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Linear instability of the path of a freely rising
spheroidal bubble

Joël Tchoufag1, Jacques Magnaudet1,2,† and David Fabre1

1Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse),
Allée Camille Soula, F-31400 Toulouse, France
2CNRS, IMFT, F-31400 Toulouse, France

Path and wake instabilities of buoyancy-driven oblate spheroidal bubbles with a
prescribed shape rising freely in a viscous fluid otherwise at rest are studied using
global stability analysis, following the technique recently developed for a coupled
fluid + body system by Tchoufag, Fabre & Magnaudet (J. Fluid Mech. vol. 740, 2014,
pp. 278–311). The essential role of the wake on the path instability is evidenced by
comparing the shape of the global stability diagram with that obtained in the case
of a fixed bubble. However, dramatic differences are also found, since the critical
curve of the coupled system mostly involves low- and high-frequency oscillating
modes, whereas that of a fixed bubble only involves stationary modes. Comparison
of the present predictions with results obtained through direct numerical simulation
is achieved in several regimes, confirming the predictions of the linear approach but
also highlighting some of its limitations when the system successively encounters
several unstable modes.
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1. Introduction

Path instability of isolated rising bubbles has been a subject of curiosity for
ages, as testified by Leonardo’s drawings (Prosperetti et al. 2003; Prosperetti 2004).
Various hypotheses on the origin of this puzzling behaviour were suggested during
the second half of the last century (see the review by Magnaudet & Eames 2000),
including the effects of surfactants and the influence of shape oscillations. The picture
was significantly clarified by the direct numerical simulations (DNS) of Mougin &
Magnaudet (2002) and Magnaudet & Mougin (2007) with freely rising and fixed
bubbles, respectively, which showed that path instability is closely related to wake
instability. Both studies considered perfectly clean bubbles (i.e. the outer fluid obeyed
a shear-free condition at the bubble surface) with a frozen oblate shape and revealed
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that the wake becomes unstable when the oblateness exceeds some critical threshold,
the value of which depends on the Reynolds number based on the rising speed.

Independently, recent theoretical and computational studies devoted to two- and
three-dimensional freely rising/falling rigid bodies such as plates (Assemat, Fabre &
Magnaudet 2012), infinitely thin disks (Auguste, Magnaudet & Fabre 2013; Chrust,
Bouchet & Dusek 2013) or disks of finite thickness (Chrust, Bouchet & Dusek 2014;
Tchoufag, Fabre & Magnaudet 2014) have revealed that the translational and rotational
body degrees of freedom generally play a key role in the path instability mechanism.
In particular, they can cause the thresholds and frequencies of the observed paths
to differ drastically from those associated with the wake instability of the fixed
body. This is why assessment of the possible relation and differences between the
primary destabilization of the wake and path of a freely moving bubble and the
wake instability of a fixed bubble experiencing a uniform upstream flow is in order.
As discussed by Tchoufag et al. (2014), this goal is best achieved by considering a
global linear stability analysis (LSA) of the coupled fluid + body system. This is the
approach followed here, the outline of which is given in § 2 before the main results
are discussed in § 3. This section also provides some quantitative comparisons with
the DNS results of Mougin & Magnaudet (2002) (hereafter referred to as MM02) in
various regimes.

2. Parameterization and formulation of the global stability problem

Following MM02, we assume the bubble to be a non-deformable spheroid
characterized by the aspect ratio χ = b/a between the major and minor semiaxes.
As shown in several experiments, e.g. Ellingsen & Risso (2001), this assumption is
approximately valid as far as surface tension effects are of the same order as inertial
effects. The problem also depends on the bubble-to-fluid density ratio ρ, and on the
Reynolds number Re = U0d/ν, where d = 2(b2a)1/3 is the bubble equivalent diameter,
U0 is the equilibrium velocity of its steady vertical rise (or base state) and ν is
the fluid kinematic viscosity. Nevertheless, comparisons with experiments and DNS
are made easier by replacing U0 by the gravitational velocity Ug = ((1 − ρ)gd)1/2,
which yields the Archimedes number Ar = Ugd/ν, where g denotes gravity. The
conversion from Re to Ar is achieved by determining the drag coefficient CD(Re) in
the base state and equating the drag and buoyancy forces, which yields the relation
CD(Re)Re2 = 4Ar2/3. As is well known, Re and χ are not independent in real
gas–liquid systems. Rather, given the fluid physical properties and bubble volume,
they are uniquely determined by the Archimedes number and the Bond number
Bo = ρ(1 − ρ)gd2/σ , where σ and ρ stand for the surface tension and liquid density,
respectively. Hence, arbitrary variation of Re at a given χ or vice versa as we do
here could only be achieved by independent variation of ρ, ν and σ in a laboratory
experiment, which is generally not feasible.

