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Uniqueness of Nonnegative Tensor Approximations
Yang Qi, Pierre Comon Fellow, IEEE, and Lek-Heng Lim

Abstract—We show that for a nonnegative tensor, a best
nonnegative rank-r approximation is almost always unique, its
best rank-one approximation may always be chosen to be a
best nonnegative rank-one approximation, and that the set of
nonnegative tensors with non-unique best rank-one approxima-
tions form an algebraic hypersurface. We show that the last
part holds true more generally for real tensors and thereby
determine a polynomial equation so that a real or nonnegative
tensor which does not satisfy this equation is guaranteed to have
a unique best rank-one approximation. We also establish an
analogue for real or nonnegative symmetric tensors. In addition,
we prove a singular vector variant of the Perron–Frobenius
Theorem for positive tensors and apply it to show that a best
nonnegative rank-r approximation of a positive tensor can never
be obtained by deflation. As an aside, we verify that the Euclidean
distance (ED) discriminants of the Segre variety and the Veronese
variety are hypersurfaces and give defining equations of these ED
discriminants.

I. INTRODUCTION

Nonnegative tensor decomposition, i.e., a decomposition of
a tensor with nonnegative entries (with respect to a fixed
choice of bases) into a sum of tensor products of nonnegative
vectors, arises in a wide range of applications. These include
hyperspectral imaging, spectroscopy, statistics, phylogenetics,
data mining, pattern recognition, among other areas; see [45],
[52], [54], [62] and the references therein. One important
reason for its prevalence is that such a decomposition shows
how a joint distribution of discrete random variables decom-
poses when they are independent conditional on a discrete
latent random variable [45], [64] — a ubiquitous model that
underlies many applications. This is in fact one of the simplest
Bayesian network [28], [33], [37], a local expression of the
joint distribution of a set of random variables xi as

p(x1, . . . , xd) =

∫ d∏
i=1

p(xi | θ) dµθ (1)

where θ is some unknown latent random variable. The relation
expressed in (1) is often called the naive Bayes hypothesis.
In the case when the random variables x1, . . . , xd and the
latent variable θ take only a finite number of values, the
decomposition becomes one of the form

ti1,...,id =
∑r

p=1
λrui1,p · · ·uid,p. (2)
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One can show [45] that any decomposition of a nonnegative
tensor of the form in (2) may, upon normalization by a suitable
constant, be regarded as (1), i.e., a marginal decomposition of
a joint probability mass function into conditional probabilities
under the naive Bayes hypothesis. In the event when the latent
variable θ is not discrete or finite, one may argue that (2)
becomes an approximation with ‘≈’ in place of ‘=’.

In this article, we investigate several questions regarding
nonnegative tensor decompositions and approximations, focus-
ing in particular on uniqueness issues. In Section II, we define
nonnegative tensors in a way that parallels the usual abstract
definition of tensors in algebra. We will view them as elements
in a tensor product of cones, i.e., tensors in C1⊗· · ·⊗Cd where
C1, . . . , Cd are cones and the tensor product is that of R+-
semimodules (we write R+ := [0,∞) for the nonnegative
reals). The special case C1 = Rn1

+ , . . . , Cd = Rnd+ then
reduces to nonnegative tensors.

It has been established in [45] that every nonnegative tensor
has a best nonnegative rank-r approximation. In Section IV we
will show that this best approximation is almost always unique.
Furthermore, the set of nonnegative tensors of nonnegative
rank > r that do not have a unique best rank-r approximation
form a semialgebraic set contained in a hypersurface. For
the special case when r = 1, we first show in Section V
that for a nonnegative tensor, the best nonnegative rank-one
and best rank-one approximations coincide. In Section VII,
by exploring normalized singular pairs, we find an explicit
polynomial expression describing the hypersurface of real
(or nonnegative) tensors that admit non-unique best rank-one
approximations, which allows one to check whether a given
tensor has a unique best rank-one approximation. This polyno-
mial expression also gives a defining equation of the Euclidean
distance discriminant of the Segre variety [22]. In Section VI,
we find results analogous to those in Section VII for real (or
nonnegative) symmetric tensors. We prove an analogue of the
Perron–Frobenius theorem for singular values/vectors of posi-
tive tensors in Section V and, among other things, deduce that
one cannot obtain a best nonnegative rank-r approximation of
a positive tensor by ‘deflation’, i.e., by finding r successive
best nonnegative rank-one approximations.

These results would likely shed light on the large number of
computational methods for nonnegative matrix factorizations
and nonnegative tensor decompositions [2], [6], [11], [12],
[13], [27], [32], [34], [35], [36], [40], [59], [63].

II. NONNEGATIVE TENSORS

A tensor of order d (d-tensor for short) may be represented
as a d-dimensional hypermatrix, i.e., a d-dimensional array
of (usually) real or complex values. This is a higher-order
generalization of the fact that a 2-tensor, i.e., a linear operator,
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a bilinear form, or a dyad, can always be represented as
a matrix. Such a coordinate representation sometimes hides
intrinsic properties — in particular, this array of coordinates
is meaningful only if the bases of underlying vector spaces
have been specified in the first place. With this in mind, we
prefer to define tensors properly rather than simply regarding
them as d-dimensional arrays of numbers.

The following is the standard definition of tensors. We
will see later how we may obtain an analogous definition for
nonnegative tensors.

Definition 1. Let Vi be a vector space of finite dimension ni
over a field K, i = 1, . . . , d, and let V1×· · ·×Vd be the set of
d-tuples of vectors. Then the tensor product V = V1⊗· · ·⊗Vd
is the free linear space spanned by V1 × · · · × Vd quotient by
the equivalence relation

(v1, . . . , αvi + βv′i, . . . , vd)

∼ α(v1, . . . , vi, . . . , vd) + β(v1, . . . , v
′
i, . . . , vd) (3)

for every vi, v′i ∈ Vi, αi, βi ∈ K, i = 1, . . . , d. A tensor is an
element of V1 ⊗ · · · ⊗ Vd.

In particular, (3) gives

(α1v1, α2v2, . . . , αdvd) =

(∏d

i=1
αi

)
(v1, v2, . . . , vd) (4)

More details on the definition of tensor spaces may be found
in [14], [30], [39], [43].

A decomposable tensor is one of the form v1 ⊗ · · · ⊗ vd,
vi ∈ Vi, i = 1, . . . , d. It represents the equivalence class of
tuples up to scaling as in (4), i.e.,

v1 ⊗ · · · ⊗ vd =
{
(α1v1, . . . , αdvd) :

∏d

i=1
αi = 1

}
.

By (4), it is clear that a decomposable tensor cannot in general
be uniquely represented by a d-tuple of vectors, what is often
called a “scaling indeterminacy” in the engineering literature.
When we use the term ‘unique’ in this article, it is implicit
that the uniqueness is only up to scaling of this nature.

From the way a tensor is defined in Definition 1, it is
immediate that a nonzero tensor can always be expressed
as a finite sum of nonzero decomposable tensors. When the
number of summands is minimal, this decomposition is called
a rank decomposition (the term “canonical polyadic” or CP
is often also used) and the number of summands in such a
decomposition is called the rank of the tensor. In other words,
we have the following:

For every T ∈ V1 ⊗ · · · ⊗ Vd, there exist vi,p ∈ Vi, i =
1, . . . , d, p = 1, . . . , rank(T ), such that

T =
∑rank(T )

p=1
v1,p ⊗ · · · ⊗ vd,p. (5)

We present the above material, which is largely standard
knowledge, to motivate an analogous construction for real
nonnegative tensors. We will first define nonnegative tensors
in a coordinate-dependent manner (i.e., depending on a choice
of bases on V1, . . . , Vd), and then in a coordinate-independent
manner.

Definition 2. For each i = 1, . . . , d, let Vi be a real vector
space with dimVi = ni. For any fixed choice of basis
{vi,1, . . . , vi,ni} for Vi, we denote by V +

i the subset of vectors
with nonnegative coefficients in Vi, i.e.,

V +
i =

{∑ni

p=1
αpvi,p ∈ Vi : α1, . . . , αni ∈ R+

}
.

We will call an element in V := V1 ⊗ · · · ⊗ Vd of the form
u1⊗· · ·⊗ud where ui ∈ V +

i for i = 1, . . . , d, a nonnegatively
decomposable tensor. The set of nonnegative tensors V + is
then the subset of V defined by

V + =

{∑r

p=1
u1,p ⊗ · · · ⊗ ud,p ∈ V : ui,p ∈ V +

i ,

i = 1, . . . , d, p = 1, . . . , r, r ∈ N
}
.

By its definition, every element of V + has a representation
as a finite sum of nonnegatively decomposable tensors. A
decomposition of minimal length then yields the notions of
nonnegative tensor rank and nonnegative tensor rank decom-
position.

Definition 3. For every T ∈ V +, there exist vi,p ∈ V +
i ,

i = 1, . . . , d, p = 1, . . . , r, such that

T =
∑rank+(T )

p=1
v1,p ⊗ · · · ⊗ vd,p (6)

where

rank+(T ) :=
{
r : T =

∑r

p=1
v1,p ⊗ · · · ⊗ vd,p

}
. (7)

We will call (7) nonnegative tensor rank or nonnegative rank
for short and (6) a nonnegative rank decomposition of the
nonnegative tensor T .

An obvious property is that rank+(T ) ≥ rank(T ) for any
T ∈ V +.

