
NON-NEGATIVE TENSOR APPROXIMATIONS

YANG QI, PIERRE COMON

Abstract. In this note, we study the relations between approximations and
singular vector tuples.

Nonnegative tensors are widely used in several fields, including e.g., machine
learning, hyperspectral imaging, spectrography, and chemometrics, among others.
There exist known sufficient conditions ensuring uniqueness of tensor decomposi-
tion into a sum of rank-1 terms. Yet, these conditions do not apply neither to
nonnegative decompositions nor to low-rank approximations. The purpose of this
note is to provide some first results in the latter direction.

1. Existence and Uniqueness of Approximations

Let V1, . . . , Vn be real vector spaces, and V +
i denote the set of non-negative

vectors in Vi. Let V
+ be the set of non-negative tensors in V1 ⊗ · · · ⊗ Vn. Given a

T ∈ V +, we consider the best rank-r approximations of T , where r is less than the
non-negative rank of T .

Definition 1.1. For a fixed positive integer r, let Dr = {X ∈ V +|rank(X) ≤ r},
where rank(X) means the non-negative rank of X, and let d(T ) = inf

X∈Dr

‖T −X‖,

where ‖·‖ is the l2-norm.

According to [1], Dr is a closed set, thus for any T /∈ Dr, there is some T ∗ ∈ Dr

such that ‖T − T ∗‖ = d(T ).

Proposition 1.2. For any nonnegative T /∈ Dr, min
X∈Dr

‖T −X‖ = min
rank(X)=r

‖T −X‖.

Proof. Let ‖T − T ∗‖ = minX∈Dr
‖T −X‖, and assume rank(T ∗) < r. Since T /∈

Dr, T − T ∗ 6= 0. If T − T ∗ ≤ 0, pick i1, . . . , in such that (T − T ∗)i1...in < 0, let
T ′
i1...in

= λ(T − T ∗)i1...in for some 0 < λ < 1 and T ′
j1...jn

= 0 for other indices,
then T ∗ + T ′ ≥ 0, rank(T ∗ + T ′) ≤ r and ‖T − T ∗ − T ′‖ < ‖T − T ∗‖ which is a
contradiction. So (T −T ∗)i1...in > 0 for some i1, . . . , in, let T

′
i1...in

= (T −T ∗)i1...in
and T ′

j1...jn
= 0 for other indices, then rank(T ∗ + T ′) ≤ r and ‖T − T ∗ − T ′‖ <

‖T − T ∗‖ which is a contradiction. Therefore rank(T ∗) = r. �

The following observation is based on some fundamental facts of approximation
analysis [2], and we give it a proof for completeness.

Proposition 1.3. Almost every T ∈ V + has a unique best rank-r approximation.

Proof. For any T, T ′ ∈ V1 ⊗ · · · ⊗ Vn, |d(T )− d(T ′)| ≤ ‖T − T ′‖, i.e. d is Lipschitz,
thus differentiable a.e. in V1 ⊗ · · · ⊗ Vn by Rademacher’s theorem.
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For a general T ∈ V +, there is an open neighbourhood B(T, δ) of T contained in
V +, so d is differentiable a.e. in V +. Assume that d is differentiable at T ∈ V +, for
any U ∈ V1 ⊗ · · · ⊗ Vn, let ∂d

2
T (U) be the differential of d2 at T along the direction

U , let ‖T − T ∗‖ = d(T ). Then,

d2(T + tU) = d2(T ) + t∂d2T (U) +O(t2)

d2(T + tU) ≤ ‖T + tU − T ∗‖
2
= d2(T ) + 2t〈U, T − T ∗〉+ t2 ‖U‖

2
.

Therefore, for any t, t∂d2T (U) ≤ 2t〈U, T − T ∗〉, then

∂d2T (U) = 2〈U, T − T ∗〉.