Similarly to the formulation employed by Tchoufag et al. (2014), we introduce a
system of axes (x, y, z) translating and rotating with the bubble, with x aligned
with the spheroid axis and y and z lying in its diametrical plane. The bubble
orientation is defined by the vector Ξ whose components are the roll/pitch/yaw
angles corresponding respectively to the angular positions of the x/y/z axes with
respect to a fixed system of axes (x0, y0, z0). The Navier–Stokes equations for the
absolute velocity V and pressure P are written in the (x, y, z) reference frame; V
falls to zero far from the bubble and obeys the zero-penetration condition V · n = 0 
and the shear-free condition n × (T · n) = 0 at the bubble surface, where n denotes 



the unit normal to this surface and T = −PI + ν(∇V + t
∇V) is the stress tensor

(I is the Kronecker tensor). The Newton equations expressing the overall force and
torque balances on the bubble govern the evolution of its translational velocity U
and rotation rate Ω . Finally, for small deviations from vertical, the evolution of the
bubble orientation is governed by the equation dΞ/dt = Ω .

The corresponding LSA problem is solved thanks to the finite element solver
FreeFem++ already used by Tchoufag et al. (2014) for freely moving disks and by
Tchoufag, Magnaudet & Fabre (2013) for fixed oblate bubbles. The reader is referred
to these two references, especially the first one, for all technical details. As shown
in Tchoufag et al. (2013), dealing with the shear-free condition in the framework of
a variational formulation requires the normal stress, Σ = n · T · n, to be considered
as an additional unknown. The formulation described in Tchoufag et al. (2014) is
modified accordingly and the vector state corresponding to the fluid unknowns is
Qf = [V, P, Σ], where all variables depend on space and time. The complete state
vector for the bubble + fluid system is then Q = [Qf , Qb], where Qb = [U, Ω, Ξ ]
gathers the time-dependent bubble kinematic degrees of freedom.

In order to perform the global stability analysis, the state vector is split into a
base state Q0 and a linear perturbation q. The base state corresponds to the steady
vertical rise of the bubble with zero inclination, i.e. the axis of the oblate spheroid is
aligned with gravity, and is computed on a triangular grid (the influence of the grid
characteristics is discussed by Tchoufag et al. 2013) via a Newton algorithm (Sipp
& Lebedev 2007). By introducing the cylindrical coordinate system (r, φ, x) such
that y = r cos φ, z = r sin φ, the perturbation is expanded in normal mode form as

q = [q̂
f
(r, x)eimϕ, q̂

b
]eλt. By linearizing the governing equations around the base state,

the whole problem reduces to a generalized eigenproblem of the form Amq̂ = λBmq̂

(with q̂ = [q̂
f
, q̂

b
]) for each value of the azimuthal wavenumber m. Finally, by making

use of the SLEPc library, the eigenvalues λ= λr + iλi and the associated global modes
q̂ are obtained for various sets of the control parameters χ and Re, the bubble-to-fluid
density ratio being set to ρ = 10−3, which is typical of the air–water system under
standard conditions. The results discussed below have been made dimensionless by
normalizing lengths with d, velocities with U0, time with d/U0 and gravity with U2

0/d.

3. Results and discussion

3.1. Growth rates and frequencies as a function of Re and χ

The most unstable modes all correspond to |m| = 1, as expected from the various
available studies with axisymmetric bodies, i.e. fixed spheres and disks (Natarajan &
Acrivos 1993), fixed bubbles (Tchoufag et al. 2013) or freely moving disks (Tchoufag
et al. 2014). These modes, with growth rate λr and reduced frequency St = λi/(2π),
have been computed over the range χ ∈[2.1,2.5] and Re.3×103. The upper value of
χ was chosen after an attempt with χ = 2.7 showed that it was difficult to accurately
determine the near-zero growth rate at the highest values of Re involved (≈5 × 103

in that case), due to difficulties in properly capturing the structure of the very thin
boundary layer.