We now examine an alternative coordinate-free approach
to defining nonnegative tensors and nonnegative rank. This
approach is also more general, yielding a notion of conic rank
for a tensor product of any convex cones. We first recall the
definition of a tensor product of semimodules. See [4] for
details on the existence and a construction of such a tensor
product.

Definition 4. Let R be a commutative semiring and M,N be
R-semimodules (cf. Appendix for the definitions of semirings
and semimodules). A tensor product M ⊗RN of M and N is
an R-semimodule satisfying the universal property: There is
an R-bilinear map ϕ :M×N →M⊗RN such that given any
other R-semimodule S together with an R-bilinear map h :
M×N → S, there is a unique R-linear map h̃ :M⊗RN → S
satisfying h = h̃ ◦ ϕ.

Recall that a convex cone C is a subset of a vector space
over an ordered field that is closed under linear combinations
with nonnegative coefficients, i.e., αx+ βy belongs to C for
all x, y ∈ C and any nonnegative scalars α, β.

Since any convex cone Ci ⊂ Vi is a semimodule over the
semiring R+, we have the unique tensor product of these
convex cones C1 ⊗ · · · ⊗ Cd as an R+-semimodule up to
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isomorphism. More precisely, the tensor product of cones
C1 ⊗ · · · ⊗ Cd is the quotient monoid F (C1, . . . , Cd)/ ∼,
where F (C1, . . . , Cd) is the free monoid generated by all n-
tuples (v1, . . . , vd) ∈ C1× · · ·×Cd, and ∼ is the equivalence
relation on F (C1, . . . , Cd) defined by

(v1, . . . , αvi + βv′i, . . . , vd)

∼ α(v1, . . . , vi, . . . , vd) + β(v1, . . . , v
′
i, . . . , vd)

for every vi, v
′
i ∈ Ci, α, β ∈ R+, and i = 1, . . . , d. The

commutative monoid C1 ⊗ · · · ⊗ Cd is an R+-semimodule.
We write v1 ⊗ · · · ⊗ vd for the equivalence class representing
(v1, . . . , vd) in F (C1, . . . , Cd)/ ∼.

A multiconic map from C1 × · · · ×Cd to a convex cone C
is a map ϕ : C1 × · · · × Cd → C with the property that

ϕ(u1, . . . , αvi + βwi, . . . , ud)

= αϕ(u1, . . . , vi, . . . , ud) + βϕ(u1, . . . , wi, . . . , ud)

for all α, β ∈ R+, i = 1, . . . , d.
The multiconic map ν : C1 × · · · × Cm → C1 ⊗ · · · ⊗ Cd

defined by

ν(v1, . . . , vd) = v1 ⊗ · · · ⊗ vd ∈ F (C1, . . . , Cd)/ ∼

and extended nonnegative linearly to all of C1 × · · · × Cd
satisfies the universal factorization property often used to
define tensor product spaces: If ϕ is a multiconic map from
C1×· · ·×Cd into a convex cone C, then there exists a unique
R+-linear map ψ from C1 ⊗ · · · ⊗Cd into C, that makes the
following diagram commutative:

C1 × · · · × Cd
ν //

ϕ

((

C1 ⊗ · · · ⊗ Cd
ψ

��
C

i.e., ψν = ϕ. Strictly speaking we should have written
C1 ⊗R+· · · ⊗R+Cd to indicate that the tensor product is one
of R+-semimodules but this is obvious from context. Note
that Definition 4 is consistent with our earlier definition of
nonnegative tensors since V + = V +

1 ⊗ · · · ⊗ V +
d as tensor

product of cones over R+.
In [60], the tensor product of C1, . . . , Cd is defined to be

the convex cone in V1 ⊗ · · · ⊗ Vd formed by v1 ⊗ · · · ⊗ vd ∈
V1 ⊗ · · · ⊗ Vd, where vi ∈ Ci, and showed that this tensor
product satisfies the above universal factorization property. By
the uniqueness of the R+-semimodule satisfying the universal
property, our construction and the one in [60] are equivalent.

If C1 = Rn1
+ , . . . , Cd = Rnd+ , we may identify

Rn1
+ ⊗ · · · ⊗ Rnd+ = Rn1×···×nd

+

through the interpretation of the tensor product of vectors as
a hypermatrix via the Segre outer product

[v1(1), . . . , v1(n1)]
T ⊗ · · · ⊗ [vd(1), . . . , vd(nd)]

T

= [v1(i1) · · · vd(id)]n1,...,nd
i1,...,id=1.

Here we write v(j) for the jth coordinate of v ∈ Rn.

We note that one may easily extend the notion of non-
negative rank and nonnegative rank decomposition to tensor
product of other cones.

Definition 5. A tensor T ∈ C1⊗· · ·⊗Cd is said to be decom-
posable if T is of the form u1⊗ · · ·⊗ud, where ui ∈ Ci. For
T ∈ C1⊗· · ·⊗Cd, the conic rank of T , denoted by rank+(T ),
is the minimal value of r such that T =

∑r
p=1 u1,p⊗· · ·⊗ud,p,

where ui,p ∈ Ci, i.e., T is contained in the convex cone
generated by u1,1 ⊗ · · · ⊗ ud,1, . . . , u1,r ⊗ · · · ⊗ ud,r. Such
a decomposition will be called a conic rank decomposition.

In the remainder of this paper, we focus our attention on the
case V + = V +

1 ⊗ · · · ⊗ V
+
d , the convex cone of nonnegative

d-tensors although we will point out whenever a result holds
more generally for arbitrary cones. For any given positive
integer r, we let

D+
r = {X ∈ V +

1 ⊗ · · · ⊗ V
+
d : rank+(X) ≤ r}

denote the set of tensors of nonnegative rank not more than r.

III. UNIQUENESS OF RANK DECOMPOSITIONS

From the standpoints of both identifiability and well-
posedness, an important issue is whether a rank decomposition
of the form (5) is unique. It is clear that such decompositions
can never be unique when d = 2, i.e., for matrices. But when
d > 2, rank decompositions are often unique, which is proba-
bly the strongest reason for their utility in applications. There
are well-known sufficient conditions ensuring uniqueness of
rank decomposition [38], [53], [20], [21] and many recent
works on the uniqueness of generic tensors of certain ranks
[56], [9], [5], [10]. We highlight three notable results.

Theorem 6 (Kruskal). The rank decomposition of a d-tensor
T is unique if

rank(T ) ≤
1 +

∑d
i=1(κi − 1)

2

where κi denote the Kruskal rank of the factors
ui,1, . . . , ui,rank(T ), which is generically equal to the
dimension ni when ni ≤ rank(T ).

Theorem 7 (Bocci–Chiantini–Ottaviani). The rank decompo-
sition of a generic d-tensor T of rank-r is unique when

r ≤
∏d
i=1 ni − (n1 + n2 + n3 − 2)

∏d
i=3 ni

1 +
∑d
i=1(ni − 1)

.

Theorem 8 (Chiantini–Ottaviani–Vannieuwenhoven). The
rank decomposition of a generic d-tensor T of rank-r is unique
when

r <

⌈ ∏d
i=1 ni

1 +
∑d
i=1(ni − 1)

⌉
if
∏d
i=1 ni ≤ 15000, with some exceptional cases.

The authors of [10] also strengthened the above result by
a prior compression of tensor T . The consequence is that the
dimensions ni in Theorem 8 may be replaced by the multi-
linear rank of T , which allows significant tightening of the
upper bound for low multilinear rank tensors. The maximum
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Rsmax where a generic tensor with rank ≤ Rsmax has a unique
rank decomposition has been called the maximum stable rank
in [57]. Theorem 8 implies that if

∏d
i=1 ni ≤ 15000, then

aside from the exceptional cases, the maximum stable rank is⌈∏d
i=1 ni/[1 +

∑d
i=1(ni − 1)]

⌉
− 1, which is one less than

the (expected) generic rank [56], [42], [1], [16].
Nevertheless these results do not apply directly to nonneg-

ative decompositions over R+ (as opposed to decompositions
over C) nor to rank-r approximations (as opposed to rank-r
decompositions). The purpose of this paper is to provide some
of the first results in these directions. In particular, it will be
necessary to distinguish between an exact nonnegative rank-r
decomposition and a best nonnegative rank-r approximation.
Note that when a best nonnegative rank-r approximation to a
nonnegative tensor T is unique, it means that

min
rank+(X)≤r

‖T −X‖ (8)

has a unique minimizer X∗. The nonnegative rank-r decom-
position of X∗ may not however be unique.

A nonnegative rank decomposition X =
∑r
p=1 u1,p⊗· · ·⊗

ud,p ∈ V +
1 ⊗ · · · ⊗ V

+
d is said to be unique if for any other

nonnegative rank decomposition X =
∑r
p=1 v1,p⊗ · · ·⊗ vd,p,

there is a permutation σ of {1, . . . , d} such that u1,p ⊗ · · · ⊗
ud,p = v1,σ(p) ⊗ · · · ⊗ vd,σ(p) for all p = 1, . . . , r.

IV. EXISTENCE AND GENERIC UNIQUENESS OF RANK-r
APPROXIMATIONS

Let V1, . . . , Vd be real vector spaces. Given a nonnegative
tensor T ∈ V +, we consider the best nonnegative rank-r
approximations of T , where r is less than the nonnegative
rank of T . We let

δ(T ) = infX∈D+
r
‖T −X‖ = infrank+(X)≤r ‖T −X‖ ,

where ‖ · ‖ is the Hilbert–Schmidt norm, i.e., the l2-norm given
by the inner product.

