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Abstract—Several studies have demonstrated that induction
machine faults introduce phase and/or amplitude modulation of
the stator currents. Hence, demodulation of the stator currents
is of high interest for induction machines faults detection and
diagnosis. The demodulation techniques can be classified into
mono-dimensional and multi-dimensional approaches. The mono-
dimensional techniques include the synchronous demodulator,
the Hilbert transform, the Teager energy operator and other
approaches. The multi-dimensional approaches include the Con-
cordia transform and the Principal Component Analysis. Once
the demodulation has been performed, demodulated signals
are further processed in order to measure failure severity. In
this paper, we present a comprehensive comparison of these
demodulation techniques for eccentricity and broken rotor bars
faults detection.

Keywords—Induction machine; eccentricity faults; broken ro-
tor bars; diagnosis; stator currents; signal demodulation.

I. INTRODUCTION

Condition based maintenance of induction machine in in-

dustrial applications is based on performance and parameters

monitoring. According to the measurement used, most meth-

ods for induction machine monitoring could be classified into

several categories: vibration monitoring, torque monitoring,

temperature monitoring, oil/debris analysis, acoustic emis-

sion monitoring, optical fiber monitoring, and current/power

monitoring. Current monitoring has several advantages since

it is a non-invasive technique that avoids the use of extra

sensors. Hence, most of the recent researches on induction

machine faults detection have been directed toward electrical

monitoring with emphasis on stator current processing [1], [2].

It has been proven that mechanical and electrical faults

lead to stator currents modulation. Mechanical faults lead

to eccentricity and load oscillation faults. The eccentricity

fault is responsible of the amplitude modulation and the

load oscillation leads to frequency modulation of the stator

currents [3], [4]. The modulation frequency depends on the

operating conditions of the machine as well as on the fault

severity. Moreover, adjacent broken bars produce an amplitude

modulation in the rotor currents which in turn affects the stator

quantities [5].

Generally, the current is sinusoidally frequency and/or am-

plitude modulated depending on the fault studied. Based on
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these findings, it seems that the most adapted tools to extract a

fault indicator are the demodulation techniques. Hence, current

demodulation has been widely investigated for fault detection

and condition monitoring. Typical examples include broken

rotor bars detection [6]–[8], gearbox fault detection [9] and

bearing fault detection, [3], [10], [11].

The demodulation techniques can be classified into mono-

dimensional and multi-dimensional techniques. The mono-

dimensional techniques include the synchronous demodulator

[9], [12], the Hilbert transform [6], [8], [13], time-frequency

distributions [14], [15] or adaptive tracking of sine wave [16].

In [6], [7], the authors have used Hilbert transform and Park

transform for dynamic rotor faults (broken or cracked rotor

bars and dynamic rotor eccentricity) detection. Moreover, the

Teager-Kaiser energy operator has been investigated for faults

detection in induction machine with broken rotor bars, mixed

eccentricity, and single-point bearing faults based on stator

current in [17].

The multi-dimensional techniques include the Concordia

transform and the Principal Component Analysis (PCA). Joint

instantaneous amplitude (IA) and instantaneous frequency

(IF) estimation based on the Concordia transform have been

investigated in [7], [10], [18]. One advantage of this transform

relies on its low computational cost, however, its domain of

validity is restricted to balanced three-phase systems. In [10],

a technique based on the PCA has been presented for joint

IA-IF estimation in unbalanced three-phase systems.

In this paper, the demodulation techniques for rotor faults

detection in induction machine are investigated and compared.

These techniques are compared for the IA and IF computation

and fault severity measurement and tracking. The advantages

and drawbacks of each technique are highlighted on simulated

data. The contribution of this paper is threefold: First, we

present a widely used demodulation techniques for induction

machines faults detection. Then, we provide a performance

comparison based on simulation data. Finally, we present a

fault detection criterion allowing to measure the fault severity.