Assume T ′ is another best rank-r approximation of T , then

2〈U, T − T ∗〉 = ∂d2T (U) = 2〈U, T − T ′〉,

which implies 〈T ′ − T ∗, U〉 = 0 for any U , i.e. T ′ = T ∗. �

Proposition 1.4. The nonnegative tensors which does not have a unique best
rank-r approximation form a semi-algebraic set.

Proof. Dr is semi-algebraic by Tarski-Seidenberg theorem [5], by [6, Theorem 3.4],
the nonnegative tensors without a unique best rank-r approximation form a semi-
algebraic set. �

After knowing the existence and uniqueness of best rank-r approximations, we
want to find out these approximations explicitly. A natural idea is to compute these

approximations inductively: for k < r, let
k∑

i=1

Ti be the best rank-k approximation

of T , then we hope to obtain the best rank-r approximation by computing the

rank-(r − k) approximation of T −

k∑

i=1

Ti. The following observation tells us this

does not work generally, which extends the result of [10] to nonnegative tensors.

Proposition 1.5. A best approximation of a general T ∈ V + can not be obtained
by a sequence of lower rank approximations.

Proof. Let

r∑

i=1

Ti ∈ Dr, and assume

∥∥∥∥∥

r∑

i=1

Ti

∥∥∥∥∥ = 1, so d(T ) = min

∥∥∥∥∥T − α

r∑

i=1

Ti

∥∥∥∥∥.

Let L denote the line in V1 ⊗ · · · ⊗ Vn spanned by
r∑

i=1

Ti, and L⊥ denote the

orthogonal complement of L. Denote the projection of T to L by ProjL(T ), then

‖T‖
2
= ‖ProjL(T )‖

2
+ ‖ProjL⊥(T )‖

2
,

∥∥∥∥∥T − α

r∑

i=1

Ti

∥∥∥∥∥

2

= ‖T − ProjL(T )‖
2
= ‖ProjL⊥(T )‖

2
= ‖T‖

2
− ‖ProjL(T )‖

2
,

so to compute min

∥∥∥∥∥T − α

r∑

i=1

Ti

∥∥∥∥∥ is equivalent to compute maxProjL(T ).

For convenience of notation, we assume n = 3, and let T = [Tjkl], Ti = ui⊗vi⊗wi,
and ui = [xi

j ], vi = [yik], wi = [zil ] are coordinates. Consider the Lagrangian:
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φ = 〈T,

r∑

i=1

Ti〉 − λ



∥∥∥∥∥

r∑

i=1

Ti

∥∥∥∥∥

2

− 1




=
r∑

i=1

∑

j,k,l

Tjklx
i
jy

i
kz

i
l − λ


∑

j,k,l

(

r∑

i=1

xi
jy

i
kz

i
l )

2 − 1


 ,

then
∂φ

∂xi
j

= 0 gives
∑

k,l

Tjkly
i
kz

i
l = 2λ

r∑

i=1

xi
j

∑

k,l

(yikz
i
l )

2, i.e.

〈T, vi ⊗ wi〉 =
r∑

m=1

λi
mum,

where λi
m = 2λ〈vm ⊗ wm, vi ⊗ wi〉. Similarly, we have

〈T, ui ⊗ wi〉 =

r∑

m=1

µi
mvm, 〈T, ui ⊗ vi〉 =

r∑

m=1

νimwm,

where µi
m = 2λ〈um ⊗ wm, ui ⊗ wi〉, and νim = 2λ〈um ⊗ vm, ui ⊗ vi〉.

