N

N

Distributed Monitoring of Temporal System Properties
using Petri Nets
Olivier Baldellon, Jean-Charles Fabre, Matthieu Roy

» To cite this version:

Olivier Baldellon, Jean-Charles Fabre, Matthieu Roy. Distributed Monitoring of Temporal System
Properties using Petri Nets. 31st IEEE International Symposium on Reliable Distributed Systems
(SRDS 2012), Oct 2012, Irvine, United States. 10p. hal-01015494

HAL Id: hal-01015494
https://hal.science/hal-01015494

Submitted on 26 Jun 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01015494
https://hal.archives-ouvertes.fr

Distributed Monitoring of Temporal System Properties using Petri Nets

Olivier Baldellon**, Jean-Charles Fabre*¥, Matthieu Roy* '
* CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
T Univ de Toulouse, LAAS, F-31400 Toulouse, France
¥ Univ de Toulouse, INP, LAAS, F-31400 Toulouse, France

Abstract—Supervising a system in operation allows
to detect a violation of system specification or tem-
poral properties, and is the first step required by any
reconfiguration mechanism.

In this work, we focus on run-time verification of
temporal system properties in distributed and real-
time systems. Based on a description of a property
that includes events and temporal constraints, ex-
pressed as an arc timed Petri net, we automatically
derive a monitoring system responsible for checking
this property. The proposed approach enables the
distributed verification of system properties.

Our contribution is twofold. On the theoretical side,
we introduce a slight modification of the semantics of
Petri nets to be able to execute it in partial executions
and noisy observation environments. On the practical
side, we show how to use this formal framework to
provide a distributed and efficient monitoring system,
and describe its current implementation.

Keywords-Distributed Monitoring; Online Verifica-
tion; Petri nets.

INTRODUCTION?

In the different means to provide dependability guaran-
tees in systems, supervising [MR10], [JRR94], [ZSLL09],
[CJ05], or monitoring systems and applications states
is a requisite to detect a possible violation of system
specification and envisage a recovery action . In a
first section, we introduce a slight modification of the
semantics of Petri nets to be able to execute it in partial
executions and noisy observation environments. Then,
we show how to use this formal framework to provide a
distributed and efficient monitoring system, and describe
its current implementation.

(e1,71)

Alarm

Figure 1. Conceptual view

Our monitor tool is a distributed service that executes
a model of the system expressing temporal and behavioral
properties on reception of timed events from the system.

1This work has been partially supported by ANR, the French Science
Foundation, under contract number ANR-BLAN-SIMI10-LS-100618-6-
01.

t1 ta i3
[0, 0] [3, 6] [0, 5]
O—O0—O0—{}O

Figure 2. A simple Petri net

I. OUrR APPROACH
A. Petri Nets For System Properties
An arc-timed Petri net is a tuple (P, T, *(-), (-)®*, Mo,
I), where P is a finite set of places, T is a finite set of
transitions, My is the initial marking (a function that
associates to each place a set of tokens), *(-) and (-)*
are the backward and forward incidence functions that
associate to each transition a set of places, and I a
function that associates to each arc between a place
and a transition a time interval. We say that there is an
arc between a place p and a transition ¢ if p € *t.

We assume there is a bijection between transitions
and events generated by the system. Thus a timed event
(e4,7;) can unambiguously be written (¢;,7;) where ¢; is
the transition associated to e;.

B. Petri Net Execution

Properties on system events that need to be monitored are
expressed using the Petri net formalism. Our approach
consists in executing a Petri net on-the-fly to detect
failures. The monitoring tool takes as an input a sequence
of events, i.e., a sequence of couples (t,7) where ¢t
represents the transition associated to an event and 7
the date of the event. The monitoring tool executes the
model using such events sequence, and possibly raises an
alarm when it detects an incorrect behavior.

A simple execution: Let us take as an example the
simple Petri net depicted in Figure 2: if the monitor
receives, the sequence of events (t1,10); (t2,15); (t3,21)
in this order, it will first fire ¢1, storing that this firing was
done at time 10. When the event corresponding to to is
received, the transition ¢, is fired because 15— 10 € [3, 6].
The reception of (t3,21) will raise an error because the
event occurred too late; the token stayed in the place of
*t3 six units of time (73 — 2 = 21 — 15 = 6), which is out
of the specified interval [0, 5]. However, the transition t3
will still be fired to enable the execution of the Petri net
model to continue, and an error will be reported.