The curves λr(Re) and St(Re) obtained by continuously tracking the most
significant eigenvalues as a function of Re for various values of χ are gathered
in figure 1(a–b) and (c–d), respectively. The growth rate curves evidence a
destabilization–restabilization behaviour of the system, with λr reaching a maximum
at a value of Re that slightly increases with χ and ranges from 400 to 550 in
the range of χ explored. Therefore, contrary to the case of buoyancy-driven rigid
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FIGURE 1. Variations of the growth rate (a,b) and reduced frequency (c,d) as a function
of Re for several bubble aspect ratios: (a) and (c) χ = 2.15–2.25; (b) and (d) χ = 2.3–2.5.
The dashed lines are associated with modes oscillating at a high quasi-constant frequency
(HF modes); the thick solid lines correspond to stationary (S) or low-frequency (LF)
modes or to combinations of both. The thin solid lines in (a) and (b) represent a second
type of steady mode which at some point merges with the main S mode and gives birth
to an LF mode, or sometimes (for χ = 2.25 − 2.3 and 200 < Re < 300) to an HF mode.

bodies, the path of a spheroidal bubble is unstable only within a finite range of Re

whose span increases with χ . The fact that the vorticity resulting from the shear-free

condition reaches a finite value when Re goes to infinity instead of increasing as Re1/2

when the fluid obeys a no-slip condition is at the root of this specific behaviour, as

discussed in detail by Magnaudet & Mougin (2007). Figure 1(a) indicates that the

growth rate becomes negative whatever the value of Re for χ 6 χC ≈ 2.15, a critical

oblateness slightly less than the aspect ratio χW ≈ 2.21 corresponding to the threshold

of wake instability in the fixed-bubble configuration (Magnaudet & Mougin 2007;

Tchoufag et al. 2013).

Analysis of the reduced frequencies in figure 1(c–d) allows us to identify three main

kinds of unstable modes.

(i) First, the most prominent feature is the existence of an ‘S’ family corresponding

to stationary modes which are found to be unstable as soon as χ & 2.215. These

modes have the largest range of existence for most values of χ ; their amplification

rate reaches a maximum in the range 400 6 Re 6 600.

(ii) Second, we can identify an ‘HF’ family of modes oscillating at a quasi-constant

high frequency around the typical value St ∼ 0.1 (dashed lines). For χ . 2.55, these

modes are unstable in two distinct intervals, the first one being located around Re ≈
100 and the second being centred at approximately Re ≈ 400. For χ & 2.55 (not

shown), these two intervals merge into a single one. It should be noted that for χ >

2.25, these modes are the first that become unstable as the Reynolds number increases.

This is strikingly different from the picture observed in the fixed-bubble configuration,



where the first bifurcation is always stationary (Magnaudet & Mougin 2007; Tchoufag
et al. 2013). Figure 1(a,b) shows that the HF modes always restabilize at high Re.

(iii) Third, we observe an ‘LF’ family of modes oscillating at a quasi-constant
but very low frequency, St ∼ 0.01. These modes are mostly encountered in a range
of Reynolds number located just above that corresponding to the existence of the S

modes, and their amplification rate is in most cases much smaller than that of the S

and HF modes. It should be noted that, compared with the S modes, their range of
existence also extends to lower values of χ (see e.g. the case χ = 2.15 in figure 1a).

A closer look at the results shows that, in addition to the aforementioned three
main families, a second subdominant stationary mode (thin lines in figure 1a,b) is
also present for χ > 2.25 in a narrow interval of Re just below the upper threshold
Ref of the S mode. This mode helps in understanding the onset of the LF mode, which
can be interpreted as a result of the merging of two real eigenvalues into a pair of
complex conjugate eigenvalues (see e.g. the curve corresponding to χ =2.4). A similar
process occurs close to the lower threshold of the S mode for χ 6 2.3, albeit in a
much narrower range of χ (see e.g. the case χ = 2.217 in figure 1a). A more detailed
view which allows one to fully appreciate how this merging/splitting process occurs
is provided in appendix A where the unstable eigenvalue corresponding to χ = 2.217
is tracked in the complex plane.