Assume

∥∥∥∥∥T −

s∑

i=1

Ti

∥∥∥∥∥ = min
X∈Ds

‖T −X‖, and

∥∥∥∥∥T −

r∑

i=1

Ti

∥∥∥∥∥ = min
X∈Dr

‖T −X‖ for

some s < r, then

∥∥∥∥∥T −

r∑

i=1

Ti

∥∥∥∥∥ = min
X∈Dr−s

∥∥∥∥∥(T −

s∑

i=1

Ti)−X

∥∥∥∥∥, so

〈T, vi ⊗ wi〉 =

s∑

m=1

λi
mum,whereλi

m = 2λ〈vm ⊗ wm, vi ⊗ wi〉, 1 ≤ i ≤ s,

〈T, vj ⊗ wj〉 =
r∑

m=1

βj
mum,whereβj

m = 2β〈vm ⊗ wm, vj ⊗ wj〉, 1 ≤ j ≤ r,

〈T−
s∑

i=1

Ti, vk⊗wk〉 =
r∑

m=s+1

γk
mum,whereγk

m = 2γ〈vm⊗wm, vk⊗wk〉, s+1 ≤ k ≤ r,

which implies

r∑

m=s+1

γk
mum is parallel to

s∑

m=1

λi
mum. By eliminating the parameters,

we can obtain the algebraic conditions that T has to satisfy. Since it is easy to find
a T which does not satisfy these conditions, then a general T does not have this
property. Therefore for a general T , a best rank-r approximation is not obtained
from an approximation of a best rank-s approximation.

�

2. rank one approximation

Definition 2.1. For T ∈ V1 ⊗ · · · ⊗ Vn, (λ, u1 ⊗ · · · ⊗ un) is called a nonnegative
singular pair of T if λ ≥ 0, and for all i ∈ {1, . . . , n}, 0 6= ui ≥ 0, and

(2.1) 〈T,⊗j 6=iuj〉 = λui.

Lemma 2.2. A nonnegative tensor T has a nonnegative singular pair.
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Proof. Let ui = (ui,1, . . . , ui,di
) be the coordinate of ui. LetD = {(u1, . . . , un)|ui,j ≥

0,
∑

i,j ui,j = 1}, then D is a compact convex set. Define

φ : D → D

(u1, . . . , un) 7→



〈T, u2 ⊗ · · · ⊗ un〉∑

i,l

〈T,⊗j 6=iuj〉l
, . . . ,

〈T, u1 ⊗ · · · ⊗ un−1〉∑

i,l

〈T,⊗j 6=iuj〉l




If
∑

i,l〈T,⊗j 6=iuj〉l = 0, then 〈T,⊗j 6=iuj〉 = 0 for all i, i.e. λ = 0.

If
∑

i,l〈T,⊗j 6=iuj〉l > 0, by Brouwer’s Fixed Point Theorem, there is some u1 ⊗

· · · ⊗ un such that 〈T,⊗j 6=iuj〉 = λui, where λ =
∑

i,l〈T,⊗j 6=iuj〉l. �

Lemma 2.3. If T is positive, T has a nonnegative pair (λ, u1 ⊗ · · · ⊗ un) with

λ > 0. If u1 ⊗ · · · ⊗ un has unit length, then u1 ⊗ · · · ⊗ un is unique and every

ui > 0.

Proof. Let Ii = {j|ui,j 6= 0}, and α = min{ui,j |1 ≤ i ≤ n, j ∈ Ii}. For any i and k,

λui,k = 〈T,⊗j 6=iuj〉k ≥ αn−1
∑

lj∈Ij

Tl1...li−1kli+1...ln > 0.

Assume T had two positive singular vector tuples u1⊗ · · ·⊗un and v1⊗ · · ·⊗ vn
corresponding to λ,

〈T, u1 ⊗ · · · ⊗ ui−1 ⊗ ûi ⊗ ui+1 ⊗ · · · ⊗ un〉 = λui,

〈T, v1 ⊗ · · · ⊗ vi−1 ⊗ v̂i ⊗ vi+1 ⊗ · · · ⊗ vn〉 = λvi.

Let αi = max{α ∈ R≥0|ui − αvi ≥ 0} and βi = max{β ∈ R≥0|vi − αui ≥ 0}.
Since ‖ui‖ = ‖vi‖ = 1 and ui, vi > 0, then 0 < αi, βi ≤ 1. Therefore

λui = 〈T,⊗j 6=iuj〉 ≥ 〈T,⊗j 6=iαjvj〉 = λ
∏

j 6=i

αj · vi,

λvi = 〈T,⊗j 6=ivj〉 ≥ 〈T,⊗j 6=iβjuj〉 = λ
∏

j 6=i

βj · ui.

