Non-negative Tensor Approximations
 Yang Qi, Pierre Comon

To cite this version:

Yang Qi, Pierre Comon. Non-negative Tensor Approximations. 2014. hal-01015519v1

HAL Id: hal-01015519 https://hal.science/hal-01015519v1

Preprint submitted on 26 Jun 2014 (v1), last revised 12 Apr 2016 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NON-NEGATIVE TENSOR APPROXIMATIONS

YANG QI, PIERRE COMON

Abstract

In this note, we study the relations between approximations and singular vector tuples.

Nonnegative tensors are widely used in several fields, including e.g., machine learning, hyperspectral imaging, spectrography, and chemometrics, among others. There exist known sufficient conditions ensuring uniqueness of tensor decomposition into a sum of rank-1 terms. Yet, these conditions do not apply neither to nonnegative decompositions nor to low-rank approximations. The purpose of this note is to provide some first results in the latter direction.

1. Existence and Uniqueness of Approximations

Let V_{1}, \ldots, V_{n} be real vector spaces, and V_{i}^{+}denote the set of non-negative vectors in V_{i}. Let V^{+}be the set of non-negative tensors in $V_{1} \otimes \cdots \otimes V_{n}$. Given a $T \in V^{+}$, we consider the best rank- r approximations of T, where r is less than the non-negative rank of T.

Definition 1.1. For a fixed positive integer r, let $D_{r}=\left\{X \in V^{+} \mid \operatorname{rank}(X) \leq r\right\}$, where $\operatorname{rank}(X)$ means the non-negative rank of X, and let $d(T)=\inf _{X \in D_{r}}\|T-X\|$, where $\|\cdot\|$ is the l^{2}-norm.

According to [1], D_{r} is a closed set, thus for any $T \notin D_{r}$, there is some $T^{*} \in D_{r}$ such that $\left\|T-T^{*}\right\|=d(T)$.
Proposition 1.2. For any nonnegative $T \notin D_{r}, \min _{X \in D_{r}}\|T-X\|=\min _{\operatorname{rank}(X)=r}\|T-X\|$.
Proof. Let $\left\|T-T^{*}\right\|=\min _{X \in D_{r}}\|T-X\|$, and assume $\operatorname{rank}\left(T^{*}\right)<r$. Since $T \notin$ $D_{r}, T-T^{*} \neq 0$. If $T-T^{*} \leq 0$, pick i_{1}, \ldots, i_{n} such that $\left(T-T^{*}\right)_{i_{1} \ldots i_{n}}<0$, let $T_{i_{1} \ldots i_{n}}^{\prime}=\lambda\left(T-T^{*}\right)_{i_{1} \ldots i_{n}}$ for some $0<\lambda<1$ and $T_{j_{1} \ldots j_{n}}^{\prime}=0$ for other indices, then $T^{*}+T^{\prime} \geq 0, \operatorname{rank}\left(T^{*}+T^{\prime}\right) \leq r$ and $\left\|T-T^{*}-T^{\prime}\right\|<\left\|T-T^{*}\right\|$ which is a contradiction. So $\left(T-T^{*}\right)_{i_{1} \ldots i_{n}}>0$ for some i_{1}, \ldots, i_{n}, let $T_{i_{1} \ldots i_{n}}^{\prime}=\left(T-T^{*}\right)_{i_{1} \ldots i_{n}}$ and $T_{j_{1} \ldots j_{n}}^{\prime}=0$ for other indices, then $\operatorname{rank}\left(T^{*}+T^{\prime}\right) \leq r$ and $\left\|T-T^{*}-T^{\prime}\right\|<$ $\left\|T-T^{*}\right\|$ which is a contradiction. Therefore $\operatorname{rank}\left(T^{*}\right)=r$.

The following observation is based on some fundamental facts of approximation analysis [2], and we give it a proof for completeness.

Proposition 1.3. Almost every $T \in V^{+}$has a unique best rank- r approximation.
Proof. For any $T, T^{\prime} \in V_{1} \otimes \cdots \otimes V_{n},\left|d(T)-d\left(T^{\prime}\right)\right| \leq\left\|T-T^{\prime}\right\|$, i.e. d is Lipschitz, thus differentiable a.e. in $V_{1} \otimes \cdots \otimes V_{n}$ by Rademacher's theorem.