Combination of the information contained in figure 1(a,b) reveals that all curves
involving a stationary mode in some range of Re are actually made of a succession
of the above families of modes. Hence, for a given aspect ratio, sudden frequency
variations or ‘jumps’ are observed when the system switches from one mode to
another. For instance, as Re increases, St goes from 0.1 to 0 and then to 0.01,
corresponding to an HF–S–LF sequence at χ = 2.3, or from approximately 0.01 to 0
and then to 0.01 again for the LF–S–LF sequence at χ = 2.217. As we shall show
below, these frequency changes are associated with dramatic changes in the spatial
structure of the corresponding global modes.

3.2. Stability diagrams

By tracking the Re values such that λr(Re) = 0 and the corresponding frequencies, we
obtain the phase diagrams in the planes (χ, Re) and (χ, St) as drawn in figure 2. It
is immediately seen that the HF, LF and S modes are unstable only for aspect ratios
larger than the threshold values χCHF

≃ 2.25, χCLF
≃ 2.15 and χS ≃ 2.215, respectively.

Hence, path instability of spheroidal bubbles with a frozen shape is found to exist
only for χ > χC = 2.15.

The grey lines in figure 2(a) correspond to the neutral stability curves of the
wake alone, as obtained by Tchoufag et al. (2013) for a fixed spheroidal bubble.
Comparison of these curves with those of the fluid + bubble system reveals that the
destabilization or restabilization thresholds of the wake are quite close to those of
the coupled system, underlining the central role of the wake in the path instability
mechanism. However, crucial differences may be noticed. First, the primary instability
as Re increases is found to be of HF type for χ > 2.25, at odds with the fixed-bubble
analysis which predicts the first bifurcation to be stationary for all χ > 2.21. Second,
instability is found to occur in the form of an LF mode for 2.15 6 χ 6 2.215, a
range where the wake of a fixed bubble is stable whatever the value of Re. Hence,
it is only within the narrow range χ ∈ [2.215, 2.25] that the first instability of
the coupled system is well predicted by examining the stability of the sole wake.
Clearly, the (χ, Re) and (St, Re) phase diagrams are much more complex for the
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FIGURE 2. Phase diagram (χ, Re) showing the neutral stability curves for a freely rising
and a fixed (grey) bubble. The thick dashed (solid) lines correspond to destabilization
(restabilization) thresholds. Lines with diamonds (circles) correspond to high- (low-)
frequency modes while the thick red dashed line without symbols corresponds to stationary
modes. The thin red dashed line shows the location where the merges of (or splits into)
stationary modes occur. The green crosses mark the locations of points P1–P4 discussed
in § 3.3.

coupled system. In figure 2(a), the critical curve corresponding to the stationary mode
and that corresponding to the HF (respectively LF) mode are observed to cross at
(χ, Re) ≃ (2.53, 151) (respectively ≃ (2.23, 290)), yielding codimension-two points of
steady-Hopf/HF and steady-Hopf/LF type, respectively. Moving along the marginal
curve of the primary instability, these codimension-two points are loci where a sudden
frequency jump identified by an arrow in figure 2(b) takes place.

3.3. Global modes and comparison with DNS results

Figure 3 displays the spatial structure of a few critical global modes corresponding to
points P1 to P4 in figure 2(a), their magnitude being normalized in such a way that
the bubble inclination is unity. The above points were selected to allow comparisons
with the DNS results of MM02.

Figure 3(a,b) reveals the wake structure of the LF mode that takes place at
P4 (χ = 2.25, Re = 103). The corresponding axial vorticity keeps a constant sign 
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FIGURE 3. Several global modes (m = 1) of the coupled system at points P1–P4 in
figure 2(a). The upper (lower) half of each subfigure displays the isovalues of the axial
velocity (vorticity) of the mode; gravity acts from left to right. (a,b) The LF mode at
P4 (χ = 2.25, Re = 103). (c,d) The HF mode at P1 (χ = 2.5, Re = 90.6) (in both cases,
(a,c,e) and (b,d,f ) display the real and imaginary parts, respectively). (e,f ) The stationary
modes at P2 (χ = 2.5, Re = 157.3) and P3 (χ = 2.5, Re = 1050), respectively; for these
two modes, the axial velocity (vorticity) is purely real (imaginary).