By the maximality of αi,

∏
j 6=i αj

αi

≤ 1 for each i, thus αi = 1, and similarly,

βi = 1. �

Proposition 2.4. A positive tensor T with rank > 1 has a unique best rank one
non-negative approximation.

Proof. Since the smooth function

ϕ : Sd1−1 × · · · × S
dn−1 → R≥0

(u1, . . . , un) 7→ 〈T, u1 ⊗ · · · ⊗ un〉

reaches its maximal value at some (u1, . . . , un) ≥ 0, where S
di−1 is unit sphere in

Vi, then the critical points of the Lagrangian

〈T, u1 ⊗ · · · ⊗ un〉 −

n∑

i=1

λi(‖ui‖ − 1)

give us

(2.2) 〈T, u1 ⊗ · · · ⊗ ui−1 ⊗ ûi ⊗ ui+1 ⊗ · · · ⊗ un〉 = λiui
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and 〈T, u1 ⊗ · · · ⊗ un〉 = λi gives us λ1 = · · · = λn, denoted by λ.
Since λ is maximal, λ > 0 and u1 ⊗ · · · ⊗ un is unique by 2.3. Hence this unique

critical point u1 ⊗ · · · ⊗ un yields the best rank one approximation.
�

In [2], Friedland and Ottaviani compute the number of singular vector tuples of
a generic complex tensor. Now we study the real case in the smooth category based
on their method.

Proposition 2.5. Almost every real tensor A ∈ V1 ⊗ · · · ⊗ Vn, n ≥ 3, has an even
number of singular vector tuples.

Proof. Let X = S
d1−1 × · · · × S

dn−1, and πi : X → S
di−1 be the projection. Let Ni

be the normal bundle over Sdi−1, and Ti be the tangent bundle of Sdi−1, which is
isomorphic to the quotient bundle Vi/Ni. Let E =

⊕n

i=1 Hom(⊗j 6=iπ
∗
jNj , π

∗
i Vi/Ni).

For any [xi] ∈ Vi/〈ui〉, there is some A such that [Con(A,⊗j 6=iuj)] = [xi] if and
only if u⊤

1 (x1 + t1u1) = · · · = u⊤
n (xn + tnun) for some ti. Since u⊤

i ui = 1, A always
exists. Let S = {s ∈ H0(X,E)|s = ([Con(A,⊗j≥2uj)], . . . , [Con(A,⊗j<nuj)])},
then S generates E. Then a general s ∈ S has finite number of zeros, which is
Poincaré dual to e(E), the Euler class of E.

Assume all di are odd, then e(E) = 2nα where α is a generator of Hm(X,Z) and
m =

∑
i di − n. If some di is even, then e(E) = 0 in the class. Therefore, a general

A has even number of singular vector tuples.
�

3. r-singular vector

Definition 3.1. A vector tuple (u1,1, . . . , un,1, . . . , u1,r, . . . , un,r) ∈ (V1×· · ·×Vn)
r

with ui,j 6= 0 for all i, j is called a r-singular tuple of T if

(3.1) Con(T,⊗k 6=iuk,j) = λCon(

r∑

j=1

u1,j ⊗ · · · ⊗ un,j ,⊗k 6=iuk,j)

for all i, j and some λ, where Con denotes the contraction.

Similar to [2], we will show a generic T has finite number of r-singular vector
tuples.

Let M be a nonsingular complex variety, and E
π
−→ M be a holomorphic vector

bundle on M with dimM = rankE. Let S ⊂ H0(M,E) be a finite dimensional

subspace, and M × S
ν
−→ E be the evaluation map (p, s) 7→ s(p).

Lemma 3.2. If there exits an open subset U ⊂ M such that SU generates H0(U,E),
ν has constant rank on U × SU , and for a generic σ ∈ S, the zero locus of σ, Zσ,

is noetherian and contained in U , then Zσ consists of a finite number of simple

points.