[^0]For a general $T \in V^{+}$, there is an open neighbourhood $B(T, \delta)$ of T contained in V^{+}, so d is differentiable a.e. in V^{+}. Assume that d is differentiable at $T \in V^{+}$, for any $U \in V_{1} \otimes \cdots \otimes V_{n}$, let $\partial d_{T}^{2}(U)$ be the differential of d^{2} at T along the direction U, let $\left\|T-T^{*}\right\|=d(T)$. Then,

$$
\begin{gathered}
d^{2}(T+t U)=d^{2}(T)+t \partial d_{T}^{2}(U)+O\left(t^{2}\right) \\
d^{2}(T+t U) \leq\left\|T+t U-T^{*}\right\|^{2}=d^{2}(T)+2 t\left\langle U, T-T^{*}\right\rangle+t^{2}\|U\|^{2}
\end{gathered}
$$

Therefore, for any $t, t \partial d_{T}^{2}(U) \leq 2 t\left\langle U, T-T^{*}\right\rangle$, then

$$
\partial d_{T}^{2}(U)=2\left\langle U, T-T^{*}\right\rangle
$$

Assume T^{\prime} is another best rank- r approximation of T, then

$$
2\left\langle U, T-T^{*}\right\rangle=\partial d_{T}^{2}(U)=2\left\langle U, T-T^{\prime}\right\rangle
$$

which implies $\left\langle T^{\prime}-T^{*}, U\right\rangle=0$ for any U, i.e. $T^{\prime}=T^{*}$.
Proposition 1.4. The nonnegative tensors which does not have a unique best rank- r approximation form a semi-algebraic set.

Proof. D_{r} is semi-algebraic by Tarski-Seidenberg theorem [5], by [6, Theorem 3.4], the nonnegative tensors without a unique best rank- r approximation form a semialgebraic set.

After knowing the existence and uniqueness of best rank- r approximations, we want to find out these approximations explicitly. A natural idea is to compute these approximations inductively: for $k<r$, let $\sum_{i=1}^{k} T_{i}$ be the best rank- k approximation of T, then we hope to obtain the best rank- r approximation by computing the rank- $(r-k)$ approximation of $T-\sum_{i=1}^{k} T_{i}$. The following observation tells us this does not work generally, which extends the result of [10] to nonnegative tensors.

Proposition 1.5. A best approximation of a general $T \in V^{+}$can not be obtained by a sequence of lower rank approximations.
Proof. Let $\sum_{i=1}^{r} T_{i} \in D_{r}$, and assume $\left\|\sum_{i=1}^{r} T_{i}\right\|=1$, so $d(T)=\min \left\|T-\alpha \sum_{i=1}^{r} T_{i}\right\|$. Let L denote the line in $V_{1} \otimes \cdots \otimes V_{n}$ spanned by $\sum_{i=1}^{r} T_{i}$, and L^{\perp} denote the orthogonal complement of L. Denote the projection of T to L by $\operatorname{Proj}_{L}(T)$, then

$$
\begin{gathered}
\|T\|^{2}=\left\|\operatorname{Proj}_{L}(T)\right\|^{2}+\left\|\operatorname{Proj}_{L^{\perp}}(T)\right\|^{2} \\
\left\|T-\alpha \sum_{i=1}^{r} T_{i}\right\|^{2}=\left\|T-\operatorname{Proj}_{L}(T)\right\|^{2}=\left\|\operatorname{Proj}_{L^{\perp}}(T)\right\|^{2}=\|T\|^{2}-\left\|\operatorname{Proj}_{L}(T)\right\|^{2}
\end{gathered}
$$

so to compute min $\left\|T-\alpha \sum_{i=1}^{r} T_{i}\right\|$ is equivalent to compute max $\operatorname{Proj}_{L}(T)$.
For convenience of notation, we assume $n=3$, and let $T=\left[T_{j k l}\right], T_{i}=u_{i} \otimes v_{i} \otimes w_{i}$, and $u_{i}=\left[x_{j}^{i}\right], v_{i}=\left[y_{k}^{i}\right], w_{i}=\left[z_{l}^{i}\right]$ are coordinates. Consider the Lagrangian:

$$
\begin{aligned}
\phi & =\left\langle T, \sum_{i=1}^{r} T_{i}\right\rangle-\lambda\left(\left\|\sum_{i=1}^{r} T_{i}\right\|^{2}-1\right) \\
& =\sum_{i=1}^{r} \sum_{j, k, l} T_{j k l} x_{j}^{i} y_{k}^{i} z_{l}^{i}-\lambda\left(\sum_{j, k, l}\left(\sum_{i=1}^{r} x_{j}^{i} y_{k}^{i} z_{l}^{i}\right)^{2}-1\right)
\end{aligned}
$$