II. DEMODULATION TECHNIQUES

Most demodulation techniques rely on the estimation of

the analytic signal z[n] of the real-valued signal x[n]. These

approaches can be classified into mono-dimensional and multi-

dimensional techniques.



A. Mono-dimensional techniques

The mono-dimensional techniques require 1-D signal in

order to compute the IA and IF. Let us denote x[n] a single-

phase stator current. If x[n] = a[n] cos[Φ[n]] is a real-valued

signal, the corresponding analytic signal is given by

z[n] = a[n]ejΦ[n] (1)

Once the analytic signal is computed, the IA a[n] > 0 and

the IF f [n] > 0 can simply be estimated as

â[n] = |z[n]| (2a)

f̂ [n] =
1

2π
(∠(z[n+ 1])− ∠(z[n]))× Fs (2b)

where Fs is the sampling rate and where |.| and ∠(.) are

the modulus and the argument of complex-valued signal z[n],
respectively.

1) Synchronous demodulator: To detect the modulation

introduced by induction machine faults, a synchronous demod-

ulation can be used in order to estimate IA and IF.

Let’s consider that the instantaneous phase is given by:

Φ[n] = 2πf0n+ ϕ[n] and assume that the carrier frequency

f0 is known [19]. The synchronous demodulation includes

multiplying the signal x[n] by two conjugate reference signals

cos(2πf0n/Fs) and sin(2πf0n/Fs). Where f0 is the central

frequency of the signal x[n]. Low-pass filtering of the mul-

tiplied signals gives two low-frequency signals that directly

reflect IA and IF. A Butterworth low-pass filter with cut-

off frequency of 50 Hz has been used. The SD scheme is

illustrated by Fig. 1.

The discrete time analytic signal can be computed as follows

zs[n] = xs
1[n] + jxs

2[n] = a[n]ejϕ[n] (3)

One of the drawbacks of the SD is the filtering stage tuning

and a long time before convergence.

The SD has been used for multistage gearbox diagnosis

using amplitude demodulation of the current waveform in [9].

x[n]

×

×

2× cos(2πf0n/Fs)

−2× sin(2πf0n/Fs)

H{f}

H{f}
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1[n]
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Fig. 1. Synchronous Demodulator. H{f} corresponds to the frequency
response of the low-pass filter h[n].
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Fig. 2. Illustration of the Bedrosian theorem conditions.

2) Hilbert transform: The Hilbert transform (HT) is a

classical technique in signal processing for the estimation of

the analytic signal. For a discrete signal x[n], the Hilbert

transform is given by [20]

xh[n] = x[n] ∗ h[n], (4)

where, h[n] is an impulse response which is defined as

h[n] =

{
0 for n even,
2
πn

for n odd.
(5)

The Bedrosian theorem dealing with Hilbert transform of

two real functions product, has shown that the uniqueness of

the IF and the IA is satisfied if and only if the spectra of the

IA and the sinus of the instantaneous phase are disjoint [21]

(see Fig 2). Under Bedrosian conditions, the analytic signal

zh[n] associated with x[n] is defined as [22]

zh[n] = x[n] + jxh[n] = a[n]eΦ[n] (6)

The Hilbert transform can be computed for a real valued N -

point discrete time signal efficiently using the FFT algorithm

[23]. One of the disadvantages of HT is the border effect.

The Hilbert transform has been employed for MCSA to

detect eccentricity and bar breakages in transient conditions in

[8], [24]. In [25] the Hilbert transform has been used to process

the stator current in PMSM to diagnose demagnetization.

