
HAL Id: hal-01015456
https://hal.science/hal-01015456

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart Places: Multi-Agent based Smart Mobile Virtual
Community Management System

Muhammad Fahad, Olivier Boissier, Pierre Maret, Néjib Moalla, Christophe
Gravier

To cite this version:
Muhammad Fahad, Olivier Boissier, Pierre Maret, Néjib Moalla, Christophe Gravier. Smart Places:
Multi-Agent based Smart Mobile Virtual Community Management System. Applied Intelligence,
2014, 41 (4), pp.1024-1042. �10.1007/s10489-014-0569-2�. �hal-01015456�

https://hal.science/hal-01015456
https://hal.archives-ouvertes.fr

Smart Places: Multi-Agent based Smart

Mobile Virtual Community Management

System

Muhammad Fahad
a
, Olivier Boissier

b
 Pierre Maret

c
, Nejib Moalla

a
 and Christophe Gravier

c

a
DISP lab, Universite de Lyon, IUT Lumiere lyon 2, 160 Boulevard de l’universite, 69676 Bron, France

b
Ecole Nationale Supérieure des Mines, FAYOL-EMSE, LSTI, F-42023 Saint-Etienne, France

c
Université de Saint-Etienne, 10 rue Tréfilerie, F-42023 Saint Etienne, France

Abstract. Now-a-days the advancement in mobile device technology aims to build complex computational systems providing

maximum level of flexibility, decentralization, simplest form of interactivity, and ease of use. Recently, the launch of agent-

oriented platform JaCaMo and its Android client based platform JaCa-Android provide an appropriate level of abstraction to

build smart mobile client server systems providing these attributes. By using these platforms, we have developed a multi-agent

based Smart Mobile Virtual Community Management System (SMVCMS) that makes possible to install a decentralized and

open management of virtual communities. This paper addresses the design and architecture of our multi-agent server and client

application. It elaborates different features of our system, such as how a participant of virtual communities is supported by a

Jason agent that encapsulates the logic and the control of the participation to a virtual community (such as publishing posts,

notifying members, recommendation for the user, etc.). It discusses how the set of CArtAgO artifacts provides the basic func-

tionalities and operations giving access to the functionalities for knowledge exchange in virtual communities, and personal

agents on Android exploits those artifacts to execute their tasks while achieving their individual and collective goals. We have

employed SMVCMS in the context of Smart Cities and found that the system fulfills the desired goals, such as decentralization

of community management, personalized automatic management and discovery of communities, autonomy of agents and flex-

ibility so that any agent can create its own community with the maximum level of ease.

Keywords: Virtual Communities, Information Exchange, Jason, Cartago, JaCaMo, Multi-Agent programming, Android appli-

cation, Community Recommendation System

1. Introduction

An online Community also known as a Virtual

Community (VC) is a gathering of people, in an

online space where they join, communicate, and ex-

change information between them. Along with the

time, group of people with similar interests use VCs

as a synergetic way to exchange knowledge and keep

in touch with their beloved ones and the world

around them. VCs were originally designed to be

agnostic of spatio-temporal constraints. Instead, they

are nowadays spreading under adhoc spatio-temporal

constraints in the physical environment. VCs are ex-

panded from the paradigm to offer online spaces for

users to communicate providing a digital medium for

people in the same area, at the same time. The con-

tribution goes to the advent of pervasive computing

in our lives. Mobile and ambient computing lead VCs

incarnation to shift from digital environments to the

real world. This is the reason why there is a strong

need of decentralized and open ways for managing

these VCs in such settings. For example, a communi-

ty within the hospital can serve different types of

information exchanges by the patients, doctors, ad-

ministration, nurses, ambulance staff, etc. Or a com-

munity server can be situated at some visiting place

like ‘Eiffel Tower’, for managing the visiting people,

history of the place, controlling exhibitions, reporting

improvements, etc.

To tackle such requirements, we turn to multi-

agent technology JaCaMo
1

 Platform that showed

great success in various application domains, where

different autonomous decision-making entities

(agents) have to communicate, exchange knowledge

and cooperate in order to achieve individual and/or

collective objectives [1, 2]. Using a Multi-Agent Ori-

ented Approach (MAOP) for supporting VC, mobile

agents act as a personal assistant on behalf of each

member of a community. The agent perceives

knowledge from the communities of individual inter-

ests and acts upon the communities to meet their de-

sign goals. Thus, agents bring the appropriate people

having common goals or interests together and to

share their knowledge with each other at a maximum

ease. In addition to multi-agent platform, mobile de-

vices adds features by building complex computa-

tional systems providing maximum level of flexibil-

ity, simplest form of interactivity, and ease of use for

the end users. One such mobile technology is An-

droid originated by a group of companies known as

1
 http://www.jacamo.sourceforge.net

the Open Handset Alliance, led by Google. Android
2
,

as an open-source software stack for smart phones,

aims at the creation of a successful real-world prod-

uct that improves the mobile experiences for the end

users. Recently, the launch of agent-oriented plat-

form named JaCa-Android [3] provides an appropri-

ate level of abstraction to build multi-agent based

smart mobile systems and application on top of the

Android platform.

We have designed and implemented a multi-agent

based Virtual Community Management System

(VCMS) based on JaCaMo Platform. We reported the

top level architecture and demonstration of our sys-

tem VCMS in [4]. This paper extends VCMS with

Smart and Mobile features and introduces it as Smart

Mobile Virtual Community Management System

(SMVCMS). In addition, this paper presents its server

architecture, major functionalities such as recom-

mendation component and also its client Android

based application named as SmartClient. In

SMVCMS, virtual communities are realized by means

of a set of Jason [5] agents encapsulating the user

profile and the logic and control of the specific op-

erations involved in the community pack: community

management (e.g. joining/leaving, creating/deleting a

community), information sharing (e.g. publishing

posts, notifying members, etc.). The agents accom-

plish these actions by using a set of functionalities

that are made accessible by the communities they

belong to. A community consists of a domain of in-

terest, an owner, a message buffer, and an initially

unspecified number of member agents, which have

certain interests over the community. Agents can

exploit them to achieve their individual and collec-

tive goals. These tools are implemented by means of

artifacts developed in CArtAgO framework [6].

Agents lookup the artifacts in the different workspac-

es affected to each community and exploit the opera-

tions offered by each of the artifacts to achieve their

desired tasks. Later in this paper we are going to ad-

dress details of our system, what are the artifacts,

which agents exploit them and especially the design

of our mobile SmartClient end-user application.

As a client and server architecture, SMVCMS serv-

er holds the communities and clients access them

from their smart Android devices installed with

SmartClient end-user application. Since, users of

SMVCMS vary in their interests and goals, it is nec-

2
 http://source.android.com/about/philosophy.html

essary to generate recommendations on the basis of

user profiles. Recommendations by SMVCMS can

serve as a key technology for connecting people and

sharing information on the virtual world. It proposes

new communities for the knowledge management

and connects people having common interest with

other people once having their profile on the com-

munity. SMVCMS lets the people updated with the

information or community on the virtual space that is

of their interests. Later in this paper, we are provid-

ing details how SMVCMS generates recommenda-

tions for its community users.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 provides a

discussion on a scenario description of a smart city.

Section 4 presents our Smart Mobile Virtual Com-

munity Management System. It presents SMVCMS

artifacts and agents that perform operations on the

Server and Client side. Section 5 elaborates different

functionalities of our client Android system named as

SmartClient and also presents the interface design of

this application. Section 6 elaborates the use of our

system in the context of smart cities. Section 7 ex-

plains different types of recommendations in our sys-

tem. Section 8 presents experimental details and

evaluation of the system. Finally, section 9 concludes

the paper and shows our future directions.

2. Related Work

An adaptive room governance application is de-

veloped by A. Sorici et al. in the context of smart co-

working [7]. The main contribution of their system

was to focused on MAS organizations based on Moi-

se framework (within JaCaMo platform) to establish

a precise and efficient level of management for the

room allocation.

A bottom-up agent-based approach for the

knowledge management using virtual communities is

presented by P. Maret and J. Calmet developed [8].

They developed a prototype named as Virtual

Knowledge Communities based on the Jade system,

which is a Java based software development frame-

work that conforms to FIPA standards for intelligent

agents.