$$
\text { then } \frac{\partial \phi}{\partial x_{j}^{i}}=0 \text { gives } \sum_{k, l} T_{j k l} y_{k}^{i} z_{l}^{i}=2 \lambda \sum_{i=1}^{r} x_{j}^{i} \sum_{k, l}\left(y_{k}^{i} z_{l}^{i}\right)^{2}, \text { i.e. }
$$

$$
\left\langle T, v_{i} \otimes w_{i}\right\rangle=\sum_{m=1}^{r} \lambda_{m}^{i} u_{m}
$$

where $\lambda_{m}^{i}=2 \lambda\left\langle v_{m} \otimes w_{m}, v_{i} \otimes w_{i}\right\rangle$. Similarly, we have

$$
\left\langle T, u_{i} \otimes w_{i}\right\rangle=\sum_{m=1}^{r} \mu_{m}^{i} v_{m}, \quad\left\langle T, u_{i} \otimes v_{i}\right\rangle=\sum_{m=1}^{r} \nu_{m}^{i} w_{m}
$$

where $\mu_{m}^{i}=2 \lambda\left\langle u_{m} \otimes w_{m}, u_{i} \otimes w_{i}\right\rangle$, and $\nu_{m}^{i}=2 \lambda\left\langle u_{m} \otimes v_{m}, u_{i} \otimes v_{i}\right\rangle$.
Assume $\left\|T-\sum_{i=1}^{s} T_{i}\right\|=\min _{X \in D_{s}}\|T-X\|$, and $\left\|T-\sum_{i=1}^{r} T_{i}\right\|=\min _{X \in D_{r}}\|T-X\|$ for some $s<r$, then $\left\|T-\sum_{i=1}^{r} T_{i}\right\|=\min _{X \in D_{r-s}}\left\|\left(T-\sum_{i=1}^{s} T_{i}\right)-X\right\|$, so

$$
\left\langle T, v_{i} \otimes w_{i}\right\rangle=\sum_{m=1}^{s} \lambda_{m}^{i} u_{m}, \text { where } \lambda_{m}^{i}=2 \lambda\left\langle v_{m} \otimes w_{m}, v_{i} \otimes w_{i}\right\rangle, 1 \leq i \leq s
$$

$$
\left\langle T, v_{j} \otimes w_{j}\right\rangle=\sum_{m=1}^{r} \beta_{m}^{j} u_{m}, \text { where } \beta_{m}^{j}=2 \beta\left\langle v_{m} \otimes w_{m}, v_{j} \otimes w_{j}\right\rangle, 1 \leq j \leq r
$$

$\left\langle T-\sum_{i=1}^{s} T_{i}, v_{k} \otimes w_{k}\right\rangle=\sum_{m=s+1}^{r} \gamma_{m}^{k} u_{m}$, where $\gamma_{m}^{k}=2 \gamma\left\langle v_{m} \otimes w_{m}, v_{k} \otimes w_{k}\right\rangle, s+1 \leq k \leq r$, which implies $\sum_{m=s+1}^{r} \gamma_{m}^{k} u_{m}$ is parallel to $\sum_{m=1}^{s} \lambda_{m}^{i} u_{m}$. By eliminating the parameters, we can obtain the algebraic conditions that T has to satisfy. Since it is easy to find a T which does not satisfy these conditions, then a general T does not have this property. Therefore for a general T, a best rank- r approximation is not obtained from an approximation of a best rank-s approximation.

2. RANK ONE APPROXIMATION

Definition 2.1. For $T \in V_{1} \otimes \cdots \otimes V_{n},\left(\lambda, u_{1} \otimes \cdots \otimes u_{n}\right)$ is called a nonnegative singular pair of T if $\lambda \geq 0$, and for all $i \in\{1, \ldots, n\}, 0 \neq u_{i} \geq 0$, and

$$
\begin{equation*}
\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle=\lambda u_{i} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. A nonnegative tensor T has a nonnegative singular pair.