3) Teager energy operator: The Teager energy operator

(TEO) allows to track the IF and the IA of a modulated signal

without computing the analytic signal [26]. The discrete-time

TEO is given by [27]

Ψ(x[n]) = x2[n]− x[n+ 1]x[n− 1] (7)

It can be noticed that the TEO is local operator which allows

to capture the energy fluctuations with good time resolution

since it requires only three samples (x[n−1], x[n], and x[n+
1]). In [27], the authors have presented an estimator of the IA

and the IF of a signal based on the TEO, which is called the

Energy Separation Algorithm (ESA):

a[n] ≈

√√√√
Ψ[x[n]]

1−
(
1− Ψ[x[n]−x[n−1]]

2Ψ[x[n]]

)2 (8a)

f [n] ≈
1

2π
arcos

(
1−

Ψ [x[n]− x[n− 1]]

2Ψ[x[n]]

)
(8b)



The ESA exhibits interesting property since it is less compu-

tationally demanding and had better time resolution than other

demodulation techniques. The main drawback of this operator

is its sensitivity to noise or to model mismatch. Moreover,

it assumes that the estimated IF does not vary too fast or

too greatly compared to carrier frequency [27]. The ESA has

been used for bearing faults detection based on the vibration

signals in [28]. In [17], the Teager-Kaiser energy operator has

been investigated for faults detection in induction machine

with broken rotor bars, mixed eccentricity, and single-point

bearing faults based on stator current.

B. Multi-dimensional techniques

The multi-dimensional techniques require a 3−D stator cur-

rent. In this case, let us denote x[n] = [x1[n], x2[n](t), x3[n]]
T

the 3× 1 vector containing the stator currents.

1) Concordia transform approach: The Concordia trans-

form (CT) is a multidimensional linear transform which allows

to extract a two orthogonal components from the three-phase

stator currents. Let’s denote xc[n] = [xc
1[n], x

c
2[n]]

T
the two

Concordia components. The CT can be expressed into a matrix

form as [18], [29], [30]

xc[n] =

[
xc
1[n]

xc
2[n]

]
=

√
2

3

[√
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

]
x[n] (9)

Under the assumption of a balanced system, it can be

demonstrated that the analytic signal zc[n] is given by [31]

zc[n] = xc
1[n] + jxc

2[n] = a[n]ejΦ[n] (10)

The main drawback of CT is the fact that it is based

on the assumption of balanced system. This assumption is

rarely verified in three phase systems especially in the case

of abnormal operating conditions.

The CT performance has been compared with HT for three

phase machine stator current time-frequency monitoring in

[18]. In [32], the CT was combined with ESPRIT to improve

its performance for detecting rotor fault in induction machine

at low slip.

2) Principal component analysis approach: Principal Com-

ponent Analysis (PCA) is a statistical tool that transforms

a number of correlated signals into a small number of un-

correlated components, called the principal components. The

principal components of x[n], denoted xp[n] = [xp
1[n], x

p
2[n]]

T

are given by

xp[n] =

[
xp
1[n]

xp
2[n]

]
= βΛ

−1

2 ST x[n] (11)

where β is a scaling term given by

β =

√
Tr[Rx]

3
(12)

where the operator Tr[.] is defined to be the sum of the

elements on the main diagonal. The covariance matrix Rx of

x[n] is defined as

Rx = E[x[n]xT [n]] = UΛUT (13)

with Λ and U = [S G] are matrices containing the eigenvalues

and eigenvectors of Rx, respectively.

Under the assumptions that Φ[n] is uniformly distributed

in [0; 2π] and that a[n] and Φ[n] are independent, it can be

demonstrated that the analytic signal zp[n] can be estimated

up to a phase indetermination as [29]

zp[n] = xp
1[n] + jxp

2[n] = a[n]ejΦ[n]e−jθ. (14)

where θ is an unknown phase.

As opposed to Concordia transform, the PCA-based demod-

ulation is less restrictive since it holds whatever the balance

assumption which is interesting for fault detection in electrical

machine.

The PCA has been used for bearing faults detection in

induction machine and compared with CT in [29]. In [33],

the stator current has been processed to extract alpha-beta

using Park/Concordia approach as well as PCA for principal

components computation. These components are then used as

input for an unsupervised neural network for on-line stator

faults diagnostic of induction machine.