 An agent based SymposiumPlanner is developed

by Z. Zhao et al. to enable topic-oriented collabora-

tion between the distributed members of a virtual

community [9]. Their SymposiumPlanner exploits

Rule Responder that is a multi-agent system for the

collaborative team and community support on the

Web. A semi-autonomous rule-based personal agent

assists each of the community members. Their agent

infrastructure is based on the Semantic Web rules

that help to capture and make cooperate for different

aspects of the member’s derivation and reaction logic.

SymposiumPlanner supports the RuleML Symposia

by coordinating personal agents that assist the sym-

posium chairs, intelligently answering questions from

people interested in the symposium.

A concrete agent-based architecture to proactively

supply knowledge to knowledge-intensive work flow

is developed by C. Toledo et al. They used JaCaMo

platform by integrating the Business Process Man-

agement and Knowledge Management infrastructures

together [10].

3. Smart City: A Scenario Description

Smart Mobile Virtual Community Management sys-

tem (SMVCMS) can be used to build a Smart Place

by employing its applied intelligence on a City, Hos-

pital, University, Conference, Festival, Building, etc.

For example, consider a Smart City which is

equipped with community servers (SMVCMS) situat-

ed at different locations or buildings of the city. The

purpose of community servers is to manage different

communities and to provide services to its inhabitants.

Communities are created on-the-fly by inhabitants of

the city or by any city service. A community server is

associated to a physical area defined by geographical

coordinates (for instance a circle around the server).

These servers can be situated at various places of the

city. For instance, the following are some examples

with different scenario descriptions where it can fa-

cilitate people with virtual communities.

 It can be situated in a Theater for the manage-

ment of the community of people interested in

watching the theater, interested in the history of

the story behind the specific theater and certain

drama or topic behind the theater, agreeing to let

them be informed about the next shows match-

ing their interests, collection of their opinions

about the present and upcoming theater shows.

 In a Fashion Show for the management of the

community of the people who participated and

watched the fashion show, interested in sales and

purchase of the displayed fabrics, collection of

votes and choosing the best models from the par-

ticipants.

 It can also be situated at any place of the

city for the management of the community of

citizen pushing information related to the im-

provement of the friendship in that place, man-

agement of the community of the citizen pushing

information to the city services to signal them

things to improve and repair, etc.

Wherever it is used, it facilitates groups of people for

the information exchange and reuse. The community

servers manage communities by offering different

functionalities to its users. These functionalities are

available only to users situated in a given neighbor-

hood of the server (i.e., a certain distance or commu-

nity area). A user situated in the right area can inter-

act with the community server via his/her community

assistant (or personal agent) that is installed on

his/her smart device and exploit services such as cre-

ate a community, join a community, publish infor-

mation in the community, get information from the

community, etc. These actions and community ser-

vices are not feasible when the user leaves the area.

Since the user may not stay in the VC for a long time,

or since he/she may not be ready to interact with

his/her device at that time, users delegate to the smart

device the management of these different actions

according to the topics that he/she is interested in.

He/she expresses in advance the information he/she

is ready to share a priori with other users.

4. Smart Mobile Virtual Community Management

System

The Smart Mobile Virtual Community Manage-

ment System (SMVCMS) that we have developed,

implements a generic approach for creating "mass" of

places of local exchanges and local knowledge bases

in the context of smart places. The following subsec-

tions elaborate the key technology used behind its

implementation, SMVCMS Artifacts and Agents, and

different services to build and manage VCs.

4.1. Key Technology Used: JaCaMo Platform

To realize the goals of Virtual Community Man-

agement System (SMVCMS), we have used the JaC-

aMo platform for building the server application that

serves as a central knowledge base for the communi-

ties and end users. Client application named as

SmartClient is developed by using JaCa-Android

infrastructure so that end-users can access different

services of VC management server by their smart

devices. JaCaMo combines three separate open

source technologies, i.e., Jason, CArtAgO and Moise

for programming MAS. Each of these programming

technologies has been used for building multi-agent

applications for a number of years. Jason has been

used for programming autonomous agents. It imple-

ments the operational semantics of a variant of

AgentSpeak and provides many user-customizable

features for the development of Multi-Agent Systems

[5]. CArtAgO (Common ARTifact infrastructure for

AGents Open environments) has been used for pro-

gramming environment artifacts [6]. By using this

infrastructure, agents dynamically create and use

artifacts as a fundamental building block for achiev-

ing their activities. Lastly, Moise provides infrastruc-

ture for programming multi-agent organizations [11].

By deciding to play one of the roles, according to the

norms stated in the organization, agents may create a

community (owner role) or participate to it (member

role).With the combination of these technologies,

JaCaMo covers all levels of abstractions that are re-

quired for the development of sophisticated multi-

agent system, such as, Virtual Community Manage-

ment System. In addition, the approach offers many

advantages, such as decentralization of the communi-

ty management, personalized automatic management

and discovery of communities, and flexibility so that

any agent can create its own community. We have

investigated this approach with the idea to provide

Smart Mobile Virtual Community Management Sys-

tem for smart cities.

4.2. Architecture of SMVCMS

SMVCMS is based on a multi-agent architecture

that enables community assistants (participants) to

meet, share and gain quick and efficient access to the

information of their interest. In SMVCMS, virtual

communities are realized by means of a set of Ja-

son agents encapsulating the user profile and the log-

ic and control of the specific operations involved in

the community pack: community management (e.g.

joining/leaving, creating/deleting a community), in-

formation sharing (e.g. publishing posts), Update

Members (notifications to members, etc.).

The agents accomplish these actions by using a set

of functionalities that are made accessible by the

communities they belong to. Agents can exploit them

to achieve their individual and collective goals.

These tools are implemented by means of artifacts

developed in CArtAgO. Agents lookup the artifacts

in the different workspaces affected to each commu-

nity and exploit the operations offered by each of the

artifacts to achieve their desired tasks. The structure

and functioning of each community is declaratively

specified in an organization specification where

owner, member or participant roles are defined. A

community consists of a domain of interest, an owner,

a message buffer, and an initially unspecified number

of member agents, which have certain interests over

the community. By deciding to play one of the roles,

according to the norms stated in the organization,

agents may create a community (owner role) or par-

ticipate to it (member role). The layered architecture

of SMVCMS is shown in Figure 1.

Figure 1. SMVCMS Architecture

4.2.1. SMVCMS Artifacts

The agent environment programmed as CArtA-

gO artifacts provides the set of basic API for agent

platforms to work within artifact-based environ-

ments. It builds VCs as Artifacts, that are treated as

first-class entities representing resources and tools

which agents can dynamically instantiate, share and

use for their desired objectives. In addition, due to

its build-in capacity, it allows the synchronization

and interconnection of different VCs at client and

server side. The development and execution of arti-

fact-based environment structured in open work-

spaces (possibly distributed across the network)

where agents of different platforms belonging to

several virtual communities can join and work to-

gether. The following sub-sections elaborate each

of the artifacts used in the development of

SMVCMS.

 Community Artifact. ‘Community’ as an ‘Arti-
fact’ is the functional-oriented and stateful entity
composed of controllable and observable proper-
ties. We designed a base class “Community” as a
subclass of “Artifact” so that it would allow its
members as a shared resource for the information
exchange. Different data members of community,
(such as community identifier, name, created by,
list of members, list of topics, message board that
captures the content of community), allow storing
different types of information in SMVCMS. Cur-
rently, four types of communities are supported
for different modes of access and exchange posts.
These types of communities extend the Commu-
nity Artifact class. These classes are: {Bounded
Community, UnBounded Community, Private
UnBounded Community and Owned Bounded
Community}. These classes implement ‘Add Mes-
sage by Topic’ method according to their re-
quirements and mode of exchange.

 Topic KnowledgeBase (KB) Artifact. Virtual
communities compose their contents, messages,
and all information under different topics. There-
fore, topics of the community represent the con-
tent or posts of the community and interests of its
members. Each community contains one or more
Topics from Topic Knowledge Base (TopicKB).
In addition, Topics from TopicKB belong to zero
or more communities at the same time. Since,
communities can overlap and share similar con-
tents, therefore topics over the communities can
be the same for several communities. Therefore,
Topic Knowledge base is shared among the
members so that they use existing topics to asso-
ciate their messages. In this way, all the messages
are managed by the Topics as it facilitates search-
ing mechanisms. Since, Topic identifies commu-
nities messages, thus they can be created by
members of the community as per their needs.