Proof. Let $u_{i}=\left(u_{i, 1}, \ldots, u_{i, d_{i}}\right)$ be the coordinate of u_{i}. Let $D=\left\{\left(u_{1}, \ldots, u_{n}\right) \mid u_{i, j} \geq\right.$ $\left.0, \sum_{i, j} u_{i, j}=1\right\}$, then D is a compact convex set. Define

$$
\phi: D \rightarrow D
$$

$$
\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(\frac{\left\langle T, u_{2} \otimes \cdots \otimes u_{n}\right\rangle}{\sum_{i, l}\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle_{l}}, \ldots, \frac{\left\langle T, u_{1} \otimes \cdots \otimes u_{n-1}\right\rangle}{\sum_{i, l}\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle_{l}}\right)
$$

If $\sum_{i, l}\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle_{l}=0$, then $\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle=0$ for all i, i.e. $\lambda=0$.
If $\sum_{i, l}\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle_{l}>0$, by Brouwer's Fixed Point Theorem, there is some $u_{1} \otimes$ $\cdots \otimes u_{n}$ such that $\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle=\lambda u_{i}$, where $\lambda=\sum_{i, l}\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle_{l}$.

Lemma 2.3. If T is positive, T has a nonnegative pair $\left(\lambda, u_{1} \otimes \cdots \otimes u_{n}\right)$ with $\lambda>0$. If $u_{1} \otimes \cdots \otimes u_{n}$ has unit length, then $u_{1} \otimes \cdots \otimes u_{n}$ is unique and every $u_{i}>0$.

Proof. Let $I_{i}=\left\{j \mid u_{i, j} \neq 0\right\}$, and $\alpha=\min \left\{u_{i, j} \mid 1 \leq i \leq n, j \in I_{i}\right\}$. For any i and k, $\lambda u_{i, k}=\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle_{k} \geq \alpha^{n-1} \sum_{l_{j} \in I_{j}} T_{l_{1} \ldots l_{i-1} k l_{i+1} \ldots l_{n}}>0$.

Assume T had two positive singular vector tuples $u_{1} \otimes \cdots \otimes u_{n}$ and $v_{1} \otimes \cdots \otimes v_{n}$ corresponding to λ,

$$
\begin{gathered}
\left\langle T, u_{1} \otimes \cdots \otimes u_{i-1} \otimes \widehat{u_{i}} \otimes u_{i+1} \otimes \cdots \otimes u_{n}\right\rangle=\lambda u_{i}, \\
\left\langle T, v_{1} \otimes \cdots \otimes v_{i-1} \otimes \widehat{v_{i}} \otimes v_{i+1} \otimes \cdots \otimes v_{n}\right\rangle=\lambda v_{i} .
\end{gathered}
$$

Let $\alpha_{i}=\max \left\{\alpha \in \mathbb{R}_{\geq 0} \mid u_{i}-\alpha v_{i} \geq 0\right\}$ and $\beta_{i}=\max \left\{\beta \in \mathbb{R}_{\geq 0} \mid v_{i}-\alpha u_{i} \geq 0\right\}$. Since $\left\|u_{i}\right\|=\left\|v_{i}\right\|=1$ and $u_{i}, v_{i}>0$, then $0<\alpha_{i}, \beta_{i} \leq 1$. Therefore

$$
\begin{aligned}
& \lambda u_{i}=\left\langle T, \otimes_{j \neq i} u_{j}\right\rangle \geq\left\langle T, \otimes_{j \neq i} \alpha_{j} v_{j}\right\rangle=\lambda \prod_{j \neq i} \alpha_{j} \cdot v_{i} \\
& \lambda v_{i}=\left\langle T, \otimes_{j \neq i} v_{j}\right\rangle \geq\left\langle T, \otimes_{j \neq i} \beta_{j} u_{j}\right\rangle=\lambda \prod_{j \neq i} \beta_{j} \cdot u_{i} .
\end{aligned}
$$

By the maximality of $\alpha_{i}, \frac{\prod_{j \neq i} \alpha_{j}}{\alpha_{i}} \leq 1$ for each i, thus $\alpha_{i}=1$, and similarly, $\beta_{i}=1$.

Proposition 2.4. A positive tensor T with rank >1 has a unique best rank one non-negative approximation.

Proof. Since the smooth function

$$
\begin{aligned}
\varphi: \mathbb{S}^{d_{1}-1} \times \cdots \times \mathbb{S}^{d_{n}-1} & \rightarrow \mathbb{R}_{\geq 0} \\
\left(u_{1}, \ldots, u_{n}\right) & \mapsto\left\langle T, u_{1} \otimes \cdots \otimes u_{n}\right\rangle
\end{aligned}
$$

reaches its maximal value at some $\left(u_{1}, \ldots, u_{n}\right) \geq 0$, where $\mathbb{S}^{d_{i}-1}$ is unit sphere in V_{i}, then the critical points of the Lagrangian

