j = 0 for 1 ≤ l ≤ q.

Lemma 31. For p ∈ M |Dq\(∪αFα∪Dq+1),

(1) 〈A − Ã,⊗k 6=iuk,j〉 = xi,j if and only if u⊤
1,jx1,j = · · · = u⊤

n,jxn,j and∑
i,j x

⊤
i,jv

l
i,j = 0 for 1 ≤ l ≤ q.

(2) 〈A − Ã,⊗k≥2uk,j〉 = x1,j and [〈A − Ã,⊗k 6=iuk,j〉] = [yi,j ] for i ≥ 2 if and
only if

(5.8)
∑

j


x⊤

1,jv
l
1,j +

∑

i≥2

(yi,j + ti,jui,j)
⊤vli,j


 = 0,

where ti,j =
u⊤

1,jx1,j−u⊤

i,jyi,j

u⊤

i,j
ui,j

and 1 ≤ l ≤ q. For each p, the linear subspace

formed by the tuples (x1,j , [yi,j ]) satisfying (5.8) is independent of the choice
of vli,j.

Proof. 1. If 〈A − Ã,⊗k 6=iuk,j〉 = xi,j , then 〈A − Ã,⊗n
k=1uk,j〉 = u⊤

i,jxi,j , and∑
i,j x

⊤
i,jv

l
i,j = 〈A− Ã,

∑
i,j ⊗k 6=i uk,j ⊗ vli,j〉 = 0.

We use the same notation as Lemma 29. The linear system of A

(5.9) 〈A, ⊗
k 6=i

uk,j〉 = 〈Ã, ⊗
k 6=i

uk,j〉+ xi,j

is solvable if and only if the matrices U and [U, z] have the same rank R− q. Since
ui,j ⊗ (⊗k 6=iuk,j) = ul,j ⊗ (⊗k 6=luk,j) and

∑
(⊗k 6=iuk,j) ⊗ vli,j = 0 generate the

linear relations in U . So if u⊤
1,jx1,j = · · · = u⊤

n,jxn,j , and
∑

i,j x
⊤
i,jv

l
i,j = 0, then

rank([U, z]) ≤ R− q = rank(U).
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2. By 1. the system (5.4) is solvable for some A if and only if

(5.10)





u⊤
1,jx1,j = u⊤

2,j(y2,j + t2,ju2,j) = · · · = u⊤
n,j(yn,j + tn,jun,j),

∑

j


x⊤

1,jv
l
1,j +

∑

i≥2

(yi,j + ti,jui,j)
⊤vli,j


 = 0.

Since ui,j /∈ Ci,j , let ti,j =
u⊤
1,jx1,j − u⊤

i,jyi,j

u⊤
i,jui,j

, then (5.4) is solvable for i ≥ 2 if and

only if and (5.8) holds.
The subset formed by {x1,j , [yi,j ]} such that (5.10) holds is a linear space, and

does not depend on the choice of vli,j . �

Lemma 32. For p ∈ M |(Dq∩Fα)\Dq+1
, 〈A−Ã,⊗k≥2uk,j〉 = x1,j and [〈A−Ã,⊗k 6=iuk,j〉] =

[yi,j ] for i ≥ 2 if and only if (5.6) holds for (i, j) ∈ α, and (5.8) holds for

ti,j =
u⊤

1,jx1,j−u⊤

i,jyi,j

u⊤

i,j
ui,j

when (i, j) /∈ α, and for some ti,j when (i, j) ∈ α. For

each p, the linear subspace consisting of {x1,j , [yi,j ]} satisfying these conditions is
independent of the choice of vli,j.

Proof. The system (5.4) is solvable for some A if and only if

(5.11)





u⊤
1,jx1,j = u⊤

2,j(y2,j + t2,ju2,j) = · · · = u⊤
n,j(yn,j + tn,jun,j),

∑

j


x⊤

1,jv
l
1,j +

∑

i≥2

(yi,j + ti,jui,j)
⊤vli,j


 = 0.

When (i, j) /∈ α, let ti,j =
u⊤
1,jx1,j − u⊤

i,jyi,j

u⊤
i,jui,j

. Then (5.4) is solvable if and only if

(5.6) and (5.8) holds for some ti,j when (i, j) ∈ α.
The subset formed by {x1,j , [yi,j ]} satisfying these conditions is a linear space,

and does not depend on the choice of vli,j . �

Proof of Theorem 21. We prove the theorem by induction on r.
When r = 1, it is showed by Friedland and Ottaviani [9] that a generic T has a

finite number of singular vector tuples. Assume the theorem holds for r − 1.
Let U ⊂ M be the open subset such that each ⊗n

k=1 uk,j 6= 0, then by Lemma
29, S generates E|U ′ , where U ′ = U \ (∪qDq

⋃
∪αFα), and rank = dimM . The

dimension of the solutions of (5.4) for any (x1,j , [yi,j ]) is the same.
Let Eα be the subbundle of E over M |Fα

such that (x1,j , [yi,j ]) satisfies (5.6)

for (i, j) ∈ α, and Sα = {(⊕j〈A − Ã,⊗k≥2 uk,j〉,⊕i,j [〈A − Ã,⊗k 6=i uk,j〉])}, then
by Lemma 30, Sα generates Eα|Uα

, where Uα = Fα \ (∪q Dq

⋃∪β⊂α Fβ), and
rankEα ≥ dimFα. The dimension of the solutions of (5.6) for any (x1,j , [yi,j ]) is
the same.

Let Eq be the subbundle of E over M |Dq
such that (x1,j , [yi,j ]) satisfies (5.8),

and Sq = {(⊕j〈A − Ã,⊗k≥2 uk,j〉,⊕i,j [〈A − Ã,⊗k 6=i uk,j〉])}, then by Lemma 31,
Sq generates Eq|Uq

, where Uq = Dq \ (Dq+1

⋃
∪α Fα), and rankEq ≥ dimDq. The

dimension of the solutions of (5.8) for any (x1,j , [yi,j ]) is the same.
Let Eα,q be the subbundle of E over M |Fα∩Dq

such that (x1,j , [yi,j ]) satisfies

(5.6) and (5.8), and Sα,q = {(⊕j〈A− Ã,⊗k≥2 uk,j〉,⊕i,j [〈A− Ã,⊗k 6=i uk,j〉])}, then
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by Lemma 32, Sα,q generates Eα,q|Uα,q
, where Uα,q = (Fα∩Dq)\(Dq+1

⋃∪β⊂α Fβ),
and rankEα,q ≥ dimFα,q. The dimension of the solutions of (5.6) and (5.8) for any
(x1,j , [yi,j ]) is the same.

Therefore S almost generates E|U , and since for a generic σ ∈ S, Zσ is a complex
affine algebraic variety, by Lemma 27, Zσ|U consists of a finite number of points.
With the induction assumption, we can conclude that Zσ consists of a finite number
of simple points. �
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