over a long distance (typically ten bubble diameters), which makes the near wake
look similar to that associated with a strictly stationary mode (compare with panels
e and f ). However, Tchoufag et al. (2014) showed that the real and imaginary
parts of an unsteady mode actually correspond to two different instants of time
in its dynamics. Hence, comparison of panels (a) and (b) proves that the axial
velocity and vorticity disturbances change sign as time evolves, although over a
long time period. Such dynamics are reminiscent of the DNS observations of MM02
and Mougin & Magnaudet (2006), who found that in the zigzagging (ZZ) regime,
high-Reynolds-number bubbles are followed by a pair of counter-rotating trailing
vortices that change sign every half-period of the zigzag (see also the experimental
observations in ultrapure water reported by de Vries, Biesheuvel & van Wijngaarden
2002, van Wijngaarden 2005 and Veldhuis, Biesheuvel & van Wijngaarden 2008). To
go beyond this qualitative resemblance, we may compare the frequency of the present
mode with that found in the DNS run of MM02 corresponding to χ = 2.25, Ar = 390.
In this run, the straight vertical path eventually switches to a ZZ path (figure 4a).
Starting from rest, the Reynolds number Re(t) (based on the norm of U) first increases
rapidly until it reaches a maximum Re(t) = Remax close to but slightly less than that
corresponding to the equilibrium value in the base state, Re0 ≈ 1275. Then, Re(t)
somewhat decreases when the instability develops (owing to the supplementary drag
resulting from the occurrence of the trailing vortices) and eventually oscillates during
the ZZ path. Since the bifurcation and the ZZ path both take place at an O(103)
Reynolds number, the comparison with the linear mode at P4 is relevant. However,
it must be kept in mind that this mode was obtained assuming a strictly steady
axisymmetric base flow, whereas the flow in the DNS evolves in time at previous
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stages and is three-dimensional far before the conditions corresponding to P4 are
reached, since figure 2(a) indicates that the stationary mode becomes unstable at
Re ≈ 270 for this aspect ratio. Defining the reduced frequency normalized by the

gravitational velocity, S̃t = St U0/Ug, we find it to be S̃t ≃ 0.042 for the linear LF
mode at its restabilization threshold (Re ≈ 1180), which compares reasonably well

with the DNS finding, S̃tDNS ≃ 0.053, corresponding to figure 4(a). This agreement,
although not perfect for the reasons outlined above, supports the idea that, in this
range of χ , the zigzagging motion of bubbles with O(103) Reynolds numbers is
associated with an LF mode, as figure 2(a) predicts.

Let now turn to the HF mode at an O(102) Reynolds number shown in figure 3(c,d).
Comparison of the two panels makes it clear that the spatial arrangement of the axial
velocity evolves periodically from a ‘sign-preserving’ type (all ‘rolls’ in the wake
keep the same sign) to a ‘sign-alternating’ type (two successive rolls have opposite
signs), a switch that Tchoufag et al. (2014) showed to be indicative of a strong
coupling between the body and its wake at the corresponding bifurcation. It is then
no surprise that the fixed-bubble approach could not predict the bifurcation that takes
place at P1. As figure 2(a) indicates, point P1 corresponds to the first bifurcation
(with increasing Re) for the aspect ratio χ = 2.5. This bifurcation is of Hopf type,
and the threshold, once expressed using the gravitational velocity, is found to be
Ar ≃ 90.5. These findings are in good agreement with those of MM02, whose DNS
predicted the threshold of the zigzagging path to take place at ArDNS ≃ 86 when

χ = 2.5. Moreover, the frequency S̃t is approximately 0.095 for the HF mode, which

also compares well with the DNS prediction S̃tDNS ≃ 0.092.
As shown in figure 3(e, f ), the wake associated with the stationary modes at

P2 (Re = 157.3) and P3 (Re = 1050), both for χ = 2.5, is dominated by the presence
of two counter-rotating trailing vortices, a wake structure known to result in a steady
non-zero lift force. At P2, the near wake also involves two small secondary vortices
of opposite sign directly connected to the bubble, a feature that does not exist at P3.
This difference may be understood by noting that, unlike the case of solid bodies,