$$
\left\langle T, u_{1} \otimes \cdots \otimes u_{n}\right\rangle-\sum_{i=1}^{n} \lambda_{i}\left(\left\|u_{i}\right\|-1\right)
$$

give us

$$
\begin{equation*}
\left\langle T, u_{1} \otimes \cdots \otimes u_{i-1} \otimes \widehat{u_{i}} \otimes u_{i+1} \otimes \cdots \otimes u_{n}\right\rangle=\lambda_{i} u_{i} \tag{2.2}
\end{equation*}
$$

and $\left\langle T, u_{1} \otimes \cdots \otimes u_{n}\right\rangle=\lambda_{i}$ gives us $\lambda_{1}=\cdots=\lambda_{n}$, denoted by λ.
Since λ is maximal, $\lambda>0$ and $u_{1} \otimes \cdots \otimes u_{n}$ is unique by 2.3 . Hence this unique critical point $u_{1} \otimes \cdots \otimes u_{n}$ yields the best rank one approximation.

In [2], Friedland and Ottaviani compute the number of singular vector tuples of a generic complex tensor. Now we study the real case in the smooth category based on their method.

Proposition 2.5. Almost every real tensor $A \in V_{1} \otimes \cdots \otimes V_{n}, n \geq 3$, has an even number of singular vector tuples.

Proof. Let $X=\mathbb{S}^{d_{1}-1} \times \cdots \times \mathbb{S}^{d_{n}-1}$, and $\pi_{i}: X \rightarrow \mathbb{S}^{d_{i}-1}$ be the projection. Let N_{i} be the normal bundle over $\mathbb{S}^{d_{i}-1}$, and T_{i} be the tangent bundle of $\mathbb{S}^{d_{i}-1}$, which is isomorphic to the quotient bundle V_{i} / N_{i}. Let $E=\bigoplus_{i=1}^{n} \operatorname{Hom}\left(\otimes_{j \neq i} \pi_{j}^{*} N_{j}, \pi_{i}^{*} V_{i} / N_{i}\right)$.

For any $\left[x_{i}\right] \in V_{i} /\left\langle u_{i}\right\rangle$, there is some A such that $\left[\operatorname{Con}\left(A, \otimes_{j \neq i} u_{j}\right)\right]=\left[x_{i}\right]$ if and only if $u_{1}^{\top}\left(x_{1}+t_{1} u_{1}\right)=\cdots=u_{n}^{\top}\left(x_{n}+t_{n} u_{n}\right)$ for some t_{i}. Since $u_{i}^{\top} u_{i}=1, A$ always exists. Let $S=\left\{s \in H^{0}(X, E) \mid s=\left(\left[\operatorname{Con}\left(A, \otimes_{j \geq 2} u_{j}\right)\right], \ldots,\left[\operatorname{Con}\left(A, \otimes_{j<n} u_{j}\right)\right]\right)\right\}$, then S generates E. Then a general $s \in S$ has finite number of zeros, which is Poincaré dual to $e(E)$, the Euler class of E.

Assume all d_{i} are odd, then $e(E)=2^{n} \alpha$ where α is a generator of $H^{m}(X, \mathbb{Z})$ and $m=\sum_{i} d_{i}-n$. If some d_{i} is even, then $e(E)=0$ in the class. Therefore, a general A has even number of singular vector tuples.

3. r-SINGULAR VECTOR

Definition 3.1. A vector tuple $\left(u_{1,1}, \ldots, u_{n, 1}, \ldots, u_{1, r}, \ldots, u_{n, r}\right) \in\left(V_{1} \times \cdots \times V_{n}\right)^{r}$ with $u_{i, j} \neq 0$ for all i, j is called a r-singular tuple of T if

$$
\begin{equation*}
\operatorname{Con}\left(T, \otimes_{k \neq i} u_{k, j}\right)=\lambda \operatorname{Con}\left(\sum_{j=1}^{r} u_{1, j} \otimes \cdots \otimes u_{n, j}, \otimes_{k \neq i} u_{k, j}\right) \tag{3.1}
\end{equation*}
$$

for all i, j and some λ, where Con denotes the contraction.
Similar to [2], we will show a generic T has finite number of r-singular vector tuples.

Let M be a nonsingular complex variety, and $E \xrightarrow{\pi} M$ be a holomorphic vector bundle on M with $\operatorname{dim} M=\operatorname{rank} E$. Let $S \subset H^{0}(M, E)$ be a finite dimensional subspace, and $M \times S \xrightarrow{\nu} E$ be the evaluation map $(p, s) \mapsto s(p)$.