Henceforth any unlabelled norm ‖ · ‖ on V1 ⊗ · · · ⊗ Vd
will always denote the Hilbert–Schmidt norm. When d = 2,
the Hilbert–Schmidt norm reduces to the Frobenius norm of
matrices and when d = 1, it reduces to the Euclidean norm
of vectors. Also, throughout this article, the notation 〈X,Y 〉
will always denote tensor contraction in all possible indices
for X,Y tensors of any order [43]. When X and Y are of the
same order and real, 〈X,Y 〉 reduces to a real inner product
and our notation is consistent with the inner product notation;
in particular 〈X,X〉 = ‖X‖2. When X is a d-tensor and Y is
a (d − 1)-tensor, 〈X,Y 〉 is a vector — this is the only other
case that will arise in our discussions below. Note however
that over C, 〈·, ·〉 is only a symmetric bilinear form and not a
complex inner product (which is a sesquilinear form).

Proposition 9. Let Ci ⊆ V +
i be a closed semialgebraic cone

for i = 1, . . . , d. Then D+
r = {X ∈ C1 ⊗ · · · ⊗ Cd :

rank+(X) ≤ r} is a closed semialgebraic set.

Proof. It follows from [45] that the set is closed and from the
Tarski–Seidenberg Theorem [19] that it is semialgebraic.

Since D+
r is a closed set, for any T /∈ D+

r , there is some
T ∗ ∈ D+

r such that ‖T − T ∗‖ = δ(T ). The following result

is an analogue of [25, Theorem 27] for nonnegative tensors
based on [25, Corollary 18].

Proposition 10. Almost every T ∈ V + with nonnegative rank
> r has a unique best nonnegative rank-r approximation.

Proof. For any T, T ′ ∈ V1 ⊗ · · · ⊗ Vd, |δ(T ) − δ(T ′)| ≤
‖T − T ′‖, i.e., δ is Lipschitz and thus differentiable almost
everywhere in V = V1 ⊗ · · · ⊗ Vd by Rademacher Theorem.

Consider a general T ∈ V +. Then in particular T lies in
the interior of V + and there is an open neighborhood of T
contained in V +. So δ is differentiable almost everywhere in
V + as well. Suppose δ is differentiable at T ∈ V +. For any
U ∈ V , let ∂δ2T (U) be the differential of δ2 at T along the
direction U . Since ‖T − T ∗‖ = δ(T ) we obtain

δ2(T + tU) = δ2(T ) + t∂δ2T (U) +O(t2)

≤ ‖T + tU − T ∗‖2

= δ2(T ) + 2t〈U, T − T ∗〉+ t2 ‖U‖2 .

Therefore, for any t, we have t∂δ2T (U) ≤ 2t〈U, T−T ∗〉, which
implies that

∂δ2T (U) = 2〈U, T − T ∗〉.

If T ′ is another best nonnegative rank-r approximation of
T , then

2〈U, T − T ∗〉 = ∂δ2T (U) = 2〈U, T − T ′〉,

from which it follows that 〈T ′ − T ∗, U〉 = 0 for any U , i.e.,
T ′ = T ∗.

We note that Proposition 10 holds more generally for arbi-
trary closed cones C1, . . . , Cd in place of V +

1 , . . . , V
+
d . Our

next proposition holds true for arbitrary closed semialgebraic
cones C1, . . . , Cd in place of V +

1 , . . . , V
+
d .

Proposition 11. The nonnegative tensors satisfying (i) non-
negative rank > r, and (ii) do not have a unique best rank-r
approximation, form a semialgebraic set that is contained in
some hypersurface.

Proof. Observe that D+
r is the image of the polynomial map

ϕr : (V
+
1 × · · · × V

+
d )r → V +,

(u1,1, . . . , ud,1, . . . , u1,r, . . . , ud,r) 7→
∑r

j=1
u1,j ⊗ · · · ⊗ ud,j .

Hence D+
r is semialgebraic by the Tarski–Seidenberg Theorem

[19] and the required result follows from [26, Theorem 3.4].

Now we examine a useful necessary condition for
∑r
p=1 Tp

to be a best rank-r approximation of T ∈ V1 ⊗ · · · ⊗ Vd. For
a vector u ∈ Vi, we denote by u(j) the jth coordinate of u,
i.e., u = (u(1), . . . , u(ni)), and we will borrow a standard
notation from algebraic topology where a hat over a quantity
means that quantity is omitted. So for example,

û1 ⊗ u2 ⊗ u3 = u2 ⊗ u3,
u1 ⊗ û2 ⊗ u3 = u1 ⊗ u3,
u1 ⊗ u2 ⊗ û3 = u1 ⊗ u2,

u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud = u1 ⊗ · · · ⊗ ui−1 ⊗ ui+1 ⊗ · · · ⊗ ud.
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Let us recall the following well-known fact, which has been
used to develop algorithms for nonnegative matrix factoriza-
tion and nonnegative tensor decomposition.

Lemma 12. Let V1, . . . , Vd be real vector spaces and let T ∈
V1⊗· · ·⊗Vd. Let rank(T ) > r and λ

∑r
j=1 Tj be a best rank-r

approximation, where Tj = u1,j⊗· · ·⊗ud,j and
∥∥∑r

j=1 Tj
∥∥ =

1. Then for all i = 1, . . . , d, and p = 1, . . . , r,

〈T, u1,p ⊗ · · · ⊗ ûi,p ⊗ · · · ⊗ ud,p〉

= λ
〈∑r

j=1
Tj , u1,p ⊗ · · · ⊗ ûi,p ⊗ · · · ⊗ ud,p

〉
, (9)

where λ = 〈T,
∑r
j=1 Tj〉.

Proof. Let L denote the line in V1 ⊗ · · · ⊗ Vd spanned
by
∑r
j=1 v1,j ⊗ · · · ⊗ vd,j , and L⊥ denote the orthogonal

complement of L. Denote the orthogonal projection of T onto
L by ProjL(T ). Then

‖T‖2 = ‖ProjL(T )‖
2
+ ‖ProjL⊥(T )‖

2
,

and thus

min
α≥0

∥∥∥∥T − α∑r

p=1
v1,p ⊗ · · · ⊗ vd,p

∥∥∥∥2
= ‖T − ProjL(T )‖

2
= ‖ProjL⊥(T )‖

2

= ‖T‖2 − ‖ProjL(T )‖
2
.

So computing

min
v1,1,...,vd,r

min
α≥0

∥∥∥T − α∑r

j=1
v1,j ⊗ · · · ⊗ vd,j

∥∥∥
is equivalent to computing

max
v1,1,...,vd,r

ProjL(T ) = max
v1,1,...,vd,r

〈
T,

r∑
j=1

v1,j ⊗ · · · ⊗ vd,j

〉
.

Since
∥∥∑r

j=1 Tj
∥∥ = 1, we must have〈∑r

j=1
Tj , u1,p ⊗ · · · ⊗ ûi,p ⊗ · · · ⊗ ud,p

〉
6= 0

for some p. The Jacobian matrix of the hypersurface defined
by
∥∥∑r

j=1 v1,j ⊗ · · · ⊗ vd,j
∥∥ = 1 has constant rank 1 around

(u1,1, . . . , ud,1, . . . , u1,r, . . . , ud,r), i.e., this real hypersurface
is smooth at the point (u1,1, . . . , ud,1, . . . , u1,r, . . . , ud,r).
Hence we may consider the Lagrangian

L =
〈
T,
∑r

p=1
v1,p ⊗ · · · ⊗ vd,p

〉
− λ

(∥∥∥∑r

p=1
v1,p ⊗ · · · ⊗ vd,p

∥∥∥− 1
)
. (10)

Setting ∂L/∂vi,p = 0 at (u1,1, . . . , ud,1, . . . , u1,r, . . . , ud,r)
gives

〈T, u1,p ⊗ · · · ⊗ ûi,p ⊗ · · · ⊗ ud,p〉

= λ
〈∑r

j=1
Tj , u1,p ⊗ · · · ⊗ ûi,p ⊗ · · · ⊗ ud,p

〉
(11)

with λ =
〈
T,
∑r
j=1 Tj

〉
for all i = 1, . . . , d, p = 1, . . . , r.

Lemma 12 has a nice geometric interpretation as follows.
Let σ̂r(PV1×· · ·×PVd) be the cone of the rth secant variety
of the Segre variety PV1 × · · · × PVd. Suppose λ

∑r
j=1 Tj is

a smooth point. Then T − λ
∑r
j=1 Tj is perpendicular to the

tangent space of σ̂r(PV1 × · · · × PVd) at λ
∑r
j=1 Tj .

We presented Lemma 12 in a concrete affine (as opposed
to projective) manner so that there will be no ambiguity when
discussing λ and ui,j . We will see later in Definition 17
that when r = 1, these are normalized singular values and
normalized singular vector tuples of T .

For a nonnegative tensor T with rank+(T ) > r, we have
an inequality in place of the equality in (9). First we define
the support of a vector v ∈ V to be

supp(v) := {i ∈ {1, . . . ,dimV } : vi 6= 0}.

Lemma 13. Let T ∈ V + with rank+(T ) > r and X =∑r′

p=1 u1,p ⊗ · · · ⊗ ud,p be a solution of the optimization
problem (8). Then

〈T, u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉
≤ 〈X,u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉 (12)

where vi,p ∈ V +
i , i = 1, . . . , d, and p = 1, . . . , r′. For each

pair (i, p), consider the subspace

Ṽi,p := {v ∈ Vi : supp(v) ⊆ supp(ui,p)}.