Topic are also used as search keys to lookup the
messages or content of the communities. There-
fore in SMVCMS, Topic KB is also realised as an
Artifact which is shared among the users. Mem-
bers of the communities share the Topic KB and
associate their community to some specific Top-
ics that exist in the Topic KnowledgeBase. If cer-
tain Topic is not present in KB, the member (hav-
ing rights) can create it in the Topic KB and then
associate it to the desired community. Since topic
of the community serves the whole application
(used for the recommendation, search, message
organization, etc.), therefore we restrict a valid
keyword having a real sense to be as a Topic. We
impose WordNet [12] verification to avoid free
texting over the communities. Each time user
wants to create a new topic, system fetches all the
definitions and synonyms of the user input key-
word, and presents it to the user for the selection.
In this way, user selects one of the senses of
keyword and then system stores it in the
TopicKB and associates it to the required com-
munity.

 AgentProfile Artifact. In SMVCMS, there is a
need to create and maintain profiles of users that
encapsulate all the required information. There-
fore, we designed a class ‘AgentProfile’ that rep-
resents the profile of user. This can be realized in
two ways; simply a Java Object or as an Artifact.
We designed AgentProfile as an Artifact so that it
enables feature to be observed and followed by
the community members of the SMVCMS. This is
helpful knowing the status updates of the users of
interest, their current locations, and activities. Be-
ing an artifact, it allows other agents to observe
and communicate with other agents over the en-
tire workspace. Therefore, profile information of
each user or member of community is stored in
class AgentProfile. It encapsulates name, origin
and reputation (or history) of user as data mem-
bers. In addition, each user has list of Interests,
Recommendations, Notifications, Registered
Communities and Owned Communities. On the
basis of list of interests, mobile assistant proposes
some recommendations that are stored in the list
of recommendations. When the user is registered
in some communities, list of Registered Commu-
nities has that information and list of notifications
is updated for the user by the SmartClient appli-
cation when any message posts are newly added
to the community. When the user creates some
new community, the list of Owned Community
stores that particular information. Therefore,
there are many methods (such as AddProfile,
AddInterest, AddCommunity, etc.) in AgentPro-

file to update and store all types of information
regarding that particular user.

4.2.2. SMVCMS Agents

In JaCa-MAS architecture, Jason agent creates, in-

stantiates, and uses artifacts in the workspace as a

fundamental building block. Therefore, we need a

Jason agent that acts on user behalf to manipulate

artifacts and manage all the client functionalities. For

this reason, we need two types of agents (i.e., Server

Agent and Client Agent). The server application

SMVCMS that host communities has the ‘Server-

Agent’ that remains active all the time. Its main pur-

pose is to listen for requests from the client side and

act accordingly. The other client side ‘ClientAgent’

serves user demands as its assistant. At first, Clien-

tAgent acts on behalf of the human end-user, per-

ceives knowledge for individual interests and acts

upon them to meet ones desired goals. The infor-

mation of the end-user such as name, interest, origin,

current location, etc. is captured in SMVCMS as an

Artifact ‘AgentProfile’ as explained above.

Another aspect of SMVCMS is how client and

server agents communicate and use artifacts for their

objectives. It should be kept in mind that AgentPro-

file artifact stores the personal information about the

community user. It is the Jason Agent (that acts on

the behalf of the community user) which is manipu-

lating artifacts, invoking their methods and achieving

all the desired tasks. All the personal information of

this Jason Agent is stored in AgentProfile artifact.

The client Android application SmartClient has the

‘ClientAgent’ that listens to the user and transmits

request to the server agent and performs functionali-

ties on the demand. Since the data on the communi-

ties may be too large and search lookup may take

time, therefore there can be two possibilities to deal

with the scalability issue. First, when there is a need

to perform heavy operation (e.g., search), Server-

Agent creates dynamically its HelperAgent as a Jason

Agent. Then, it delivers the search or recommenda-

tion lookup tasks to the HelperAgent that performs

the required tasks and returns results to the Server-

Agent. In this case, community server has two Jason

agents, i.e., ServerAgent and HelperAgent. Help-

erAgent is the assistant and is invoked by the Server-

Agent when needed. ServerAgent is active all the

time and listens to the client agents. But, when the

number of active concurrent users is large at the same

time, then server application has too much load. In-

stead of this technique, it is better to get arti-

facts/communities on the client device, and client

agents perform their desired operations. Therefore,

we implemented both the techniques to tackle the

scalability issues and let community management

adjust this feature according to their needs.

For facilitating interface of the Android end-user

application, ClientAgent look-ups the internal arti-

facts (connect-art, personal-art, people-art, and

community-art; explained later) to communicate with

the end-user GUI (see Figure 2). ClientAgent exploits

the operations of these local artifacts to achieve de-

sired tasks of method invocation for user, request

transmission to server, result reception and finally

update of the Android interface. In this way, Clien-

tAgent help their users in accessing, exchanging and

managing information on the SMVCMS.

The Jason ClientAgent starts with the init goal. It

looks for the local client workspace and binds it with

Local Workspace ID and stores it as belief (i.e., in-

formational state of the agent). ClientAgent needs to

specify this local workspace id whenever it looks for

local artifacts or performs updates on client GUI.

Then, it calls the goal join remote workspace

(join_rt-ws) with server IP and port address and

binds it to the Server Workspace ID. It saves this

remote workspace id as a belief and uses this id

whenever it performs the operation on remote artifact

or lookup artifact in remote workspace. When the

join is successful, it looks for the local artifact ‘con-

nect-art’ and calls the function of the Android inter-

face to show result for the successful connection.

Figure 2. Agents working in different Artifacts

Figure 2 shows how ClientAgent can create, join

and work in multiple workspaces at one time. The

operations createWorkspace, joinWorkspace and

quitWorkspace facilitate these tasks. The actions for

creation and join are provided by the NodeArtifact

and quitWorkspace is provided by the Workspace-

Artifact. ClientAgent joins the local workspace by

which it looks for local artifacts for the communica-

tion to human user by GUIArtifacts. It also joins the

remote server workspace for looking different ser-

vices provided by the SMVCMS. However, there is

always a current workspace, to which all actions are

routed with no artifact id or workspace id specified.

Current workspace info is automatically tracked by

the current_wsp belief. It is also possible to set the

current workspace by the internal action

set_current_wsp by providing its workspace id.

We don’t go into the implementation details of

these features and rest at abstract design level.

4.3. Community Tools for SMVCMS

The Smart Mobile Virtual Community Manage-

ment System allows the participants to build different

kinds of communities by dynamically instrumenting

their communities with different tools to manage the

information shared between participants according to

their requirements and needs. All the information

exchanged by agents participating to a community is

stored in these tools. Currently, the SMVCMS pro-

vides four basic classes of community tools as ex-

plained in the following subsections.

4.3.1. MailBox

This type of VC tool allows any member of the

community to send and receive messages to/from

other members of the community. Once an agent gets

its membership to a VC, it will receive all the mes-

sages and updates posted on the community automat-

ically. For instance, when a late incomer joins the VC,

all subscriber agents receive a message about its sub-

scription to the VC, so that they know and can initi-

ate further communication. An illustration of this

class of VC is the ‘Catwalk’ on a Fashion Show, in

which an organizer wants to communicate with mod-

els participating in a catwalk show, and models

themselves want to communicate with each other. An

ad-hoc community is therefore shaped under a pub-

lish/subscribe paradigm for information exchanges.

4.3.2. Participatory Forum

This type of VC tool allows registered members to

participate in the community by different services,

such as reading and writing posts on the VC. By get-

ting registrations for the community, members will

receive all the posts and updates automatically. There

are many options that can be manipulated with this

type of VC, i.e., Classic, Duration, Moderation,

Bound, etc. For example, the Bounded BlackBoard

Community tool allows the creator of the VC to set

the limit of the blackboard, which decides the content

of the board. It lists messages on the board in an ante

chronologically order. When reaching the specified

limit, the buffer of the message board acts like a

First-In First-Out (FIFO) manner and deletes the last

board message to place the new message on the top

of buffer. Example of such community can be ‘Con-

test Board’ on a Fashion Show, where management

displays names of models presenting the fabrics and

status of designers with their votes or likings by the

viewers participating in the show. The board has lim-

ited capacity and only newly important messages are

placed and old messages are deleted for promoting

information lookup ease.