Proof. Let τ be the zero section of E, and ZU := {(p, sU ) ∈ U × SU |sU (p) = 0} ⊂
ν−1(τ). Since ν is dominant and has constant rank on U × SU , ZU has dimension
dimM +dimS − rankE. Let p : ν−1(τ) → S be the projection, and pU : ZU → SU

the restriction on U . Since for a generic σ ∈ S, Zσ is isomorphic to p−1
U (σ). By

the generic smoothness theorem [4], Zσ is a smooth 0-dimensional subvariety of M .
Since Zσ is noetherian, then Zσ is of a finite number of simple points. �
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For each 1 ≤ i ≤ n, let Vi be a complex vector space with dimension di, and for
each 1 ≤ j ≤ r, Vi,j be a complex vector space isomorphic to Vi. Let Xj denote
Seg(PV1,j × · · · × PVn,j), and αi,j : Xj → PVi,j be the natural projection. Let
X = X1×· · ·×Xr, and βi : X → Xi be the projection. Let Ti,j be the tautological

line bundle over PVi,j , and M =

r⊕

j=1

β∗
j

(
n⊗

i=1

α∗
i,j(Ti,j)

)
be a rank-r vector bundle

M
γ
−→ X. Let Fi,j be the trivial bundle over M with fibre Vi,j , and Qi,j denote the

quotient bundle

0 → γ∗ · β∗
j · α∗

i,j(Ti,j) → Fi,j → Qi,j → 0.

LetHi,j = Hom(γ∗·β∗
j (
⊗

k 6=i

α∗
k,j(Tk,j)), Fi,j), Li,j = Hom(γ∗·β∗

j (
⊗

k 6=i

α∗
k,j(T

∨
k,j)), Ti,j)

and E =
r⊕

j=1

(L1,j ⊕H1,j ⊕ · · · ⊕Hn,j). So rankE = dimM = r
n∑

i=1

di − r(n− 1).

Now we fix r such that Seg(PV1 × · · · × PVn) is not r-defective. Let Ci,j be the
quadric hypersurface in Vi,j defined by {v ∈ Vi,j |v

⊤v = 0}. Let U be the open
subset of M consisting of p = (⊗n

i=1ui,1, . . . ,⊗
n
i=1ui,r) such that each ui,j /∈ Ci,j ,

and

(3.2) dim


∑

i,j

(
⊗

k 6=i

uk,j)⊗ Vi,j


 = r

n∑

i=1

di − r(n− 1).

Lemma 3.3. For p ∈ U , any xi,j ∈ Vi,j and [yi,j ] ∈ Vi,j/〈ui,j〉,

1. There is some A ∈ V1⊗· · ·⊗Vn such that Con(A− Ã,⊗k 6=iuk,j) = xi,j if and

only if u⊤
1,jx1,j = · · · = u⊤

n,jxn,j for all j.

2. There is some A ∈ V1 ⊗ · · · ⊗ Vn such that [Con(A− Ã,⊗k 6=iuk,j)] = [yi,j ].

Proof. 1. If Con(A− Ã,⊗k 6=iuk,j) = xi,j , then Con(A− Ã,⊗n
k=1uk,j) = u⊤

i,jxi,j .

Conversely, the linear system Con(A,⊗k 6=iuk,j) = Con(Ã,⊗k 6=iuk,j)+xi,j is solv-

able if and only if the coefficient matrices [⊗k 6=iuk,j ] and [⊗k 6=iuk,j ,Con(Ã,⊗k 6=iuk,j)+
xi,j ] have the same rank. By (3.2), rank[⊗k 6=iuk,j ] = r

∑n

i=1 di − r(n − 1), and
ui,j ⊗ (⊗k 6=iuk,j) = ul,j ⊗ (⊗k 6=luk,j) are the only linear relations in [⊗k 6=iuk,j ].

So if u⊤
1,jx1,j = · · · = u⊤

n,jxn,j , then rank[⊗k 6=iuk,j ,Con(Ã,⊗k 6=iuk,j) + xi,j ] ≤

r
∑n

i=1 di − r(n− 1).