C. Faults detection based on demodulation techniques algo-

rithm

After demodulation, the analytic signal and the correspond-

ing IA and IF must be appropriately analyzed to assess the

fault severity. Several papers have proposed to monitor the

deviation of the analytic signal from a circle in the complex

plane [34], [35]. This approach holds when the stator current

is amplitude modulated but is not appropriate when the stator

current is frequency modulated since the fault only affects the

rotational speed in the complex plane [29]. Hence, in order

to measure the fault severity, the variance of the IA, a[n] and

the IF, f [n] are used as a fault detection criteria. In fact, it

can be inferred from [29] that the proposed criteria are related

to the modulation indexes which are proportional to the fault

severity.

C1 = E
[
(â[n]− E(â[n]))

2
]

(15a)

C2 = E

[(
f̂ [n]− E(f̂ [n])

)2
]

(15b)

III. SIMULATION RESULTS

This section reports on the performance of the studied

demodulation techniques. The induction machine modelling

approach is briefly presented. Then, the demodulation tech-

niques are used for eccentricity and broken rotor bars faults

detection in induction machine.



A. Induction machine modelling under faults briefly

An induction machine is considered as a highly symmetrical

electromagnetic system. Any fault will therefore induce a cer-

tain degree of asymmetry [36]. The coupled magnetic circuits

(CMC) approach combined with the arbitrary reference frames

theory have been chosen for induction machines modelling

[37]. In this context, a Matlab R©-based tool of faulty induction

machines has been developed to generate a fault database.

Under some assumptions [38], the representation of an

induction machine with a cage rotor is fundamentally the same

as one with a phase wound rotor, where it is assumed that the

cage rotor can be replaced by a set of mutually coupled loops.

The system of differential equations describing the be-

haviour of induction machine with 3 stator phases and q rotor

bars can be written in vector matrix form as follows (16) [38]





d
dt

I = −L−1
(

R + Ω
d

dθm
L
)

I + L−1V

d
dt
Ω =

1
2J

IT
(

d
dθm

L
)

I − f

J
Ω− 1

J
ΓC

d
dt
θm = Ω

(16)

where,

− J , f , and Γc represent the rotating masses inertia, the

viscous friction coefficient, and load torque, respectively.

− d
dt
[.] and d

dθm
[.] are the derivatives with respect to time

and to the angular position, respectively.

− Ω and θm are the rotor mechanical speed and the rotor

angular position, respectively.

− V is the voltage vector, which is given by

V =
[
Vs Vr

]T
⇔

{
Vs = [vs1 vs2 vs3]

Vr = [0 0 0 . . . 0]1×(q+1)

(17)

− I is the current vector, which is defined as

I =
[
Is Ir

]T
⇔

{
Is = [is1 is2 is3]

Ir = [ir1 ir2 ir3 . . . irq ie]
(18)

− R is the global resistance matrix given by

R =

[
Rs 03×(n+1)

0(n+1)×3 Rr

]
(19)

where Rs is the stator resistance matrix. The (q + 1)×
(q + 1) symmetric matrix Rr corresponds to rotor cage

resistances.

− The global matrix inductance can be presented by

L =

[
Lss Msr

Mrs Lrr

]
(20)

The stator inductance matrix Lss is symmetric with

constant elements, Ms is the mutual inductance between

the stator phases, and Ls1, Ls2, Ls3 are the total induc-

tances of the stator coil which represents the sum of

the magnetizing inductance for each stator coil Lms and
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(b) IA variance: C2.

Fig. 4. Fault detection criteria with respect to fault severity; S1: 5%
eccentricity, S2: 10% eccentricity, S3: 15% eccentricity, S4: 20% eccentricity.

the leakage inductance Lsf . Finally, Lrr corresponds to

the inductance matrix of the rotor loops and the mutual

inductance Msr is a 3 × q matrix consisting of mutual

inductances between stator coils and rotor loops.