4.3.3. Information Dispatcher

In this type of VC tool, only the VC owner can

disseminate information. Members of the VC auto-

matically receive messages posted on that tool. Ex-

ample of such a community can be ‘Catwalk Sched-

ule’ on a Fashion Show, where only organizers can

post messages about the schedule, names of selected

participants, updates about displayed fabrics and

brands, etc., for the registered or regular members.

These members can only read the post, but they can-

not post any information over the VC.

4.3.4. Personal-Box

In this type of VC tool, only the VC registered

members can disseminate and share information over

the community. Other community assistants that are

non-members of the community can consult this type

of tool, but they are not allowed to post messages

without having membership. The owner of the com-

munity has the only right to give membership to oth-

er community assistants to get involved in the com-

munity. Example of such community can be ‘Model

of the Month’ on a Fashion Show community, where

only registered viewers can cast a vote or judges can

post their opinions for choosing the best model from

the participants.

5. Android Client Application : SmartClient

The following subsections discuss architecture and

modeling of our Android client application named

SmartClient.

5.1. SmartClient - Android Client in a Nut-Shell

We designed an Android application, SmartClient,

which needs to be installed on the smart phone of the

user. By Android SmartClient application, one can

access and manipulate communities on the SMVCMS

servers. One can create community on-the-fly with

different mode of exchanges and exploit other ser-

vices. At the client side, Jason agent ClientAgent acts

on behalf of the human user. Human user performs

tasks on GUIArtifacts that are encapsulated by the

Jaca-Activity. The services are provided by the Serv-

erAgent on the server machine. ClientAgent com-

municate with the ServerAgent to invoke different

services to fulfil desired task. Figure 3 shows the

whole mechanism.

Figure 3. Interaction between ClientAgent and

ServerAgent

5.2. Local Artifacts in SmartClient Android

Application

The connectivity between the Jason ‘Clien-

tAgent’ and the human end-user requires to create a

GUI as a subclass of GUIArtifacts. GUI artifact is an

artifact that encapsulates IO functions that achieve

interactions between human users and agents. A GUI

artifact is defined by extending GUIArtifacts, wrap-

ping the definition and creation of the structure of the

GUI. It comprises of the components using the Swing

API, and then linking/mapping Swing events into

artifact’s internal operations by us-

ing link_to_primitives. According to requirements of

our project, we partition the whole functionality into

four modules. These four modules are handled as

GUIArtifacts, so that user can invoke different ser-

vices in SMVCMS. They deal with the connectivity of

client-server, personal information management,

people and friend management, and community man-

agement, etc. These modules are implemented as

Indents in the Android application. Since operations

on these GUI artifacts are managed by Jason Clien-

tAgent in the Android application, therefore we cre-

ate internal/local artifacts which represent GUIArti-

facts so that Jason agent manipulates different ser-

vice by exploiting these local artifacts. These internal

artifacts (connect-art, personal-art, people-art and

community-art) are used to invoke operations of

GUIArtifacts (Connection, Personal, People and

Communities). These local artifacts are elaborated

below.

5.2.1. Connect-Art.

This artifact is created for managing the connectivity

between the SMVCMS server and SmartClient. It

interlinks the end-user with the Jason ClientAgent at

the client side. This artifact extends the GUIArtifacts

and is designed to invoke methods like connect and

disconnect with the SMVCMS server. All the meth-

ods that update this GUI are implemented in Connec-

tionActivity. The ConnectionActivity calls the ‘on-

Create’ method, in which it sets the xml form Con-

nectionLayout.xml as a layout for this ‘connection’

intent, and creates the ‘connect-art’ local artifact of

class ‘ConnectionArtifact’ to communicate with Cli-

entAgent.

5.2.2. Personal-Art.

This artifact is created for managing the personal

information and activities of the end-user. Personal

information includes the end-user profile, subscrip-

tions and created communities. Therefore, this arti-

fact deals with the services, such as creating profile,

adding interest, registered and owned communities

lookup, get subscription (join and leave) of commu-

nities, etc. This artifact also manages to pop-up rec-

ommendations and notifications for the end-user. For

this intent, we have implemented PersonalArtifact

that extends the GUIArtifacts. All the methods that

update this GUI are implemented in the PersonalAc-

tivity. The PersonalActivity calls the ‘onCreate’

method, in which it sets the xml form PersonalLay-

out.xml as a layout for this ‘personal’ intent, and cre-

ates the ‘personal-art’ local artifact of class ‘Person-

alArtifact’.

5.2.3. People-Art.

This artifact is created for managing the people or

friends for the end-user. People management includes

the friend list look-up, display friendship requests,

search and/or follow people. By using this, one can

make a friend, send friendship request, follow a per-

son over the community, etc. In addition, one can

search member persons by name, interest or location

criteria. For this intent, we implemented PeopleArti-

fact that extends the GUIArtifacts. All the methods

that update this GUI are implemented in PeopleActiv-

ity. The PeopleActivity calls the ‘onCreate’ method,

in which it sets the xml form PeopleLayout.xml as a

layout for this ‘people’ intent, and creates the ‘peo-

ple-art’ local artifact of class ‘PeopleArtifact’ to

communicate with ClientAgent.

5.2.4. Community-Art.

This artifact is created for managing the communi-

ties for the end-user. Community management in-

cludes the creation and search of communities, ac-

cessing and posting information over the communi-

ties. This artifact deals with services such as create

community, add topic on community, access mes-

sageboard for the information lookup, post messages

on the communities, etc. In addition, one can search

existing communities by the name, topic or synonym

criteria. For this intent, we implemented Commu-

nityArtifact that extends the GUIArtifacts. All the

methods that update this GUI are implemented in

CommunityActivity. The CommunityActivity calls the

‘onCreate’ method, in which it sets the xml form

CommunityLayout.xml as a layout for this ‘communi-

ties’ intent, and creates the ‘community-art’ local

artifact of class ‘CommunityArtifact’ to communicate

with ClientAgent.

Finally, the main activity (named as MainActivity)

that extends the Jaca-Activity encapsulates all these

Jaca-Activities (ConnectionActivity, PersonalActivity,

PeopleActivity and CommunityActivity) and repre-

sents them as intents (or tabs) in the Android client

application. Figure 4 displays Personal and Commu-

nities intent in front. Services by these interfaces are

manipulated by the Jason Agent ‘ClientAgent’ that

receives signals by the interfaces on user interaction.

Then, ‘ClientAgent’ can lookup these local artifacts

and listen to the demands of user by the services that

these intents provide. When a button (e.g., show ex-

isting communities), also called View in Android, is

invoked by the user, then the associated operation in

GUIArtifacts signals the ClientAgent that transmits

the request to the ServerAgent on the SMVCMS serv-

er. ServerAgent does its desired functionality and

returns its response (i.e., list of existing communities)

to the ClientAgent. ClientAgent finally performs a

lookup of the local community-art artifact, by which

it updates the user interface with the fetched results.

In this way, multi-agent architecture of SMVCMS,

enables community assistants (participants) to meet,

share and gain quick and efficient access to infor-

mation of their interest by the SmartClient.

Figure 4. Personal and Communities Intents in Front

in the SmartClient application

6. SMVCMS for Smart Cities Use Case

We have employed SMVCMS in the context of

Smart Cities to test whether our system fulfills the

desired goals. The SMVCMS allows participants of a

city with different functionalities for building and

manipulating virtual communities. A participant can

create his/her own community or get the membership

of existing communities. Using the options ‘Join

Community’ and ‘Leave Community’, one can join

and leave the community if one fulfills the criteria of

joining or leaving. Using the option ‘Show Communi-

ties’, one can see all the present communities with

the list of topics associated with each of the commu-

nity.

The SMVCMS allows the management of the

community content within the topics or the subject of

the community. Such management of community

content allows flexibility in posting, searching and

disseminating information within the community.

With options such as ‘Add Topic’ and ‘Show Topic’,

participants can add a new topic in the existing com-

munity and see the existing topics under one com-

munity. It allows participants to post messages (i.e.,

raw content in the form of text, picture, etc.) over the

community. The members are free to choose the top-

ics of interest for the community and allow one to

post the messages related to the topics over the com-

munity for the other participants. With options such

as ‘Add Message’ and ‘Show MessageBoard’, partic-

ipants can add a new message in the existing com-

munity and see the existing messages over the specif-

ic topics.