In this scenario, notice that the minimal amount
of information to detect a failure is (f2,15);(¢3,21):
whatever the occurrence time of ¢1, t3 happened too
late with respect to t5. If the monitor only receives
(t2,15); (ts,21) but (t1,10) is not yet received, the usual
semantics of Petri nets forbids to fire transitions ¢5 and
t3; in other words, to fire to and consequently t3, the
transition ¢ needs to have been already fired. This crucial
issue can be solved using negative tokens.

An execution with negative tokens: Our approach
consists in firing a transition ¢ as soon as it is received
and anticipating the removal of tokens in places of *t by
“adding” negative tokens in these places. Figure 3 shows
the result of firing ¢o, with a negative token represented
as a black circle, a positive token as a black disk.

Po t1 P1 to P2 ts D3
[0, o] [3, 6] [0, 5]
O—o0——{—{}O

After the firing of t2

Figure 3.

The firing of ¢3 will add one negative token in ps and
one positive token in p3. The removal of a token always
depends on the presence of its negative counterpart. To
know how long the positive token stayed in the place po,
we need to compare the date of the event that created the
negative token with the date of the event that created the
positive one. If the difference is not in the time interval
I(pa,t3) = [0,5], then an error is raised. In all cases, both
tokens are removed.

In summary, the main difference between our approach
and classical semantics is that, in the classical one, a
transition is allowed to be fired only if all required tokens
are present. In our approach, transitions are always fired
speculatively, and the fireability property is checked a
posteriorti.

II. ProTOocCoL & IMPLEMENTATION
A. The protocol

Due to lack of space, the formal description of the
protocol is omitted. It implements a simulation of the
Petri net by a set of thread, one for each place and
one for each transition. The protocol is then a direct
transcription of the execution semantics described in I-B
with negative tokens. The protocol assigns a monitoring
thread to each place and each transition of the Petri net.
The communication graph of the Petri net of Figure 2
is presented in Figure 4: when the system generates an
event, this event is sent to the thread associated to the
corresponding transition. In return, transition threads
send tokens to threads associated to places when they
receive events.

When a place thread receives a positive or negative
token, it starts a timer. We make the assumption that the

network is synchronous (bounded delay) and thus when
a token is received, the place can compute the maximal
delay to wait for reception of the negative version of this
already received token.

(t1,71) (t2,72) (t3,73)
N
O—{—O0—"T—0—"—0

Figure 4. Communications Graph

B. Implementation

We have developed a proof-of-concept of our approach
in the Erlang language. The full code of our implementa-
tion, called Minotor, is available on the author website?.
The implementation is very scalable, since we were able
to run series of tests on Petri nets of size up to 22° (more
than one million) transitions and places.

CONCLUSION

Differently of static analysis, a run-time verification
system receives system events on the fly, and possibly
out-of-order. To cope with this problem, we introduce the
notion of virtual, or signed token, i.e. we execute every
transition associated to an event as soon as this event is
caught by the monitoring system, no matter the current
state of the Petri net. The actual verification of timing
constraints and events ordering is performed a posteriori
by checking respective dates of signed tokens.

The decoupling of transitions firing and timing con-
straints verification allows us to completely distribute
the verification, as we show in the article. Our strategy
is to associate to each transition, and each place in the
Petri net a conceptual thread, in charge of executing an
atomic subpart of the Petri net and verifying locally that
timing constraints are valid.

REFERENCES

[CJO5] T. Chatain and C. Jard. Time supervision of
concurrent systems using symbolic unfoldings of
time petri nets. Formal Modeling and Analysis of
Timed Systems, pages 196-210, 2005.

[JRR94] F. Jahanian, R. Rajkumar, and S.C.V. Raju. Run-
time monitoring of timing constraints in distributed
real-time systems. Real-Time Systems, 7(3):247—
273, 1994.

[MR10] P. Meredith and G. Rogu. Runtime verification
with the rv system. In Proceedings of the First
international conference on Runtime verification,
pages 136-152. Springer-Verlag, 2010.

[ZSLL09] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC:

Distributed Monitoring and Checking. Lecture
Notes in Computer Science, 5779:184, 2009.

?http://www.olivier.baldellon.eu/documents/minotor-srds.tar.gz