Lemma 3.2. If there exits an open subset $U \subset M$ such that S_{U} generates $H^{0}(U, E)$, ν has constant rank on $U \times S_{U}$, and for a generic $\sigma \in S$, the zero locus of σ, Z_{σ}, is noetherian and contained in U, then Z_{σ} consists of a finite number of simple points.

Proof. Let τ be the zero section of E, and $Z_{U}:=\left\{\left(p, s_{U}\right) \in U \times S_{U} \mid s_{U}(p)=0\right\} \subset$ $\nu^{-1}(\tau)$. Since ν is dominant and has constant rank on $U \times S_{U}, Z_{U}$ has dimension $\operatorname{dim} M+\operatorname{dim} S-\operatorname{rank} E$. Let $p: \nu^{-1}(\tau) \rightarrow S$ be the projection, and $p_{U}: Z_{U} \rightarrow S_{U}$ the restriction on U. Since for a generic $\sigma \in S, Z_{\sigma}$ is isomorphic to $p_{U}^{-1}(\sigma)$. By the generic smoothness theorem [4], Z_{σ} is a smooth 0-dimensional subvariety of M. Since Z_{σ} is noetherian, then Z_{σ} is of a finite number of simple points.

For each $1 \leq i \leq n$, let V_{i} be a complex vector space with dimension d_{i}, and for each $1 \leq j \leq r, V_{i, j}$ be a complex vector space isomorphic to V_{i}. Let X_{j} denote $\operatorname{Seg}\left(\mathbb{P} V_{1, j} \times \cdots \times \mathbb{P} V_{n, j}\right)$, and $\alpha_{i, j}: X_{j} \rightarrow \mathbb{P} V_{i, j}$ be the natural projection. Let $X=X_{1} \times \cdots \times X_{r}$, and $\beta_{i}: X \rightarrow X_{i}$ be the projection. Let $T_{i, j}$ be the tautological line bundle over $\mathbb{P} V_{i, j}$, and $M=\bigoplus_{j=1}^{r} \beta_{j}^{*}\left(\bigotimes_{i=1}^{n} \alpha_{i, j}^{*}\left(T_{i, j}\right)\right)$ be a rank- r vector bundle $M \xrightarrow{\gamma} X$. Let $F_{i, j}$ be the trivial bundle over M with fibre $V_{i, j}$, and $Q_{i, j}$ denote the quotient bundle

$$
0 \rightarrow \gamma^{*} \cdot \beta_{j}^{*} \cdot \alpha_{i, j}^{*}\left(T_{i, j}\right) \rightarrow F_{i, j} \rightarrow Q_{i, j} \rightarrow 0
$$

Let $H_{i, j}=\operatorname{Hom}\left(\gamma^{*} \cdot \beta_{j}^{*}\left(\bigotimes_{k \neq i} \alpha_{k, j}^{*}\left(T_{k, j}\right)\right), F_{i, j}\right), L_{i, j}=\operatorname{Hom}\left(\gamma^{*} \cdot \beta_{j}^{*}\left(\bigotimes_{k \neq i} \alpha_{k, j}^{*}\left(T_{k, j}^{\vee}\right)\right), T_{i, j}\right)$ and $E=\bigoplus_{j=1}^{r}\left(L_{1, j} \oplus H_{1, j} \oplus \cdots \oplus H_{n, j}\right)$. So $\operatorname{rank} E=\operatorname{dim} M=r \sum_{i=1}^{n} d_{i}-r(n-1)$.

Now we fix r such that $\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)$ is not r-defective. Let $C_{i, j}$ be the quadric hypersurface in $V_{i, j}$ defined by $\left\{v \in V_{i, j} \mid v^{\top} v=0\right\}$. Let U be the open subset of M consisting of $p=\left(\otimes_{i=1}^{n} u_{i, 1}, \ldots, \otimes_{i=1}^{n} u_{i, r}\right)$ such that each $u_{i, j} \notin C_{i, j}$, and

$$
\begin{equation*}
\operatorname{dim}\left(\sum_{i, j}\left(\bigotimes_{k \neq i} u_{k, j}\right) \otimes V_{i, j}\right)=r \sum_{i=1}^{n} d_{i}-r(n-1) \tag{3.2}
\end{equation*}
$$

Lemma 3.3. For $p \in U$, any $x_{i, j} \in V_{i, j}$ and $\left[y_{i, j}\right] \in V_{i, j} /\left\langle u_{i, j}\right\rangle$,

1. There is some $A \in V_{1} \otimes \cdots \otimes V_{n}$ such that $\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)=x_{i, j}$ if and only if $u_{1, j}^{\top} x_{1, j}=\cdots=u_{n, j}^{\top} x_{n, j}$ for all j.
2. There is some $A \in V_{1} \otimes \cdots \otimes V_{n}$ such that $\left[\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)\right]=\left[y_{i, j}\right]$.