The SMVCMS allows participants to follow differ-

ent communities of their interest. When any member

joins the community, it will receive all the posts au-

tomatically in his mailbox depending on the commu-

nity type and its rules. When calling the functionality

‘My mailbox’ community assistant updates its owner

with the list of messages about the communities in

which he is registered or some other persons have

mailed them. Besides this, SMVCMS allows partici-

pant to manipulate different informations of their

interests. Once a user enters his topics of interests,

his personal community assistant processes match

making mechanism and explores the information

over communities. Then, it brings its user with some

recommendations beneficial for him. Since we reply

on the profile information, It is not necessary for the

user to be a member of that community. Therefore

only information about his interests in his profile is

sufficient to receive recommendations. With option

‘My Recommendations’, community assistant updates

its owner with the list of recommendations about the

things of his interest.

 It is possible for participants to search for existing

communities with different criteria. One can search

the community by name or topic. The SMVCMS ex-

tracts and displays the information about the commu-

nity if it exists by that name or topic. Another option

for community lookup is the semantic search for the

community with the help of WordNet. In this case, it

generates the SynSet of the keyword entered by the

user as an input and matches with the existing names

of communities and/or existing topics within the

communities, and then the user is prompt with the

matched results if any. Besides these features, we

consider semantic recommendation as a vital mecha-

nism for our virtual community management system,

hence we dedicate next section for its explanation.

7. Semantic Recommendations in SMVSMS

Recommendations are very important in SMVSMS

so this section first provides an overview of research

literature on generating recommendations and then

elaborates how SMVSMS server provides recommen-

dations to its clients.

7.1. Recommender Literature Review

In research literature, there are several methods,

such as content based recommendations, collabora-

tive filtering, and semantic based methods for gener-

ating recommendations. Several people use these

methodologies in various contexts for computing

recommendations. For example, news recommender

system [13] recommends news items based on the

user interest in a business intelligence process.

YourNews, NewsDude and PRES systems are exam-

ples that use content based recommendation method-

ology. For content based recommendations, methods

such as Term Frequency-Inverse Document Frequen-

cy (TF-IDF) and the Cosine Similarity measure is

used. In general for producing a recommendation,

content based recommendation method considers all

the terms in a document. The value of TF-IDF is cal-

culated by multiplying frequency of term and inverse

document frequency. This value is computed for each

term in the news items that the user has read to obtain

the user profile. Cosine similarity is obtained by dot

product between the number of news items with the

user profile vectors, dividing by the product of the

vectors magnitude. Besides content based recom-

mendation method, semantic based method uses con-

cepts matching strategies by exploiting Concept

Equivalence, Binary Cosine and Jaccard method.

Concept Equivalence matches the concepts between

the two sets, news item and user profile. In binary

cosine method, no. of elements of intersection set is

divided by the product of no. of elements of individ-

ual set. Similarly, Jaccard method computes the simi-

larity value by the no. of intersection set between

user and item by the no. of union set between two

sets. In these semantic methods, the similarity values

take into account the no. of common elements be-

tween the sets, rather than frequency of words as in

content based method. One of systems named as

Athena is used for recommending news items by ex-

ploiting both methods (content and semantic based)

for producing news item recommendations for the

user.

Z. Yu et al. proposed ontology-based semantic

recommendation system for the context-aware E-

Learning [14]. It is designed for the users who want

to find content that they want and need to study. The

system gets user context, content of knowledge re-

pository, and knowledge about the domain the user

wishes to learn about. On this basis, the system cal-

culates the relevance and distance to propose the

learning program to the user. They calculate the se-

mantic relevance by estimating the Conceptual prox-

imity S between two elements (e1, e2) by these rules;

(i) S(e1,e2)>0, (ii) S(e1,e2)= S(se2,e1), (iii)

S(e1,e2)= Dep(e1)/M when e1=e2, (iv) S(e1,e2)=

Dep(e)/M, where e is the ancestor when e1 and e2

have subsumption relation, (v) S(e1,e2)=

Dep(LCA(e1,e2))/M when e1 and e2 are different

and have no subsumption relation. In these formulae,

Dep is the depth of node, LCA is the Least Common

Ancestor, and M is the total depth of the domain hi-

erarchy ontology.

A. Passant proposed a music recommendation sys-

tem named as dbrec using DBpedia based on Linked

Data [15]. It generates recommendations for bands

and solo artists by exploiting links between linked

data. Their linked data semantic distance known as

LDSD is based on four factors. These are direct and

indirect links considering incoming and outcoming

links in the graph to compute the distance between

resources. Their recommendation system first identi-

fies the relevant subset from dbpedia, reduces it for

the optimization of querying, and then computes

linked distance and finally provides interface for

browsing recommendations.

Z. Chedrawy and S.S.R. Abidi proposed web rec-

ommender system for recommending music playlists

based on the user profile [16]. They developed a hy-

brid approach by combining collaborative filtering

with the ontology-based semantic distance measure-

ment. First they compute an item-based collaborative

filtering multi-attribute similarity by exploiting the

users rating (preferences over items). Then they

compute the item-based semantic similarity by count-

ing common descriptions between two sets by divid-

ing them with their total description count. Final val-

ue of similarity is computed by multiplying the indi-

vidual similarity by their individual weight and final-

ly adding the weighted values. Another music rec-

ommendation system is SmartMusic developed by W.

Hu et al. for the recommendation of music lists to the

user [17]. Their recommendation system analyses

description of singers, songs, albums along with the

user behavior and preferences.

The P. Resnik similarity measure is based on the

information content of the least common subsumer

(LCS) of concepts A and B [18]. Information content

is a measure of the specificity of a concept, and the

LCS of concepts A and B is the most specific con-

cept that is an ancestor of both A and B. The biggest

drawback of Resnik’s model is that it produces the

same semantic similarity between any pair of con-

cepts with the same LCS. Based on Resnik model, J.

Jiang and D. Conrath’s model [19] and D. Lin’s

model [20] takes into account edge counting as well.

The C. Leacock and M. Chodorow similarity meas-

ure is based on path lengths between a pair of con-

cepts [21]. It finds the shortest path between two

concepts, and scales that value by the maximum path

length found in the IS-A hierarchy in which they oc-

cur. A. Carbonaro and R. Ferrini propose a com-

bined approach based on the two above measures

considering both a weighted factor of the hierarchy

height and a sense offsets factor [22]. T. Simpson and

T. Dao adapted the somewhat same method and cal-

culated semantic similarity as 1/Semantic Distance

[23]. They computed semantic distance as 1 if same

concept in the ontology. Otherwise semantic distance

is the number of Archs+1; where arch is a sub-

class/superclass axiom between concepts in the on-

tology.

Y.B. Fernández et al. developed a hybrid tech-

nique for an automatic content recommendation sys-

tem names as AVATAR based on the Semantic Web

Technologies [24]. They exploited two-phase ap-

proach for the personalized TV recommendations

based on semantic inferences from the ontology. In

the first phase, they use the content based strategy

that explores hierarchical semantic similarity and

inferential semantic similarity techniques. The sec-

ond phase involves the collaborative strategy. Ac-

cording to their experiments, the hybrid strategy sig-

nificantly reduces the deficiencies of individual tech-

niques.

D. Camacho et al. developed a MAPWEB-

ETOURISM System for the tourism domain to help

customers to plan their trips [25]. They designed sev-

eral specialized web agents to query travel web

sources and fetch individual results. Later with the

help of a planning agent, individual results are inte-

grated to build complete travel solutions. The final

results serve as recommendations for the end-users to

plan their trips.

7.2. Various types of Semantic Recommendations in

SMVCMS

SMVCMS, as a recommendation system for its us-

ers, is a resource to access information and connect

people having common interests. Therefore, in

SMVCMS, we designed a semantic recommendation

module to propose semantic recommendations for the

end-users in different scenarios and contexts. These

contexts are elaborated as follows.

7.2.1. Creation of a New Community

SMVCMS system provides flexibility and decen-

tralized mechanism to build communities on-the-fly

by the users through their smart devices. Different

people of interests get together and share information

on several (may be overlapping) topics. Therefore,

content on communities may overlap with each other.

At the time of creation of a new community, our sys-

tem gets the requirements of the new community and

recommends to the user similar or overlapping com-

munities that exist on the server repository. This type

of recommendation is highly important to reduce

redundant overlapping communities and control in-

conciseness of information over several communi-

ties. For example, consider a scenario where three

music communities exist, named {JAZZ, POP and

CLASSICAL} on the SMVCSM. A user wants to build

a new community named MUSIC, SMVCMS system

gets the requirements of this new community from

the user. Then, it calculates the semantic distance

between the requirement and the existing communi-

ties. Based on the semantic distance, it informs the

user about the existing JAZZ, POP and HIPHOP

communities as more specific communities that hold

content related to the requirements of MUSIC com-

munity. In this way, the user gets awareness about

the existing communities related to music and he

may avoid creating another community on this topic.