Then

〈T, u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉
= 〈X,u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉 (13)

for vi,p ∈ Ṽi,p.

Proof. Fix a pair (i, p) and consider a curve X(t) = u1,p ⊗
· · · ⊗ (ui,p + tvi,p) ⊗ · · · ⊗ ud,p +

∑
j 6=p u1,j ⊗ · · · ⊗ ud,j ,

where vi,p ∈ V +
i . Since for t ≥ 0, ‖T −X(t)‖ achieves a

local minimum at t = 0, i.e., nondecreasing in [0, ε) for some
small ε > 0, the right derivative

lim
t→0+

d

dt
‖T −X(t)‖ ≥ 0.

In other words, we have

〈T, u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉
≤ 〈X,u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉 .

In particular, if vi,p ∈ Ṽi,p, X(t) is nonnegative for t ∈
(−ε, ε), then the local minimality of ‖T −X(t)‖ at 0 implies
that

d

dt
‖T −X(t)‖

∣∣∣∣
t=0

= 0,

which gives us

〈T, u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉
= 〈X,u1,p ⊗ · · · ⊗ vi,p ⊗ · · · ⊗ ud,p〉 ,

as required.

Recall that a choice of bases is always implicit when we
discuss V + (cf. Definition 2) and we may refer to coordinates
(or entries) of a nonnegative tensor T without ambiguity.
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Lemma 14. Let T ∈ V + with rank+(T ) > r and X be
a solution of the optimization problem (8). Then there exist
i1, . . . , id such that the coordinate (T −X)i1,...,id > 0.

Proof. Let X =
∑r′

p=1 u1,p ⊗ · · · ⊗ ud,p. Suppose (T −
X)i1,...,id ≤ 0 for all i1, . . . , id. Then there is some p ∈
{1, . . . , r′} such that u1,p(i1) · · ·ud,p(id) > 0. So

〈T −X,u1,p ⊗ · · · ⊗ ud,p〉
≤ (T −X)i1,...,idu1,p(i1) · · ·ud,p(id) < 0,

which contradicts (13).

Proposition 15. Let T ∈ V + with rank+(T ) > r and X be a
solution to the optimization problem (8). Then rank+(X) = r.

Proof. Suppose that rank+(X) ≤ r− 1. By Lemma 14 there
is some coordinate (T −X)i1,...,id > 0. Let X ′ be the rank-
one tensor whose only nonzero coordinate X ′i1,...,id = (T −
X)i1,...,id . Then ‖T −X −X ′‖ < ‖T −X‖ and rank+(X+
X ′) ≤ r, which contradicts X being a solution of (8).

Proposition 15 shows that a solution X of (8) indeed has
nonnegative rank exactly r; so it is in fact appropriate to call
X a best nonnegative rank-r approximation of T .

V. RANK-ONE APPROXIMATIONS FOR NONNEGATIVE
TENSORS AND THE PERRON–FROBENIUS THEOREM

We have established in Section IV that a best nonnegative
rank-r approximation of a nonnegative tensor is generically
unique. In this section we focus on the case r = 1 and
find sufficient conditions that guarantee the uniqueness of
best nonnegative rank-one approximations. We begin with the
following simple but useful observation: For a nonnegative
tensor, a best rank-one approximation can always be chosen
to be a best nonnegative rank-one approximation.

Theorem 16. Given T ∈ V +, let u1⊗· · ·⊗ud ∈ V1⊗· · ·⊗Vd
be a best rank-one approximation of T . Then u1, . . . , ud can
be chosen to be nonnegative, i.e., u1 ∈ V +

1 , . . . , ud ∈ V
+
d .

Proof. Let T = (Ti1,...,id) and ui = (ui(1), . . . , ui(ni)). Then

‖T − u1 ⊗ · · · ⊗ ud‖2

=
∑n1,...,nd

i1,...,id=1

(
Ti1,...,id − u1(i1) · · ·ud(id)

)2
≥
∑n1,...,nd

i1,...,id=1

(
Ti1,...,id − |u1(i1)| · · · |ud(id)|

)2
.

Since u1⊗ · · · ⊗ ud is a best rank-one approximation, we can
choose uj(ij) = |uj(ij)|, i.e., u1 ∈ V +

1 , . . . , ud ∈ V
+
d .

By Theorem 16, there is no need to distinguish between a
best rank-one and a best nonnegative rank-one approximation
of a nonnegative tensor. This allows us to treat best rank-one
approximations of a real tensor in a unified way, i.e., we will
look for sufficient conditions to ensure a unique best rank-one
approximation of a real tensor. Motivated in part by the notion
of singular pairs of a tensor [44] and by the case r = 1 in
Lemma 12, we propose the following definition.

Definition 17. Let V1, . . . , Vd be vector spaces over K of
dimensions n1, . . . , nd. For T ∈ V1 ⊗ · · · ⊗ Vd, we call

(λ, u1, . . . , ud) ∈ K × V1 × · · · × Vd a normalized singular
pair of T if{

〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λui,

〈ui, ui〉 = 1,
(14)

for all i = 1, . . . , d. We call λ a normalized singular value
and (u1, . . . , ud) is called a normalized singular vector tuple
corresponding to λ. If K = R, λ ≥ 0, and ui ∈ V +

i , we call
(λ, u1, . . . , ud) a nonnegative normalized singular pair of T .

The reader is reminded that the contraction product 〈·, ·〉 is
only an inner product over R but not C. In particular, 〈u, u〉 6=
‖u‖2 over C. In Definition 17 we require that 〈ui, ui〉 = 1
instead of ‖ui‖ = 1 because 〈ui, ui〉 = 1 is an algebraic
condition, i.e., it is defined by a polynomial equation. However
imposing the condition 〈ui, ui〉 = 1 would exclude isotropic
complex singular vector tuples with 〈ui, ui〉 = 0 — note that
over C this can happen for ui 6= 0. As such, the following
projective variant introduced in [25] is useful when we would
like to include such isotropic cases.

Definition 18. Let W1, . . . ,Wd be complex vector space. For
T ∈ W1 ⊗ · · · ⊗Wd, ([u1], . . . , [ud]) ∈ PW1 × · · · × PWd is
called a projective singular vector tuple if

〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λiui (15)

for some λi ∈ C, i = 1, . . . , d.

The number of projective singular vector tuples of a generic
tensor has been calculated in [25]. In the sense of [22], this
number is the Euclidean distance degree of the Segre variety.

Note that as Definition 18 is over projective spaces, the
λi’s are not well-defined complex numbers, and neither is∏d
i=1 λi, but this product corresponds in an appropriate sense

to a singular value as we will see next.
Definitions 17 and 18 are related over C as follows. Suppose

([u1], . . . , [ud]) ∈ PW1 × · · · × PWd is a projective singular
vector tuple. We first choose a representative (u1, . . . , ud) of
([u1], . . . , [ud]) that satisfies (15) and has ‖ui‖ = 1. Note that
we may assume

∏d
i=1 λi to be a nonnegative real number: If

(v1, . . . , vd) is such that vj = eiθjuj , then 〈T, v1⊗ · · ·⊗ v̂j ⊗
· · · ⊗ vd〉 = µjvj and we may choose appropriate θ1, . . . , θd
so that ∏d

i=1
µi = ei(d−2)(θ1+···+θd)

∏d

i=1
λi ∈ R+.

For a nonnegative
∏d
i=1 λi,

λ :=

(∏d

i=1
λi

)1/d

is ‘almost’ a normalized singular value of T with correspond-
ing normalized singular vector tuple (u1, . . . , ud) — ‘almost’
because the condition 〈ui, ui〉 = 1 in Definition 17 has to be
replaced by ‖ui‖ = 1.

It has been shown in [25] that a generic T does not have
a zero singular value nor a projective singular vector tuple
([u1], . . . , [ud]) such that 〈ui, ui〉 = 0 for some i. Thus, for a
generic T , both definitions above are equivalent. We may use
the two definitions interchangeably depending on the situation.
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In this article, we will mainly consider the normalized singular
pairs of a tensor as defined in Definition 17.

The next three results give an analogue of the tensorial
Perron–Frobenius Theorem [8], [24], [44], [61] for nonneg-
ative normalized singular pairs (as opposed to nonnegative
eigenpairs [44]). The proof of Lemma 19 in particular will
require the l1-norm. Again recall that a choice of bases is
always implicit when we discuss V + (cf. Definition 2) and
the l1-norm is with respect to this choice of bases.

Lemma 19 (Existence). A nonnegative tensor T ∈ V + has at
least one nonnegative normalized singular pair.

Proof. Consider the compact convex set

D =

{
(u1, . . . , ud) ∈ V +

1 × · · · × V
+
d :

∑d

i=1
‖ui‖1 = 1

}
.

If
∑d
i=1 ‖〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉‖1 = 0 for some

(u1, . . . , ud), then 〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = 0 for
all i, which implies that λ = 0. On the other hand, if∑d
i=1 ‖〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉‖1 > 0, we define the

map ψ : D → D by

ψ(u1, . . . , ud)

=

(
〈T, u2 ⊗ · · · ⊗ ud〉∑d

i=1 ‖〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉‖1
, . . .

. . . ,
〈T, u1 ⊗ · · · ⊗ ud−1〉∑d

i=1 ‖〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉‖1

)
.