Proof. 1. If $\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)=x_{i, j}$, then $\operatorname{Con}\left(A-\tilde{A}, \otimes_{k=1}^{n} u_{k, j}\right)=u_{i, j}^{\top} x_{i, j}$.
Conversely, the linear system $\operatorname{Con}\left(A, \otimes_{k \neq i} u_{k, j}\right)=\operatorname{Con}\left(\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)+x_{i, j}$ is solvable if and only if the coefficient matrices $\left[\otimes_{k \neq i} u_{k, j}\right]$ and $\left[\otimes_{k \neq i} u_{k, j}, \operatorname{Con}\left(\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)+\right.$ $\left.x_{i, j}\right]$ have the same rank. By (3.2), $\operatorname{rank}\left[\otimes_{k \neq i} u_{k, j}\right]=r \sum_{i=1}^{n} d_{i}-r(n-1)$, and $u_{i, j} \otimes\left(\otimes_{k \neq i} u_{k, j}\right)=u_{l, j} \otimes\left(\otimes_{k \neq l} u_{k, j}\right)$ are the only linear relations in $\left[\otimes_{k \neq i} u_{k, j}\right]$. So if $u_{1, j}^{\top} x_{1, j}=\cdots=u_{n, j}^{\top} x_{n, j}$, then $\operatorname{rank}\left[\otimes_{k \neq i} u_{k, j}, \operatorname{Con}\left(\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)+x_{i, j}\right] \leq$ $r \sum_{i=1}^{n} d_{i}-r(n-1)$.
2. $\operatorname{Con}\left(A-\tilde{A}, \otimes_{k=2}^{n} u_{k, j}\right)=x_{1, j}$ and $\left[\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)\right]=\left[y_{i, j}\right]$ are solvable if and only if $u_{1, j}^{\top} x_{1, j}=u_{2, j}^{\top}\left(y_{2, j}+t_{2, j} u_{2, j}\right)=\cdots=u_{n, j}^{\top}\left(y_{n, j}+t_{n, j} u_{n, j}\right)$ for some $t_{i, j}$. Since $u_{i, j} \notin C_{i, j}$, let $t_{i, j}=\frac{u_{1, j}^{\top} x_{1, j}-u_{i, j}^{\top} y_{i, j}}{u_{i, j}^{\top} u_{i, j}}$.

Let $S=\left\{s \in H^{0}(M, E) \mid s=\left(\bigoplus_{j} \operatorname{Con}\left(\otimes_{i} u_{i, j}, \otimes_{k \neq 1} u_{k, j}\right), \bigoplus_{i, j}\left[\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)\right]\right)\right\}$
Lemma 3.4. The induced map $T_{\nu}: T_{p} U \times T_{s} S_{U} \rightarrow T_{s(p)} E$ is surjective.
Lemma 3.5. For $\alpha=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{l}, j_{l}\right) \mid 1 \leq i_{1}, \ldots, i_{l} \leq n, 1 \leq j_{1}, \ldots, j_{l} \leq r\right\}$, let $F_{\alpha}=X_{1,1} \times \cdots \times X_{n, r}$, where $X_{i, j}=\mathbb{P}\left(C_{i, j}\right)$ if $(i, j) \in \alpha$ and $X_{i, j}=\mathbb{P} V_{i, j}$ otherwise. For $\left.p \in M\right|_{F_{\alpha}}$,

1. If $\alpha \subset\left\{\left(i_{1}, 1\right), \ldots,\left(i_{r}, r\right)\right\}$, there is some A such that $\left[\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)\right]=$ $\left[y_{i, j}\right]$
2. Otherwise, there is some A such that $\left[\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)\right]=\left[y_{i, j}\right]$ if and only if $u_{i_{1}, j_{1}}^{\top} y_{i_{1}, j_{1}}=\cdots=u_{i_{l}, j_{l}}^{\top} y_{i_{l}, j_{l}}$.