On viewing the existing communities, he may join

the existing community and benefit from the infor-

mation posted and people having common interests.

However, SMVCMS allows one to create ones per-

sonalized communities.

Figure 5. Semantic Recommendation based on top-

ics between communities

In this scenario (similar topics between communi-

ties), our system calculates the semantic distance

between the new community Ca and the existing

communities {Cb, Cc, ..., Cn}. Let there are two

communities Ca and Cb as shown in Figure 5, where

Ca shows the requirements of a new community and

Cb is the existing community, their semantic simi-

larity and distance is calculated on the basis of simi-

lar topics.

7.2.2. Information access over communities

SMVCMS serves as a medium for the information

access to its users. It recommends the user to join

communities that contain content that matches with

the interests of the user. SMVCMS system computes

recommendation for the user which may be useful

and provides awareness of existing communities on

the server repository. When the user makes his pro-

file on the SMVCMS server, SMVCMS automatically

starts finding recommendations based on the interests

added in the profile of the user. These recommenda-

tions are highly important for the user because they

connect him/her to the right or useful information.

In this scenario (similar topic of community and

interest of a user), our system calculates the semantic

distances between the profile of user Pa and existing

communities {Ca, Cb, ..., Cn} associated with topics

of interests. Let Pa shows the profile of the user and

Ca be an existing community as shown in Figure 6,

semantic similarity and distance between them is

calculated on the basis of similarity between the top-

ics of community and interests of person in his pro-

file.

Figure 6. Semantic Recommendation based on top-

ic of a community and interest of a person

7.2.3. Connecting People based on interests

SMVCMS serves as a tool for connecting people

sharing similar interests. It recommends possible

users as friends having similar interests. For this pur-

pose, it has to compute the semantic distances be-

tween the profiles of the users and proposes friends

for the members of communities over the server.

SMVCMS system computes recommendation for the

user which may be useful, providing awareness of

existing people utilizing SMVCMS. When the user

makes his profile on the SMVCMS server, SMVCMS

automatically starts finding recommendations based

on the interests added in the profile of the user. These

recommendations are highly important for the user

and they connect the user to the right people having

common interests.

In this scenario (similar interests between users),

our system calculates the semantic distances between

the profile of user Pa and existing profiles {Pb, Pc,

..., Pn}. Let Pa be the profile of the user and Pb be

the existing profile as shown in Figure 7, semantic

similarity and distance between them is calculated on

the basis of their common interests.

Figure 7. Semantic distance based on interests be-

tween persons

7.2.4. Search for Community or People

SMVCMS provides users an interface for searching

community or people with keywords. Former is simi-

lar to the section information access over communi-

ties, and later one with connecting people based on

interests. The difference lies in the execution in the

sense that user has to enter keyword and manually

trigger the search, but in the previous case, once a

user has made his profile SMVCMS automatically

executes the semantic distance to recommend the

user different communities that may be appealing to

the user based on the interests in his profile.

7.3. Semantic Distance calculations in SMVCMS

In SMVCMS, we compute semantic distance and

use it for generating recommendations for the user.

Once a user builds his profile, the recommendation

system activates to guide the user about the commu-

nities and people of his interest. Our proposal for

semantic similarity and semantic distance calculation

is based on the hybrid technique. For recommenda-

tions, we need to match interest of user and topics of

community. We restrict the user to select the topic of

community from the domain ontology at the time of

community creation. We also restrict user to add in-

terest in his profile as a concept from the domain

ontology. Therefore, the problem reduces to calculate

the semantic distance between the concepts of do-

main ontology, one belonging to community and

other as a user interest. For this purpose, we explore

the explicit and implicit relations between the con-

cepts within the domain ontology. Then we apply the

semantic method (Jaccard similarity) to compute the

semantic similarity between concepts. We also aim to

compare the hybrid technique with the individual

content based recommendation techniques.

7.3.1. Analysis by Subsumption Relations

First, we analyze hierarchical links by Subsump-

tion relations. In this regard, the method proposed by

Yu et al. and T. Simpson is helpful. But with in-depth

analysis, both these methods show that they have

limitations. In Z. Yu et al. [14] semantic relevance

appears the same when the concepts are at different

locations, but, having the same ancestor. For in-

stance, let depth of ontology hierarchy be 8, and Cb

and Cx are two concepts which are children of Ca

located at depth 2 in the ontology. Concepts (Ca, Cb)

have path length by subclass of axiom 2 and con-

cepts(Ca, Cx) with path length 7. The semantic rele-

vance between them is the same between these two

cases (2/8 = 0.25) inspite-of their distance between

them.

The T. Simpson method [23], which is actually

adapted from Resnik’s similarity measure [18], has a

limitation that it produces the same semantic similari-

ty between any pair of concepts with the same Least

Common Subsumer. However, we employ these

methods because they are simple in implementation

and helpful in computing the semantic proximity or

hierarchal differences between concepts.

7.3.2. Analysis by Property Relations

Second, we analyze associations by property links

between the concepts. Datatype and Object properties

in the ontology represent the context and semantics

of concepts. Generally, datatype properties are called

the attributes of a concept in the ontology. For exam-

ple, each Book concept has some attributes such as

ISBN, Name, Price, etc. Object properties or rela-

tions make direct and reciprocal links between con-

cepts within an ontology. For example, Object prop-

erties Contributes(Author, Paper) and isReviewedBy(

Paper, PcMembers) make associations between the

concepts and represent the real descriptions, which

help to evaluate the semantic similarity between

them. This is closely similar to the inferential seman-

tic similarity methodology proposed by Y.B. Fernán-

dez et al. [24], and is helpful in finding the semantic

similarity more precisely than with only hierarchical

information by analyzing the relations between con-

cepts in the ontology.

7.3.3. Analysis by Implicit Relations

Third, we explore Implicit Relations between Con-

cepts. It is of high importance to determine the im-

plicit relations between concepts. Although this as-

pect is not much explored in the context of recom-

mendations, but, in the semantic search this idea is

well elaborated for finding the associations between

concepts. Therefore, we need to explore all types of

implicit information between concepts through sub-

sumption, properties, and instance relations in the

ontology. Generally, concepts are linked together by

object properties (denoted by arcs) and labeled with

the property name. According to B. Aleman-Meza et

al. [26] semantic associations between concepts are

based on notions such as connectivity and semantic

similarity. Two classes are semantically associated if

they are semantically connected or semantically simi-

lar. Semantically connectivity means that there exists

a path between them by properties and intermediate

concepts. Semantic similarity relates two classes that

do not have a direct link but they are related by a

sequence of interconnected links, subsumption of

concepts and properties, instances, etc.

When the concepts are semantically associated,

then they are more semantically similar and their

distance is smaller. We hope this addition in the se-

mantic distance calculation helps in achieving more

accurate results, then only using hierarchical or direct

links (subsumptions or properties) between concepts.

We have implemented these three methods and fi-

nally get their aggregative result for the semantic

distance in our application. Based on the aggregative

result, our recommendation system detects three

kinds of recommendations, exact match, near-close

and more specific for the user based on interests pro-

vided in the profile. In general, the recommendation

system for proposing communities to the user having

interests works as follows. We get the synonyms,

hypernyms and hyponyms of the concept which rep-

resents users’ interest. Then, it locates in the topic

ontology. If found, then the system has a recommen-

dation to propose. Then, it searches the neighborhood

to propose some more recommendations. In the case

of no community under that topic, the system gets

hyponyms of the concept (i.e., interest) and proposes

more general recommendations. In the case of too

many communities under that topic, the system gets

hypernyms of interest concept and proposes more

specific recommendations. Concepts which are far by

hierarchical relations may be very close to each other

by property relation. The more the ontology is en-

riched with relations between concepts, the more the

hybrid approach is able to find associations (direct

and indirect) between concepts which results in better

recommendations.

We conclude that explicit property relations and

implicit inferences play an important role in generat-

ing recommendations. Only hierarchical relations

lookup for generating recommendations is not

enough. At the time of writing this paper, our rec-

ommendation system is not well advanced. Therefore,

we are unable to present empirical evaluation of our

semantic model. Hopefully, we will include the work

in this direction in our ongoing research.