2. Con(A− Ã,⊗n
k=2uk,j) = x1,j and [Con(A− Ã,⊗k 6=iuk,j)] = [yi,j ] are solvable

if and only if u⊤
1,jx1,j = u⊤

2,j(y2,j + t2,ju2,j) = · · · = u⊤
n,j(yn,j + tn,jun,j) for some

ti,j . Since ui,j /∈ Ci,j , let ti,j =
u⊤

1,jx1,j−u⊤

i,jyi,j

u⊤

i,j
ui,j

.

�

Let S = {s ∈ H0(M,E)|s = (
⊕

j

Con(⊗iui,j ,⊗k 6=1uk,j),
⊕

i,j

[Con(A−Ã,⊗k 6=iuk,j)])}

Lemma 3.4. The induced map Tν : TpU × TsSU → Ts(p)E is surjective.

Lemma 3.5. For α = {(i1, j1), . . . , (il, jl)|1 ≤ i1, . . . , il ≤ n, 1 ≤ j1, . . . , jl ≤ r},
let Fα = X1,1 × · · · × Xn,r, where Xi,j = P(Ci,j) if (i, j) ∈ α and Xi,j = PVi,j

otherwise. For p ∈ M |Fα
,



NON-NEGATIVE TENSOR APPROXIMATIONS 7

1. If α ⊂ {(i1, 1), . . . , (ir, r)}, there is some A such that [Con(A−Ã,⊗k 6=iuk,j)] =
[yi,j ]

2. Otherwise, there is some A such that [Con(A − Ã,⊗k 6=iuk,j)] = [yi,j ] if and
only if u⊤

i1,j1
yi1,j1 = · · · = u⊤

il,jl
yil,jl .

Let R = r

n∑

i=1

di − r(n − 1) and Dq = {p ∈ M | dim


∑

i,j

(
⊗

k 6=i

uk,j)⊗ Vi,j


 ≤

R − q}, then Dq is defined by (R − q) × (R − q) minors. Each p ∈ Dq satisfies
r(n−1)+q linear relations

∑r

i=1(⊗k 6=iuk,j)⊗vi,j = 0, where vi,j ∈ Vi,j is algebraic
in ui,j . vi,j = ui,j consists of r(n − 1) of these linear equations, and there are q
nontrivial linear relations for p ∈ M |Dq\Dq−1

.

Lemma 3.6. For p ∈ M |Dq\∪αFα
,

1. Con(A − Ã,⊗k 6=iuk,j) = xi,j if and only if u⊤
1,jx1,j = · · · = u⊤

n,jxn,j and∑
i,j x

⊤
i,jv

l
i,j = 0 for 1 ≤ l ≤ q.

2. [Con(A− Ã,⊗k 6=iuk,j)] = [yi,j ] if and only if

(3.3) u⊤
1,j(y1,j + t1,ju1,j) = · · · = u⊤

n,j(yn,j + tn,jun,j),

(3.4)
∑

i,j

(yi,j + ti,jui,j)
⊤vli,j = 0,

for 1 ≤ l ≤ q. For each p, the linear subspace consisting of {[yi,j ]} satisfying (3.4)
is independent of the choice of vi,j.

Construct Eα overM |Fα
to be all linear transformations yi,j such that u⊤

i1,j1
yi1,j1 =

· · · = u⊤
il,jl

yil,jl , then rank(Eα) > dimM |Fα
.

Construct Eq over Dq to be all linear transformations xi,j such that (3.4) holds,
then rankEq > dimDq.

Construct Eα,q over M |Fα
∩Dq to be all transformations such that u⊤

i1,j1
yi1,j1 =

· · · = u⊤
il,jl

yil,jl and (3.4) holds, then rankEα,q > dimM |Fα
∩Dq.

So for a generic σ, Zσ is contained in U , since Zσ is an affine algebraic variety,
Zσ consists of finite number of points.
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