Note that each term 〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 in the
denominator is the contraction of a d-tensor with a (d − 1)-
tensor and therefore the result is a vector. We then normalize
by the sum of the l1-norms of these vectors so that ‖ψ‖1 = 1.

By Brouwer’s Fixed Point Theorem, there is some u1 ⊗
· · · ⊗ ud such that 〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λui where

λ =
∑d

i=1
‖〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉‖1.

Since 〈T, u1 ⊗ · · · ⊗ ud〉 = λ ‖ui‖2 for i = 1, . . . , d, ‖u1‖ =
· · · = ‖ud‖. Let u′i = ui/ ‖ui‖ and λ′ = 〈T, u′1 ⊗ · · · ⊗ u′d〉.
Then (λ′, u′1, . . . , u

′
d) is a nonnegative normalized singular

pair.

One of our reviewers has pointed out to us that Lemma 19
may also be obtained from Lemma 12 and Theorem 16.

Definition 20. We say that a tensor T ∈ V + is positive if all
its coordinates (with respect to the implicit choice of bases
when we specify V +, cf. Definition 2) are positive.

Lemma 21 (Positivity). If T is positive, then T has a positive
normalized singular pair (λ, u1, . . . , ud) with λ > 0.

Proof. By Lemma 19, T has a nonnegative normalized sin-
gular pair (λ, u1, . . . , ud). Suppose that a choice of bases
has been fixed for V1, . . . , Vd. We let vi(j) denote the jth
coordinate of a vector vi ∈ Vi, j = 1, . . . , ni. Let

α = min{ui(j) : i = 1, . . . , d, j ∈ supp(ui)}.

For any i and j,

λui(j) = 〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉(j)

≥ αd−1
∑

kj∈supp(uj)
Tk1...ki−1jki+1...kd > 0,

implying that λ and all coordinates of ui are positive.

We recall the definition of spectral norm for a tensor, which
is known [31] to be NP-hard to compute or even approximate.

Definition 22. For T ∈ V1 ⊗ · · · ⊗ Vd over R, let ‖T‖σ :=
max{|〈T, u1 ⊗ · · · ⊗ ud〉| : ‖u1‖ = · · · = ‖ud‖ = 1} be the
spectral norm of T .

We may deduce the following from [25, Theorem 20] and
Lemma 12.

Corollary 23 (Generic Uniqueness). A general real tensor
T has a unique normalized singular pair (λ, u1, . . . , ud) with
λ = ‖T‖σ .

The relation between best rank-r and best rank-one ap-
proximations of a matrix over R or C is well-known: A best
rank-r approximation can be obtained from r successive best
rank-one approximations — a consequence of the Eckart–
Young Theorem. It has been shown in [55] that this ‘deflation
procedure’ does not work for real or complex d-tensors of
order d > 2. In fact, more recently, it has been shown in [58]
that the property almost never holds when d > 2.

We will see here that the ‘deflatability’ property does not
hold for nonnegative tensor rank either.

Proposition 24. A best nonnegative rank-r approximation of a
positive tensor with nonnegative rank > r cannot be obtained
by a sequence of best nonnegative rank-one approximations.

Proof. It suffices to show that a best nonnegative rank-2
approximation cannot be obtained by two best nonnegative
rank-one approximations. Let T ∈ V + be a positive tensor
with rank+(T ) > 2. Suppose u1⊗· · ·⊗ud is a best rank-one
approximation of T , and u1 ⊗ · · · ⊗ ud + v1 ⊗ · · · ⊗ vd is a
best nonnegative rank-2 approximation of T . By the proof of
Lemma 21, uk > 0 for all k = 1, . . . , d, then by Lemma 13,
we have

〈T − u1 ⊗ · · · ⊗ ud, u1 ⊗ · · · ⊗ ud〉 = 0,

〈T − u1 ⊗ · · · ⊗ ud − v1 ⊗ · · · ⊗ vd, u1 ⊗ · · · ⊗ ud〉 = 0.

We subtract the second equation from the first to get

〈v1 ⊗ · · · ⊗ vd, u1 ⊗ · · · ⊗ ud〉 = 0,

which contradicts the non-negativity of each vk and the
positivity of each uk.

Following [58], we say that a tensor T ∈ V + with nonneg-
ative rank s admits a Schmidt–Eckart–Young decomposition
if it can be written as a linear combination of nonnegatively
decomposable tensors T =

∑s
p=1 u1,p ⊗ · · · ⊗ ud,p, and such

that
∑r
p=1 u1,p ⊗ · · · ⊗ ud,p is a best nonnegative rank-r

approximation of T for all r = 1, . . . , s. Proposition 24 shows
that a general nonnegative tensor does not admit a Schmidt–
Eckart–Young decomposition.

We point out that methods in [18], [48], [49] (for
real/complex) [12], [63], [35] (nonnegative) rely on deflation.
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VI. UNIQUENESS OF BEST RANK-ONE APPROXIMATIONS
FOR REAL SYMMETRIC TENSORS

Not every tensor has a unique best rank-one approximation
[55, Proposition 1]. For example, the symmetric 3-tensor
x ⊗ x ⊗ x + y ⊗ y ⊗ y, where x and y are orthonormal, has
two best rank-one approximations: x⊗x⊗x and y⊗y⊗y. It
is known that a best rank-one approximation of a symmetric
tensor can be chosen to be symmetric over R and C [3],
[23]. In this section we study various properties of the set
of symmetric tensors that do not have unique best symmetric
rank-one approximations. Before we get to these we will have
to first introduce analogues/generalizations of eigenpairs and
characteristic polynomials for higher-order symmetric tensors.

In the following, for a real or complex vector space V ,
Sd(V ) denotes the symmetric d-tensors over V . For any u ∈
V , we write u⊗d = u⊗ · · · ⊗u ∈ Sd(V ) for the d-fold tensor
product of u with itself.

Let V ∗ be the dual space of V . For any group G acting on
V , G also acts naturally on Sd(V ) and Sd(V ∗) such that

〈S, T 〉 = 〈g · S, g · T 〉

for all g ∈ G, T ∈ Sd(V ), and S ∈ Sd(V ∗). If we fix an
inner product (·, ·) on V , then V becomes self dual and we
may identify V ∗ = V . In which case 〈·, ·〉 may be regarded
the inner product on Sd(V ) defined by

〈u⊗d, v⊗d〉 := (u, v)d

and extended linearly to any S, T ∈ Sd(V ) (since any element
of Sd(V ) may be expressed as a linear combination of u⊗d’s
[15]). The inner product 〈·, ·〉 is clearly invariant under the
group that preserves the inner product (·, ·). In particular, if
V = Rn, then 〈·, ·〉 is invariant under the orthogonal group1

O(n).
The following definition of symmetric tensor eigenpairs is

based on [7], [44], [50].

Definition 25. For T ∈ Sd(V ) over C, (λ, u) ∈ C × V is
called a normalized eigenpair of T if{

〈T, u⊗(d−1)〉 = λu,

〈u, u〉 = 1.

λ is the normalized eigenvalue and v the corresponding nor-
malized eigenvector of T . Two normalized eigenpairs (λ, u)
and (µ, v) of T are equivalent if (λ, u) = (µ, v) or if
(−1)d−2λ = µ and u = −v. A normalized eigenvalue λ is
said to be simple if it has only one corresponding normalized
eigenvector up to equivalence.

The number of eigenpairs of a tensor over C has been
determined in [7], [47]; one may view this as the ED degree
of the Veronese variety [22]. Definition 25 also applies to a
real vector space V . In this case, normalized eigenpairs of
T ∈ Sd(V ) are invariant O(n).

It is easy to see that for a symmetric tensor T ∈ Sd(V ), the
spectral norm ‖T‖σ is the largest eigenvalue of T in absolute
value. Let Sn−1 denote the unit sphere in Rn. The subset

1Henceforth we assume that our vector spaces are equipped with inner
products and we write O(n) for the group that preserves the inner product.

{u ∈ Sn−1 : 〈T, u⊗d〉 = ‖T‖σ} is non-empty and closed in
Sn−1 and invariant under O(n).

To introduce the characteristic polynomial of a symmet-
ric tensor, we first recall the definition and some basic
properties of the multipolynomial resultant [29], [17]. For
any given n + 1 homogeneous polynomials F0, . . . , Fn ∈
C[x0, . . . , xn] with positive total degrees d0, . . . , dn, let Fi =∑
|α|=di ci,αx

α0
0 · · ·xαnn , where α = (α0, . . . , αn) and |α| =

α0 + · · · + αn. We will associate each pair (i, α) with a
variable ui,α. Now given a polynomial P in the variables ui,α
where i = 0, . . . , n, and |α| ∈ {d0, . . . , dn}, we denote by
P (F0, . . . , Fn) the result obtained by substituting each ui,α
in P with ci,α. The following is a classical result in invariant
theory [29], [17].

Theorem 26. There is a unique polynomial Res with integer
coefficients in the variables ui,α where i = 0, . . . , n, and |α| ∈
{d0, . . . , dn}, that has the following properties:

(i) F0 = · · · = Fn = 0 have a nonzero solution over C if
and only if Res (F0, . . . , Fn) = 0.

(ii) Res (xd00 , . . . , x
dn
n ) = 1.

(iii) Res is irreducible over C.

Definition 27. Res (F0, . . . , Fn) ∈ C is called the resultant
of the polynomials F0, . . . , Fn. Often we will also say that it
is the resultant of the system of polynomial equations F0 =
0, . . . , Fn = 0.

The following definition was first proposed in [51] and
called an E-characteristic polynomial.