8. Experimental Results

We have tested our system in a real-life scenario at

Château de Versailles (gardens at Paris) in context of

Smart City. MSVCMS servers are installed at various

locations in the gardens of Versailles. The following

sub-sections discuss various aspects of our

experiment in detail.

8.1. Background of Test Scenario

 Various Communities. We have created various

communities under several policies with differ-

ent objectives to test the VCMS in the real envi-

ronment at Versailles. At Château de Versailles

following communities are running before the

evaluation of a scenario: {‘Hall of Mirrors,

Grand Versailles’, ‘Jardins à la française’, ‘In-

formation Desk’, ‘Report Suggestion, Leave

Comment’, ‘Sale and Purchase Items’, ‘Ver-

sailles - Chinese Friend’, ‘Friend of Versailles’,

‘Explore Musee’, ‘Lesson of the day’, etc. }.

 New Users for test. To test a scenario, we in-

corporated three persons, (Alice, Jim and Bob)

who are friends. Alice is an expert of cultural

exchanges between France and China during the

XVII Century. She has some information (dates,

facts, texts) stored on her smart device. Jim is the

student of Music and interested to meet people

having interests in music. Bob lives in Paris. Al-

ice and Jim are coming from China to Paris for

participating in an international conference. In

actual, coming to Paris is a realization of their

dreams. They are excited for participating in the

conference and also for exploring the beauty of

Paris. But, they have only three days and in this

limited time they asked their friend Bob to help

them. Unfortunately, when they arrived, Bob

told them about his busy schedule. But, he told

them that Paris is a ‘Smart City’ and they can ac-

cess all the information from their ‘Smart Devic-

es’ once having ‘Smart Community Assistant’.

He wished to join them in Versailles later-on.

 Regular users of Communities. Before testing

a scenario, three persons (John, David and Nico)

are already using the communities as regular us-

ers of communities for achieving their purposes.

John is a guide for the visitors at Versailles. He

regularly posts his schedule for the guided tours

on ‘Jardins à la française’ community. David is

a music composer at Versailles. He delivers mu-

sic to the visitors and arranges music lessons for

the interested participants. David posts his notes

on the‘Lesson of the day’ community. Nico re-

ceives notes by David and is a regular member

of this community.

8.2. Evaluation Detail on the Test Scenario

This section presents two test scenarios to show

the usability of our system in the smart city environ-

ment and how it helps new users to profit from virtu-

al communities. The detail is as follows:

Alice and Jim arrive at Château de Versailles. After

reaching they install Smart Community Assistant

(SmartClient) on their smart devices to connect with

the MSVCMS server.

8.2.1. Test Scenario 1.

1. Alice builds her profile. She enters topics of her

interest: {garden, cultural exchanges}.

2. Her personal Assistant (SmartClient) proposes

her to join communities ‘Jardins à la française,

Grand Versailles’ on the basis of her interests.

Given her nationality, SmartClient also proposes

her to join the "Versailles Chinese Friend"

community. She joins these communities.

3. Her personal assistant (i.e., SmartClient) regularly

scans information exchanges and members of the

community. It identifies (displays, stores) rele-

vant information to Alice: {maps, path to see

flowers, etc.}

4. Her personal assistant notifies her about the

‘Guided Trip’ with the Guide John who explains

the history of places and responds to the visitors’

questions. She joins her Guided tour on time,

thanks to her personal assistant which dispatches

schedule information beforehand.

5. Since Alice was excited about ‘Cultural ex-

changes between France and China’, and since

no community existed on this topic, she creates

an open exchange community on this topic. She

enters community name ‘Cultural exchanges be-

tween France and China’, and creates topics

{‘culture’, ‘heritage’} for her community.

6. She selects some data and files to post a message

on her new community created by herself. She se-

lects file names ‘culture.txt’, ‘chinese special

moments.txt’, and many other files from her smart

device. The information and files data are availa-

ble on her community for the other community

members who will join that community.

7. Her Guide, John, creates a community named

‘Explore Versailles with John’ to send his sched-

ule to the visitors, (John chooses ‘Infor-

mationDispatcher’ as a community type, as he

only wants to send notification about his schedule

and his explanations). He enters community name

‘Explore Versailles with John’ and creates topics

{‘Schedule’, ‘Agenda’} on his community.

8. Alice’s personal assistant delivers information

related to Members of the Versailles royal court

visiting China.

9. The personal assistant of another visitor joins the

new community created by Alice about cultural

exchanges.

10. The personal assistant of the other visitor receives

this information posted by Alice.

8.2.2. Test Scenario 2.

1. Jim builds his profiles. Jim enters topics of his

interest: {music, architecture, friendship}.

2. Jim’s personal Assistant (i.e., SmartClient) pro-

poses him to join {‘Hall of Mirrors, Grand Ver-

sailles’} on the basis of his interests architecture.

It proposes him to make friends {‘David’, ‘Ni-

co’} on the basis of his interest in music and

friendship.

3. He joins this community. Jim also decided to

make friendship with David and Nico, so he

sends them a friendship request.

4. Jim’s personal Assistant notifies him that David

is his friend now. It also notifies Jim that his

friendship request is sent to Nico. (As David is

open to make friends so Jim receives acceptance

notification as soon as he sent him friendship re-

quest as per his profile settings. But, Nico has a

restricted profile so first he will see the other

person’s profile or meet him, only then decides

to accept/reject friendship request).

5. Jim sends a message to David and by then they

exchanged some messages. Jim also starts fol-

lowing David.

6. David updates his status, “Going to teach Music

Class”.

7. Jim’s assistant notifies him about David’s status

and which makes Jim excited to meet and share

Music themes. Therefore, he contacts David who

proposed him to join his Music class.

8. Jim joins Music class and became happy to meet

David and get a lesson. He also meets Nico

(Jim’s country mate) in the class who is studying

music from David.

9. Jim also joins David’s Music Notes community,

David allows him after his registration to the

community.

10. Jim request to gets David’s Music Notes com-

munity on his smart phone, as he wants to learn

notes when he will leave Versailles. David al-

lowed him to get his Music Notes community.

11. After music class, Nico wishes to meet Alice.

Nico is very happy to meet his country fellows.

12. In the evening, Bob also arrives at Versailles. As

a regular user, he has already personal assistant

on his smart device. He just joins community

‘Versailles - Chinese Friend’. Bob sees the list

of community members, where he tracks his

friends online by message exchanges. Three

friends with their new friend at Versailles meet

each other and get together.

8.3. Functionalities demonstrated by the Scenarios

 Personal assistant activates automatically when

someone builds his profile with interests.

 Personal assistant brings recommendations about

communities on the basis of one’s interests. It al-

so brings suggestions about friends on the basis

of one’s interests.

 One can get membership of a community if one

meets criteria. Similarly, one can make friend or

follow person from community users if one

meets criteria.

 After getting membership, it is possible to see

information exchanges and members of commu-

nity, share new information; start a new topic,

etc. It is also possible to see existing communi-

ties, and join them if criteria meet.

 Registered members of community get notifica-

tion messages over the community. Following

person gets notification messages when the fol-

lower changes his status.

 One can create community any time with differ-

ent mode of exchanges. Similarly, one gets in-

formation exchange and notifications of new in-

formation by one’s personal assistant.

 Registered members of community can exchange

information with each other.

 One can find communities or persons (users) by

the different criteria.

With the use of SMVCMS server application and

SmartClient personal assistant application, we

showed that Alice and Jim have a convenient way to

exchange (get and send) relevant information and

meet friends during their visit in the gardens of ‘Cha-

teau de Versailles’. With the demonstration of

SMVCMS and SmartClient in a real environment, we

conclude that multi-agent based virtual community

management system is quite helpful in building com-

plex software systems. We believe that our develop-

ment is a milestone towards building a smart place,

such as a smart city, for linking people and

knowledge exchange.

9. Conclusion and Future Work

The Virtual Communities are synergetic digital

spaces to build collaborations and exchange

knowledge between people sharing similar interests

or goals. They respond to human needs such as in-

formation sharing, friendship, and recreation. Multi-

Agent Oriented Programming approach facilitates

VC Management by providing autonomous features

that are required in today’s mobile environments.