the standing eddy at the rear of a bubble shrinks as Re becomes very large (Blanco
& Magnaudet 1995; Magnaudet & Mougin 2007), so that the streamline distribution
in the base flow gets closer to that corresponding to the potential flow past an
oblate spheroid. This change is also responsible for the narrowing of the wake as
Re increases, which tends to ‘glue’ the trailing vortices to the symmetry axis, as
figure 3(f ) reveals. Again, a comparison with the DNS predictions can be achieved
in the latter case. With χ = 2.5 and Ar = 390, MM02 found the bubble Reynolds
number to reach a maximum Remax ≈ 1035 before the path departed from vertical.
Then, this path was observed to experience a marked lateral drift until a periodic
ZZ motion eventually set in (see figure 4b). As the Reynolds number at P3 is close
to Remax, it is again reasonable to consider that the linear mode at P3 represents a
good approximation of the mode that first becomes unstable in the DNS. Since we
found the former to be stationary, LSA allows us to conclude that the first bifurcation
experienced by the system when Re(t) becomes of O(Remax) yields a steady oblique
(SO) path, a prediction in agreement with figure 4(b).

4. Summary and final comments

In this work, we investigated the global linear stability of the path of an oblate
spheroidal bubble rising in a Newtonian fluid otherwise at rest. The computed
eigenvalues and modes of the coupled fluid + bubble system revealed a much
more complex behaviour than in the case where the stability of the sole wake is
considered. In particular, we found that the first instability of the system as the
Reynolds number increases may arise through a Hopf bifurcation associated with a
low- or high-frequency mode, depending on the aspect ratio, while it always occurs
through a stationary bifurcation when the bubble is set fixed. Comparisons with DNS
results performed for several sets of χ and Ar showed that the nature and frequency
(if any) of the mode that first becomes unstable are well captured by the present
LSA approach. However, several open issues remain.

First, as we have already mentioned, comparison of LSA results with experimental
and DNS observations is not straightforward because bubbles observed in ‘real life’
are generally released from rest, which makes their rise Reynolds number highly
time-dependent, especially during the initial transient. This raises a question about
the type of instability that actually develops when the aspect ratio is such that the
physical system successively explores several unstable regions as Re(t) evolves. This
is, for instance, the case for the bubble with χ = 2.25, Ar = 390 we discussed in
the previous section, which according to figure 2(a) crosses the region where the
S mode is unstable when it accelerates and its Reynolds number is in the range
270.Re(t). 630, before it enters the region where the LF mode is unstable when it
gets closer to its steady state. In that case, the comparison we performed with DNS
data revealed that the final non-vertical path exhibits characteristics consistent with
those of the linear LF mode; the only discernible trace of the S mode is probably

the slight difference we observed in the values of S̃t, which may presumably be
attributed to the three-dimensionality of the flow that has already set in before the
LF mode becomes unstable. However, the influence of modes that are unstable during
some stage of the initial transient is probably more severe in certain cases, such
as for instance with bubbles such that 2.3 . χ . 2.35 and Ar values yielding final
Reynolds numbers slightly beyond the destabilization threshold of the LF mode (the
dotted line with blue open circles in figure 2a). Here, the system successively covers
ranges of Re(t) where the HF, S and LF modes are unstable. In particular, it spends



a significant amount of time in the intermediate region where the stationary mode is
unstable. Since the growth rate of this mode is much larger than that of the other
two according to figure 1(a), one may guess that the late evolution of the real system
carries some footprint of this S mode. Unfortunately, MM02 did not perform any run
with such (χ, Ar) sets and we cannot check this conjecture here.

A similar difficulty is encountered after the bubble has reached its maximum
Reynolds number and may be illustrated with the example of figure 4(b). Here, Re(t)
reaches its maximum value, Remax ≃ 1035, before the SO path sets in. During this
second stage, Re(t) sharply decreases due on the one hand to the supplementary
drag induced by the trailing vortices and on the other hand to the inclination of
the path which lowers the driving component of the buoyancy force. At the end of
the SO stage, Re(t) is approximately 800 which, according to figure 2(a), is close
to the upper threshold of the HF mode. Therefore, looking at the path displayed in
figure 4(b), it is tempting to conclude that the ZZ stage that succeeds the oblique
drift corresponds to this HF mode. Actually this is not so, since the frequency of

the latter yields S̃t ≃ 0.175 according to figure 2(b), while the frequency determined

in the DNS is S̃tDNS ≃ 0.064. A weakly nonlinear approach is required to address the
above issues and determine how the primary modes that are successively encountered
as Re(t) evolves interact and what the essential characteristics of the final stage of
the system are. We are currently developing such an approach.