Definition 28. The characteristic polynomial of a symmetric
tensor T is the resultant ψT (λ) of the following systems of
polynomial equations in n+ 1 variables u and x (note that u
has n entries).

(i) For T ∈ S2d−1(V ),

〈T, u⊗(d−1)〉 − λxd−2u = 0 and x2 − 〈u, u〉 = 0.

(ii) For T ∈ S2d(V ),

〈T, u⊗(2d−1)〉 − λ〈u, u〉d−1u = 0.

Note that we regard λ as a parameter and not one of
the variables. One may show that the resultant ψT (λ) is a
(univariate) polynomial in λ.

In the following, for u, v, w ∈ V , we write

u� v � w :=
1

6
(u⊗ v ⊗ w + u⊗ w ⊗ v + v ⊗ u⊗ w

+ v ⊗ w ⊗ u+ w ⊗ v ⊗ u+ w ⊗ u⊗ v)

for the symmetric tensor product [15]. Note that u� v�w =
v � u� w = · · · = w � v � u, i.e., symmetric tensor product
is independent of order and in particular u� v �w ∈ S3(V ).
It is easy to extend this to arbitrary order

u1 � · · · � ud =
1

d!

∑
τ∈Sd

uτ(1) ⊗ · · · ⊗ uτ(d) ∈ Sd(V ).

For u ∈ V , we may write u�d = u � · · · � u for the d-
fold symmetric tensor product of u with itself but we clearly
always have

u⊗d = u�d.
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Proposition 29. Let V be a real vector space of dimension
n. Let ρ = ‖T‖σ and define

Hρ := {T ∈ Sd(V ) : ρ is not simple}.

Then Hρ is an algebraic hypersurface in Sd(V ).

Proof. For notation convenience, we prove the result for d =
3; extending to d > 3 is straightforward. Let T ∈ S3(V ).
Suppose T ∈ Hρ, i.e., there exist u 6= v ∈ V with ‖u‖ =
‖v‖ = 1 such that

〈T, u⊗2〉 = ρu, 〈T, v⊗2〉 = ρv.

Let u1 := u and extend it to {u1, . . . , un}, an orthonormal
basis of V . By an action of the orthogonal group O(n) on
V , we may assume that v = u1 cos θ + u2 sin θ for some
θ ∈ (0, π). Let Tijk := 〈T, ui � uj � uk〉. Then

T111 = ρ,

Ti11 = 0, (16)
T111 cos

2 θ + T122 sin
2 θ = T111 cos θ, (17)

2T122 sin θ cos θ + T222 sin
2 θ = T111 sin θ,

2Tj12 cos θ + Tj22 sin θ = 0,

for i 6= 1 and j > 2.
By eliminating θ, we may obtain equations in Tijk’s. For

example, (17) implies cos θ = 1 or (T111−T122) cos θ = T122,
and (18) implies sin θ = 0 or 2T122 cos θ+ T222 sin θ = T111.
Since sin2 θ + cos2 θ = 1 and θ 6= 0 or π, we have{
[T111(T111 − T122)− 2T 2

122]
2 + T 2

222T
2
122 = T 2

222(T111 − T122)2,
(T111T122 + 2T 2

122 − T 2
111)Tj22 = 2Tj12T222(T111 − T122).

(18)
Let J := {(T, [u1, . . . , un]) ∈ S3(V )×O(n) : Tijk satisfies

(18)}. Consider the projections

J

π1|| π2 !!
S3(V ) O(n)

(19)

where π1(T, [u1, . . . , un]) = T and π2(T, [u1, . . . , un]) =
[u1, . . . , un]. By [51], ρ is a root of the E-characteristic
polynomial ψT (λ) of T . So ρ and any of its corresponding
normalized eigenvectors must depend algebraically on T , im-
plying that J is a variety in S3(V )×O(n). Hence T has more
than one inequivalent normalized eigenvectors corresponding
to ρ if and only if T is in the image of π1, i.e., Hρ = π1(J).

Now define T ′ ∈ S3(V ) by

T ′111 = 1, T ′122 = 2
√
3− 3, T ′222 = 6

√
3− 10,

and set all other terms T ′ijk = 0. Then T ′ has two normal-
ized eigenvectors corresponding to its normalized eigenvalue
ρ = ‖T ′‖σ = 1. Hence T ′ ∈ π1(J). Since T ′ has a finite
number of eigenvectors, a generic T ∈ π1(J) must also
have a finite number of eigenvectors by semicontinuity. Hence
dimπ−11 (T ) = dimO(n − 2) for a generic T ∈ π1(J).
So dimHρ = dimπ1(J) = dim J − dimO(n − 2) =
dim J − (n− 2)(n− 3)/2.

Since π2 is a dominant morphism, and the dimension of
a generic fiber π−12 ([u1, . . . , un]) is dimS3(V ) − 2(n − 1),

we deduce that dim J = dim S3(V )− 2(n− 1) + dimO(n).
Therefore dimHρ = dimS3(V )−1, i.e., Hρ is a hypersurface.

Let V be a real vector space. We specify a choice of basis
on V and define the set of nonnegative symmetric tensors to
be

Sd(V +) := Sd(V ) ∩ (V ⊗d)+.

Recall also Definition 20.

Corollary 30. Let T ∈ S3(V +) be positive. Let u ∈ V be
such that 〈T, u⊗3〉 = ρ = ‖T‖σ and

σ2 := min{|〈T, u� v � v〉| : 〈u, v〉 = 0, ‖v‖ = 1}.

If σ2 ≥ ρ/2, then T has a unique best nonnegative symmetric
rank-one approximation.

Proof. By Lemma 12, suppose there exist v 6= u such that
‖v‖ = 1, 〈u, v〉 = 0, and 〈T, (u cos θ + v sin θ)⊗3〉 = ρ for
some 0 < θ ≤ π. Then by Lemma 21, we must in fact have
0 < θ < π/2. By (17), 〈T, u � v � v〉 = cos θ

1+cos θρ. Since
0 < cos θ

1+cos θ <
1
2 when 0 < θ < π/2, we get 0 < 〈T, u� v �

v〉 < ρ/2, which contradicts σ2 ≥ ρ/2.

Let V be a real vector space of dimension n and W = V ⊗R
C be its complexification. A generic T ∈ Sd(W ) has distinct
eigenvalues [7], so the resultant of the polynomial ψT and its
derivative ψ′T , denoted by Deig(T ), is a nonzero polynomial on
Sd(W ) called the eigen discriminant. The equation Deig(T ) =
0 defines the complex hypersurface Hdisc consisting of tensors
T ∈ Sd(W ) that do not have simple normalized eigenpairs. For
T ∈ Sd(V ), the hypersurface Hρ in Proposition 29 is a union
of some components of the real points of Hdisc. In fact, if we
replace ρ = ‖T‖σ by any real normalized eigenvalue µ of T
in the proof of Proposition 29, we may show that the subset
of symmetric tensors whose normalized eigenvalues are not
all simple is a finite union of real algebraic hypersurfaces, and
these hypersurfaces are the real points of Hdisc. We summarize
this discussion as follows.

Theorem 31. Deig(T ) = 0 is a defining equation of the
hypersurface

Hdisc := {T ∈ Sd(W ) : T has a non-simple eigenvalue}.

For T ∈ Sd(V ), if Deig(T ) 6= 0, then by definition, either
(i) there is a unique eigenvector vλ corresponding to each
eigenvalue λ of T when d is odd, or (ii) there are two
eigenvectors ±vλ corresponding to each eigenvalue λ of T
when d is even. Hence we have the following.

Corollary 32. Let T ∈ Sd(V ). If Deig(T ) 6= 0, then T has a
unique best symmetric rank-one approximation.

We deduce the following analogue for nonnegative tensors
from Banach’s Theorem that the best rank-one approximation
of a symmetric tensor can be chosen to be symmetric [3], [23],
Theorem 16, and Corollary 32.

Corollary 33. Let T ∈ Sd(V +). If Deig(T ) 6= 0, then T has
a unique best symmetric nonnegative rank-one approximation.
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Let X ⊂ Cn be a complex variety. For x ∈ X and u /∈
X , let du(x) =

∑n
i=1(u(i)− x(i))2. The Euclidean distance

degree (ED degree) of X is the number of nonsingular critical
points of du for a generic u, and the ED discriminant is the
set of u such that at least two critical points of du coincide
[22]. Hence Theorem 31 shows that the ED discriminant of the
cone over the Veronese variety (in both the real and complex
case) is a hypersurface, and Deig(T ) = 0 gives its defining
equation.

Example 34. Let T = [Tijk] ∈ S3(R2). Then ψT (λ) is the
resultant of the polynomials

F0 = T111x
2 + 2T112xy + T122y

2 − λxz,
F1 = T112x

2 + 2T122xy + T222y
2 − λyz,

F2 = x2 + y2 − z2.