In this paper, we present Smart Mobile Virtual

Community Management System that is built by using

the JaCaMo platform, where agents as personal as-

sistants can meet and share knowledge with other

agents who share a similar domain of interest. It pre-

sents the global architecture of the SMVCMS server

application by providing an overview on how auton-

omous Jason agent treats communities as artifacts

and model environment as first class entities to

achieve their goals. It presents SMVCMS artifacts,

their observable and controllable properties and op-

erations, and customizable approach to the creation

of different communities with different possible

functions and modes of exchanges. Finally, it pre-

sents how SmartClient application is built on the top

of Android platform so that end-users can access and

gain from SMVCMS by their smart devices. In addi-

tion, SMVCMS exploits semantics to propose rec-

ommendations for end users. Its semantic model for

the generation of recommendations employs a hybrid

technique for providing recommendation on-the-fly.

Initial results show that a hybrid technique shows

better results than by only hierarchical analysis. It

implements a customizable approach to the creation

of different communities, with different possible

functions and modes of exchanges. It enables VCs to

be a place where agents can meet and exchange

knowledge with other agents who share a similar

domain of interest.

We find JaCaMo as a power technology for build-

ing complex multi agent system encapsulating three

different technologies. Especially, the agent envi-

ronment programming as CArtAgO artifacts provides

the set of basic API for agent platforms to work with-

in artifact-based environments. It builds VCs as arti-

facts, that are treated as first-class entities represent-

ing resources and tools that agents can dynamically

instantiate, share and use for their desired objectives.

In addition, due to its built-in capacity, it allows the

interconnection of different VCs. The development

and execution of artifact-based environment struc-

tured in open workspaces (possibly distributed across

the network) where agents of different platforms be-

longing to several virtual communities can join and

work together.

 Using the MAOP JaCaMo platform, it was possi-

ble to install a decentralized and open management

of those communities in a context of smart cities. The

development and use of SMVCMS in the context of

smart city, where inhabitant of the city access com-

munity servers installed at various points of the cities

for information exchange and connecting people, is

highly useful. In addition, the approach offers many

advantages, such as decentralization of the communi-

ty management, personalized automatic management

and discovery of communities, and flexibility so that

any agent can create its own community on-the-fly.

 Our ongoing research on this topic is to test and

present the empirical evaluation and results of the

recommendation module of our SMVCMS. Our future

direction is to handle the organization of different

communities and authorizations to agents with Moise

framework using JaCaMo platform.

10. ACKNOWLEDGMENTS

This work has been partially supported by the

Conseil Général de la Loire, France.

References

[1] N. R. Jennings. An agent-based approach for building com-

plex software systems. Commun. ACM, 44(4):35-41, 01.

[2] Öztürk, Pinar, Kari Rossland, and Odd Erik Gundersen. A
multiagent framework for coordinated parallel problem solv-

ing. Applied Intelligence 33, no. 2 (2010): 132-143.

[3] A. Santi, M. Guidi, A. Ricci, JaCa-Android: An Agent-based
Platform for Building Smart Mobile Applications, in: M.

Dastani, A. El Fallah Seghrouchni, J. H• ubner, J. Leite

(Eds.), Languages, Methodologies, and Development Tools
for Multi-Agent Systems, vol. 6822 of LNAI, Springer, pp.

95-119, 2011.

[4] M. Fahad, O. Boissier, P. Maret, C. Gravier Smart places:
multi-agent based virtual community management system,

WI&C '12 held with the 21st WWW 2012, pp. 2, Lyon,

France, 2012

[5] R. Bordini, J. Hübner, and M. Wooldridge. Programming

Multi-Agent Systems in AgentSpeak Using Jason. John

Wiley & Sons, Ltd, 2007.
[6] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment

programming in CArtAgO. Multi-Agent Programming: Lan-

guages, Platforms and Applications, Vol. 2. springer 2009.
[7] A. Sorici, O. Boissier, G. Picard, A. Santi, Exploiting the

JaCaMo Framework for Realising an Adaptive Room Gov-

ernance Application, ACM Workshop (AGERE’11)
[8] P. Maret and J. Calmet, Agent-based knowledge communi-

ties, International Journal of Computer Science and Applica-

tions, Vol. 6, No. 2, pp 1-18, 2009
[9] Z. Zhao, A. Paschke, C.U. Ali, and H. Boley, Principles of

the SymposiumPlanner Instantiations of Rule Responder,

RuleML’11, LNCS 7018, pp. 97-111, 2011
[10] C. Toledo, R. H. Bordini, O. Chiotti, and M. R. Galli, Devel-

oping a Knowledge Management Multi-Agent System Using

JaCaMo, Workshop ProMAS, AAMAS 2011

[11] J. F. Hübner, J. S. Sichman, and O. Boissier. Developing

Organised Multi-Agent Systems Using the MOISE+ Model:

Programming Issues at the System and Agent Levels. Agent-
Oriented Software Engineering, 1(3/4): pp. 370–395, 2007.

[12] C. Fellbaum, WordNet: An Electronic Lexical Database.

Cambridge, MA: MIT Press. 1998
[13] F. Frasincar, W. IJntema, F. Goossen, F. Hogenboom, A

Semantic Approach for News Recommendation. Business In-

telligence Applications and the Web: Models, Systems and
Technologies (2011): pp. 102.

[14] Z. Yu, Y. Nakamura, S. Jang, S. Kajita, and K. Mase, Ontol-

ogy-Based Semantic Recommendation for Context-Aware E-
Learning. Ubiquitous Intelligence and Computing, Lecture

Notes in Computer Science Volume 4611, 2007, pp 898-907

[15] A. Passant, Dbrec - Music Recommendations Using DBpedia.
"Dbrec - music recommendations using DBpedia." In The

Semantic Web–ISWC 2010, pp. 209-224. Springer Berlin

Heidelberg, 2010.
[16] Z. Chedrawy and S.S.R. Abidi, A Web Recommender Sys-

tem for Recommending, Predicting and Personalizing Music

Playlists. Web Information Systems Engineering - WISE
2009 Lecture Notes in Computer Science Volume

5802, 2009, pp 335-342

[17] W. Hu, K. Yan, C. Jia, and J. Wu, SmartMusic: An Online
Music Recommendation System Based on Semantic Web

Technology. Semantic Web Challenge held at The 10th In-
ternational Semantic Web Conference, 2011

[18] P. Resnik, (1995). Using information content to evaluate

semantic similarity in a taxonomy. Proceeding IJCAI'95
Proceedings of the 14th international joint conference on Ar-

tificial intelligence - Volume 1, pp. 448-453

[19] J. Jiang, and D. Conrath (1997). Semantic similarity based on
corpus statistics and lexical taxonomy. Proceedings on inter-

national conference on research in computational linguistics,

Taiwan. CoRR cmp-lg/9709008 (1997)
[20] D. Lin, (1997). Using syntactic dependency as a local context

to resolve word sense ambiguity. Proceedings of the 35th an-

nual meeting of the association for computational linguistics,
Madrid. pp. 64-71

[21] C. Leacock, and M. Chodorow (1998). Combining local

context and WordNet similarity for word sense identification.
WordNet: An electronic lexical database. C. Fellbaum, MIT

Press: pp. 265-283.

[22] A. Carbonaro and R. Ferrini, Concepts-based Content Analy-
sis for Semantic Recommendations. In ECAI 2006 Work-

shop on Recommender Systems, pp. 57. 2006.

[23] T. Simpson and T. Dao, Wordnet-based semantic similarity
measurement.codeproject.com/cs/library/semanticsimilarity

wordnet.asp , 8 Feb 2010

[24] Y. B. Fernández, J. J. P. Arias, M. L. Nores, A. G. Solla, and
M. R. Cabrer. AVATAR: An improved solution for personal-

ized TV based on semantic inference. IEEE Transactions on

Consumer Electronics, (2006), vol. 52(1), pp.223-231.
[25] D. Camacho, A. Ricardo, D. Borrajo, and J. M. Molina.

Multi-agent plan based information gathering. Applied Intel-

ligence 25, no. 1 (2006) : 59-71.
[26] B. Aleman-Meza, C. Halaschek, I.B. Arpinar, and A. Sheth,

Context-Aware Semantic Association Ranking. In SWDB,

vol. 3, pp. 33-50. 2003.

http://link.springer.com/book/10.1007/978-3-540-73549-6
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/book/10.1007/978-3-642-04409-0
http://link.springer.com/book/10.1007/978-3-642-04409-0
http://link.springer.com/bookseries/558