Comparison of the present predictions with known results for real bubbles raises
another issue. According to the experimental findings of Zenit & Magnaudet (2008)
obtained with various silicone oils, the path may become unstable for aspect ratios
typically 10 % smaller than the critical value predicted here. Moreover, for O(102)

Reynolds numbers, Zenit & Magnaudet (2009) showed that the wake structure is
very similar to that corresponding to the LF mode displayed in figure 3(a,b) (with,
in addition, the pair of secondary vortices found in the same range of Re in the
S mode of figure 3c). We would guess that both features result from the slight
fore–aft asymmetry of real nearly spheroidal bubbles: not only might this asymmetry
shift the marginal curve toward smaller χ , as suggested by the numerical study of
Cano-Lozano, Bohorquez & Martinez-Bazan (2013), but it also seems to deform the
stability diagram in such a way that the threshold corresponding to the destabilization
of the LF mode is shifted toward much smaller Reynolds numbers than for perfectly
spheroidal bubbles and may, over a significant range of χ , be the first that becomes
unstable as Re increases. We are currently working on this aspect by introducing
more realistic bubble shapes in our LSA code.

Finally, the existence of a crescent-shaped region in figure 2(a) within which the
S mode is unstable provided the aspect ratio is larger than 2.215 raises an interesting
puzzle. Indeed, this prediction suggests that bubbles whose final Reynolds number
falls in this region should eventually follow an SO path. This is especially clear
within the narrow range 2.23 6 χ 6 2.25 where the S mode is associated with the
primary bifurcation, i.e. no previous bifurcation can alter the final behaviour of the
system. The point is that we are not aware of any experimental or computational
observation that supports the existence of such an inclined path, except during short
transients as in figure 4(b) (again MM02 did not consider any (χ, Ar) set whose
final state should have fallen in this region). Only zigzagging or spiralling paths have
been observed to subsist over long periods of time, suggesting that the SO path is
not a solution of the full nonlinear problem. This is at odds with the case of solid
spheres and disks for which such a path has been consistently reported, in both
experiments and computations, and was predicted to be a stable non-trivial solution
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FIGURE 5. Complex path of the unstable eigenvalue found with a bubble of aspect ratio
χ = 2.217. The left grey part of the plane indicates the region where the corresponding
eigenmode is stable.

of the fluid + body problem though a weakly nonlinear analysis by Fabre, Tchoufag
& Magnaudet (2012). Crucial in this analysis is the fact that the torque experienced
by the body vanishes for a small non-zero inclination of the path. It might be that
the shear-free rather than no-slip condition that holds at a bubble surface changes the
nature of the bifurcation that yields the SO path: it was found to be supercritical for
spheres and disks (except when the latter are extremely thin) and could be subcritical
for bubbles. We are currently repeating the analysis developed by Fabre et al. (2012)
with a bubble to check this possibility.
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Appendix. Merging/splitting of eigenvalues in the complex plane

To facilitate the understanding of the merging/splitting behaviour exhibited by
several eigenvalues in figure 1, figure 5 shows how the eigenvalue with the largest
real part found for χ = 2.217 evolves in the complex plane. We selected this example
as a prototype of eigenvalues whose imaginary part vanishes in some range of Re, then
yielding a stationary mode. The arrows in figure 5 indicate the direction of increasing
Re, from 1 to 4. Following arrows 1, we first observe a pair of complex conjugate
eigenvalues with a negative real part. This real part then changes sign, leading to an
instability corresponding to an LF mode, until the two eigenvalues merge at point
(0.007, 0). There they give birth to a pair of real eigenvalues. Following the arrow 2
pointing to the right, one of them (which corresponds to the main stationary mode
in figure 1) is seen to increase until it reaches the point (0.048, 0). The second real
eigenvalue (corresponding to the subdominant stationary mode in figure 1) decreases
along the second arrow 2 and changes sign (i.e. the corresponding mode restabilizes)
until it reaches the point (−0.025, 0). Then, following arrows 3, these two eigenvalues
go through their previous paths in the reverse direction. They eventually merge at
point (0.014, 0) where they split into a new pair of complex conjugate eigenvalues



(corresponding to a second LF mode). Following arrows 4, the magnitude of their
imaginary part sharply increases without much change in the real part, until it
saturates at a value of ±0.017. Then, the real part sharply decreases and eventually
becomes negative, leading to restabilization.
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