Consider the Jacobian determinant J of F0, F1, F2. Then

J = det

∂F0/∂x ∂F0/∂y ∂F0/∂z
∂F1/∂x ∂F1/∂y ∂F1/∂z
∂F2/∂x ∂F2/∂y ∂F2/∂z


= (8T 2

112 − 8T111T122 − 2λ2)x2z + 4T112λy
3

+ (8T 2
122 − 8T222T112 − 2λ2)y2z + 4T122λx

3

+ (4T111λ− 8T122λ)xy
2 + (4T122λ+ 4T111λ)xz

2

+ (4T112λ+ 4T222λ)yz
2 + (4T222λ− 8T112λ)x

2y

− 2λ2z3 + (8T112T122 − 8T111T222)xyz,

∂J

∂x
= 12T122λx

2 + (4T111λ− 8T122λ)y
2

+ (4T111λ+ 4T122λ)z
2 + (8T222λ− 16T112λ)xy

+ (16T 2
112 − 4λ2 − 16T111T122)xz

+ (8T112T122 − 8T111T222)yz,

∂J

∂y
= (4T222λ− 8T112λ)x

2 + 12T112λy
2

+ (4T112λ+ 4T222λ)z
2 + (8T111λ− 16T122λ)xy

+ (8T112T122 − 8T111T222)xz

+ (16T 2
122 − 4λ2 − 16T112T222)yz,

∂J

∂z
= (8T 2

112 − 8T111T122 − 2λ2)x2 + (8T122λ+ 8T111λ)xz

+ (8T 2
122 − 8T222T112 − 2λ2)y2 − 6λ2z2

+ (8T112T122 − 8T111T222)xy + (8T112λ+ 8T222λ)yz.

By Salmon’s formula [17], ψT (λ) = 1
512 det(G), where G is

defined by (20). Thus ψT (λ) = p2λ
6 + p4λ

4 + p6λ
2 + p8

for some homogeneous polynomials pm of degree m in Tijk,
m = 2, 4, 6, 8. See also [7], [41]. Therefore Deig(T ) is the
determinant of some 11× 11 matrix in Tijk.

For a generic T ∈ S3(R2), ψT (λ) = c(λ2 − γ1)(λ
2 −

γ2)(λ
2 − γ3) for some c ∈ C and distinct γi ∈ C, and so

Deig(T ) 6= 0.
For T ∈ Hdisc, ψT (λ) has multiple roots. For a specific

example, let S ∈ S3(R2) be defined by S111 = S222 = 1
and set other Sijk = 0. Then Deig(S) = 0, implying that

S has at least one nonsimple eigenpairs. In fact, ψS(λ) =
(λ+1)2(λ−1)2(2λ2−1) and so S has two eigenvectors (1, 0),
(0, 1) corresponding to the eigenvalue 1, and two eigenvectors
(−1, 0), (0,−1) corresponding to the eigenvalue −1. Note
that S is, up to a change of coordinates, the same example
mentioned at the beginning of this section, i.e., S = x⊗3+y⊗3

has two best rank-one approximations x⊗3 and y⊗3.

VII. UNIQUENESS OF BEST RANK-ONE APPROXIMATIONS
FOR REAL TENSORS

In this section, V and W , with or without subscripts, would
generally denote real and complex vector spaces respectively.

Let W1, . . . ,Wd be complex vector spaces. For T ∈W1 ⊗
· · · ⊗Wd, ui ∈ Wi, and αi ∈ C, we denote by ϕT (λ) the
resultant of the following homogeneous polynomial equations{

αi〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λ(
∏
j 6=i αj)ui,

〈ui, ui〉 = α2
i ,

(21)

for i = 1, . . . , d. Again by standard theory of resultants [17],
[29], ϕT (λ) vanishes if and only if (21) has a nontrivial solu-
tion, and we obtain the following analogue of Definition 28.

Definition 35. ϕT (λ) is called the singular characteristic
polynomial of T ∈W1 ⊗ · · · ⊗Wd.

Clearly the roots of ϕT (λ) are the normalized singular
values of T . We also have an analogue of Definition 25.

Definition 36. Let T ∈ W1 ⊗ · · · ⊗ Wd. Two normalized
singular pairs (λ, u1, . . . , ud) and (µ, v1, . . . , vd) of T are
called equivalent if (λ, u1, . . . , ud) = (µ, v1, . . . , vd), or
(−1)d−2λ = µ and ui = −vi for i = 1, . . . , d. A normalized
singular value λ of T is said to be simple if it has only one
corresponding normalized singular pair up to equivalence.

For real vector spaces V1, . . . , Vd, and T ∈ V1 ⊗ · · · ⊗ Vd,
normalized singular pairs are invariant under the product of
orthogonal groups O(n1)× · · · ×O(nd).

It follows from [26] that the subset X ⊆ V1 ⊗ · · · ⊗ Vd
consisting of tensors without unique best rank-one approxi-
mations is contained in a hypersurface. We will show that this
can be strengthened to an algebraic hypersurface.

Proposition 37. The following subset is an algebraic hyper-
surface in V1 ⊗ · · · ⊗ Vd,

X := {T ∈ V1 ⊗ · · · ⊗ Vd : T has non-unique
best rank-one approximations}.

Proof. By Lemma 12, X comprises tensors T for which ‖T‖σ
is not a simple normalized singular value. Let d = 3 for
notational simplicity. Let T ∈ X . Then there exist some

G =


T111 T122 0 2T112 −λ 0
T112 T222 0 2T122 0 −λ
1 1 −1 0 0 0

12T122 4T111λ−8T122λ 4T111λ+4T122λ 8T222λ−16T112λ 16T 2
112−4λ

2−16T111T122 8T112T122−8T111T222

4T222λ−8T112λ 12T112λ 4T112λ+4T222λ 8T111λ−16T122λ 8T112T122−8T111T222 16T 2
122−4λ

2−16T112T222

8T 2
112−8T111T122−2λ2 8T 2

122−8T222T112−2λ2 −6λ2 8T112T122−8T111T222 8T122λ+8T111λ 8T112λ+8T222λ


(20)
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v1, v2, v3 with ‖vi‖ = 1 and {u1,1, u2,1, u3,1} 6= {v1, v2, v3}
with ‖ui,1‖ = 1 such that

〈T, u1,1 ⊗ u2,1 ⊗ u3,1〉 = ‖T‖σ = 〈T, v1 ⊗ v2 ⊗ v3〉.

For each i = 1, 2, 3, extend ui,1 to an orthonormal basis
{ui,1, . . . , ui,ni} of Vi. By an action of O(n1)×O(n2)×O(n3)
on V1 ⊗ V2 ⊗ V3, we may assume that vi = cos θiui,1 +
sin θiui,2. Let Tijk = 〈T, u1,i ⊗ u2,j ⊗ u3,k〉. Then we have


T111 = ‖T‖σ,
Ti11 = T1i1 = T11i = 0,

T111 cos θ2 cos θ3 + T122 sin θ2 sin θ3 = T111 cos θ1,

T212 cos θ2 sin θ3 + T221 sin θ2 cos θ3 + T222 sin θ2 sin θ3 = T111 sin θ1,

Tj12 cos θ2 sin θ3 + Tj21 sin θ2 cos θ3 + Tj22 sin θ2 sin θ3 = 0,

T111 cos θ1 cos θ3 + T212 sin θ1 sin θ3 = T111 cos θ2,

T122 cos θ1 sin θ3 + T221 sin θ1 cos θ3 + T222 sin θ1 sin θ3 = T111 sin θ2,

T1j2 cos θ1 sin θ3 + T2j1 sin θ1 cos θ3 + T2j2 sin θ1 sin θ3 = 0,

T111 cos θ1 cos θ2 + T221 sin θ1 sin θ2 = T111 cos θ3,

T122 cos θ1 sin θ2 + T212 sin θ1 cos θ2 + T222 sin θ1 sin θ2 = T111 sin θ3,

T12j cos θ1 sin θ2 + T21j sin θ1 cos θ2 + T22j sin θ1 sin θ2 = 0,
(22)

for i 6= 1 and j > 2. By eliminating the parameter θ, we obtain
a system of polynomial equations that the Tijk’s satisfy.

Let J be the incidence variety in V1 ⊗ V2 ⊗ V3 ×O(n1)×
O(n2) × O(n3), i.e., for each (T, g1, g2, g3) ∈ J where gi =
[ui,1, . . . , ui,ni ] ∈ O(ni), there is some (θ1, θ2, θ3) such that
the Tijk’s satisfy (22). Define the projections

J

π1yy
π2 ((

V1 ⊗ V2 ⊗ V3 O(n1)×O(n2)×O(n3)
(23)

by π1(T, g1, g2, g3) = T and π2(T, g1, g2, g3) = (g1, g2, g3).
Since ‖T‖σ is a root of ϕT (λ), ‖T‖σ and its normalized
singular vector tuples depend algebraically on T , implying
that J is an algebraic variety. ‖T‖σ is simple if and only if T
is in the image of π1, i.e., X = π1(J).

Define T ′ ∈ V1 ⊗ V2 ⊗ V3 by T ′111 = T ′222 = 1 and
set all other terms T ′ijk = 0. Then T ′ has two normal-
ized singular vector tuples corresponding to its normalized
singular value‖T‖σ . So T ′ ∈ π1(J). Since T ′ has a finite
number of singular pairs, a generic T ∈ π1(J) must also
have a finite number of singular pairs by semicontinuity. So
dimπ−11 (T ) = dimO(n1−2)+dimO(n2−2)+dimO(n3−2)
for a generic T ∈ π1(J), and dimX = dimπ1(J) =
dim J − dimO(n1 − 2)− dimO(n2 − 2)− dimO(n3 − 2).

Since π2 is a dominant morphism, and the dimension of a
generic fiber π−12 (g1, g2, g3) is dimV1 ⊗ V2 ⊗ V3 − 2(n1 +
n2 + n3) + 8, it follows that dim J = dimV1 ⊗ V2 ⊗ V3 −
2(n1 +n2 +n3)+ 8+dimO(n1)+ dimO(n2)+ dimO(n3).
Therefore the codimension of X is 1.