Let $R=r \sum_{i=1}^{n} d_{i}-r(n-1)$ and $D_{q}=\left\{p \in M \mid \operatorname{dim}\left(\sum_{i, j}\left(\bigotimes_{k \neq i} u_{k, j}\right) \otimes V_{i, j}\right) \leq\right.$ $R-q\}$, then D_{q} is defined by $(R-q) \times(R-q)$ minors. Each $p \in D_{q}$ satisfies $r(n-1)+q$ linear relations $\sum_{i=1}^{r}\left(\otimes_{k \neq i} u_{k, j}\right) \otimes v_{i, j}=0$, where $v_{i, j} \in V_{i, j}$ is algebraic in $u_{i, j} . v_{i, j}=u_{i, j}$ consists of $r(n-1)$ of these linear equations, and there are q nontrivial linear relations for $\left.p \in M\right|_{D_{q} \backslash D_{q-1}}$.
Lemma 3.6. For $\left.p \in M\right|_{D_{q} \backslash \cup_{\alpha} F_{\alpha}}$,

1. $\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)=x_{i, j}$ if and only if $u_{1, j}^{\top} x_{1, j}=\cdots=u_{n, j}^{\top} x_{n, j}$ and $\sum_{i, j} x_{i, j}^{\top} v_{i, j}^{l}=0$ for $1 \leq l \leq q$.
2. $\left[\operatorname{Con}\left(A-\tilde{A}, \otimes_{k \neq i} u_{k, j}\right)\right]=\left[y_{i, j}\right]$ if and only if

$$
\begin{gather*}
u_{1, j}^{\top}\left(y_{1, j}+t_{1, j} u_{1, j}\right)=\cdots=u_{n, j}^{\top}\left(y_{n, j}+t_{n, j} u_{n, j}\right) \tag{3.3}\\
\sum_{i, j}\left(y_{i, j}+t_{i, j} u_{i, j}\right)^{\top} v_{i, j}^{l}=0 \tag{3.4}
\end{gather*}
$$

for $1 \leq l \leq q$. For each p, the linear subspace consisting of $\left\{\left[y_{i, j}\right]\right\}$ satisfying (3.4) is independent of the choice of $v_{i, j}$.

Construct E_{α} over $\left.M\right|_{F_{\alpha}}$ to be all linear transformations $y_{i, j}$ such that $u_{i_{1}, j_{1}}^{\top} y_{i_{1}, j_{1}}=$ $\cdots=u_{i_{l}, j_{l}}^{\top} y_{i_{l}, j_{l}}$, then $\operatorname{rank}\left(E_{\alpha}\right)>\left.\operatorname{dim} M\right|_{F_{\alpha}}$.

Construct E_{q} over D_{q} to be all linear transformations $x_{i, j}$ such that 3.4 holds, then $\operatorname{rank} E_{q}>\operatorname{dim} D_{q}$.

Construct $E_{\alpha, q}$ over $\left.M\right|_{F_{\alpha}} \cap D_{q}$ to be all transformations such that $u_{i_{1}, j_{1}}^{\top} y_{i_{1}, j_{1}}=$ $\cdots=u_{i_{l}, j_{l}}^{\top} y_{i_{l}, j_{l}}$ and (3.4) holds, then rank $E_{\alpha, q}>\left.\operatorname{dim} M\right|_{F_{\alpha}} \cap D_{q}$.

So for a generic σ, Z_{σ} is contained in U, since Z_{σ} is an affine algebraic variety, Z_{σ} consists of finite number of points.

References

[1] L.-H. Lim, P. Comon, Nonnegative approximations of nonnegative tensors, Journal of Chemometrics, 23 (2009), no. 7-8, pp. 432-441
[2] S. Friedland, G. Ottaviani, The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors, Foundations of Computational Mathematics, (2014)
[3] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP '05), 1 (2005), pp. 129-132
[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York (1977)
[5] V. D. Silva, L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., Vol. 30, No. 33, pp. 1084-1127 (2008)
[6] S. Friedland, M. Stawiska, Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors, arXiv:1311.1561
[7] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82, Springer, New York (1982)
[8] K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., vol. 6, No. 2, pp. 507-520 (2008)
[9] S. Friedland, S. Gaubert, L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), pp. 738-749
[10] A. Stegeman and P. Comon Subtracting a best rank-1 approximation does not necessarily decrease tensor rank, Linear Algebra Appl., pp. 1276-1300, No. 7, vol. 433 (2010)

[^0]: The project is funded by the European Research Council under the European Community's Seventh Framework Program FP7/2007-2013 Grant Agreement no. 320594.