In the following, all the relevant inductances matrices in

L are calculated using the winding function method [39],

[40]. In this section, a 4 kW induction machines operating

under nominal load condition have been simulated. Three

machines have been considered: a healthy machine, a faulty

one affected by a (static, dynamic and mixed) eccentricity,

and a faulty machine with broken rotor bars. Simulations have

been performed during 10 seconds. The stator currents have

been sampled with a 1 kHz sampling rate. The first second

corresponding to transient has been removed. In order to obtain

an approximation of a mono-component signal, the current

is bandpass filtered with upper and lower cut-off frequencies

equal to 90 Hz and 10 Hz, respectively. For the sake of brevity,

we chose to only present the mixed eccentricity results and

broken rotor bars.

B. Eccentricity fault detection

The simulation results for the estimation of the IA and IF

using the demodulation techniques are given by Fig. 3.

The main conclusion that may be drawn from these figures

is that the demodulation techniques allow to highlight the

presence of mixed eccentricity. Moreover, the mixed eccen-

tricity introduces both a sinusoidal frequency and amplitude

modulation in the stator current when a fault occurs. In

order to demonstrate the interest of using these techniques for

fault detection and severity measurement, several simulations

have been conducted and the variation of the proposed fault

detection criteria with respect to fault severity is given by

Fig.4.

Figure 4 shows that the proposed fault detection algorithm

allows to measure the fault severity. In fact, the fault detection

criteria are greater as the fault severity increases. These

simulation results demonstrate the interest of the proposed

algorithm for faults detection in induction machine.

C. Broken rotor bars detection

Similarly to eccentricity fault, the proposed algorithm has

been investigated for broken rotor bars detection. The broken
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(a) Synchronous demodulator-based demodula-
tion.
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(b) Concordia transform-based demodulation.
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(c) Principal component analysis-based demodula-
tion.
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(d) Hilbert transform-based demodulation.
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(e) Teager energy operator-based demodulation.

Fig. 3. Stator current demodulation for eccentricity fault detection.
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Fig. 5. Fault detection criteria with respect to fault severity for adjacent
broken bars; S1: 1 Broken rotor bar, S2: 2 Broken rotor bars, S3: 3 Broken
rotor bars.

bars have been performed by considering the correspondent

resistance as infinite.

The simulation results are depicted in Fig. 5 for adjacent

broken rotor bars.

These results show that the broken rotor bars introduce both

amplitude and frequency modulation of the stator currents. The

proposed criteria allow to measure the number of broken rotor

bars since the fault detection criteria are proportional to faults

severity for adjacent broken bars. For non-adjacent rotor bars,

the proposed algorithm allows to identify the broken bars fault

but does not allow to give an indication about the number of

broken bars.

D. Discussion

These results suggest that the presented demodulation tech-

niques are equivalent for faults detection in induction machine.

However, each technique has its own advantages and draw-

backs. For a mono-dimensional signal, a standard approach is

based on the HT. However, the HT assumes that the Bedrosian

theorem conditions are satisfied. Moreover, this technique

suffers from border effects which may increase the criteria

values. The TEO is quite attractive since it requires only three

samples but it is sensitive to noise and assumes that the IF does

not vary too fast. Finally, the SD is easy to implement but it

assumes the carrier frequency as known. Moreover, filtering

stage tuning is quite difficult and induce a long time before

convergence.

For a multi-dimensional signals, the CT and PCA are

interesting techniques for IA and IF computation. The main

drawback of CT is its domain of validity since it works only

for balanced three-phase systems. On the contrary, the PCA

is well suited for an unbalanced system. However, the PCA

performance depends on the signal covariance matrix estimator

and the signal and noise subspaces separation.

IV. CONCLUSION

In this paper, we have investigated the demodulation tech-

niques for rotor faults detection in induction machine. It has

been shown that the computation of the variance of IF and

IA allows to derive a reliable fault detection criteria. The

performance of the proposed techniques has been evaluated for



the demodulation of simulated signals issued from a coupled

magnetic circuits model of a 4kW squirrel cage induction

machine. Further investigations are required in order to prove

the usefulness of the proposed techniques for actual induction

machine rotor and stator faults detection.
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