We will show that normalized singular vector tuples of a
generic tensor are distinct, a result that we will need later but
is also of independent interest.

Proposition 38. Let W1, . . . ,Wd be vector spaces over C. A
generic T ∈ W1 ⊗ · · · ⊗Wd has distinct equivalence classes
of normalized singular pairs.

Our proof of Proposition 38 will rely on the next three
intermediate results. The first required result is a ‘Bertini-type’
theorem introduced in [25].

Theorem 39 (Friedland–Ottaviani). Let E be a vector bundle
on a smooth variety B. Let S ⊆ H0(B,E) generate E. If
rank(E) > dimB, then the zero locus of a generic ζ ∈ S is
empty.

Lemma 40. Let T ∈ W1 ⊗ · · · ⊗ Wd be generic and let
(u1, . . . , ud) be a normalized singular vector tuple of T . If vd
is not a scalar multiple of ud, then (u1, . . . , ud−1, vd) is not
a normalized singular vector tuple of T .

Proof. Suppose λud = 〈T, u1 ⊗ · · · ⊗ ud−1〉 = µvd for some
vd not a scalar multiple of ud. Then λ or µ must be 0,
contradicting the fact that 0 cannot be a singular value of a
generic T [25, Theorem 1].

Lemma 41. Let ui, vi, wi ∈ Wi with 〈ui, ui〉 = 〈vi, vi〉 = 1,
i = 1, 2, 3. For x ∈ Wi, we write [x]i for the corresponding
element in the quotient space Wi/ span(ui). Suppose ui = vi
for at most one i. Then

(i) the system of linear equations
〈T, u2 ⊗ u3〉 = 〈T, v1 ⊗ v2 ⊗ v3〉u1 + w1,

〈T, u1 ⊗ u3〉 = w2,

〈T, u1 ⊗ u2〉 = w3,

(24)

has a solution T ∈ W1 ⊗ W2 ⊗ W3 if and only if
〈u2, w2〉 = 〈u3, w3〉;

(ii) the system of linear equations
〈T, u2 ⊗ u3〉 = 〈T, v1 ⊗ v2 ⊗ v3〉u1 + w1,

[〈T, u1 ⊗ u3〉]2 = [w2]2,

[〈T, u1 ⊗ u2〉]3 = [w3]3,

(25)

always has a solution T ∈W1 ⊗W2 ⊗W3.

Proof. Note that the variables in these linear equations are
Tijk’s, the coordinates of T .

(i) Let A be the coefficient matrix in (24) and b be the right-
hand side. The system has a solution if and only if A and
the augmented matrix [A | b] have the same rank, i.e., if
there is some xi ∈ Wi, i = 1, 2, 3, such that x1 ⊗ u2 ⊗
u3+u1⊗x2⊗u3+u1⊗u2⊗x3−〈x1, u1〉·v1⊗v2⊗v3 = 0,
then 〈x1, w1〉+〈x2, w2〉+〈x3, w3〉 = 0. Since x1⊗u2⊗
u3+u1⊗x2⊗u3+u1⊗u2⊗x3−〈x1, u1〉·v1⊗v2⊗v3 = 0
if and only if x1 = 0, x2 = αu2, x3 = −αu3 or x1 = 0,
x2 = −αu2, x3 = αu3 for some α, the system (24) has
a solution if and only if 〈u2, w2〉 = 〈u3, w3〉.

(ii) The system (25) has a solution if and only if 〈u2, w2 +
t2u2〉 = 〈u3, w3 + t3u3〉 for some t2, t3 ∈ C. Choose
any t2, t3 such that t3 − t2 = 〈u2, w2〉 − 〈u3, w3〉.

Proof of Proposition 38. Let d = 3 for notational conve-
nience. For i = 1, 2, 3, let Ci = {ui ∈ Wi : 〈ui, ui〉 = 1},
Fi be the trivial vector bundle on Ci with fiber isomorphic to
Wi, Li be the tautological line bundle on Ci, and Qi be the
quotient bundle Fi/Li on Ci. Consider the exact sequence of
vector bundles

0→ Li → Fi → Qi → 0
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over Ci. Let M = C1×C2×C3. We will need to discuss vector
bundles over M ×M and for clarity, we distinguish the two
copies of M . So we write M1 ×M2 where M1 =M2 =M .
Let πi,j :Mi → Cj be the natural projection for i = 1, 2 and
j = 1, 2, 3. Let pi :M1×M2 →Mi be the natural projection
for i = 1, 2. Then we have the following diagram:

M1 ×M2

M1 M2

C1 C2 C3 C1 C2 C3

p1 p2 .

Consider the vector bundle on M1 ×M2,

Ẽ =

( 3⊕
j=1

p∗1π
∗
1,j(Qj)

)
⊕ p∗2π∗2,1(F1)⊕

( 3⊕
j=2

p∗2π
∗
2,j(Qj)

)
,

where f∗ denotes the pullback induced by f . Let

Xi = {(v1, v2, v3, u1, u2, u3) ∈M1 ×M2 :

uj = vj for all j 6= i}.

By Lemma 40, to study the behavior of normalized singular
pairs of a generic tensor, we need only consider the following
open subset of the affine variety M1 ×M2,

B =M1 ×M2 \ (X1 ∪X2 ∪X3),

and its corresponding vector bundle E = Ẽ|B over the base
space B. Then

rank(E) = 2

3∑
i=1

dimWi − 5 > dimB = 2

3∑
i=1

dimWi − 6.

So the inequality in Theorem 39 holds for our choice of E
and B. Now let

S = {s ∈ H0(B,E) : s(v1, v2, v3, u1, u2, u3)

= ([〈T, v2 ⊗ v3〉]1, [〈T, v1 ⊗ v3〉]2, [〈T, v1 ⊗ v2〉]3,
〈T, u2 ⊗ u3〉 − 〈T, v1 ⊗ v2 ⊗ v3〉u1,

[〈T, u1 ⊗ u3〉]2, [〈T, u1 ⊗ u2〉]3)}.

By Lemma 41 and [25, Lemma 8], S generates E. By
Theorem 39, a generic section of E does not vanish on B,
implying tha each normalized singular value of a generic
tensor is distinct and simple.

Let Dsing(T ) be the singular discriminant, the resultant of
the singular characteristic polynomial ϕT and its derivative
ϕ′T . Since a generic T has distinct equivalence classes of nor-
malized singular pairs, ϕT has simple roots, and so Dsing(T )
does not vanish identically. As Dsing(T ) vanishes on X , the
hypersurface defined in Theorem 37, Dsing(T ) = 0 indeed
defines a hypersurface in W1 ⊗ · · · ⊗Wd. Note that X is a
union of some components of the real points of Xdisc. Finally,
we arrive at our main result of this section, singular value
analogues of Theorem 31 and Corollaries 32 and 33.

Theorem 42. Dsing(T ) = 0 is a defining equation of the
hypersurface

Xdisc := {T ∈W1 ⊗ · · · ⊗Wd : T has a

non-simple normalized singular value}.

In the following, let Vi be a real vector space and Wi =
Vi ⊗R C be its complexification, i = 1, . . . , d.

Corollary 43. Let T ∈ V1⊗· · ·⊗Vd be real. If Dsing(T ) 6= 0,
then T has a unique best rank-one approximation.

We deduce the following analogue for nonnegative tensors
from Theorem 16 and Corollary 43.

Corollary 44. Let T ∈ V1 ⊗ · · · ⊗ Vd be nonnegative. If
Dsing(T ) 6= 0, then T has a unique best nonnegative rank-one
approximation.

Theorem 42 shows that the ED discriminant Xdisc of the
cone over the Segre variety PW1×· · ·×PWd is a hypersurface
when d ≥ 3, and Dsing(T ) = 0 gives its defining equation.
The discussion before Theorem 42 shows that the set of real
points of Xdisc is a real hypersurface. It is interesting to note
that when d = 2, i.e., the matrix case, the set of real points
of the ED discriminant of the Segre variety PW1 × PW2 has
codimension 2 [22, Example 7.6].

APPENDIX

We use semirings and semimodules instead of rings and
modules to construct tensor products of cones in order to
give nonnegative tensors an algebraic description and state
our results in a more general setting. A semimodule over a
semiring is essentially the same notion as a vector space over
a field, except that the field of scalars is now replaced by a
semiring of scalars like the nonnegative reals. The nonnegative
reals do not form a field or even a ring since they do not have
additive inverses, but aside from this, R+ has all the properties
of scalars that makes the notion of a vector space so useful in
engineering.

Definition 45. A semiring R is a set equipped with binary
operations + and · such that
• (R,+) is a commutative monoid with identity element 0;
• (R, ·) is a monoid with identity element 1;
• Multiplication left and right distributes over addition:

a · (b+ c) = (a · b) + (a · c),
(a+ b) · c = (a · c) + (b · c);

• Multiplication by 0 annihilates R:

0 · a = a · 0 = 0.

Definition 46. A commutative semiring is a semiring whose
multiplication is commutative.

Definition 47. A semimodule M over a commutative semiring
R is a commutative monoid (M,+) and an operation · : R×
M →M such that for all r, s in R and x, y ∈M , we have:

r · (x+ y) = r · x+ r · y,
(r + s) · x = r · x+ s · x,

(rs) · x = r · (s · x),
1R · x = x.
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In our context, the set of nonnegative real numbers R+ is
a commutative semiring and the set of nonnegative tensors is
a semimodule over R+.
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